

MASTER THESIS

SIMULTANEOUS

OPTIMIZATION OF

CONTACTS AND SMOOTH

MOVEMENTS FOR

CONTROL OF HUMANOID

ROBOTICS

Hendrik van Gils

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF BIOMECHANICAL ENGINEERING

EXAMINATION COMMITTEE

dr. Edwin H.F. van Asseldonk
dr.ir. Arvid Q.L. Keemink
dr.ir. Wesley Roozing

DOCUMENT NUMBER

 BE - 887

16/12/2022

Abstract

Robotic exoskeletons have the potential to greatly improve the quality of life for paraplegic
patients by providing them with greater independence and fewer negative health effects compared
to wheelchairs. This study focuses on developing a control strategy for exoskeletons that allows
them to mimic the natural behavior of a healthy individual as closely as possible. The current
state-of-the-art method available at the Biomechanical Engineering department for doing this
uses direct collocation with explicit contact constraints. This has limitations when it comes to
tasks with unpredictable contact sequences, limiting it to the generation of gait. This thesis
contributes by developing a new framework; which uses direct collocation with implicit contact
constraints. This method does not require the user to specify a contact sequence, but only
requires an objective function, a dynamic model, a time span over which to optimize and an initial
guess. It then simultaneously optimizes the contacts and smooth movements. Four scenarios were
tested with a biped model: gait, resisting perturbations, safe falling, and getting up. It is able to
converge to a locally optimal solution in around 30 minutes for all tasks. However, for producing
gait and safe falling trajectories, more task specific initial guesses were required. Additionally, the
collocation errors were large and the mode sequences did not mimic human behaviour. Despite
these limitations, the results of this framework demonstrate that this direct implicit method can
be used to mimic human behaviour of different balance control related tasks. This makes it
interesting for the application in lower limb exoskeletons and walking robots. There is still room
for improvement in terms of fully realizing the potential of these devices to improve the mobility
and quality of life of paraplegic patients. This framework represents an important step forward
in the development of trajectory optimization for exoskeletons.

i

Acknowledgements

I would like to thank my friends for their support and everyone who was present during the
student balance control meetings for the inspiration an motivation.

I would also like to distinctly mention:
Arvid has been an incredible supervisor, not only because of his expertise on many topics, but
also because he cares about quality education and a personal approach.
Sjors de Bruin for all the fruitful discussions we had about collocation and trajectory optimiza-
tion, the gym sessions and being a great friend in general.
Fianna and Hein were very welcoming once we were allowed to work in office again, and I would
like to thank them for all the interesting and fun conversations.
Robin, Sem, Jonathan, Freek and Sjors have been great friends, thanks for all the coffee, beer
and laughs!
Marije for her never-ending support.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Human Walking is Not Always so Straightforward 1
1.2 Robotic Solutions and Their Limitations . 1
1.3 Objective: Implicit Contacts . 3
1.4 Outline of the Thesis . 3

2 Related Works 4
2.1 Whole-Body Locomotion Planning with Direct Collocation and Explicit Contact

Phases . 4
2.2 Centroidal Mixed-Integer Locomotion Planning 4
2.3 Centroidal Locomotion Planning through Phase-Based End-Effector Parameteri-

zation . 5
2.4 Motion Planning through Contact-Invariant Optimization 6
2.5 Direct Trajectory Optimization of Rigid Bodies Through Contact 6
2.6 Optimization of Safe Falling Trajectories for Lower Limb Exoskeletons 7
2.7 Summary of Trajectory Optimization Methods for Planning Through Contacts . 7

3 Background 9
3.1 Definitions and Conventions . 9
3.2 Optimization . 10

3.2.1 Iterative Optimization Methods . 10
3.2.2 Complementarity Constraints . 11
3.2.3 Solvers . 11

3.3 Dynamics . 11
3.3.1 Contact Dynamics . 12

3.4 Numerical Integration . 13
3.5 Direct Collocation . 13

3.5.1 What is Direct Collocation? . 14
3.5.2 Collocation Constraints for Euler-backward 14
3.5.3 Intepolation between collocation points . 15

4 Method 16
4.1 Trajectory Optimization Technique . 16
4.2 Contact Handeling . 17
4.3 NLP Formulation . 18
4.4 9 DOF Walker . 19

iii

4.5 Software Implementation . 19
4.6 Test Cases . 22

4.6.1 Gait . 22
4.6.2 Recovery from Perturbations . 23
4.6.3 Safe Falling . 23
4.6.4 Getting Up . 23

5 Results 24
5.1 Gait . 24
5.2 Recovery from Perturbation . 25
5.3 Falling . 25
5.4 Recovery . 27

6 Discussion 30
6.1 Comparison to Similar Method by Posa et al. 30
6.2 Versatile Framework with Versatile Performance 31

6.2.1 Large Deviations from Actual Dynamics 31
6.2.1.1 Improving Accuracy . 32

6.2.2 The Road to Reliability . 32
6.2.2.1 The Role of Initial Guesses . 32
6.2.2.2 Improving Convergence by Adjusting the Time Span 33
6.2.2.3 Mesh Refinement to Improve Accuracy and Convergence 33

6.2.3 Abnormal Modes . 33
6.2.4 Costly Computation . 33

6.2.4.1 Improving the Computational Efficiency 34
6.2.5 Task Specific Discussion . 34

6.2.5.1 Rediscovering Gait . 34
6.2.5.2 Perturbations: Refusing to Fall 34
6.2.5.3 Safe Falling . 35
6.2.5.4 Getting Up . 35

6.3 Human-Like Movement . 35
6.4 Future Work . 35

References 37

A Verification of Planar Dynamics 40

B Deriving Collocation Methods and Corresponding Interpolant 41
B.1 Euler Collocation (1st Order) . 41
B.2 Trapezoidal Collocation (1st Order) . 42
B.3 Hermite-Simpson Collocation (1st Order) . 43
B.4 Trapezoidal Collocation (2nd Order) . 45

C NLP Without Succinct Notation 47

D Analytic Gradients for Dynamics 48

iv

E Additional Results 49
E.1 Gait . 49
E.2 Perturbation . 49
E.3 Falling . 56

E.3.1 Experimental Results Optimal Falling . 56
E.4 Recovery . 56

F Linear Combination for Ground Reaction Forces 63

v

Chapter 1

Introduction

1.1 Human Walking is Not Always so Straightforward

Walking is an important action that most people take for granted every day. Walking allows us
to efficiently move ourselves from one location to another, across all kinds of surfaces, without
getting injured. For example, we can walk to the bathroom on the flat hallway floor. But we
can also navigate through mountains on rocky terrain, or over ice. We can carry loads in our
arms or on our backs while navigating all these different terrains, regain our balance when we
get pushed, slip or trip. Our ability to stand, balance and walk also allows us to participate in
society. We can mostly do the same activities as any other human, go on a run together, or play
soccer with a team.

While most of us take it for granted, not everyone is as fortunate. It has been estimated
that in developed western countries there are more than 4.6 million wheelchair users (WCU) [1],
which is about 1% [2] of the population. While the treatment and rehabilitation for conditions
causing patients to be in wheelchairs keeps improving, many still have to live the majority of
their life with the disadvantages of their wheelchair.

Some disadvantages of wheelchairs are obvious, while others might be less known. The
standard (pushrim) wheelchair is inefficient and causes chronic overuse of the shoulders and
wrists, resulting in pain [2]. Propelling the chair over a flat surface such as in the home is
relatively easy, but movement along outdoor paths (grass and gravel/sand surfaces) and ramps
is difficult for the average individual. All of these things combined mean that WCU live a more
restricted life and depend more on infrastrucure and others. This may limit their participation
in everyday activities, and thus may also limit their quality of life [1, 2].

Other, lesser known disadvantages are caused by the lifestyle of always sitting down. Not
using the muscles and bones in your legs causes them to atrophy (waste away). When your
muscles get smaller, they get closer to the skin and you get more pressure points [3]. It has
been estimated that insurance companies spend over 25% [3] of their spinal cord injury-related
medical expenses for pressure sore treatment. Not moving your legs can cause your joints to
lock, causing problems when one tries to move them later. It can also cause bowel issues and
thrombosis [4]. These additional medical complication will further affect the quality of life for
the WCU negatively.

1.2 Robotic Solutions and Their Limitations

Although restoring the physical function on a biological level could — in theory — also pre-
vent patients from requiring a wheelchair, this thesis will focus on robotic exoskeletons. These
exoskeletons can actuate the limbs of the patient mechanically, allowing paraplegic (lower-body

1

paralysis) patients to leave their wheelchair behind.

Multiple interesting methods have been developed to improve the performance of walking robots
[5–12]. Luckily, these methods should also improve the performance of exoskeletons, as the
combination of an exoskeleton with a human user could be considered as a biped robot with
disturbances [5]. Many of these methods rely on Model Predictive Control (MPC), a type of
control where a model of the system is used to predict and anticipate future events that allows
the optimization of variables of the modelled system. This is an attractive approach, as it allows
for reactive capabilities in addition to energy efficient — human-like — movements. This should
enable recovery from slipping, falling and external disturbances, and re-planning if the motion
is not executing as predicted [6].

Before the actuation of the patients limbs, a motion plan must be generated. A motion plan
describes a sequence of positions that move the patient from its initial to its desired state over
some time span. It is important that the motion plan is physically feasible, otherwise the robot
is unable to execute it. Movements that make and break contact with the environment have
several major restrictions:

• Forces can only be created when a foot is touching the ground.

• It is only possible to push feet against the ground, not pull on the ground.

• For legged locomotion without slipping, the location where the force is being generated
cannot be moved. To reposition the foot there is a swing phase, during which the foot is
unable to generate a force. This sudden loss in control is a restriction that is difficult to
deal with.

• The forces that drive the body forward (tangential forces) must remain inside the friction
cone to prevent slipping. To increase the tangential forces, the normal forces have to be
increased. Which will result in a higher acceleration in the normal direction.

Because of this, generating a well optimized motion plan that is physically feasible may become
problematic.

A motion plan can be constructed in different ways. A popular method is trajectory optimization,
where the generation of the motion plan is formulated as an optimization problem. The resulting
motion plan is a optimal trajectory. While formulating the trajectory optimization problem,
several assumptions — each with their own trade-offs — can be made:

• Whole-body or simplified dynamics.

• Physical feasibility as a hard constraint or as an optimization variable.

• Constant or variable time-horizon.

• Contact phases, which describe when and which parts are in contact with the surroundings,
can be predefined or included in the optimization.

The current solution available at the Biomechanical Engineering Department [5] can generate
optimal trajectories for gait, for a time-horizon of a couple of seconds while taking the whole-
body dynamics into account. The contact phases are predefined, such that it can plan efficient
gait trajectories.

Predefining the contact phases reduces the applicability of this framework to generate optimal
trajectories for tasks and environments that do not fit the predefined contact phases. This limits
the advantages, such as the reactive capabilities, that MPC has to offer.

2

1.3 Objective: Implicit Contacts

This thesis aims to include the optimization of the contact phases, in addition to optimizing
the states and controls for whole-body dynamics. Allowing the algorithm to make and break
contact whenever it deems fit. This general formulation makes the algorithm able to generate
motion plans for almost any task, regardless of the system dynamics or definition of optimality.
In theory this could provide the patient ultimate freedom.

This thesis contributes by writing software for trajectory optimization with implicit contacts and
analyzing different balance control related tasks, which could not be optimized with the previ-
ous framework. Specifically, it will demonstrate whether implicit contact methods can generate
optimal motion plans for safe falling and getting up, in addition to efficient gait. All of this
will be performed with the same algorithm and minimal change to the parameters. This will
improve the performance of lower limb exoskeletons because it allows further development of
more capable control strategies for bipedal robots.

Due to the computational cost, it is impossible to be implemented in a MPC fashion. But
the results are useful for analysis, and could be used as training data for machine learning
methods. It is unknown what the accuracy requirements are for a physically feasible trajectory
with locomotion.

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 discusses the state of the art trajectory optimiza-
tion methods for humanoid robotic and analysis of falling. Chapter 3 gives an overview of the
topics required to understand the methods and results of this thesis. The design decisions and
final formulation of the algorithm are discussed in Chapter 4. The performance of the algo-
rithm for producing gait and falling trajectories can be found in Chapter 5. Finally the results,
shortcomings, possible improvements and recommendations are discussed in Chapter 6.

3

Chapter 2

Related Works

This chapter will discuss different related works to get an idea of what proposed solutions already
exist, and what problems still need to be solved.

2.1 Whole-Body Locomotion Planning with Direct Collocation
and Explicit Contact Phases

Roos [5] describe a framework to generate efficient gait trajectories based on whole-body dynam-
ics and known contact phases. The proposed framework splits the problem of generating efficient
gait trajectories in two parts:

1. Finding footholds over time.

2. Controlling the robot to efficiently step through the footholds over time.

The goal was to solve the second part. This has been achieved by posing the problem as a
nonlinear program (NLP). This was done with trapezoidal collocation by using the whole-body
dynamics and linear friction cones as constraints. MuJoCo [13] was used for the dynamics and
gradients, and IPOPT [14] as numerical optimizer. This produced effective gaits for different
dynamics, terrains, and objective functions.

However, there were shortcomings: Contacts are not optimized, but spaced out by some other
algorithm. This limits the framework to optimizing whatever footholds were predefined. This
might cause decreased performance in tasks the first part was not designed to do, such as falling.

When using trapezoidal collocation, it is assumed that the dynamics of the system can be
approximated to be linear between discrete points in time. This decreases the accuracy of the
generated trajectories as it is basically an inaccuracy in the model.

Because of the high computational cost, the frequency at which trajectories are generated
is too low for actual control as it is not possible to generate updated trajectories to adjust
for disturbances and inaccuracies of the model. A possible workaround however, is generating
optimal reference trajectories at a lower frequency and tracking them with a higher frequency
PD-controller.

2.2 Centroidal Mixed-Integer Locomotion Planning

Koolen [8] describe a trajectory optimization approach for humanoid robot locomotion based on
mixed-integer nonlinear programming (MINLP).

4

To strike a balance between computational costs and usable results, the planning was done for
a model with reduced complexity. The configuration of the full robot was summarised as the
positions of the center of mass (CoM) and end-effectors. This configuration could be used to
approximate kinematic constraints, such as minimum and maximum distances between CoM and
end-effector positions, but also preventing cross-over for the feet. There also were contact se-
quence constraints, which limit swing and stance duration, and slipping contacts. The additional
contact constraints could be formulated by introducing auxiliary integer variable z that assumed
value 1 if the contact was active, and 0 otherwise:

0 ≤ ϕ ≤ (1− z)ϕ̄, (2.2.1)
0 ≤ λ ≤ zλ̄, (2.2.2)
z ∈ {0, 1}, (2.2.3)

where ϕ is the smallest distance between an end-effector and a contact surface, λ is the contact
force generated by an end-effector. ϕ̄ and λ̄ are used to indicate the upper bounds of these
variables. This resulted in a mixed-integer program, which are notoriously difficult to solve. A
basic way to solve this problem is by dropping the integrality constraint (2.2.3) and trying to
solve it as if it was continuous:

{z ∈ R | 0 ≤ z ≤ 1}. (2.2.4)

This is called the continuous relaxation. The solution this generates is called the fractional
solution. As this fractional solution likely does not satisfy the integrality constraints, it must
be refined. This was achieved by, intelligently, recursively branching the fractional solution by
rounding it to the nearest integer.

There are some notable drawbacks to this approach. A reduced complexity model has to be
used, resulting in solutions that are more constrained than necessary. This limits this approach
to only generating gait trajectories. In addition, all generated trajectories will be conservative,
and thus not optimal, solutions. Finally, even with the simplified model and added constraints
the performance of MINLP solvers remains unpredictable.

2.3 Centroidal Locomotion Planning through Phase-Based End-
Effector Parameterization

Winkler et al. [6, 7] describe a way to optimize gait trajectories, step-timings and footholds
based on centroidal-dynamics and a known sequence of contact phases.

The goal is to find a feasible control trajectory of the foot position and force, and the CoM
and orientation of the robot base. The most unique part about the approach, is that for each
end-effector there is a predefined sequence of contact phases. And instead of switching a phase
from contact to no-contact, the phase durations can be changed. This results in a continuous
landscape for the optimization algorithm, which is easier to solve.

For the dynamics a simplified centroidal model was used, and a kinematic model of a range-
of-motion box with respect to the CoM was used to keep the end-effectors within the joint limits.

End-effectors in the air are not allowed to exert a force, and end-effectors in contact with the
ground should not move, be at terrain height and only apply a pushing force within the friction
cone. The assumption that the motion of the legs do not influence the motion of the base was
made. This results in no dependencies on joint angles and their nonlinearities, but this is only

5

true for massless limbs.
The final result was a controller that could efficiently generate feasible trajectories. In simu-

lation it even worked on non-flat terrain, and in practice it was successful in tracing a couple of
steps on a flat ground.

However, there are a few shortcomings: It is impossible to extend this method with whole-body
dynamics as it would overconstrain the problem [5]. This means that this approach would only
work for robots whose limbs have very low mass compared to the base.

This method relies on a finite sequence of contact phases. It is like a budget that must be
met. Too few phases result in infeasible trajectories, but too many may result in inefficient
jumping at the destination.

2.4 Motion Planning through Contact-Invariant Optimization

Mordatch et al. [9] describe a flexible framework for generating trajectories which uses continu-
ous auxiliary variables, in contrast to the integer values discussed in Section 2.2.

Essentially this method tries to find the optimal solution by minimizing a composite objective
function J(z) in the form

J(z) = JCI(z) + JPhysics(z) + JTask(z). (2.4.1)

Where z are the decision variables, JCI is the contact-invariant cost, JPhysics penalizes physics
violations and JTask specifies the task objectives.

This method introduces the continuous auxiliary contact-related variable ci, which functions
as a weight. The idea is that if some end-effector must be in contact, its corresponding ci is
high. If ci is small, it is not important. These auxiliary variables are then implemented in both
JCI and JPhysics, such that setting all c’s to zero minimizes JCI, but causes contact forces to
become expensive. Thus the optimal trade-off is a high ci value if contact is of importance, and
low if it is not. This composite objective function is rewritten as a quadratic program (QP)
and solved with some off-the-shelf QP solver. The paper that presents the framework uses a
simplified physics model where the limbs have no mass, but the method should be able to use
more realistic descriptions as well, although this has not been implemented yet. This framework
manages to generate trajectories for many different movements.

It is notable that JPhysics is included in the object function instead of the constraints. This implies
that the solutions are not necessarily feasible in simulation, let alone in the real world. No error
functions or practical demonstrations were described to verify the usability of this method.

2.5 Direct Trajectory Optimization of Rigid Bodies Through Con-
tact

Posa et al. [10, 11] discuss a method to efficiently plan through non-smooth motions induced by
contact to generate gait patterns.

This method relies on complementarity constraints with slack variables to simultaneously opti-
mize contacts and smooth movements. Instead of an auxiliary variable that contains information
regarding the importance of contact, a gap function ϕ(q) is defined that analytically describes the

6

distance between an end-effector and the nearest surface. Using this gap function, the following
constraints can be formulated:

λ⊥ ≥ 0, (2.5.1)
ϕ(q) ≥ 0, (2.5.2)

ϕ⊤(q)λ⊥ = 0. (2.5.3)

Where λ⊥ is normal force. The normal force must be positive as one can only push against
the ground. To provide a more tractable optimization problem the equality constraint from
Eqn. 2.5.3 can be replaced with an inequality constraint with slack variable ϵ,

ϕ⊤(q)λ⊥ ≤ ϵ. (2.5.4)

The optimizer runs multiple times with decreasing values for ϵ, with ϵ = 0 for the final run.
When this formulation has a smooth gradient, it essentially allows the algorithm to “reason” that
it must make contact to exert force, and avoid contact to move. This same method can also be
used to include slip and friction forces, resulting in more realistic dynamics. Some Sequential
Quadratic Programming (SQP) solver was used to solve the problem. The method seemed to
performed well in planar simulations.

Besides computational costs, the need for an analytical gap function to solve contacts might not
be ideal. In practice a controller would not have access to a gap function, but a height map
and/or ray-casts. No error functions or practical demonstrations were described to verify the
usability of this method.

2.6 Optimization of Safe Falling Trajectories for Lower Limb Ex-
oskeletons

Masha Khalili et al. [15] developed a human-exoskeleton fall model to reduce injury to the pa-
tient.

The method uses a three link inverted pendulum in the sagittal plane, and only the hip is con-
sidered to be a contact point. An additional constraint that limits the joint torques was added.
The objective is to minimize the angular momentum and total linear velocity of the hip at impact.

The resulting impact velocities were similar to real human falls. But the approach could be
improved by using a more accurate model: free floating frame, multiple contacts, and forces
instead of velocities.

2.7 Summary of Trajectory Optimization Methods for Planning
Through Contacts

Roos [5] demonstrated a state of the art framework for whole-body dynamics with hybrid direct
collocation, but failed to properly track the planned trajectory in simulation.

Koolen [8] used a centroidal model to plan a trajectory for the CoM. For this trajectory it
searched for contacts using kinematic constraints and mixed-integer programming.

Winkler et al. [6, 7] set a fixed sequence of contacts and varied the duration of these contact
phases. The contacts were kinematically constrained with respect to the CoM of the centroidal

7

Table 2.1: Overview of trajectory optimization methods through contacts.

Contact Contact Physical
Method Model Optimization Dynamics Feasibility
[5] Rigid Fixed timing Whole-body Failed in MPC environment
[8] Rigid Partially1 Simplified Untested
[6, 7] Rigid Partially2 Simplified Simulation and practice
[9] Smoothed Optimized Simplified3 Untested
[10–12] Rigid Optimized Whole-body Untested
1 Secondary with kinematic constraints.
2 Fixed number of phases with kinematic constraints.
3 Possibility to extend to whole-body dynamics.

model, which was used for the dynamics.
Mordatch et al. [9] constructed a smoothed contact-invariant cost function, similar to comple-

mentarity constraints, that penalizes forces when not in contact with a surface. With simplified
dynamics as a cost function, a composite cost function was formulated as a quadratic program.

Posa et al. [10, 11] and Patel et al. [12] exploited complementarity constraints to formulate
a contact model for whole-body dynamics. Traditional direct collocation methods were used to
pose the NLP.
An overview of these optimization methods for planning through contacts is shown in Table 2.1.

A drawback that all discussed papers have is that none of them discuss the physical feasibil-
ity between collocation points with error functions, which are available for all direct methods.
Although the physical demonstration of Winkler et al. [6, 7] proves that the accuracy and compu-
tational cost are sufficient for an MPC implementation, the required feedback control, deviance
from the original trajectory and error functions could help as a reference.

As the long-term goal is to have one method to generate motion plans for any task, it makes
sense to turn to the methods of Posa et al. [10, 11] and Mordatch et al. [9]. These methods have
proven to be able to adapt their contact phases to a multitude of tasks, whereas other methods
have only been demonstrated for the generation of gait.

Due to the inability to include constraints in the method of Mordatch et al. [9], it is difficult
to enforce realistic behaviour. Therefore it was decided to apply the implicit contact method as
described by Posa et al. [10, 11].

8

Chapter 3

Background

This chapter will attempt to get the reader to a level of understanding on several topics that are
deemed relevant for understanding the methods and results.

To fully understand the contents of this thesis, a good grasp of optimization (3.2), dynamics
(3.3), numerical integration (3.4) and direct collocation (3.5) is required.

3.1 Definitions and Conventions

Throughout this thesis several definitions and conventions are used, this section will give a short
overview. The definitions can be found in Table 3.1.

Conventions:
Vectors are written in bold lowercase: a.
Matrices are written in bold uppercase: A.
Subscript is often used to indicate indices: a = [a0, a1, a2].
For brevity, arguments of a function may be omitted: f(a0, b0, c0) = f0.
Dots above a variable indicate its derivative with respect to time: ȧ = da

dt .

Table 3.1: Overview of definitions used throughout this thesis.

Definition Meaning
Tractable A tractable NLP has numerical properties that are beneficial for convergence.
Feasibility A NLP is feasible when the constraint violations are below the threshold of

the solver. For collocation this does not mean the generated trajectory is
physically feasible, as the dynamics error between these discrete points may
still be too large to be executed in practice.

Physical feasibility A generated trajectory is physically feasible if it is realistic enough to be exe-
cuted in practice. This can be estimated by analysing the deviation between
the generated trajectory and trajectory prescribed by the equations of motion
with the generated states and controls.

Knot point Point in time that is used in direct collocation to formulate the decision
variables and divide the solution in segments.

Segment The continuous time between two knot points.
Collocation point Point on a segment that is constrained by the approximation of the dynamics

using some quadrature method.

9

3.2 Optimization

Mathematical optimization is at the core of direct collocation [16–18], so the knowledge of this
section will be applied in Section 3.5.

Mathematical optimization is a field that is concerned with finding the minimum value of a
function, given a set of constraints. A general formulation of an optimization problem is:

minimize
z

J(z) (3.2.1a)

subject to zLB ≤ z ≤ zUB, (3.2.1b)
f(z) = 0, (3.2.1c)
g(z) ≤ 0. (3.2.1d)

Where z contains the decision variables, which values can be varied to find the lowest point of
J(z) that satisfies all constraints. The constraints can be generalized to boundary, inequality
and equality constraints. Boundary constraints (3.2.1b) set a lower and upper bound (zLB and
zUB respectively) to the decision variables. All values between −∞ and ∞ may be chosen as
boundaries. Equality (3.2.1c) and inequality (3.2.1d) constraints are both functions of z.

Historically, constrained optimization problems have also been called programs. A special name
for programs with nonlinear terms in either its J(z), f(z), or g(z) is a nonlinear program (NLP).

3.2.1 Iterative Optimization Methods

Iterative optimization methods start out with an initial guess, z0, of what the solution might
be. From z0 the solver iterates towards a solution until it converges to a (local) minimum.

Different methods exist for converging to a solution. A simple — but effective — method of
finding the lowest value of J(z) is going in the direction that has the steepest descending slope,
while conforming to the constraints. These methods are referred to as gradient-based methods.
The slope can be calculated with

∂J(z)

∂z
=

[
∂J(z)

∂z0
, · · · , ∂J(z)

∂zn

]
. (3.2.2)

This can be done both numerically or analytically. The numerical approach is easier to imple-
ment, but requires more function evaluations and therefore has a higher computational cost.
Implementing the analytical approach in an efficient manner requires more effort, but the result-
ing gradients will be up to machine precision with fewer function evaluations during runtime.

A similar approach may be used to satisfy the equality and inequality constraints, although
these are usually vector valued functions. This results in a Jacobian with more than a single row.

What is important to note, is that in order to use gradient-based methods the objective and
constraint functions must be consistent. Functions are consistent if the sequence of arithmetic
operations performed between different function calls is identical [16]. A more intuitive expla-
nation is that the function must be deterministic, have no logical branches, and have an output
that varies smoothly with the inputs [18]. If ∂J(z)

∂z , ∂f(z)
∂z , or ∂g(z)

∂z is ill-defined, then the chance
of converging to a feasible solution becomes very small [17, 18].

10

3.2.2 Complementarity Constraints

Complementarity constraints can be used as a method to replace logical statements with consis-
tent equations. Usually complementarity constraints enforce that:

ab = 0, (3.2.3)
a ≥ 0, (3.2.4)
b ≥ 0. (3.2.5)

As Eqn. 3.2.3 is a difficult constraint for most solvers, this thesis uses a more tractable [10, 11]
method, where it is also expressed as an inequality constraint:

ab ≤ 0. (3.2.6)

A succinct notation for complementarity constraints is often used:

0 ≤ a ⊥ b ≥ 0. (3.2.7)

3.2.3 Solvers

A multitude of solvers exist. Among these solvers there is no single best choice. Depending on
the problem that must be solved and which software can be used a choice should be made. Two
solvers were used for this thesis; fmincon (MATLAB [19]), and IPOPT [14] (C++), which also
has a MATLAB interface [20].

When a license is available, fmincon is easy to use and it supports different algorithms
(interior-point, trust-region-reflective, sqp and active-set), which is useful for proto-
typing.

IPOPT is a popular interior-point solver that is open source. The main advantages it has
over fmincon are that no licenses are required and that it is incredibly fast.

3.3 Dynamics

In this thesis, dynamics refers to (rigid) multibody dynamics, which is a set of Ordinary Dif-
ferential Equations (ODEs) that choreograph the translational and rotational displacements of
interconnected rigid bodies, given the applied forces. They are often called Equations of Motion
(EoM), and presented as

M(q)q̈ +C(q, q̇)q̇ + g(q) = Bu+ J⊤(q)λ, (3.3.1)

or similar [21]. In Eqn. 3.3.1 q contains the generalized coordinates, which are a set of variables
to uniquely describe the configuration of the system. The mass matrix, M(q), describes the
translational and rotational inertias of the system. C(q, q̇)q̇ contains fictitious forces such as
Coriolis and centripetal forces. g(q) contains the potential forces, in a system without springs
these are the forces caused by gravity. B is called the selection matrix, it determines which
generalized coordinates of the system may be actuated directly with control vector u. J(q) is
the contact jacobian, which relates the contact forces λ to q.

These EoM can be derived and verified (Appendix A) using multiple methods. These EoM

11

can be rewritten as

q̈ = M−1(q) (Bu+ J⊤(q)λ−C(q, q̇)q̇ − g(q))︸ ︷︷ ︸
F(q, q̇,u,λ)

, (3.3.2)

q̈ = M−1(q)F(q, q̇,u,λ), (3.3.3)

allowing exact calculations of the accelerations, q̈, given the current q, q̇,u and λ. Here F are
all the generalized forces acting on the system.

For the sake of readability and programming purposes, these EoM are rewritten to a system
of nonlinear first order state equations

x =

[
q
q̇

]
, ẋ =

[
q̇
q̈

]
, (3.3.4)

ẋ = f(x,u,λ), (3.3.5)

and used as such from now on. Here x is called the state of the system.

3.3.1 Contact Dynamics

Accurately modelling the dynamics of contact requires more care than modelling smooth move-
ments. The dynamics of contact for rigid body systems can be modelled with different methods
[21], this section only covers the general notation and equations required to model contact.

For modelling contact dynamics, certain notations can help. Most of the contact models indicate
the distance between a rigid body and a contact surface with a variable, called the gap and
denoted as ϕ from now on. Given that the exact locations of the contact surfaces are known, the
gap may be expressed as a function of the generalized coordinates: ϕ(q). The contact dynamics
should avoid penetration of the contact surfaces, so they should only be in effect during contact:

ϕ(q) ≤ 0. (3.3.6)

The ground reaction forces (GRF) are expressed with λ in vector:

λ =

[
λ⊥

λ∥

]
. (3.3.7)

Where ⊥ stands for perpendicular, and ∥ for parallel to the surface. Accompanying these forces
is the stacked Jacobian matrix:

J(q) =

[
J⊥(q)

J∥(q)

]
. (3.3.8)

Where J⊥(q) projects λ⊥, and J∥(q) projects λ∥ onto q. Friction cones should be enforced at
all times, and are described as: ∥∥∥λ∥

∥∥∥ ≤ µλ⊥. (3.3.9)

Where µ is the friction coefficient. Contacts can be divided in sticking and slipping contacts,
sticking contacts have no velocity parallel to the contact surface and therefore do not need any
additional friction forces. Slipping contacts however, do have a velocity parallel to the contact

12

surface,

J∥(q)q̇ ̸= 0, (3.3.10)

and therefore a friction force opposite to the slip direction and proportional to the normal force:

λ∥ = −µλ⊥ J∥(q)q̇∥∥J∥(q)q̇
∥∥ . (3.3.11)

3.4 Numerical Integration

This section will give a short introduction of numerical methods for integrating ODEs, these
methods can be used to model a mechanical system with the EoM shown in Section 3.3.

Using time-stepping methods these EoM can be solved numerically, giving us an estimate of how
the state of the system will change over time. There are explicit and implicit methods; explicit
methods use yk (current point in time) to calculate yk+1 (next point in time), implicit methods
use both yk and yk+1 to calculate yk+1. The simplest approach is an explicit first-order method
called Euler-forward. Using the equations

fk = f(xk,uk,λk), (3.4.1a)
hk = tk+1 − tk, (3.4.1b)

xk+1 = xk + hkfk, (3.4.1c)

the state of the system at the next discrete point in time can be calculated. The Euler-forward
method is easy to implement, but it has a low numerical stability — especially for stiff ODEs.
Generally, a stiff ODE means that the system includes terms that vary rapidly, and that an
impractically small step size is required to appropriately approximate it. When a larger step size
is used, the dynamics become numerically unstable. To combat this, higher-order or implicit
methods may be used. No higher-order integration methods are used in this thesis, as the im-
plicit methods used sufficed.

Implicit methods are key to understanding trapezoidal collocation — the integration scheme
mainly used in this thesis. Next to the explicit Euler method, an implicit Euler method, called
Euler-backward, also exists. Using the equation

xk+1 = xk + hkfk+1, (3.4.2)

the state of the system at the next discrete point in time can be calculated. Implicit methods
such as Euler-backward are much better suited at solving stiff problems, because larger steps
can be made while maintaining numerical stability. However, there is a small problem: xk+1

has to be known in order to calculate xk+1 itself. Because of this, additional computation is
usually required for implicit methods, when compared to explicit methods. There are also other
methods to integrate ODEs, which will be covered in Section 3.5.

3.5 Direct Collocation

This section will discuss what direct collocation is, and how it can be applied to optimize the
control of dynamical systems.

13

3.5.1 What is Direct Collocation?

Direct collocation is a method to numerically solve ODEs by directly transcribing the state and
control as a candidate solution, which are discrete decision variables. The transcription from
continuous to discrete is indicated with −→.

x(t) −→ X = [x0,xk, · · · ,xN] , (3.5.1)
u(t) −→ U = [u0,uk, · · · ,uN] , (3.5.2)

these decision variables can be chosen “freely” at discrete points in time:

t −→ t = [t0, tk, · · · , tN] . (3.5.3)

These discrete points in time are called knot points, and the time between knot points are called
segments (N is used to indicate the number of segments). Collocation constraints are applied to
collocation points, which may or may not coincide with the knot points, on segments such that
the solution adheres to the dynamics prescribed by the ODEs at these collocation points. Where
these collocation points lie on a segments is dependent on the collocation method used.

Collocation constraints try enforce that the change of state between two knot points is equal to
the integral of the dynamics between those two points [18]:∫ tk+1

tk

ẋdt =

∫ tk+1

tk

fdt. (3.5.4)

The integral of the dynamics between two knot points is approximated with some quadrature
method.

This formulation of the problem makes it possible to solve a set of ODEs, but the system is
not being controlled optimally yet. To achieve this, an objective function — specifying what is
meant with optimal — and additional constraints can be added. To solve the resulting NLP, it
is handed over to an optimization solver which will then try to minimize the objective function
while satisfying the constraints, which should result in a (locally) optimal solution. This solution
not only consists out of the optimal sequence of states, but also the optimal sequence of control
inputs.

3.5.2 Collocation Constraints for Euler-backward

As discussed before, the change of state between two states must be equal to the integral of the
dynamics. From Equations 3.4.2 and 3.5.4 we arrive at Eqn. 3.5.5

xk+1 − xk = hkfk+1. (3.5.5)

This collocation constraint can then be rewritten as an equality constraint in an optimization
problem:

xk+1 − xk − hkfk+1 = 0. (3.5.6)

Because the decision variables are always “known”, no additional computation is required for
implicit methods. And as stated in Section 3.4, implicit methods are numerically more stable
and allow for larger time steps and thus lower computational cost.

14

3.5.3 Intepolation between collocation points

The solution of a NLP posed with direct collocation are matrices containing the optimal states
and controls at the knot points. Those would be useful by themselves, but there is more infor-
mation that can be extracted from the solution.

Each collocation method has its own interpolation method, a piecewise polynomial to calcu-
late the states and controls between the knot points. It is the interpolation function that can
be used for both feed forward control and reference tracking. The interpolation polynomial is
one order higher than the quadrature method used to construct the collocation constraints. This
means that if — for control purposes — it is desirable to have n-times differentiable trajectories,
the quadrature method should be chosen accordingly.

The derivation and interpolation function of Euler collocation and other collocation methods are
described in Appendix B.

15

Chapter 4

Method

This chapter will discuss how the NLP was formulated, and explain the design decisions that
were made.

4.1 Trajectory Optimization Technique

As direct collocation is not the only trajectory optimization technique, it makes sense to elaborate
why it is used.

• Indirect methods were initially developed for applications where accuracy is critical [22],
such as aeronautics and astrodynamics. However, the region of convergence is smaller than
with direct methods, meaning that an accurate initial guess is more important [23], which is
difficult for dynamics with frequent discrete events. Additional (adjoint) variables — which
are not present in direct methods — must also be initialized, causing further complications
[16].

• Shooting methods integrate the dynamics by simulation instead of approximation by a
quadrature. Although useful for problems with complicated dynamics and simple controls
[23], neither the dynamics nor controls of locomotion are simple. It is also difficult to
apply path constraints [23], which will make avoiding penetration of contacts particularly
difficult.

• Differential dynamic programming also simulates the system forward in time and optimizes
based on the result of that simulation [18]. In contrast to shooting methods and due to
the time dependent nature of the dynamics, the problem is broken up into sub-problems.
Each sub-problem is solved optimally, resulting in an optimal solution for the original
problem. A big benefit of differential dynamic programming is that it results in an optimal
policy instead of a trajectory, guaranteeing optimal behaviour with disturbances. In theory
differential dynamic programming is not well suited for handling complex dynamic systems
[5].

• Gradient free methods are more general optimization techniques and therefore a bit of an
odd addition to this list. In theory they are interesting as they do not experience the
same issues with discrete event as gradient based optimization does. Experiments were
performed with the genetic algorithm (as implemented by MATLAB), but it showed poor
convergence for relatively simple problems. Evolution strategies such as CMA-ES [24] were
also considered, but because of the inability to include nonlinear constraints it would be
difficult to guarantee physically feasible solutions.

16

4.2 Contact Handeling

The main objective was to include the optimization of contacts, while simultaneously optimizing
the smooth movements. The implicit contact method of Posa et al. [10, 11] was chosen as it
seemed to offer the best balance between reliable convergence and realistic trajectories. The
MINLP method [8] seems promising, but the performance is too unreliable. Changing phase
durations [6, 7] works well, but requires lightweight limbs. As this is not an option for exoskele-
tons, the generated trajectories would not be feasible in reality. Mordatch et al. [9] include the
contacts and dynamic constraints in the objective function, and can therefore not guarantee real
world feasibility.

The difficulty of including contact dynamics in gradient-based optimization, is that seemingly
instantaneous events must be modelled with functions that are consistent. This can be achieved
by splitting the inconsistent contact dynamics into multiple functions that are consistent. One
way of achieving this is with complementarity constraints (Eqn. 2.5.4).

However, this exact formulation introduces the problem that contact points can only start to
decelerate at the moment of impact. But numerical optimization happens at discrete moments
in time, meaning that objects making contact will still have a negative velocity with respect to
the contact surface, resulting in penetration. At the cost of realism, GRF are allowed a single
discrete step in time before impact. This can be represented as a complementarity constraint,

0 ≤ ϕ⊤(qk+1) ⊥ λ⊥
k ≥ 0, (4.2.1)

where k indicates the current knot point. The discontinuous behaviour of contact gets approached
as the density of knot points over some time interval increases.

While Posa et al. [10, 11] stated that adding a slack variable (Eqn. 2.5.4) to the complemen-
tarity constraints improved performance, it has not been used as it only proved to increase the
probability of convergence to local minima.

To include friction in gradient based optimization methods, the inconsistent friction equations
(3.3.9 and 3.3.11) were rewritten as multiple equations that are consistent. To do so, λ∥ was
split into additional variables, λ∥− and λ∥+ such that:

λ∥− ≥ 0, (4.2.2)

λ∥+ ≥ 0, (4.2.3)

λ∥ = λ∥+ − λ∥−. (4.2.4)

Where the ‘−’ and ‘+’ indicate the forces perpendicular in both directions with respect to λ⊥

(Figure 4.1).
Additionally, slack variable γ was added, which is identical to the absolute velocity of a

contact point parallel to the contact surface. With these additional variables, the equations
describing the contact dynamics can be represented as consistent complementarity constraints:

0 ≤ µλ⊥ − λ∥− − λ∥+ ⊥ γ ≥ 0, (4.2.5)

0 ≤ γ −
[
J∥(q)

]⊤
q̇ ⊥ λ∥+ ≥ 0, (4.2.6)

0 ≤ γ +
[
J∥(q)

]⊤
q̇ ⊥ λ∥− ≥ 0. (4.2.7)

Where Eqn. 4.2.5 ensures that the GRF stays within the friction cone, and for slipping contact

17

Figure 4.1: The modelled ground reaction forces. The black line represents a limb with a contact
point at the bottom. The gray rectangle represents a contact surface. The red vector pointing upwards
represents the normal force

(
λ⊥). The blue vector pointing to the left represents the negative parallel

friction force
(
λ∥−). The yellow vector pointing to the right represents the positive parallel friction force(

λ∥+). The green triangle represents the friction cone, where the linear combination of all three vectors
should remain within.

lie on one of the edges of the friction cone. Eqn. 4.2.6 enforces that in case of slip in the positive
direction, no force in the direction of slip may be applied. Together with Eqn. 4.2.7 this ensures
that slipping contacts always have a friction force in the opposite direction.

4.3 NLP Formulation

By combining the contact constraints with boundary and collocation constraints and an objective
function, an optimization problem can be formulated:

minimize
x,u,λ,γ

N∑
k=1

(
wuu

⊤
k uk + wλλ

⊤
k λk

)
(4.3.1a)

subject to xLB ≤ xk ≤ xUB, (4.3.1b)

uLB ≤ uk ≤ uUB, (4.3.1c)

xLB
1 ≤ x1 ≤ xUB

1 , (4.3.1d)

xLB
N ≤ xN ≤ xUB

N , (4.3.1e)

xk+1 − xk −
hk
2

(
fk + fk+1

)
= 0, (4.3.1f)

0 ≤ ϕ⊤(qk+1) ⊥ λ⊥
k ≥ 0, (4.3.1g)

ϕ⊤(qN)λ⊥
N ≤ 0, (4.3.1h)

0 ≤ µλ⊥
k − λ

∥−
k − λ

∥+
k ⊥ γk ≥ 0, (4.3.1i)

0 ≤ γk −
[
J∥(qk)

]⊤
q̇k ⊥ λ

∥+
k ≥ 0, (4.3.1j)

0 ≤ γk +
[
J∥(qk)

]⊤
q̇k ⊥ λ

∥−
k ≥ 0. (4.3.1k)

Where x, u, λ, γ are the decision variables that will be adjusted to minimize the objective
function (4.3.1a), while satisfying the boundary (4.3.1b to 4.3.1e), equality (4.3.1f), and comple-

18

mentarity (4.3.1g to 4.3.1k) constraints. See Appendix C for the formulation without succinct
notation.

For gait generation the objective is to minimize the joint torques and GRF squared. Minimization
of joint torques results in human-like motions, and minimization of the GRF makes taking
multiple steps more appealing. Weights, wu and wλ, were added such that the priority for the
objective function may be tuned. The actual objective, getting from point a to point b, was
omitted from the objective function and included in the boundary constraints on purpose, as it
results in a more tractable NLP [17].

The joint angles and velocities, and torques are bounded by 4.3.1b and 4.3.1c respectively.
The initial and desired states are bounded by 4.3.1d and 4.3.1e respectively. As contact points
may only push against the ground, the GRF are bounded to positive values by (4.3.1g, 4.3.1j
and 4.3.1k). The final boundary constraint is the slack variable, which is also bounded to all
positive values by (4.3.1i).

For the equality constraints (4.3.1f), there are only the collocation constraints. Trapezoidal
collocation was used as it has been proven to be reliable [5, 18, 22] and simple to implement.

Finally, the inequality constraints specify that the gap function must be positive and ensure
that normal forces are applied if and only if the gap at the next collocation point is equal to zero
4.3.1g. Eqn. 4.3.1h was added to also constrain the normal force at the final collocation point.
Equations 4.3.1i, 4.3.1j and 4.3.1k together ensure that the GRF stays within the friction cone,
and that the friction force during slip is in the opposite direction.

4.4 9 DOF Walker

For the dynamic model, a 9 DOF bipedal humanoid figure with lower limb exoskeleton in the
sagittal plane (Figure 4.2), from [25], was used. The kinematics, mass matrix, fictitious forces
matrix, potential forces vector and model parameters were derived and supplied by Arvid Q.L.
Keemink and Ander Vallinas Prieto.

The model consists of a free-floating-base, located at the CoM of the upper body. All other
bodies — feet, and upper and lower legs — were defined with angles relative to their parent
bodies. The floating base cannot be actuated, but all joints may be actuated within the torque
limitations.

In order to allow for realistic trajectory optimization of both gait and falling, a multitude of
eligible contact points were required. Contact points were placed on the head; and hip, knee,
ankle, heel and toe of both legs, for a total of 11 contact points. At each of these contact points
a horizontal and vertical force may be applied. An overview of the used model parameters is
given in Table 4.1.

4.5 Software Implementation

This section discusses the final design of the algorithm.
Both fmincon and IPOPT are supported, on average the computational cost is reduced tenfold
by using IPOPT.

The time span over which the trajectories will be optimized is defined at the start, and will
not be optimized.

For the number of collocation points, it is possible to insert a vector with n integer values,
this will cause the optimization algorithm to run n times using the interpolated previous result
as the new z0.

19

Table 4.1: Overview of used model parameters.

Parameter Value Unit
Gravitational acceleration 9.81 m s−2

Friction coefficient 1 [−]
Length upper body 0.8562 m
Mass upper body 70.9819 kg
Inertia upper body 16.3196 kg m2

CoM x in body frame -0.0398 m
CoM y in body frame 0.4615 m
Length upper leg 0.42 m
Mass upper leg 12.11 kg
Inertia upper leg 0.9302 kg m2

CoM x in rotated hip frame -0.0027 m
CoM y in rotated hip frame 0.1876 m
Length lower leg 0.433 m
Mass lower leg 7.0238 kg
Inertia lower leg 0.3794 kg m2

CoM x in rotated knee frame 0.0044 m
CoM y in rotated knee frame 0.152 m
Length heel 0.0583 m
Length toe 0.1467 m
Height foot 0.0908 m
Mass foot 1.8762 kg
Inertia foot 0.2657 kg m2

CoM x in rotated ankle frame -0.0685 m
CoM y in rotated ankle frame 0.0287 m
Maximum hip torque 100 N m
Maximum knee torque 50 N m
Maximum ankle torque 100 N m
Minimum angle hip 0.8π rad
Maximum angle hip 5

3π rad
Minimum angle knee −0.5π rad
Maximum angle knee 0 rad
Minimum angle ankle −0.25π rad
Maximum angle ankle 0.25π rad

20

Figure 4.2: Model of the 9 DOF biped portraying how the joint angles are defined. Note that the first
leg is configured with the minimum angles. The second leg is configured with the maximum hip and
ankle angles.

The slack variable for the complementarity constraints (Eqn. 2.5.4) is included as described
by Posa et al. [10], but set to zero by default as it only increased convergence to local minima.

By default necessary functions, such as the objective f(x,u,λ), gap ϕ(q) and parallel con-
tact Jacobian J∥(q) are defined for the walker model (Section 4.4). The objective and dynamics
functions can be changed easily, but the gradients and all functions required for contact should
also be defined. So these should be derived by the user. Models for a pendulum, monoped, and
walker with pin-feet are also available.

An efficient method for calculating the gradients of the dynamics can be found in Appendix D.
The initial and desired states and boundaries for all decision variables can be modified by the user.

Unless a specific initialization is specified, linear interpolation between the initial and desired
state is performed. Additionally, a small amount of white noise — with a user specified seed —
was added to decision variables included in the objective function, as this should improve solver
performance [17] by avoiding infeasible minima.

After this, the problem is packed into one vector:

z = [z0 . . . zk . . . zN]⊤ , (4.5.1)

zk = [xk,uk,λk,γk]
⊤ . (4.5.2)

Then the problem gets solved with whichever solver that was picked.

21

After it has been solved, the solutions gets interpolated with spline functions that correspond
with the collocation method. As trapezoidal collocation was used, the decision variables were
interpolated with:

x(τ) = xk + fkτ +
τ2

2hk

(
fk+1 − fk

)
, (4.5.3)

u(τ) = uk +
τ

hk
(uk+1 − uk) , (4.5.4)

λ(τ) = λk +
τ

hk
(λk+1 − λk) , (4.5.5)

ẋ(τ) = fk +
τ

hk
(fk+1 − fk). (4.5.6)

Where τ is the continuous time between two knot points. The derivation of these splines can be
found in Appendix B.

With these interpolation functions and the EoM, a function that describes the deviation from
the EoM can be defined. This will be referred to as the error in the dynamics:

ε(τ) = f(x(τ),u(τ),λ(τ))− ẋ(τ). (4.5.7)

The integral of the absolute value of ε(τ) can be computed for each segment to determine how
much the solution has deviated from the actual dynamics in that segment:

ηk =

∫ tk+1

tk

|ε(τ)|dτ . (4.5.8)

4.6 Test Cases

In order to demonstrate the freedom that optimization of contacts presents, multiple tasks were
chosen: gait, safe falling and getting back up. These tasks were chosen as they reflect balance
control related tasks that are still an active area of research.

All scenarios use the same dynamic model from Section 4.4. The number of knot points,
objective function weights and boundaries were varied. The resulting solutions were analyzed by
their objective value, constraint violation and error functions (4.5.7 and 4.5.8). A brief overview
of the used setting can be found in Table 4.2.

The solutions were generated on a laptop with an AMD Ryzen 5 PRO 4650U processor,
running at 2.7 GHz.

4.6.1 Gait

The first test case was generating optimal gait trajectories. The objective function weights —
wu and wλ from Eqn. 4.3.1a — were both set to 1. Through experimentation a time span of 2
seconds and walking distance of 2 meters was chosen as it guaranteed 2 or more steps. After
that, the number of knot points was increased from 4 to 60 in increments of 2. These results were
analyzed to adapt the algorithm such that it more reliably produced a humanoid gait trajectory.

This was achieved by setting wu to 10 and running the optimization twice: First, with 4
knot points for humanoid gait and low computational cost. This trajectory was then used as
the initial guess for a second optimization with 49 knot points. This number of knot points was
chosen as it keeps the 4 initial knot points in place, but should result in acceptable constraint
violations and more closely resemble the real dynamics.

22

Table 4.2: Overview of (some of) the settings used for different tasks. Where N indicates the number
of knot points, wu the weight of the joint torques squared cost and wλ the weight of the GRF squared.

Task N Time (s) wu wλ Initialization
Gait 491 2 10 1 linear interpolation
Perturbation 60 2 1 10 initial state
Falling 60 2 1 10 physics first2

Recovery 60 3 10 1 linear interpolation
1 Refining the result of an optimization with 4 knot points.
2 Refining the result of a simulation without control or objective func-
tion.

4.6.2 Recovery from Perturbations

An additional, unforeseen, test case was optimal recovery from the initial perturbations meant
to provoke falling behaviour. The only difference with falling — which will be discussed next —
is that the initial guess is to keep the initial position.

4.6.3 Safe Falling

The second test case was generating optimal safe falling trajectories. In the unfortunate event a
patient with a robotic exoskeleton falls, it would be nice to limit the severity of the pilots injury.
This can be done by minimizing the impact forces, especially on the head and hip.

An initial state of standing straight and some initial (rotational) velocity on the CoM was
chosen to provoke falling behaviour. A time span of 2 seconds and objective function weights
wu and wλ of 1 and 10 respectively were chosen. Specific weights for the head and hip could be
added, but weren’t necessary to generate safe falling trajectories.

As the algorithm would rather cheat than fall over, it was decided to run the algorithm
without control or objective function first. This result was then used to optimize the objective
function with control.

There were no additional constraints for the final state, and the initial guess was to keep the
initial state.

4.6.4 Getting Up

The final test case was generating optimal trajectories to get up after having been severely
disturbed. As the model does not have arms and has limited joint mobility, it would be impossible
to get up from lying down. Therefore an initial state with one knee on the ground was chosen.
The desired state was to return to the standing position used for the safe falling optimization.

23

Chapter 5

Results

This chapter will present the results of generating optimal trajectories for gait (5.1), recovery
from perturbations (5.2), safe falling (5.3) and getting up (5.4).

It is important to state that the time span and desired state had to be tweaked to allow for
acceptable convergence and seemingly realistic results. As this is difficult to convey through
tables, graphs or images, it does not have a prominent place in this chapter. Nonetheless, it is a
notable result that must be mentioned.

All results are from the direct collocation, not regular simulation. This means that there is
a discrepancy between the displayed and real behaviour of the system.

Each of the images displaying snapshots of the orientation to give an idea of the motion use
eight frames of the generated trajectory, that are equally spaced in time. The initial position of
the CoM and floor are indicated with the vertical (x=0) and horizontal (y=0) black lines.

5.1 Gait

Experimental results showed that a goal of 2 meters in 2 seconds should be feasible and result
in 2 or more steps. With these parameters the number of knot points was increased, the results
of which can be seen in Figure 5.1a (and more extensively in Table E.1).

There is a visible positive trend for the solver time when the number of knot points increases.
The collocation error has a steep drop for the first 30 knot points, but remains around the same
values for higher numbers of knot points.

The final result of generating a gait trajectory with 4 knot points and using the result as the
initial guess for a second optimization with 49 knot points is shown in Figure 5.2. The generated
trajectories and results for the trajectory with 4 knot points can be found in Appendix E.1.

Figure 5.2a shows that two steps were taken to get from its initial position to the desired
position. The feet seem to slip, but in the animation it can be seen that it is merely repositioning
its feet.

Figure 5.1b shows how it switches between contact modes. It is possible to distinguish two
steps for the right foot and some slight repositioning of both feet. It is notable that the mode
sequence of the trajectory does not seem to mimic the mode sequence of human gait with a heel
strike and toe push-off.

Figure 5.2b shows the mean deviation from the actual dynamics. Because the mean of
different units — m s−2 and rad s−2 — was taken, it is not specific on the error. The lack
of units is irrelevant here, as errors of this magnitude will be impossible to track. To further

24

https://youtu.be/71GDIdSzOHA

(a) Performance values for gait generation with vary-
ing number of knot points. Performance is expressed in
solver time (black) and the maximum absolute colloca-
tion error (red).

(b) The mode sequence plot of both feet for the gait op-
timal trajectory that is displayed in Figure 5.2a. WIE
DIT LEEST TREKT EEN ADT. contributions
(lees gewoon de hele thesis ipv ctrl+f).

illustrate this point, the largest error in a single segment was 3.7 rad s−1 on the left knee around
0.85 seconds. The optimization of this trajectory took 38 minutes.

5.2 Recovery from Perturbation

Results of resisting a perturbation can be seen in Figure 5.3. The perturbation was modelled
with an initial velocity of -1 m s−1 in the x-direction and 1 rad s−1 on the CoM. This optimization
used 60 knot points. The generated position, velocity and control trajectories can be seen in
Appendix E.2.

Figure 5.3a shows how a single step backwards was taken to recover from the applier per-
turbation. The mode sequence (Figure 5.3b) illustrates how the solver is free to vary contact
modes. There is some contact between the toe and the ground while moving the leg backwards,
and some full contact before it actually comes to a standstill.

Optimizing this trajectory took 14 minutes and the largest error in a single segment was 1.7
rad s−1 on the right knee around 0.56 seconds. An error of this order would cause tracking errors.

5.3 Falling

Results of optimal falling trajectories can be seen in Figure 5.4 and Figure 5.5. Falling was
initiated with an initial velocity of -1 m s−1 in the x-direction and 2 rad s−1 on the CoM. This
optimization used 60 knot points. The generated position, velocity and control trajectories can
be seen in Appendix E.3

Figure 5.4a shows how it tries to recover with a few steps backwards, but falls over in the
end. Note how it moves its upper body forward and bends its knees while falling. This protects
its head and decreases the final impact velocity on the hip.

The modes in Figure 5.4b demonstrate how the solver is able to choose whichever contacts
it deems fit. Knee and hip contact was omitted from the modes plot for clarity.

The ground reaction forces on the knee and hip are displayed in Figure 5.5. With peak forces
of 2607 and 992 N on the hips and knees respectively.

The optimization of this trajectory took 83 minutes and the largest error in a single segment
was 2.5 rad s−1 in the acceleration of the left ankle in the first segment. An error of this order

25

(a) Eight frames of the generated gait trajectory. The
initial position of the CoM is indicated with the vertical
black line (x=0) and the goal with the vertical green
line (x=2). The floor is indicated with the horizontal
line (y=0).

(b) The mean collocation error of the generated gait
trajectory. The mean of variables with different units
(meters and radians) was taken, therefore the mean col-
location error has no meaningful unit. The coloured
dots correspond with the frames of Figure 5.2a.

Figure 5.2: Refined gait with 49 knot points and 4 knot points as initialization. Time goes from cobalt
blue to raspberry red.

(a) Eight frames of the generated trajectory to resist a
perturbation.

(b) The mode sequences of both feet while trying to
resist a perturbation.

Figure 5.3: Resisting a perturbation with 60 knot points. Time goes from cobalt blue to raspberry
red.

26

(a) Eight frames of the generated optimal falling tra-
jectory.

(b) The mode sequences of both feet while trying to
optimize falling.

Figure 5.4: Optimal falling with 60 knot points. Time goes from cobalt blue to raspberry red.

would cause tracking errors.

5.4 Recovery

Results of recovering from a kneeling to neutral stance can be seen in Figure 5.6 and Figure 5.7.
This optimization used 60 knot points. The generated position, velocity and control trajectories
can be seen in Appendix E.4.

Figure 5.6a shows how it slowly returns to a neutral stance using its right knee and toe, while
sliding its left foot over the floor. The modes in Figure 5.6b show how initially only the right
toe is used, as the heel cannot make contact yet due to kinematic constraints. Knee contact was
omitted from the modes plot for clarity.

From Figure 5.7 it can be seen that the GRF generated on the left foot do not oppose the
direction of slip. Which is notable because the contact constraints were supposed to disallow
this exact behaviour. Something else that is notable about the GRF are the oscillations.

The optimization of this trajectory took 37 minutes and the largest error in a single segment
was 1.2 rad s−1 on the right ankle around 0.89 seconds. An error of this order would cause
tracking errors.

27

Figure 5.5: Norm of the contact forces on the knees and hips over time of the generated falling trajectory.

(a) Eight frames of the generated trajectory to recover
to a neutral stance.

(b) The mode sequences of both feet while recovering
to a neutral stance.

Figure 5.6: Recovering from kneeling to neutral stance with 60 knot points. Time goes from cobalt
blue to raspberry red.

28

Figure 5.7: Contact forces over time of the generated recovery trajectory.

29

Chapter 6

Discussion

This thesis set out to include the contact phases into the optimization of trajectories for robotics,
and analyze whether this method is able to generate motion plans for several balance control
related tasks. The final goal was achieved for a model that represents a person in a lower limb
exoskeleton in the sagittal plane.

The discrete behaviour of contact dynamics poses a fundamentally difficult problem for gra-
dient based optimization. The problem was approached by researching different direct implicit
contact methods. The method pioneered by Posa et al. [10, 11] was deemed to be the most
suitable approach. This method essentially converts the problematic discrete behaviour of con-
tact dynamics into a search problem. Contact forces are found that satisfy complementarity
constraints, which approximate the dynamics of contacts.

A framework — heavily inspired by the work of Kelly [18] — was developed to perform direct
trapezoidal collocation using the chosen implicit contact method. This was achieved by using
IPOPT [14, 20] in MATLAB [19].

The results substantiate the claim that this implicit contact method is indeed able to gen-
erate motion plans for tasks such as gait, recovery from perturbations, safe falling and getting
up. Although not effortless, a single framework is capable of performing vastly different tasks
with relatively little input effort for the user. These results can serve as a foundation for the
development of more comprehensive control techniques of lower limb exoskeletons. This could
be achieved by using the results of implicit methods as training data, or studying the behaviour
to create more task specific methods.

The direct implicit method can still be improved, especially the physical feasibility and region
of convergence require additional attention.

This thesis contributes by demonstrating that this direct implicit optimization method can be
used to generate optimal — human-like — behaviour of different balance control related tasks
such as: gait, recovery from perturbations, safe falling and getting up. This makes it interesting
for the application in lower limb exoskeletons and walking robots.

Another contribution is the framework to perform trajectory optimization with implicit con-
tacts.

6.1 Comparison to Similar Method by Posa et al.

The contact phases were included in the optimization as described by Posa et al. [10, 11]. The
method caused unrealistic GRF in the final segment. An additional constraint (Eqn. 4.3.1h)
was required to prevent this. Posa et al. also presented a novel formulation for the complemen-
tarity constraints, which uses a slack variable (Eqn. 2.5.4). It was claimed that this improved

30

convergence and computational efficiency. However, when implemented in the framework it only
caused convergence to local minima, which were often infeasible.
Posa et al. stated that their method was able to discover optimal, human-like, mode sequences
while generating gait trajectories. These had a cyclic, swing −→ heel strike −→ full contact −→ toe
push-off −→ swing, pattern for each foot. The same cannot be said for the gait generated by the
framework developed for this thesis. This may be, from most to least likely, caused by differences
in the problem formulation:

Posa et al. give no details on the used dynamic model and initialization other than how it
looks and the initial mode sequence.

The objective function used by Posa et al. also included the task (called cost of transport),
but other literature [17, 18] seems to contradict this approach as it would cause a significantly
less tractable NLP.

The solver used by Posa et al. is some of the shelf SQP solver — probably SNOPT [26] —
unfortunately SNOPT requires a license. As the development was done with fmincon [19], tests
were also performed with its SQP algorithm. SQP converged faster on simple problems than its
interior-point equivalent, but struggled with larger problems such as the biped.

Because IPOPT [14] is better suited for large problems than fmincon and does not require a
license, it was used for the biped. IPOPT comes packaged with the linear solver called MUMPS
[27, 28], but sources [20] suggest that other linear solvers, such as those from HSL [29], might
yield better results.

Posa et al. demonstrated gait generation and some form of object manipulation. This thesis
expands on the method by demonstrating that it is also capable of resisting perturbations, fall
safely and get up. Furthermore, the generated trajectories have more ground clearance during
gait than the results of Posa et al., which seems more human-like.

6.2 Versatile Framework with Versatile Performance

In general, the framework is able to generate efficient trajectories for a variety of tasks. However,
there are some recurring shortcomings of the framework that will be discussed here.

6.2.1 Large Deviations from Actual Dynamics

A notable shortcoming about direct implicit method — which is rarely discussed in literature
— are the large deviations from the actual dynamics. If the generated positions, velocities and
controls were to be executed, the result would be nowhere near the results that are shown. As
a consequence, it is not guaranteed to be physically feasible. If the sequence of states can be
physically executed, it would require a very high feedback control effort — which is undesirable.
This means that as of now, increasing the accuracy of the used collocation methods should be a
first priority.

The error in the dynamics is relatively high, and for this application it is unknown what
an acceptable error is. Roos [5] stated that an infeasibility on the order of magnitude of -5
was required, but that would not produce any results with this method. Additionally, this
only decreases the error at the collocation points, but does not guarantee anything between the
collocation points.

31

6.2.1.1 Improving Accuracy

There are multiple causes for this high error, one is that the problem is difficult and that the
constraints are highly nonlinear. Another cause is that the applied constraints fail to accurately
capture the dynamics.

The accuracy can be increased in multiple ways: by increasing the number of segments, col-
location points, or the order of the method. Each of these has its own trade-offs.

Increasing the number of segments is a method that increases both the accuracy and the com-
putational cost, which is well documented [12, 18, 22]. However, this only works up to a certain
point.

A more sophisticated method is increasing the number of collocation points by employing
higher order collocation methods. A good example has been described by Patel et al. [12], where
third and fifth order orthogonal (Radau) collocation methods were used to improve the accuracy
with almost an order of magnitude with identical computational cost. Patel et al. [12] also
improved the realism of the contact dynamics by enforcing the complementarity constraints at
the collocation points instead of knot points.

Even better is keeping the order of the dynamics into account when constructing the collo-
cation constraints. In most collocation applications and literature, the dynamics are rewritten
as nonlinear first order state equations. The collocation constraints are then applied to x. But
usually x includes two different orders: q and q̇. Essentially a second order system gets treated
as a first order system. This results in that the velocities end up getting constrained at the
collocation points, but not the accelerations. In other words, it causes the dynamics q̈k = fk

to be violated at the collocation points, resulting in larger errors between the collocation points.
Martín et al. [22] applied appropriate collocation constraints to q and q̇, and while doing so
demonstrated an error reduction of more than one order of magnitude with identical computa-
tional time. Therefore, it should become the norm to formulate the collocation constraints with
the same order as the dynamics. A more thorough derivation is shown in Appendix B.4.

6.2.2 The Road to Reliability

The reliability of producing acceptable results is not great, the framework has to be dialed in
specifically, which is more of an art than a science. This is a complex problem to solve, as it is
difficult to predict what the effects of certain changes will be. But there are plenty of options to
consider.

6.2.2.1 The Role of Initial Guesses

The initial guess is known to have a substantial impact on the results of trajectory optimization
[18]. The framework developed for this thesis linearly interpolates between the initial and desired
positions, i.e. slides across the floor from its initial to its desired position. This was a conscious
decision, as no additional user input is required. However, it could be a big reason why the
developed framework shows a small region of convergence. At the cost of generality and simplified
usability, more task specific guesses could be made that actuate limbs and include control and
GRF.

A small experiment was performed where the initial guess was the output of a phase func-
tioned neural network [30], which was trained on motion capture data. This seemed to perform
more reliably for the generation of gait, but no thorough analysis was performed.

32

6.2.2.2 Improving Convergence by Adjusting the Time Span

The time span over which will be optimized has to be chosen by the user. However, it can be
difficult for the user to determine a good estimate, which can result in poor convergence.

Winkler et al. [6, 7] introduced decision variables to individually estimate the optimal du-
ration of each segment. This allows the framework to adjust the user’s estimate, which may
improve convergence. Additionally, it might result in more accurate solutions. However, this will
result in a less sparse Jacobian and therefore a less tractable NLP.

In case this trade-off is not worth it, an alternative method is to make the total time span
a decision variable. Each segment is then scaled the same amount. This reduces the number of
new decision variables, but still allows the solver to correct the users estimate. This method has
been demonstrated by Kelly in the demos of the OptimTraj [18] library for MATLAB.

6.2.2.3 Mesh Refinement to Improve Accuracy and Convergence

For the generation of gait, using the result of an optimization with 4 knot points as an initial
guess for a second optimization with 49 knot points resulted in better results — with similar
computational cost — than just using 49 knot points. This is a crude implementation of mesh
refinement, an iterative strategy where the resolution of knot and/or collocation points is in-
creased on segments of previous solutions. Usually, mesh refinement is employed to efficiently
achieve a certain accuracy. But, based on the experimental gait results, it might also improve
the convergence properties.

A more sophisticated implementation of mesh refinement would use the error functions to
decide whether a segment gets subdivided or a higher order quadrature is used to approximate
the integral of the dynamics. The order gets increased if the error is near the threshold, additional
knot points are added if the error is much larger than the threshold [18].

6.2.3 Abnormal Modes

Although the framework was able to “reason” about contacts, as discussed in Section 6.1, the
mode sequences that were discovered usually do not seem to make a lot of sense.

Related to these abnormal modes, is the oscillating behaviour which can be seen in virtually
all GRF, control and velocity graphs. It seems to be particularly noticeable in scenarios where
it tries to remain still. It seems to struggle to find a good balance, with forces evenly distributed
over the contact points. Although it is unsure whether this is caused by the controls, GRF or
something else, it seems likely that this contributes to worse tractability.

While keeping in mind that the goal is to — in some way — implement this to control robotics
in reality, the oscillating control is especially worrisome. It could cause unwanted vibrations and
instability. Therefore, it could be useful to regularize the control input during optimization, such
that it does not fluctuate as much.

Alternatively, it would be interesting to thoroughly analyze the differences of generated tra-
jectories with pin feet. This might give an indication of what causes the oscillations.

In the work of Roos [5] it can be seen that higher numbers of knot points result in a more
noisy looking control profile, therefore this is also an important variable to keep in mind.

6.2.4 Costly Computation

The computational cost of the developed framework is unpractical. MPC use cases generally
update the reference trajectory at 10 Hz, most of the optimizations with the developed framework
took thousands of seconds. This is not surprising as explicit whole-body methods already were
too slow [5] for MPC use cases.

33

The best conceivable use case would be generating perfectly labeled training data for a neural
network. This trained network might then be used in practice. But, the computational efficiency
of the developed framework can still be improved.

6.2.4.1 Improving the Computational Efficiency

There are two concrete examples where there is room for improvement: the hessian and the
contact model.

The Hessian serves a similar purpose as the Jacobian. Currently the Hessian is estimated by a
limited-memory quasi-Newton method (L-BFGS), which was included with IPOPT [14].

As was described in Subsection 3.2.1, if derivatives can be computed with a reasonable
computational effort, it usually results in faster and more robust convergence. Therefore, it
would be worthwhile to include a user-specified analytic Hessian, in addition to the Jacobian.

The computational cost increases with the number of dimensions and constraints of the
problem, and the number of dimensions is equal to the number of decision variables times the
number of knot points. So it would make sense to avoid unnecessary decision variables and
constraints.

It is possible to enforce friction cones with less decision variables and constraints by using a
linear combination to compute the GRF. This is discussed in more detail in Appendix F.

As being able to have slipping contacts is not essential for all contact points, they could be
removed where they are not deemed to be necessary. This would also reduce both the number
of constraints and decision variables.

6.2.5 Task Specific Discussion

The previous subsections discussed shortcomings and possible improvements of the developed
framework. This section will not repeat those same points but solely focus on the task specific
results.

6.2.5.1 Rediscovering Gait

The framework is able to discover gait trajectories for a humanoid biped that resemble the gait
of a human. To do this the user only has to specify the time span and distance that has to be
traversed. The contact phases, states and controls are handled automatically.

It was notable that the accuracy of the solution did not keep increasing with more collocation
points. This was likely due to the solver optimizing an artifact of the model formulation, which
resulted in a lot of short contact phases. Changing the objective function to penalize the change
in ground reaction forces did not seem to improve this.

6.2.5.2 Perturbations: Refusing to Fall

With little to no alteration except removing a desired end position and adding initial velocities,
the framework was also able to correctly restore balance from perturbations.

These perturbations were initially intended to provoke falling behaviour. However, if the
initial conditions were not difficult enough, it would result in proper recovery. But, if the initial
conditions were too difficult, it defied the prescribed physics in favour of adhering to the initial
guess.

Restoring the balance from the perturbations was done in a way that resembles the ankle,
hip and step strategy — balance strategies also employed by humans.

34

It would be interesting to extend the framework in such a way that forces may be applied,
that are not considered contact forces. This would make it easier and more realistic to test
perturbations and falling.

6.2.5.3 Safe Falling

As discussed, it was difficult to get the framework to optimize falling. This was solved by using
an initial guess, more similar to a falling motion.

The trajectories that were generated seemed promising, but optimal falling would benefit
from further analysis.

There was also an impact on the knee, which is not entirely realistic. This happened because
the walker is allowed to completely stretch its knee, and its limbs are one dimensional.

It would also be interesting to add arms to the model, as they are often used to break the
fall.

6.2.5.4 Getting Up

The framework was also capable of generating trajectories to restore to a neutral posture from
difficult positions. It is notable that the framework does not lift its left foot, but decides to slide
it instead. From the contact force plot it can be seen that the ground reaction forces to not
oppose the direction of slip, which indicates that the solver is cheating the model.

It is not clear why this happened, but likely due to time steps that are too large. Slipping
behaviour is not always desirable, it would have been interesting to see results with the option
of slipping disabled.

6.3 Human-Like Movement

This thesis tends to judge the results on whether they seem human-like. The best argument to do
so is that through some millions of years of evolution, humans (and other animals) have become
very good at performing tasks “optimally”. This optimality could be defined as minimizing pain
and energy expenditure while performing a task. Another argument is that the adoption of
robotics in every day use might be more accepted if they perform like a human would. So if
seeming human-like is a good thing, how do you objectively evaluate what is human-like and what
is not? The objective function should do the job, except that was not always the case. The value
of the used objective function did not significantly get lower if solutions were more human-like
than others for the same task. An interesting question that remains is: what objective function
captures human-like movement for a multitude of tasks, while remaining tractable?

6.4 Future Work

Future work should first and foremost emphasize physical feasibility. To achieve this, the collo-
cation method should be changed to a second order method as described by Martín et al. [22]
and the complexity should be decreased.

To improve reliability and computational cost of the framework, it could help to: remove the
ability to have slipping contacts, use a model with pin feet and include the time span as a decision
variable.

By not allowing slipping contacts in the optimization, 3 out of 4 complementarity constraints,
and 1 out of 3 decision variables can be removed. This would make the NLP less complicated,

35

while still being able to perform basic balance control tasks. Therefore, it would be interesting
to study the performance difference when the slipping contacts have been removed.

The framework has a hard time with consistently discovering logical mode sequences on a
small scale, i.e. heel-toe. But, the big picture — when which limb is in contact — is the most
interesting aspect of implicit contacts. Therefore, the biped model with pin feet could be used
to plan a trajectory to get the big picture. With the direction of movement known, the implicit
result could be converted to an explicit input with small scale modes scheduled in a sensible way.
This could result in more physical feasibility, efficient trajectories and computational efficiency.

Currently the user estimate of the time span is crucial to generate efficient gait trajectories.
By including it as a decision variable, the model might become more robust to poor user input.

The developed framework has demonstrated that it is capable of a variety of balance control
related tasks on a flat floor, but the real world is not flat. Therefore, it would be interesting to
study the performance on terrain with varying friction and slope.

An important next step is to apply the results from these implicit methods in reality. This
could give a better estimate of what the required physical feasibility is.

36

References

[1] Emma M. Smith, Brodie M. Sakakibara, and William C. Miller. A review of factors influ-
encing participation in social and community activities for wheelchair users activities for
wheelchair users. Disability and Rehabilitation: Assistive Technology, 11(5):361–374, 2016.
doi: 10.3109/17483107.2014.989420.

[2] Claire L. Flemmer and Rory C. Flemmer. A review of manual wheelchairs. Disability and
Rehabilitation : Assistive Technology, 11(3), 2016. doi: 10.3109/17483107.2015.1099747.

[3] Glen W. White, Mark R. Mathews, and Stephen B. Fawcett. Reducing Risk of Pressure
Sores: Effects of Watch Prompts and Alarm Avoidance on Wheelchair Push-ups. Journal
of Applied Behavior Analysis, 22(3):287–295, 1989. doi: 10.1901/jaba.1989.22-287.

[4] Ghan-shyam Lohiya, Lilia Tan-figueroa, Steve Silverman, and Hung Van Le. The Wheelchair
Thrombosis Syndrome. Journal of the National Medical Association, 98(7):1188–1192, 2006.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569471/. PMID: 16895294;
PMCID: PMC2569471. Last accessed on 12/12/2022.

[5] Robert A. Roos. Master of Science Thesis: Design of a Direct Collocation Model Predictive
Control Framework for Legged Locomotion Based on Whole-Body Dynamics and Explicit
Contact Phases, 2020. URL https://essay.utwente.nl/85467/1/Roos_MA_ET.pdf. Last
accessed on 12/12/2022.

[6] Alexander W. Winkler, C. Dario Bellicoso, Marco Hutter, and Jonas Buchli. Gait and
Trajectory Optimization for Legged Systems through Phase-based End-Effector Parameter-
ization. IEEE Robotics and Automation Letters, 3(3):1560–1567, 2018. doi: 10.1109/LRA.
2018.2798285.

[7] Alexander W. Winkler. Doctoral Thesis: Optimization-based motion planning for legged
robots. ETH zürich Library, 2018. doi: 10.3929/ethz-b-000272432.

[8] Frans A. Koolen. Doctoral Thesis: Balance control and locomotion planning for humanoid
robots using nonlinear centroidal models by, 2020. URL https://hdl.handle.net/1721.
1/128291. Last accessed on 12/12/2022.

[9] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex behaviors
through contact-invariant optimization. ACM Transactions on Graphics, 31(4):1–8, 2012.
ISSN 07300301. doi: 10.1145/2185520.2185539.

[10] Michael Posa and Russ Tedrake. Direct Trajectory Optimization of Rigid Body Dynamical
Systems through Contact. Algorithmic Foundations of Robotics X, 86:527–542, 2013. doi:
10.1007/978-3-642-36279-8_38.

37

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569471/
https://essay.utwente.nl/85467/1/Roos_MA_ET.pdf
https://hdl.handle.net/1721.1/128291
https://hdl.handle.net/1721.1/128291

[11] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory optimization
of rigid bodies through contact. International Journal of Robotics Research, 33(1):69–81,
2014. ISSN 17413176. doi: 10.1177/0278364913506757.

[12] Amir Patel, Stacey Leigh Shield, Saif Kazi, Aaron M. Johnson, and Lorenz T. Biegler.
Contact-implicit trajectory optimization using orthogonal collocation. IEEE Robotics and
Automation Letters, 4(2):2242–2249, 2019. ISSN 23773766. doi: 10.1109/LRA.2019.2900840.

[13] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

[14] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57, 2006. ISSN 0025-5610, 1436-4646. doi: 10.1007/s10107-004-0559-y.

[15] Mahsa Khalili, Jaimie F. Borisoff, and H.F. Machiel van der Loos. Developing safe fall
strategies for lower limb exoskeletons. 2017 International Conference on Rehabilitation
Robotics (ICORR), pages 314–319, 2017. doi: 10.1109/ICORR.2017.8009266.

[16] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming. Society for Industrial and Applied Mathematics, second edition, 2010. ISBN
978-0-89871-688-7 978-0-89871-857-7. doi: 10.1137/1.9780898718577.

[17] Matthew P. Kelly. Transcription methods for trajectory optimization: a beginners tutorial.
arXiv math, 2017. doi: 10.48550/arXiv.1707.00284.

[18] Matthew Kelly. An introduction to trajectory optimization: How to do your own direct
collocation. Society for Industrial and Applied Mathematics, 59(4):849–904, 2017. ISSN
0036-1445, 1095-7200. doi: 10.1137/16M1062569.

[19] MATLAB. version 9.13 (R2022b). The MathWorks Inc., Natick, Massachusetts, 2022. URL
https://nl.mathworks.com/products/matlab.html.

[20] Enrico Bertolazzi. ebertolazzi/mexIPOPT, 2022. URL https://github.com/ebertolazzi/
mexIPOPT/releases/tag/1.1.4. Last accessed on 12/12/2022.

[21] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Fly-
ing, and Manipulation. (Course Notes for MIT 6.832), 2022. URL https://underactuated.
csail.mit.edu. Last accessed on 12/12/2022.

[22] Siro Moreno-Martın, Lluıs Ros, and Enric Celaya. Collocation methods for second order
systems. Robotics: Science and Systems Conference (RSS), pages 1–11, 2022. doi: 10.15607/
RSS.2022.XVIII.038.

[23] John T. Betts. Survey of Numerical Methods for Trajectory Optimization. Journal of
Guidance, Control, and Dynamics, 21(2):193–207, 1998. doi: 10.2514/2.4231.

[24] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. ArXiv e-prints, 2016. doi:
10.48550/arXiv.1604.00772.

[25] Joep T.J. van de Rijt. Master Thesis: Design of a Momentum Based Optimal Controller for
a Lower Limb Humanoid, 2022. URL https://essay.utwente.nl/92234/. Last accessed
on 12/12/2022.

38

https://nl.mathworks.com/products/matlab.html
https://github.com/ebertolazzi/mexIPOPT/releases/tag/1.1.4
https://github.com/ebertolazzi/mexIPOPT/releases/tag/1.1.4
https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu
https://essay.utwente.nl/92234/

[26] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP Algorithm
for Large-Scale Constrained Optimization. Society for Industrial and Applied Mathematics
Review, 47(1):99–131, 2005. doi: 10.1137/S0036144504446096.

[27] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and
Applications, 23(1):15–41, 2001. doi: 10.1137/S0895479899358194.

[28] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006. doi: 10.1016/
j.parco.2005.07.004.

[29] HSL. A collection of Fortran codes for large scale scientific computation., 2019. URL http:
//www.hsl.rl.ac.uk/. Last accessed on 12/12/2022.

[30] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned Neural Networks for Char-
acter Control. ACM Transaction on Graphics, 36(4):1–13, 2017. doi: 10.1145/3072959.
3073663.

[31] R. J. Barnes. Matrix Differentiation, 2006. URL https://atmos.washington.edu/
~dennis/MatrixCalculus.pdf. Last accessed on 12/12/2022.

39

http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf

Appendix A

Verification of Planar Dynamics

After deriving dynamics, it is important to verify whether everything is correct. This appendix
will detail five requirements planar dynamics should satisfy.

Conventions:
Generalized coordinates q ∈ Rn.
Mass matrix M ∈ Rn×n.
Ṁ = dM

dt .
Fictitious forces matrix C ∈ Rn×n.

• M, should be symmetric:

M = M⊤. (A.0.1)

• M should be positive definite:

M ≥ 0. (A.0.2)

• C, should be asymmetric:

C ̸= C⊤. (A.0.3)

•
[
Ṁ− 2C

]
should be a skew-symmetric matrix:

−
[
Ṁ− 2C

]
=

[
Ṁ− 2C

]⊤
. (A.0.4)

•
[
Ṁ− 2C

]
should be positive definite:[

Ṁ− 2C
]
≥ 0. (A.0.5)

40

Appendix B

Deriving Collocation Methods and
Corresponding Interpolant

This appendix will show the derivation for collocation methods and how to correctly interpolate
the resulting solutions.

It is not recommended to implement any of the 1st order approximations, unless the system
dynamics are 1st order as well, of course.

Conventions:

τ = t− tk, (B.0.1)
hk = tk+1 − tk, (B.0.2)

q (tk) = pk, (B.0.3)
q̇ (tk) = vk, (B.0.4)
q̈ (tk) = gk, (B.0.5)

xk = [pk,vk]
⊤ , (B.0.6)

ẋk = [vk, gk]
⊤ , (B.0.7)

ẋk = fk. (B.0.8)

Where t is continuous time, tk the time at a knot point that separates continuous time in
segments, τ is the time in a segment, hk the segment length, q are the generalized coordinates,
pk, vk are the positions and velocities at knot point k, gk are the EoM at knot point k and xk
the state vector at knot point k.

B.1 Euler Collocation (1st Order)

The Euler method approximates integration with a first order polynomial:

x(τ) = a+ bτ , (B.1.1)
ẋ(τ) = b. (B.1.2)

41

There are two unknowns (a and b), so find two knowns:

xk = x(0), (B.1.3)
ẋk = ẋ(0), (B.1.4)
ẋk = ẋ(hk). (B.1.5)

Note that there is a choice for ẋk between Euler-forward and Euler-backward integration,B.1.4
and B.1.5 respectively. As discussed in Section 3.4, Euler-backward is numerically more stable
and in direct collocation it does not require any additional computation. So continue with that,
solving for the unknowns:

a = xk, (B.1.6)
b = ẋk+1. (B.1.7)

Substituting these in B.1.1 and B.1.2 results in the equations that may be used to interpolate:

x(τ) = xk + fk+1τ , (B.1.8)
ẋ(τ) = fk+1. (B.1.9)

It is trivial to see that this is an inaccurate approximation of f , but it works nonetheless. To
find the collocation constraint, evaluate xk+1 = x(hk):

xk1 = xk + hkfk+1. (B.1.10)

B.2 Trapezoidal Collocation (1st Order)

Trapezoidal collocation has proven to be robust [5, 16, 18] and is simple to implement and inter-
polate. In trapezoidal collocation, integration is approximated with a second order polynomial:

x(τ) = a+ bτ + cτ2, (B.2.1)
ẋ(τ) = b+ 2cτ . (B.2.2)

There are three unknowns (a, b and c), so find three knowns:

xk = x(0), (B.2.3)
ẋk = ẋ(0), (B.2.4)

ẋk+1 = ẋ(hk). (B.2.5)

Solve:

xk = a, (B.2.6)
ẋk = b, (B.2.7)

ẋk+1 = b+ 2hkc. (B.2.8)

42

Rewriting gives:

a = xk, (B.2.9)
b = ẋk, (B.2.10)

c =
1

2hk
(ẋk+1 − ẋk) . (B.2.11)

Substituting these unknowns in B.2.1 and B.2.2 results in the equations that may be used to
interpolate:

x(τ) = xk + fkτ +
τ2

2hk

(
fk+1 − fk

)
, (B.2.12)

ẋ(τ) = fk +
τ

hk

(
fk+1 − fk

)
. (B.2.13)

To find the collocation constraint, evaluate xk+1 = x(hk):

xk+1 = xk + fkhk +
h2k
2hk

(
fk+1 − fk

)
, (B.2.14)

xk+1 = xk + fkhk +
hk
2
fk+1 −

hk
2
fk, (B.2.15)

xk+1 = xk +
hk
2

(
fk + fk+1

)
. (B.2.16)

B.3 Hermite-Simpson Collocation (1st Order)

Hermite-Simpson collocation integration is approximated with a third order polynomial, again
increasing both the accuracy and computational cost:

x(τ) = a+ bτ + cτ2 + dτ3, (B.3.1)

ẋ(τ) = b+ 2cτ + 3dτ2. (B.3.2)

There are four unknowns (a, b, c and d), so find four knowns:

xk = x(0), (B.3.3)
ẋk = ẋ(0), (B.3.4)

ẋk+ 1
2
= ẋ(

hk
2
), (B.3.5)

ẋk+1 = ẋ(hk). (B.3.6)

Here k + 1
2 is called the midpoint or collocation point, it falls between two meshpoints. Solve:

xk = a, (B.3.7)
ẋk = b, (B.3.8)

ẋk+ 1
2
= b+ 2

hk
2
c+ 3

(
hk
2

)2

d, (B.3.9)

ẋk+1 = b+ 2hkc+ 3h2kd. (B.3.10)

43

Rewriting gives:

a = xk, (B.3.11)
b = ẋk, (B.3.12)

c =
1

2hk

(
−3ẋk + 4ẋk+ 1

2
− ẋk+1

)
, (B.3.13)

d =
1

3h2k

(
2ẋk − 4ẋk+ 1

2
+ 2ẋk+1

)
. (B.3.14)

Substituting these unknowns in B.3.1 and B.3.2 results in the equations that may be used to
interpolate:

x(τ) = xk + fkτ +
τ2

2hk

(
−3fk + 4fk+ 1

2
− fk+1

)
+

τ3

3h2k

(
2fk − 4fk+ 1

2
+ 2fk+1

)
, (B.3.15)

ẋ(τ) = fk +
τ

hk

(
−3fk + 4fk+ 1

2
− fk+1

)
+

τ2

h2k

(
2fk − 4fk+ 1

2
+ 2fk+1

)
. (B.3.16)

To find the collocation constraint, evaluate xk+1 = x(hk):

xk+1 = xk + fkhk +
h2k
2hk

(
−3fk + 4fk+ 1

2
− fk+1

)
+

h3k
3h2k

(
2fk − 4fk+ 1

2
+ 2fk+1

)
, (B.3.17)

xk+1 = xk + fkhk −
3

2
hkfk + 2hkfk+ 1

2
− 1

2
hkfk+1 +

2

3
hkfk −

4

3
hkfk+ 1

2
+

2

3
hkfk+1,

(B.3.18)

xk+1 = xk +
1

6
hkfk +

4

6
hkfk+ 1

2
+

1

6
hkfk+1, (B.3.19)

xk+1 = xk +
hk
6

(
fk + 4fk+ 1

2
+ fk+1

)
. (B.3.20)

There is still one unknown, fk+ 1
2
. And as

fk+ 1
2
= f(xk+ 1

2
,uk+ 1

2
,λk+ 1

2
), (B.3.21)

evaluating xk+ 1
2
= x(hk

2) will make it known:

xk+ 1
2
= xk +

1

2
hkfk +

h2k
4

1

2hk

(
−3fk + 4fk+ 1

2
− fk+1

)
+

h3k
8

1

3h2k

(
2fk − 4fk+ 1

2
+ 2fk+1

)
,

(B.3.22)

xk+ 1
2
= xk +

1

2
hkfk −

3

8
hkfk +

1

2
hkfk+ 1

2
− 1

8
hkfk+1 +

1

12
hkfk −

1

6
hkfk+ 1

2
+

1

12
hkfk+1,

(B.3.23)

xk+ 1
2
= xk +

5

24
hkfk +

8

24
hkfk+ 1

2
− 1

24
hkfk+1, (B.3.24)

xk+ 1
2
= xk +

hk
24

(
5fk + 8fk+ 1

2
− fk+1

)
. (B.3.25)

44

Now rewrite Eqn. B.3.20:

6

hk
(xk+1 − xk) = fk + 4fk+ 1

2
+ fk+1, (B.3.26)

4fk+ 1
2
=

6

hk
(xk+1 − xk)− fk+1 − fk, (B.3.27)

8fk+ 1
2
=

12

hk
(xk+1 − xk)− 2

(
fk+1 + fk

)
. (B.3.28)

And substitute the result into Eqn. B.3.25:

xk+ 1
2
= xk +

hk
24

(
5fk +

12

hk
(xk+1 − xk)− 2

(
fk+1 + fk

)
− fk+1

)
, (B.3.29)

xk+ 1
2
= xk +

5

24
hkfk +

1

2
xk+1 −

1

2
xk −

1

12
hkfk+1 −

1

12
hkfk −

1

24
hkfk+1, (B.3.30)

xk+ 1
2
=

1

2
xk +

1

2
xk+1 +

1

8
hkfk −

1

8
hkfk+1, (B.3.31)

xk+ 1
2
=

1

2
(xk + xk+1) +

hk
8

(
fk − fk+1

)
. (B.3.32)

It is possible to substitute the result into Eqn. B.3.20, which is called the compressed form:

xk+1 = xk +
hk
6

(
fk + 4f(

1

2
(xk + xk+1) +

hk
8

(
fk − fk+1

)
,uk+ 1

2
,λk+ 1

2
) + fk+1

)
. (B.3.33)

It is also possible to create an additional decision variable for the midpoint and use Eqn. B.3.32
as an additional constraint, which is called the separated form. The exact details about the
performance differences between compressed and separated form are covered in [16]. According
to [18] compressed form performs better when there are a lot of segments, and separated form
performs better when there are few segments.

B.4 Trapezoidal Collocation (2nd Order)

All collocation methods discussed before rewrite the system dynamics as nonlinear first order
state equations. In this case it could be described as a bad habit. Although it makes it easier to
read and code, it prevents the construction of accurate constraints that capture the behaviour
of second order differential equations. Martín et al. [22] demonstrated that this reduced the
maximum dynamical error accumulated in a segment (the maximum of Eqn. 4.5.8) with 1 to 2
orders of magnitude.

In second order trapezoidal collocation, integration is approximated with a third order poly-
nomial:

q(τ) = a+ bτ + cτ2 + dτ3, (B.4.1)

q̇(τ) = b+ 2cτ + 3dτ2, (B.4.2)
q̈(τ) = 2c+ 6dτ . (B.4.3)

45

There are four unknowns (a, b, c and d), so find four knowns:

q(0) = pk, (B.4.4)
q̇(0) = vk, (B.4.5)
q̈(0) = gk, (B.4.6)

q̈(hk) = gk+1. (B.4.7)

Solve:

pk = a, (B.4.8)
vk = b, (B.4.9)
gk = 2c, (B.4.10)

gk+1 = 2c+ 6hkd. (B.4.11)

Rewriting gives:

a = pk, (B.4.12)
b = vk, (B.4.13)

c =
1

2
gk, (B.4.14)

d =
1

6hk
(gk+1 − gk). (B.4.15)

Substituting these unknowns in B.4.1, B.4.2 and B.4.3 results in the equations that may be used
to interpolate:

q(τ) = pk + vkτ +
τ2

2
gk +

τ3

6hk
(gk+1 − gk), (B.4.16)

q̇(τ) = vk + gkτ +
τ2

2hk
(gk+1 − gk), (B.4.17)

q̈(τ) = gk +
τ

hk
(gk+1 − gk). (B.4.18)

To find the collocation constraints, evaluate pk+1 = q(hk) and vk+1 = q̇(hk):

pk+1 = pk + vkhk +
h2k
2
gk +

h2k
6
(gk+1 − gk), (B.4.19)

pk+1 = pk + vkhk +
h2k
6
(gk+1 + 2gk). (B.4.20)

vk+1 = vk + gkhk +
hk
2
(gk+1 − gk), (B.4.21)

vk+1 = vk +
hk
2
(gk+1 + gk). (B.4.22)

46

Appendix C

NLP Without Succinct Notation

minimize
q, q̇,u,λ,γ

N∑
k=1

(
wuu

⊤
k uk + wλλ

⊤
k λk

)
(C.0.1a)

subject to qLB ≤ qk ≤ qUB, (C.0.1b)

q̇LB ≤ q̇k ≤ q̇UB, (C.0.1c)

uLB ≤ uk ≤ uUB, (C.0.1d)

qLB
1 ≤ q1 ≤ qUB

1 , (C.0.1e)

qLB
N ≤ qN ≤ qUB

N , (C.0.1f)

q̇LB
1 ≤ q̇1 ≤ q̇UB

1 , (C.0.1g)

q̇LB
N ≤ q̇N ≤ q̇UB

N , (C.0.1h)
0 ≤ λk ≤ ∞, (C.0.1i)
0 ≤ γk ≤ ∞, (C.0.1j)

qk+1 − qk −
hk
2

(
q̇k + q̇k+1

)
= 0, (C.0.1k)

q̇k+1 − q̇k −
hk
2

(
M−1(qk)F(qk, q̇k,uk,λk) +M−1(qk+1)F(qk+1, q̇k+1,uk+1,λk+1)

)
= 0,

(C.0.1l)

ϕ(qk) ≥ 0, (C.0.1m)

ϕ⊤(qk+1)λ
⊥
k ≤ 0, (C.0.1n)

ϕ⊤(qN)λ⊥
N ≤ 0, (C.0.1o)

µλ⊥
k − λ

∥−
k − λ

∥+
k ≥ 0, (C.0.1p)[

µλ⊥
k − λ

∥−
k − λ

∥+
k

]⊤
γk ≤ 0, (C.0.1q)

γk − J⊤(qk)q̇k ≥ 0, (C.0.1r)[
γk − J⊤(qk)q̇k

]⊤
λ
∥+
k ≤ 0, (C.0.1s)

γk + J⊤(qk)q̇k ≥ 0, (C.0.1t)[
γk + J⊤(qk)q̇k

]⊤
λ
∥−
k ≤ 0. (C.0.1u)

47

Appendix D

Analytic Gradients for Dynamics

To reduce computational cost gradients — often also referred to as Jacobians — were added.
Every state is dependent on the decision variables of k, constraints 4.3.1f and 4.3.1g also depend
on k + 1. Therefore ∂J(z)

∂z (3.2.1a), ∂f(z)
∂z (3.2.1c), and ∂g(z)

∂z (3.2.1d) will mostly be sparse.
Most gradients are, although time consuming to implement, fairly trivial. However, the

gradients for 4.3.1f require a bit more thought. The difficult part lies in taking the gradient of
Eqn. 3.3.3, as it includes the analytical computation of M−1.

∂q̈k
∂zk

=
∂

∂zk

(
M−1

k Fk

)
. (D.0.1)

But computing the analytical inverse for a large M may become problematic. This problem can
be solved by using matrix calculation definitions [31]. If M is an invertible m×m matrix whose
elements are functions of the scalar parameter zk,n. Then

∂M−1

∂zk,n
= −M−1 ∂M

∂zk,n
M−1. (D.0.2)

As shown in [18], it is now possible to redefine the problem as:

∂q̈k
∂zk,n

=

(
−M−1

k

∂Mk

∂zk,n
M−1

k

)
Fk +M−1

k

(
∂Fk

∂zk,n

)
. (D.0.3)

Substituting Eqn. 3.3.3 in results in:

∂q̈k
∂zk,n

= M−1
k

(
−∂Mk

∂zk,n
q̈k +

∂Fk

∂zk,n

)
. (D.0.4)

This process may then be repeated for every variable in zk. This reduces the complexity of the
problem as q̈k, M

−1
k , ∂Mk

∂zk,n
and ∂Fk

∂zk,n
are the only properties that have to be computed during

runtime.

48

Appendix E

Additional Results

E.1 Gait

Experimental results showed that a goal of 2 meters in 2 seconds should be feasible and result in
2 or more steps. So with these parameters the number of knot points was increased, the results
of which can be seen in Table E.1 and Figure 5.1a.

There is a visible positive trend for the solver time when the number of knot points increases.
The collocation error has a steep drop for the first 30 knot points, but remains around the same
values for higher numbers of knot points. There does not seem to be a clear correlation between
the number of collocation points and the value of the objective function. The results satisfy the
constraints better for 22 or more knot points.

What is notable from animations — but difficult to objectively quantify or display in still
images — is that few (≤ 20) knot points results in 2 large steps, while more knot points result
in multiple tiny steps.

Results of running the algorithm with 4 knot points and using the result as the initial guess for
a second optimization with 49 knot points are shown in Figure E.1 and Figure 5.2 respectively.

The initial optimization using 4 knot points took 44 seconds. Constraint violations are clearly
visible from the foot going through the ground in Figure E.1a. The collocation error is shown
in Figure E.1b should ideally equal zero at all times, but it is only satisfied at the knot points
— hence the name. The value of the objective function was 1.8·106 and the maximum deviation
from the dynamics was 1.8·102.

Refining the result with 49 knot points took 2.3·103 seconds. It resulted in a more realistic
looking gait, as can be seen in Figure 5.2a. The feet seem to slip, but in simulation it can be seen
that it is merely repositioning its feet. In Figure 5.2b it can be seen that the average collocation
error is much lower after the refined optimization. The variance of the collocation error is higher
than with 4 knot points, the areas with increased collocation errors correspond with the timing
of foot placement. The value of the objective function was 1.9·106 and the maximum deviation
from the dynamics decreased to 3.7.

Positions, velocities, control and contact information of the generated gait can be seen in Figures
E.2, E.3, E.4 and E.5 respectively.

E.2 Perturbation

Positions, velocities, control and contact information of the generated trajectory after a pertur-
bation can be seen in Figures E.6, E.7, E.8, E.9 and E.10a, and E.10b respectively.

49

https://youtu.be/71GDIdSzOHA

Table E.1: Performance values for gait generation with varying number of knot points (N). Performance
is expressed in solver time (t), objective value (J) and the maximum absolute error of the dynamics (η).
Restoration fails if the solver fails to find a feasible point that was acceptable to the filter line search for
the original problem, which can happen when the problem does not satisfy the constraint qualification.
Maximum iteration indicates that the set limit of 1·104 iterations was reached. Acceptable means that
the largest constraint violation was on the order of 1·10−3. Optimal means that the largest constraint
violation was on the order of 1·10−4 or smaller.

N t (s) J max(η) Exit code
4 8.0·101 2.0·106 1.1·102 restoration failed
6 1.1·102 2.1·106 1.1·102 restoration failed
8 1.0·102 2.3·106 4.2·101 restoration failed
10 6.4·102 2.0·106 3.2·101 restoration failed
12 7.2·102 1.5·106 1.5·101 restoration failed
14 3.3·102 2.8·106 2.7·101 restoration failed
16 7.1·102 1.2·106 7.7·100 restoration failed
18 1.5·103 1.3·106 6.2·100 maximum iterations
20 7.2·102 2.7·106 2.0·101 restoration failed
22 1.4·103 3.3·106 1.8·101 acceptable
24 8.5·102 3.4·106 9.6·100 restoration failed
26 1.9·103 2.7·106 1.3·101 restoration failed
28 4.4·102 2.5·106 7.4·100 optimal
30 8.9·102 1.5·106 4.5·100 optimal
32 6.7·102 1.4·106 4.0·100 acceptable
34 1.6·103 2.2·106 5.5·100 acceptable
36 1.4·103 1.9·106 2.0·100 acceptable
38 2.8·103 2.1·106 4.1·100 restoration failed
40 8.1·102 2.8·106 4.0·100 acceptable
42 2.3·103 1.4·106 2.9·100 acceptable
44 2.5·103 1.8·106 3.9·100 acceptable
46 1.2·103 2.4·106 4.5·100 acceptable
48 2.6·103 1.5·106 1.4·100 acceptable
50 3.1·103 2.4·106 4.2·100 acceptable
52 5.4·103 1.7·106 2.0·100 maximum iterations
54 1.4·103 1.7·106 1.9·100 acceptable
56 4.0·103 2.2·106 3.3·100 acceptable
58 3.8·103 2.2·106 2.5·100 optimal
60 2.1·103 1.7·106 1.9·100 acceptable

50

(a) Eight frames of the generated gait trajectory. The
initial position of the CoM is indicated with the vertical
black line (x=0) and the goal with the vertical green
line (x=2). The floor is indicated with the horizontal
line (y=0).

(b) The mean collocation error of the generated gait
trajectory. The mean of variables with different units
(meters and radians) was taken, therefore the mean col-
location error has no meaningful unit. The coloured
dots correspond with the frames of Figure E.1a.

Figure E.1: Generated gait with with 4 knot points and linear initialization. Time goes from cobalt
blue to raspberry red.

Figure E.2: Generalized coordinates over time of the generated gait.

51

Figure E.3: Velocities of the generalized coordinates over time of the generated gait.

Figure E.4: Control over time of the generated gait.

52

Figure E.5: Ground reaction forces over time of the generated gait.

Figure E.6: Generalized coordinates over time of the generated trajectory to resist a perturbation.

53

Figure E.7: Velocities of the generalized coordinates over time of the generated trajectory to resist a
perturbation.

Figure E.8: Control over time of the generated trajectory to resist a perturbation.

54

Figure E.9: Contact forces over time of the generated trajectory to resist a perturbation.

(a) Contact modes of both feet over time. (b) Mean collocation error over time.

Figure E.10: Contact modes and collocation error of the generated trajectory to resist a perturbation.

55

Figure E.11: Generalized coordinates over time of the generated falling trajectory.

E.3 Falling

Positions, velocities, control and contact information of the generated optimal falling trajectory
can be seen in Figures E.11, E.12, E.13, E.14, and E.15 respectively.

E.3.1 Experimental Results Optimal Falling

Experimental results showed that an initial condition with a backwards rotation on the center
of mass of around 14 degrees and rotational velocity of 36 degrees per second resulted in falling
behaviour with acceptable feasibility.

Generating trajectories of falling backwards (Figure E.16) took 23 minutes and resulted in
an objective value of 3.5·106 and maximum dynamic error of 4.5·10−1. It is notable that it seems
like the walker is sitting down. And the dynamic error is relatively low compared to the gait
trajectories.

By coincidence, the algorithm found a way to fall forward (Figure E.17) with the conditions
meant for falling backwards. It took 38 minutes, and resulted in an objective value of 7.3·106
and maximum dynamic error of 7.9·10−1. It is notable how it tries to break its fall will its knees.
The objective function also indicates that this is a worse solution to the problem than falling
backwards. It is also still in motion, if the simulation time span was larger it would surely have
an impact with its head.

The results shown in Figures E.16 and E.17 have nonzero velocities at the final point in time.

While searching for appropriate initial conditions for falling, it was notable how well the algorithm
was able to stay on its feet or stumble backwards before falling over. Examples are shown in
Figure E.18.

E.4 Recovery

Positions, velocities, control and error information of the generated trajectory to recover from a
kneeled to neutral stance can be seen in Figures E.19, E.20, E.21 and E.22 respectively.

56

Figure E.12: Velocities of the generalized coordinates over time of the generated falling trajectory.

Figure E.13: Controls over time of the generated falling trajectory.

57

Figure E.14: Contact forces on the feet over time of the generated falling trajectory.

Figure E.15: Mean collocation error over time of the generated optimal falling trajectory.

58

(a) Fourteen frames of the generated falling trajectory.
The initial position of the CoM is indicated with the
vertical line (x=0). The floor is indicated with the hor-
izontal line (y=0).

(b) The mean collocation error of the generated falling
trajectory. The mean of variables with different units
(meters and radians) was taken, therefore the mean col-
location error has no meaningful unit. The coloured
dots correspond with the frames of Figure E.16a.

Figure E.16: Optimization of falling backwards with 50 knot points.

(a) Fourteen frames of the generated falling trajectory.
The initial position of the CoM is indicated with the
vertical line (x=0). The floor is indicated with the hor-
izontal line (y=0).

(b) The mean collocation error of the generated falling
trajectory. The mean of variables with different units
(meters and radians) was taken, therefore the mean col-
location error has no meaningful unit. The coloured
dots correspond with the frames of Figure E.17a.

Figure E.17: Optimization of falling forwards with 54 knot points.

59

(a) Resisting perturbation with 44 knot points. (b) Tumbling backwards with 38 knot points.

Figure E.18: Examples of other results from perturbations.

Figure E.19: Positions of the generalized coordinates over time of the generated recovery trajectory.

60

Figure E.20: Velocities of the generalized coordinates over time of the generated recovery trajectory.

Figure E.21: Control over time of the generated recovery trajectory.

61

Figure E.22: Mean collocation error over time of the generated recovery trajectory.

62

Appendix F

Linear Combination for Ground
Reaction Forces

If the angle of the floor can be described with a consistent function s(q), it would enable the
formulation of contact points with just two decision variables (d1 and d2):

θ = s(q) (F.0.1)[
λ∥

λ⊥

]
=

[
cos θ − sin θ
sin θ cos θ

](
d1

[
−µ
1

]
+ d2

[
µ
1

])
(F.0.2)

This eliminates one decision variable per contact point for each knot point, as λ∥ no longer has
to be split in a negative and positive direction. This new formulation also implicitly enforces
a friction cone, removing constraints. The slip and friction can still be formulated in a similar
fashion:

0 ≤ γ −
[
J∥(q)

]⊤
q̇ ⊥ d1 ≥ 0, (F.0.3)

0 ≤ γ +
[
J∥(q)

]⊤
q̇ ⊥ d2 ≥ 0. (F.0.4)

If this were to be implemented, it is important to normalize the decision variables before using
them in the objective function. The current formulation would cause inconsistencies in penalizing
the same GRF for different friction coefficients.

63

	Abstract
	Acknowledgements
	Introduction
	Human Walking is Not Always so Straightforward
	Robotic Solutions and Their Limitations
	Objective: Implicit Contacts
	Outline of the Thesis

	Related Works
	Whole-Body Locomotion Planning with Direct Collocation and Explicit Contact Phases
	Centroidal Mixed-Integer Locomotion Planning
	Centroidal Locomotion Planning through Phase-Based End-Effector Parameterization
	Motion Planning through Contact-Invariant Optimization
	Direct Trajectory Optimization of Rigid Bodies Through Contact
	Optimization of Safe Falling Trajectories for Lower Limb Exoskeletons
	Summary of Trajectory Optimization Methods for Planning Through Contacts

	Background
	Definitions and Conventions
	Optimization
	Iterative Optimization Methods
	Complementarity Constraints
	Solvers

	Dynamics
	Contact Dynamics

	Numerical Integration
	Direct Collocation
	What is Direct Collocation?
	Collocation Constraints for Euler-backward
	Intepolation between collocation points

	Method
	Trajectory Optimization Technique
	Contact Handeling
	NLP Formulation
	9 DOF Walker
	Software Implementation
	Test Cases
	Gait
	Recovery from Perturbations
	Safe Falling
	Getting Up

	Results
	Gait
	Recovery from Perturbation
	Falling
	Recovery

	Discussion
	Comparison to Similar Method by Posa et al.
	Versatile Framework with Versatile Performance
	Large Deviations from Actual Dynamics
	Improving Accuracy

	The Road to Reliability
	The Role of Initial Guesses
	Improving Convergence by Adjusting the Time Span
	Mesh Refinement to Improve Accuracy and Convergence

	Abnormal Modes
	Costly Computation
	Improving the Computational Efficiency

	Task Specific Discussion
	Rediscovering Gait
	Perturbations: Refusing to Fall
	Safe Falling
	Getting Up

	Human-Like Movement
	Future Work

	References
	Verification of Planar Dynamics
	Deriving Collocation Methods and Corresponding Interpolant
	Euler Collocation (1st Order)
	Trapezoidal Collocation (1st Order)
	Hermite-Simpson Collocation (1st Order)
	Trapezoidal Collocation (2nd Order)

	NLP Without Succinct Notation
	Analytic Gradients for Dynamics
	Additional Results
	Gait
	Perturbation
	Falling
	Experimental Results Optimal Falling

	Recovery

	Linear Combination for Ground Reaction Forces

