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ABSTRACT
Automating human relationship recognition, eg., friends, strangers,
colleagues, etc., has big application potential in fields such as social
media analyses, intelligent business services and public security.
Deep learning techniques have made this automation possible. In
the work of Costa et al. [1], 3 different cues, called the face, con-
text, and body encoding stream, were to gather information from
different parts of a scene. This information was combined using
an Adaptive Fusion Module. In order to access this recognition for
videos instead of single images, in this work, the original archi-
tecture was extended by incorporating Convolutional LSTMs. A
brand new massive-scale egocentric dataset, called Ego4d, available
with video’s of daily life situations was used in order to test the
automated human relationship recognition model just described.
This dataset has been labeled with the classes: Friend, Stranger,
Service, Colleague, Parents-offs, Couple. The model achieved an
accuracy of 57% and an F1-score of 0.55 on this 6 class classification
problem. Comparing the model to the best performing model with
only a single cue showed about an increase of 3% in accuracy and
0.04 in F1-score.

1 INTRODUCTION
With the rapid development of multimedia technology, the demand
for automating tasks is also increasing. Automating the interpreta-
tion of social relationships will make it possible to process massive
amounts of multimedia data which promote social media analyses,
intelligent business services and public security. Specifically, this
work will focus on human relationships in videos with the aim to be
able to classify them. Scenes in these videos will contain different
types of information such as information about the faces of a people
inside a scene, the context surrounding those people and the body
of those people. Recent work has shown that multiple cues that
process this type information from different parts of a scene (in an
image) can combined using an Adaptive Fusion Module [1] [2]. In
this work, that architecture will be expanded with Convolutional
Long short-term memories (LSTMs) in order to access video mate-
rial. In order to use this architecture for the task of classification,
the Ego4d dataset [3] will be used. This is A massive-scale, ego-
centric dataset and benchmark suite collected across 74 worldwide
locations and 9 countries, with over 3,670 hours of daily-life activity
video. The specific dataset used from Ego4d in this study consist of
572 video’s which are each 5 minutes long. The videos consist of
footage from people wearing a go pro camera in daily life situations.

From carrying out this research, insight will be gained with
which the following 3 questions will be tried to be answered:

• How can a framework be build with existing deep learning
techniques that can be used to recognize human relationships
between the camera wearer and the person and the person
they are interacting with in egocentric videos?

• How do different visual cues, e.g. face, context or body, help
us to recognise the human relationship depicted in egocen-
tric videos?

• How does combining the visual cues; face, context and body;
using an adaptive fusion module, help us to recognise the
human relationship depicted in egocentric videos?

As a short introduction to the method of this work, the original
dataset is deemed too complex because the videos are quite long and
multiple interactions can occur inside these videos, with these in-
teraction also describing different human relationships. That is why
the videos of the original dataset will first be trimmed in such a way
that only interactions between the camera wearer and one other
person remain. This will create more and shorter videos which are
easier to label. Thereafter, frames from these videos will be selected
because the architecture uses a sequence of images as an input. The
frames that will be selected are the ones where the person with
whom the camera wearer is interacting with is in the middle of the
frame. From these frames 3 images will be created in which the
face, context around the person, or body will be highlighted. These
images will be used as an input for the architecture mentioned ear-
lier and from that the videos will be classified by a certain human
relationship.

In the conduction of this research, the contributions to literature
listed below were made, which will be explained in more depth
throughout the report.

• Creating a new dataset from the the Ego4D [3] dataset, com-
posed of 991 video’s and labelled with 6 labels namely; Friend,
Strange, Service, Colleague, Parents-offs and Couple.

• Using the Ego4D dataset for the task of human relationship
recognition.

• The proposed framework which extends the work proposed
in [1]. Instead of using a single image input, Convolutional
LSTM’s will be used to combine an input sequence of images
and allowing video classification.

• Ablation study assessing the robustness when only rely-
ing on one of the considered cues namely; the Face Encod-
ing Stream, Context Encoding Stream and Body Encoding
Stream.

The organization of this paper is as follows. First, in the related
work section, scientific background will be given on the concepts
used in this paper and the methods used in this paper will be com-
pared to methods used in other studies. Second, the framework used
to allow for human relationship recognition in video’s of the Ego4d
dataset will be proposed. Third, experiments will be conducted in
order to test the performance of the proposed architecture and in or-
der to be able to answer the question composed in the introduction.
Lastly, the results of the experiments will be discussed, a conclusion
will be drown in which the question composed in the introduction
will be answered, limitations of this work will be discussed and
recommendations for future work will be given.

2 RELATEDWORKS
The related work section consist of two parts. First, the scientific
background, in which the main components of the architecture used
in this work will be introduced. And second, the related research,
in which literature related to this research will be explored.



2.1 Scientific background
In this section relevant research related to this workwill be explored.
Firstly, an introduction to the field of Convolution Neural Networks
(CNNs) and Long Short Term Memory (LSTM) will be given, which
are themain components of the Architecture that will be used in this
work. Thereafter, another component used inside the architecture
called an attention mechanisms will be explained.

2.1.1 Introduction to CNNs: In the field of artificial intelligence
(AI), CNN is a class of Artificial Neural Networks (ANNs). Cnns are
most commonly applied on visual images. ANNs are computational
processing systems inspired by the way biological neural systems
operate. ANNs are mainly comprised of a high number of inter-
connected computational nodes (referred to as neurons), of which
work entwine in a distributed fashion to collectively learn from
the input in order to optimise its final output [4]. An example of
an ANN is given in figure 1. The neurons, represented by circular
nodes in the figure, take as an input the output of the nodes in the
previous layer. The output of a neuron is the weighted sum of the
inputs, so multiplying every input with a certain weight. An ANN
can be trained by providing input and comparing the output of the
ANN to the desired output. This comparison will be made by a so
called loss function. The weights in the ANN will then be adjusted
to match the desired output. This process is called backpropagation.

As CNNs are a class of ANNs, they are also based on artificial
neurons that self-optimise through learning. As mentioned earlier,
CNNs are primarily focused on the basis that their input consists of
images. As a result, the architecture set up is optimally focused on
the need to process this type of data. Consequently, the layers in a
CNN consists of neurons organized in three dimensions: input spa-
tial dimensions (height and width) and depth. The depth refers not
to the total number of layers in the ANN, but the third dimension
of an activation volume. Unlike standard ANNs, neurons are within
specific layers only connect to a small area of the layer before it.
In practice, for example, a CNN would take as input an image of
128x128x3 (height, width, depth) and give as an output a tensor
with dimensions 1x1xn (n representing the number of classes). So
the full input dimensionality is stored across the classes in the depth
dimension.

To go from the input image to the output the image has to pas
through different types of layers of the CNN. The three type of lay-
ers CNNs are comprised of are convolutional layers, pooling layers
and fully-connected layers. These layers can be stacked in all kinds
of ways to form a CNN architecture. An example of a CNN is given
in Figure 2. The Feature extraction part of a CNN consists of one or
multiple Convolutional and Pooling layers. Pooling layers are usu-
ally used after Convolutional layers, but not every Convolutional
layer is followed by a Pooling layer. After the Feature Extraction
part, the remaining layer is flattened to one dimension and one of
multiple fully connected layers are used for Classification. Convo-
lutional layers are used to determine the outputs of neurons that
are associated with local regions of the input. This is done by com-
puting the inner product (also known as a dot product) between
the weights of the convolutional layer and the regions of the input
volume. This allows the network to effectively detect and analyze

Figure 1: An ANN is a group of interconnected nodes inspired
by the simplification of neurons in the brain. Here each cir-
cular node represents an artificial neuron and the arrow he
represents the connection from the output of one artificial
neuron to the input of another artificial neuron.

patterns in the input data. A rectification linear unit (or ReLu for
short) is an activation function that is applied element-wise to the
output of the previous layer. This function is commonly used in
neural networks and is applied to each element of the input inde-
pendently. The purpose of the ReLu is to introduce non-linearity to
the network, which allows it to learn more complex patterns in the
data. The Sigmoid function is one example of a common activation
function that can be used with a ReLu. The Pooling layer is used
to downsample the spatial dimensions of the input, which reduces
the number of parameters in the activation. This helps to simplify
the data and reduce the computational cost of the network. By
doing this, the network can focus on the most important features
of the input and improve its performance. A fully connected layer
then performs the same task as a standard ANN, trying to build
class scores from the activations used for classification. It is also
suggested that ReLu can be used between these layers to improve
performance.

The field of CNNs only went booming quite recently. In this
paragraph some of the classic CNN models will be stated, which
are as to date still less than 10 years old. In 2012, Alex et al. [5]
achieved the best classification results at the time using his Deep
CNN in the ImageNet Large Scale Visual Recognition Challenge
(LSVRC) with his CNN called Alexnet, garnering much attention
in research and greatly advancing the development of his CNN in
modern times. In 2014, VGGNets [6] won first place in the 2014
ImageNet Challenge localization track. It is based on AlexNet and
improves it by sequentially replacing the large kernel-sized filters
(11 and 5 in the first and second convolutional layers, respectively)
with multiple 3X3 kernel-sized filters. VGGNets are a series of
Convolutional Neural Network algorithms proposed by the Visual
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Figure 2: Top level view of a CNN consisting of a input image,
Convolution layer, Pooling layer and Fully Connected layer.
Convolution and Pooling layers are used for feature extrac-
tion. Fully Connected layers are used for classification.

Geometry Group (VGG) at the University of Oxford, including VGG-
11, VGG-11-LRN, VGG-13, VGG-16, and VGG-19. GoogLeNet [7] is
the winner of the ILSVRC 2014 Image Classification Algorithm. This
is the first major CNN formed by stacking Inceptionmodules, which
basically is performing different type of Convolutional and Pooling
operations separately on the same layer and concatenating them.
For example, an input image goes to 2 different Convolutional layers,
one followed by by another Convolutional layer and a Pooling
layer and the other only followed by a Pooling layer. These two
outputs are then concatenated. Themain advantage of the Inception
modules is that they heavily reduce the number of parameters. The
Inception modules have 4 versions; Inception v1 [7], Inception v2
[8] [9], Inception v3 [9] and Inception v4 [10]. Lastly, He et al. [11]
proposed a 34-layer residual network in 2016 called ResNet. This
is the winner of the ILSVRC 2015 Image Classification and Object
Detection Algorithms. One of ResNet’s main contributions is a
two-layer residual block built by shortcut connections. A shortcut
connection is a connection in a neural network that skips one or
more layers and than adds identity mapping to the output of those
layers. This counteracts the effects of exploding and vanishing
gradients (the weights of the neurons getting extremely big or
small).

2.1.2 Introduction to LSTMs. Another type of ANN that will be
used is the LSTM. The first thing in which an LSTM differs from
a CNN is that it has feedback connections. ANNs with feedback
connections are called Recurrent Neural Networks (RNNs), making
an LSTM a type of RNN. The feedback connection means that the
output of an RNN cell will be used as an input for the next iteration,
together with the actual input to that cell. What is useful about
RNNs is that they not only can process single data points such as
images, but also sequences of data such as video’s. The main moti-
vation to use RNNs is because they are better at keeping memory
about previous data compared to standard neural network’s. A com-
mon problem with Neural Networks is that the deeper (more layers)
they become, the bigger the problem of vanishing and exploding
gradients. With RNNs, this becomes an even bigger problem, since
gradients are computed not only in the ’depth’ dimension but also

Figure 3: The architecture of an LSTM cell [14].

in the ’time’ dimension [12].

To counteract this problem, LSTMs were introduced. The struc-
ture of an LSTM is very similar to that of an RNN, the only difference
being a replacement of the recurrent cell by an LSTM cell, which
will remember information longer. Like RNN cells, LSTM cells also
reuse the output for the next iteration, this is referred to as the
hidden state and serves for the short term memory. But LSTMs
they also keep an internal cell state which serves for the long-term
memory. The calculation of the output/hidden state and the cell
state happens inside the LSTM cell with the use of 3 gates: the
Forget Gate, Input Gate and Output Gate. Figure 3 shows how they
operate with the input, Hidden state/output and Cell state with
different type of activation functions. In this work a Convolutional
LSTM [13] will be used. The core principles are the same as with a
"normal" LSTM, only the input and output/hidden layer are now
two-dimensional instead of one-dimensional.

2.1.3 Introduction to Attention mechanisms. Another type of mod-
ule that will be inside the architecture of this work is an attention
module. Attention mechanism are inspired by the investigation of
human vision, as humans have the ability to only focus on relevant
parts of visual information. This is where their "attention" goes to.
Attention mechanism in neural networks where first introduced by
Bahdanau et al. [15] and have later been instrumental for research
in natural language processing (NLP) such as google BERT [16].
The attention mechanism has also been adopted into computer
vision, like in this work. The general form of attention mechanisms
in computer vision is formulated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑓 (𝑔(𝑥), 𝑥) (1)
Where 𝑔(𝑥) responds to the attention generation part, which

is responsible for finding the relevant part of imagery. 𝑓 (𝑔(𝑥), 𝑥)
means processing input x based on the attention 𝑔(𝑥), in other
words getting information out of relevant regions in imagery. As a
practical example what these variables and functions can be, the
attention mechanism from this work will be used. In this attention
module: 𝑥 is a feature tensor of 4 dimensions; the function𝑔 consists
of 2 convolutional layers and a softmax layer where a feature tensor
can go through, and the function f will be a multiplication between
𝑔(𝑥) and 𝑥 . The attention module just described. has been used
before for the same purpose as in this work [1] [2] and very relatable
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methods have used similar attention modules for the purpose of
visual sentiment recognition [17] [18].

2.2 Related research
Now that an understanding has been shaped on the concepts that
will be used in this work, there will be continued by looking what
has been done in the field of egocentric vision, social interaction
analysis and social relation analysis and a comparison to this work
will be made.

2.2.1 Egocentric vision. Egocentric vision, also called first-person
camera vision, refers to all Computer Vision and Machine Learning
methods for extracting semantic information from visual lifelog
data. Visual Lifelogging consists of capturing images that capture a
user’s everyday experience by wearing a camera for an extended
period of time. In this work, Egocentric vision will be combined
with human relationship recognition. Other examples of usages of
Egocentric vision with social interaction are: Multi-face tracking
[19], where all face that appear in a video are tracked; and, Detect-
ing Social Interaction in an Egocentric Photo-stream [20], where
the aim is to automatically detect the moments a social interaction
occurs from wearing a camera during the day. This work will con-
tribute to the field of egocentric vision by exploring how human
relationship recognition will perform on these type of videos.

2.2.2 Relationship extraction from video’s. In this work, the rela-
tionship between humans will be determined through the visual
data from video’s. Many other studies [21] [22] [23] [24] [25] [26]
try to achieve similar feats, either by constructing social structures
of finding relationships between characters from video analysis.
One work that is closely related to this is called "A Multimodal
Approach for Multiple-Relation Extraction in Videos" by Liu et al.
[27], as the same labeling has partly been used in this work and
the visual modality also focuses on the face and body of a person.
In the work of Liu et al., scenes from movies were used as an in-
put and through the analysis of the visual data and the subtitles
the relation between every character in the scene was determined.
Furthermore, a component called SlowFast [28] is adopted in their
framework to capture semantic information and action information.

The main differences between the work of Liu et al. [27] and this
one are: First of all, in their work has the 3 modalities just described,
while this work only works with the visual modality. Secondly, in
their work multiple relationships per video were determined whilst
in this work there will only be one, namely the one between the
camera wearer and the person he or she is interacting with. And
lastly, a different dataset was used. The reason a different dataset
and only the visual modality was used in that this research focuses
on egocentric vision. The reason why only part of the same labeling
has been used is because not all labels were relevant for the dataset
used in this work.

2.2.3 Visual information extraction. A video can also be seen as
a sequence of images. Therefore, image based technique’s can be
used to extract visual feature’s from the video’s. Liu et al. [27]
used 20 frames of the original video’s. From these face and body
clusters where extracted using Mask R-CNN [29] to detect charac-
ters’ body and RetinaFace [30] to detect characters’ face. After that,

pre-trained ArcFace [31] and ResNet [11] networks were used to
extract face and body features separately. These features were later
concatenated and fused with the features of the other models.

Similarly, in the work by Jiyoung Lee et al. [2], a sequence of
images was used as input from which the face and the context were
inputted into two separate networks. The network for the face was
called the face encoding stream and consisted of 5 convolutional
layers and 4 max pooling layers with batch normalization and ReLu
layers after each convolutional layer. The context encoding stream
is similar, with 1 convoluational and 1 max pooling layer less, fol-
lowed by an attention interference module. The output of the two
networks was used as an input for the adaptive fusion network to
combine the features of the face and context streams and give a
definitive classification, in the case of this specific research emotion.

Costa et al. [1] extended the framework of Lee et al. [2] by adding
adding a third network that, like the work of Liu et al. [27], takes
as an input the body of the person in the image and puts it through
a pre-trained ResNet [11]. The adaptive fusion network has a third
stream to allows for the extra input. In this work, the framework is
even further extended by adding a Convolutional LSTM to allow a
sequence of images to be used from each of the egocentric videos.

3 PROPOSED FRAMEWORK FOR MULTI-CUE
SOCIAL RELATIONSHIP RECOGNITION

In this section the methodology is proposed in order to extract
a relationship between the camera wearer and the person he is
interacting with, will be described. This will be done using the
architecture shown in Figure 5. However, this Neural network takes
specific images as an input and not video’s. Therefore, first the data
preparation will be described in a subset of pre-processing steps
such that the data can be used by the architecture. Thereafter, the
architecture itself will be described.

3.1 Processing of video’s
In this subsection there will be described how a dataset of video’s
should be transformed in such a way that it can be used by the
Neural Network given in Figure 5. As mentioned before, the archi-
tecture has been extended to allow a sequence of image to be used
as input. These images are non-consecutive frames. Therefore, the
temporal aspect of the videos is neglected. The prepossessing steps
will result in 8 specifically selected frames per video.

3.1.1 Trimming the video’s to only allow interaction with one single
person. The way the architecture is set up, only one label can be
given per video. As it is possible for multiple interactions to occur
in one video, all video’s need to be trimmed in such a way that
only one interaction occurs such that it is clear what label should
be given to that video. In the dataset used in this work the camera
holder is also part of the interaction and but does not appear in the
video. If a dataset is used were the camera holder does not interact
the 2 person appearing in the video that have an interaction can be
used separately in the next step.

3.1.2 Selecting and pre-processing the frames. After the video’s
have been trimmed in the way just described, 8 frames per video
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Figure 4: Three examples of how the input images look like.
The columns, from left to right, represent: the full image, the
face of the main person, the context around the main person
and the body of the main person.

should be selected. If there are multiple people in this frame there
should be identified which person is the one having the interaction,
this will be referred to as the main person. From these frames, 3
separate images should be made. Firstly, an image of only the face
needs to be extracted. Secondly, an image of the frame without the
face needs to be extracted. Lastly, an image of only the body needs
to be extracted. This should only be done with the main person.

In Figure 4 three examples are given of what the 3 type of images
describes earlier look like and what the original frame looked like.
The creation of these images was done in the following way. Firstly,
it is assumed that the person the camera wearer is interacting with
is in the middle of the frame most of the time during the video.
Because multiple persons can appear in the video, an algorithm is
used that counts how often a person appears in the video and give
extra value when the person appears in the middle of the frame.
The person that appears the most in the middle of the frame will
be deemed the main person. From this the 8 frames in which the
main person is the most in the middle of the frame will be selected
to get the most context around that person as possible. With this
algorithm, images of the complete frame and 8 images of the face
were be saved per video. The pseudo code of the algorithm is given
in Figure 14 in the Appendix.

RetinaFace [30] was used to detect the faces and ArcFace [31]
was used to calculate the embedding of the face. The image of the
frame without the face of the main person was extracted by again
using the face of the main person but instead of extracting it, a
block with black pixels will be placed on top of the face. Lastly, an
image of only the body of the main person was extracted. This was
done by using Mask R-CNN [29] to detect the body and filling the
rest of the image with black pixels.

3.2 Visual network architecture
The network architecture is shown in Figure 5. This network is
inspired by the works of Lee et all. [2] and Costa et all. [1]. Simi-
lar to those works, the network consists of 3 steams, namely the
Face Encoding Stream, the Context Encoding Stream and the Body

Encoding Stream. The 3 streams each take as an input an image.
As their name suggests, the Face Encoding stream takes as input
an image of a face, the Context Encoding Stream takes as input
image of the context around the face and the Body Encoding Stream
takes as input an image of a body and face. What is different from
the works mentioned before is that a sequence of images will go
through the network instead of a single image. This sequence is 8
images long and through every stream a different set of 8 images
will go through it. The sequences of 8 will each be down-sampled to
1 using a Convolutional LSTM. This Convolutional LSTM is what
makes this architecture diffent from the ones in the work of Lee
et all. [2] and Costa et all. [1]. The features that come out of the
Convolutional LSTM are fused together by a so called Adaptive
Fusion Network. The structure of the 3 streams, Convolutional
LSTM and the Adaptive Fusion Network will be discussed in more
detail below.

3.2.1 Face Encoding stream. By looking the faces of two person
one can often already get an indication of what type of relationship
they might have. Although the face on the camera wearer is (often)
not shown in the video’s, also facial expression can tell a lot, for
example one will look different towards a stranger than a friend.
Therefore, a neural network that extract facial features is build and
called the Face Encoding stream, as in the work of [1] and [2]. In
the top of Figure 5 the Neural Network of the Face Encoding Stream
is show. It takes as input an 3 × 96 × 96 image of the face of the
main person in the frame, as shown in the second column of Figure
4, which will be called 𝑉𝐹 . The face encoding stream is designed to
extract the facial expression features denoted as 𝑋𝐹 from the input
images 𝑉𝐹 ,

𝑋𝐹 = ℱ(𝑉𝐹 ;𝑊𝐹 ) (2)
with face stream parameters𝑊𝐹 . The Neural Network is designed
using basic operations of 3D-CNNs, becasue they are suitable for
spatiotemporal feature representation. It consists of 5 convolutional
layers with 3x3 kernels and feature channels of sizes 32, 64, 128,
256 and again 256. Every convolutional layer is followed by a Batch
Normalization and a Relu activation function. The first 4 convolu-
tional layers are also followed by a max pooling layer with a kernal
size of 2. The output of this Neural Network is a tensor of size
8 × 256 × 6 × 6. This will be used as input for the Convolutional
LSTM.

3.2.2 Context encoding stream. Also the context inside the image
is important. For example, a cash register will be a very likely
indication that the person behind it has a service relation to the
camera wearer. In the second row Figure 5 the Context Encoding
Stream is depicted, which is the same as in the work of [2]. It takes
as input an 3x480x270 image of the frame without the face of the
main person, as shown in the third column of Figure 4, which will
be called 𝑉𝐶 . The Context encoding stream is designed to extract
the context features denoted as 𝑋𝐶 from the input images 𝑉𝐶 ,

𝑋𝐶 = ℱ(𝑉𝐶 ;𝑊𝐶 ) (3)
with context stream parameters𝑊𝐶 . The Neural Network, which
is also based on 3D-CNNs, starts similar to Face Encoding Stream
with 4 convolutional layer with 3x3 kernals feature channels of
sizes 32, 64, 128, 256. Also every convolutional layer is followed by a
Batch Normalization, a Relu activation function and a max pooling
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Figure 5: The Main Architecture used to extract visual information from the images extracted from the video’s, and predict the
human relationship. The Face, Context and Body Encoding Stream, the Attention mechanism and Adiptive fusion are inspired
by the work of [1] and [2]. The LSTM part has been added to this network in order to allow for a sequence of input images.

Figure 6: The Architecture used for the ablation study of the 3 different cue’s. The Face/Context/Body Encoding streams and
LSTMs are the same as in Figure 5. Instead of combining the information with an Adaptive Fusion module the 3 stream go to
classification separately.
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layer with kernal size 2. This is followed by an Attention module
to highlight small but import parts of the data, like for example
the cash register. The Attention module consist of two steams:
one is just the input, also know as 𝑋𝐶 ; and the other consist of 2
convolutional layers taking the input size from 256 to 128 and form
128 to 1. These 2 convolutional layers are also followed by a Batch
Normalization and Relu activation function. After that a spatial
softmax funtion is applied. Thiswill form attention𝐴𝜖R𝐻𝑥𝑊 , where
𝐻𝑥𝑊 is the spatial resolution of 𝑋𝐶 . The spatial softmax is applied
as follows:

𝐴𝑖 =
𝑒𝑥𝑝 (𝐴𝑖 )∑
𝑗 𝑒𝑥𝑝 (𝐴 𝑗 )

(4)

where 𝐴 is the attention for context at each pixel i and 𝑗𝜖{1, ..., 𝐻 ×
𝑊 }. Sincewe use a 3DCNN to temporally aggregate the features, we
normalize only the attention weights across the spatial dimension,
not the temporal dimension. Note that attention is learned implicitly
without supervision. Attention 𝐴 is applied to the features 𝑋𝐶 to
produce the attention enhancement feature 𝑋𝐶 as follows.

𝑋𝐶 = 𝐴 · 𝑋𝑐 (5)

where · is an element-wise multiplication operator. This will form
an output tensor of size 8 × 256 × 30 × 16. This will also be used as
input for the Convolutional LSTM.

3.2.3 Body Encoding Stream. Lastly, also someones body language
can also say a lot of the relationship towards the other person,
therefore also a Body Encoding Stream will be used. As shown
in Figure 5, the Body Encoding Stream is a pre-build Resnet50
module [11] that includes everything up to and including the last
convolutional layer, as in the work of Costa et al. [1]. It takes as
input an 3x480x270 image of the face and body of the main person
in the frame, as shown in the fourth column of Figure 4, which will
be called 𝑉𝐵 . The Body encoding stream is designed to extract the
body language features denoted as 𝑋𝐵 from the input images 𝑉𝐵 ,

𝑋𝐵 = ℱ(𝑉𝐵 ;𝑊𝐵) (6)

with body stream parameters𝑊𝐵 . The output is a 8 × 2048 × 15 × 9
tensor. This will also be used as input for the Convolutional LSTM.

3.2.4 ConvLSTM. By using a Convolutional LSTM [13], the se-
quence of 8 tensors of features is downscaled to 1 tensors of fea-
tures in order to let the Adaptive Fusion network be able to further
process the data. In this architecture, 8 Convolutional LSTMs are
put in a row, one per image of the input patch. The first LSTM takes
as input the features of the 8th image in the sequence (features
extracted by the stream) and zeros as initial hidden and cell state.
The next LSTM takes as input the features of the 7th image in the
sequence and the hidden and cell state of the previous LSTM. Con-
tinuing this untill you arrive at the last LSTM. The hidden state of
this last LSTM will be passed on to the Adaptive Fusion Network.
Similar as before, we have 𝑋𝐹 = ℱ(𝑋𝐹 ;𝑊𝐹2), 𝑋𝐶 = ℱ(𝑋𝐶 ;𝑊𝐶2)
and 𝑋𝐵 = ℱ(𝑋𝐵 ;𝑊𝐵2). 𝐹2, 𝐶2 and 𝐵2 being the network parame-
ters of the Convolutional LSTMs handling the features coming out
of the Face, Context and Body encoding stream respectively.

3.2.5 Adaptive Fusion Network. The features of the 3 different
streams need to be combined. As simple concatenation often fails
to provide optimal performance [32], an Adaptive Fusion Network

will be used which has shown better performance [1][2]. The Adap-
tive Fusion Network in the works just mentioned will also be used
in this work. This network is shown in the right bottom of Figure
5. First, the features resulting from the LSTMs will be put through
an Adaptive Average Pooling layer in order to make the third and
fourth dimension of the streams the same, which makes concatena-
tion possible. The size of the third and fourth dimension is chosen
to be 6 because the smaller input images (which are the faces)
will have these dimension after going through the Face Encoding
Stream and Convolutional LSTM. The 3 tensors that come out of
the 3 different Adaptive Average Pooling layers will be saved and
will still be called 𝑋𝐹 , 𝑋𝐶 and 𝑋𝐵 . Next, the 3 tensors will each go
through 2 separate convolutional layers that produce a 128 and
1 feature channel respectively, both are followed by a Batch Nor-
malization and Relu function. The attentions are learned such that
𝜆𝐹 = ℱ(𝑋𝐹 ;𝑊𝐹3), 𝜆𝐶 = ℱ(𝑋𝐶 ;𝑊𝐶3) and 𝜆𝐵 = ℱ(𝑋𝐵 ;𝑊𝐵3) with
network parameters𝑊𝐹 3,𝑊𝐶3 and𝑊𝐵3, respectively. A softmax
function will make the sum of these attentions to be 1, i.e.,

𝜆𝐹 + 𝜆𝐶 + 𝜆𝐵 = 1 (7)

The attentions will then be separated again and multiplied with
the appropriate tensor that was saved earlier. The outcome of these
3 multiplication will then be concatenated, i.e.,

𝑋𝐴 = Π(𝑋𝐹 · 𝜆𝐹 , 𝑋𝐶 · 𝜆𝐶 , 𝑋𝐵 · 𝜆𝐵), (8)
where Π is a symbol for concatenation. After that again 2 convo-

lutional layers will produce a 128 and 1 feature channel respectively,
i.e.,

𝑦 = ℱ(𝑋𝐴;𝑊𝐴) (9)
where𝑊𝐴 represents the remainder parameters of the adaptive
fusion networks. Both convolutional layers are followed by a Batch
normalization and Relu function. In order to train this network
separately a fully connected layer will be put at the end in order to
make an output of 6 relational categories. Lastly, a softmax will be
applied.

4 EXPERIMENTAL SETUP
In this section experiments will be described that will validate
the proposed framework and help to answer the questions stated
in the introduction. Firstly, how the dataset used in this work is
created from the original dataset is described. This will include
how the video’s are labelled and how the dataset is split. Secondly,
the validation matrices used will be presented. Thirdly, how the
experiments are set up and which values are chosen for certain
parameters will be shown.

4.1 Dataset creation
Dataset description: As mentioned before, the dataset used is
called Ego4D and is a massive-scale egocentric video dataset. It
offers 3,670 hours of dailylife activity video spanning hundreds of
scenarios (household, outdoor, workplace, leisure, etc.) captured
by 931 unique camera wearers from 74 worldwide locations and
9 different countries [3]. In Figure 7, from the Ego4D paper, the
demographics of the camera wearer are shown. This show the
variety in age, gender, countries of residence and occupations of
the camera wearers. It is assumed that these demographics are
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translated to the subset of data from Ego4D used in this work. It
can be seen that there is a slight unbalance in gender with 55% male
and 45% female. A large part of the ethnicity of the participant is
American with 41%. The participants are more young people than
old people with the age group 25-29 having 150 participants whilst
all age groups above 44 having 41 participants or less. There is also
unbalance in terms of occupation with (PhD) Student being the
largest group.

Figure 7: Ego4D camera wearer demographics—age, gender,
countries of residence, and occupations (self-reported). Font
size reflects relative frequency of the occupation [3].

Trimming the dataset: The original dataset consist of 572
video’s which are each 5 minutes long and is called Ego4d [3]. In
order to only have video’s were there is only an interaction between
the camera wearer and one other person, the original dataset will
be split into sub-video’s. These sub-video’s will be were using the
transcription of the video’s that was given with the dataset. In the
transcription the start time, end time and the person id were given.
Based on that, the algorithm given in Figure 13 in the appendix was
made. Using this algorithm resulted in 928 video’s with only single
person interactions. From these video’s the input images are made
as described in Section 3.1.2.

Labeling of the video’s: As mentioned earlier, the dataset con-
sist of 572 video’s which are each 5 minutes long and is called Ego4d
[3]. These original video’s were trimmed into sub-video’s which
resulted in 928 video’s. These video’s were labeled into different
categories with inspiration by the work of Liu et al. [27]. However,
not all categories that they specified are relevant for this dataset.
Therefore, the following relevant categories were used (with ex-
amples) for the labeling of the dataset: friend (Figure 8a), stranger
(Figure 8b), service (Figure 8c), colleague (Figure 8d), parents-offs
(Figure 8e) and couple (Figure 8f). When labeling the videos both
the visual and the audio information was used. To be more explicit,
in terms of visual information surroundings, facial expression and
attitude were dominant factor and in terms of audio information
tonality, language used (formal/informal) and the words spoken
(buddy, sir, darling) were dominant factors.

Dataset split After labeling, the dataset was split into a train,
test and validation set. Firstly, the total dataset was split into 85%
train set and 15% test set. After that, this train set was split into
a train and validation set with k-fold cross-validation [33] were

(a) Friend (b) Stranger

(c) Service (d) Colleague

(e) Parents-offs (f) Couple

Figure 8: Examples of the 6 different labels: Friend, Stranger,
Service, Colleague, Parents-offs and Couple.

k was set to 5. This implies that 80% of the train set is used for
training and 20% for validation. Table 1 shows the total label count
of every label and the counts of the train and test set. Table 2 shows
the train and validation counts for every fold of the 5 fold split.
As the train set of the first split was used for the second split, the
total counts in Table 1 are the same as the train counts in Table
2. To accommodate for the imbalance in the amount of samples
per class, weighted classes were used where the weight of every
class was set to the total amount of training data divided by the
number training samples in that class. This will make sure each
class is trained equally.

Label Total Train Test
Friend 457 (49%) 380 77
Stranger 102 (11%) 87 15
Service 132 (14%) 107 25

Colleague 95 (10%) 79 16
Parents-offs 46 (5%) 37 9
Couple 96 (10%) 81 15
Total 928 (100%) 771 157

Table 1: Label counts of the Train-Test split. Next to the total
label count the percentage each label occupies in relation to
the whole dataset is shown.

4.1.1 Baseline approaches. We propose to compare the robustness
of are architecture against single visual cues. Figure 6 presents an
illustration of these baseline experiments. The images will follow
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Fold 0
Label Total Train Validation
Friend 380 308 72
Stranger 87 71 16
Service 107 82 25
Colleague 79 64 15
Parents-offs 37 27 10
Couple 81 64 17

Fold 1
Label Total Train Validation
Friend 380 300 80
Stranger 87 70 17
Service 107 86 21
Colleague 79 66 13
Parents-offs 37 26 11
Couple 81 69 12

Fold 2
Label Total Train Validation
Friend 380 297 83
Stranger 87 72 15
Service 107 90 17
Colleague 79 59 20
Parents-offs 37 32 5
Couple 81 67 14

Fold 3
Label Total Train Validation
Friend 380 306 74
Stranger 87 65 22
Service 107 89 18
Colleague 79 64 15
Parents-offs 37 35 2
Couple 81 58 23

Fold 4
Label Total Train Validation
Friend 380 309 74
Stranger 87 65 22
Service 107 89 18
Colleague 79 63 16
Parents-offs 37 28 9
Couple 81 66 15

Table 2: Label counts of the Train-Validation split for all 5
folds.

the same process as in Figure 5 until the Adaptive Fusion, so they
will each go through their desired encoding stream and go through
a Convolutional LSTM module. Thereafter, each of the feature ten-
sor coming out of the Convolutional LSTM will individually go
through 1 linear layer and a softmax layer from which the human
relationship can be categorized. Additionally, an experiment will
be performed where the original unedited full frames will be in the
baseline Context Encoding stream, as the Context images are most
similar to the original full frames.

4.2 Validation
The performance metrics that will be used are balanced accuracy
and F1-score, both will be calculated using the sklearn package
[34]. The balanced accuracy and f1-accuracy will give an unbiased
estimation of the performance of the network, which is necessary
since the dataset in imbalanced. The balance accuracy, which can
be defined as the average obtained on either class, is defined in
equation 10.

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
2 (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝐹𝑃 +𝑇𝑁 ) (10)

Where: TP stands for true positive, an outcome where the model
correctly predicts the positive class; TN stands for true negative, an
outcome where the model correctly predicts the negative class; FN
stands for false negative, an outcome where the model incorrectly
predicts the negative class.

The F1-score is defined in Equation 11. The F1-score gives a
balanced score of the precision and recall. Precision quantifies
the number of correct positive predictions made out of positive
predictions made by the model. In other words, precision calculates
the accuracy of the True Positive and is calculated with Equation 12.
The recall is a metric that quantifies the number of correct positive
predictions made out of all positive predictions that could be made
by the model and is calculated with equation 13. In these equations
TP and FN are the same as before. FP stands for false positive, an
outcome where the model incorrectly predicts the positive class.

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

=
2 ∗𝑇𝑃

2 ∗𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(11)

Where:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(12)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(13)

Furthermore, the train and validation loss per epoch will be plotted
in a graph. The loss function will be computed using the cross-
entropy loss function. With the Train-validation set show in Table
2 the 3 baseline architectures and the main architecture will be
trained and tested on performance. From this, the best performing
architecture will be selected. This architecture will then be trained
using the Training part of the Train-Test split shown in Table 1.
After training the best performing architecture the balanced accu-
racy and f1-score, a confusion matrix and examples of correct and
incorrect classifications will be given.

4.3 Implementation details
The Architecture that were described in the methodology imple-
mented using the Pytorch library [35] from scratch, as no code
was available from the works of Costa et al. [1] and Lee et al. [2].
The dataset that was used consisted of 991 video’s of daily life sce-
nario’s filmed in a point of view fashion. As explained earlier, 20
frames per video were used. The 6 different labels that are used
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are shown in the previous subsection. The visual network consists
of 3 different streams and an Adaptive Fusion Network. These 3
encoding streams were first build independently and tested on its
performance on the classification problem. After that, the Adaptive
Fusion Network was added and the combination of 3 streams will
be tested tested on its performance. The 4 different architectures
will all be trained with the 5 different folds as shown in Table 2 of
the data-split section. Every fold was trained for 30 epochs. The
learning rate was set to 1e-4 and the models were trained using a
cross-entropy loss function and a batch size of 8. The best perform-
ing model will be trained for 50 epochs using the train-test split
shown in Table 1.

5 RESULTS
In this section the results of the experiments conducted will be
presented. Starting with comparing the different architectures and
thereafter showing more in dept results of the best performing
architecture.

5.1 Dataset exploration
In order to gain some insight in the feature that come out of the
architecture, dimensionality reduction techniques were applied
in order to visualize the data. Specifically, the features coming
out of the last convolutional layer of the Adaptive Fusion module
were analysed. Principal Component Analyses (PCA) [36] and T-
distributed stochastic neighbour embedding (t-SNE) [37] were used
to reduce the dimensions of the features from 214 to 2 in order to
be able to visualise them in a 2d plot. This was done for all date, the
training data and the test data, as shown in Table 1. The resulting
plots are shown in Figure 9. The formation of clusters means that
a label can be recognized by the features which makes it easier to
classify them. In the training data, it can be seen that the labels form
some nice clusters, especially when using t-SNE. However, in the
test data these clusters are a lot less nice. Only the label Colleague
has all train and test data close to one cluster. The label Friend has
a pretty nice cluster and some outliers in both train and test data.
The label Parents-offs has only one or a few points from the test
data in its cluster from all data, and all the outliers are also from
the test data. The labels Stranger, Service and Couple show some
nice clusters in the train data but they are very close to each other
(and the label Friend). In the test data the samples of these 3 labels
are very much mixed in the same space.

Given this information, it is expected that the classier will do well
on the label Colleague. It will do alright on the Label Friend with
some miss classifications to every other label. The labels Stranger,
Service and Couple will be miss classified a lot as each other. And
the label Parents-offs will be miss classified a lot as the other labels
except Colleague. It is also expected that not a lot of samples will be
miss classified as Parents-offs because its cluster lays far away from
the other clusters with no samples of other clusters close except for
some samples of the label Friend in the PCA plot. The same can be
said for the label Colleague with some samples of Friend close to it
in both the PCA and t-SNE plot.

To quantify these results, the silhouette score [38] of the same
features, without the dimension reduction techniques, were com-
puted and plotted in the graphs. These graphs are shown in Figure
10. The silhouette score ranges from -1 to 1. A value of +1 indicates
that a sample is far away from a neighboring cluster and close to its
own cluster, a value of 0 indicates that a sample is close to a decision
boundary and a value of -1 indicates that that a sample lays close
to a wrong cluster. Comparing the 3 graphs it can again be seen
that most of the outliers come from the test data. The Silhouette
graphs of the test data confirm the statements above about the
labels Colleague and Friends. But these graphs also show a Service
also has some samples forming a cluster, as about half of the data
has a silhouette score above 0. The labels Parents-offs and Stranger
show the poorest performance in forming a cluster. The fact that
the model performs very well on the training data and not so well
on the testing data indicates that the model might be overfitting.
The silhouette graph also indicates that the model might perform
poorer on the training data of the label Friend than the rest. Lastly,
a average silhouette score of 0.07 test data indicates that the model
might be struggling to reach a good performance.

5.2 Model comparison
In this subsection the following 5 architectures, as described ear-
lier, will be compared: The baseline model with the Face input
images and Face Encoding stream, The baseline model with the
Context input images and Context Encoding stream, The baseline
model with the Body input images and Body Encoding stream, The
baseline model with the Full input images and Context Encoding
stream, and the Main Architecture. To avoid redundant writing,
when an Encoding Stream is mentioned without the type of input
image, the type will be the same as in the name of Encoding Stream.

Train and validation loss: In Figure 15, 16, 17, 18 and 19 the
cross-entropy loss function is plotted against the number of epochs
for the 5 different architecture across all fold. First taking a look
at the low points of the validation loss: the Face Encoding Stream
shows values between 1.43 and 1.50 across the folds, the Context
Encoding Stream shows values between 1.36 and 1.43, the Body
Encoding Stream shows values between 1.45 and 1.51, the Context
Encoding Stream with full input images shows values between
1.37 and 1.42, and the Main Architecture shows values between
0.90 and 1.04. Then looking at the training loss, the values of the 4
Baseline Architectures go towards a value between 1.0 and 1.2 and
the main architecture goes towards a value of 0.2 or lower. This
could be a sign of overfitting for all architectures, but mainly in the
main architecture because in that one the difference is the biggest.
However, only looking at the validation loss, it can be concluded
that the main architecture shows the best performance in terms of
the loss function.

Balanced accuracy and F1-score: In Table 5, 6, 7, 8 and 9 the
balanced accuracy and F1-score for every label in every fold is
shown for all 5 Architecture is shown. Furthermore the averages
and standard deviation are also shown. To make it easier to compare
the models, the averages of every architecture are summarized in
Table 3. Comparing these results, the first thing that is clear is that
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(a) PCA all data. (b) PCA train data. (c) PCA test data.

(d) t-SNE all data. (e) t-SNE train data. (f) t-SNE test data.

Figure 9: Visualisation plots for the features coming out of the last Convolutional layer of the Adaptive fusion module using
Principal Component Analyses (PCA) and T-distributed stochastic neighbour embedding (t-SNE). Both techniques have been
applied to all date, the training data and the test data as shown in Table 1. The upper row shows the PCA results and the lower
row shows the t-SNE results.

(a) Silhouette graph of the features of all
data. Average silhouette score = 0.36.

(b) Silhouette graph of the features of the
train data. Average silhouette score = 0.44.

(c) Silhouette graph of the features of the
test data. Average silhouette score = 0.07.

Figure 10: Silhouette plots of the features coming out of the last convolutional layer of the Adaptive Fusion Module. The
average silhouette score is reported under each plot and is indicated by a red dotted line. The labels of the clusters are ordered
in the following way from top to bottom: Couple, Parents-offs, Colleague, Service, Stranger and Friend.

the Body Encoding Stream architecture performs worst in terms of
top-1 accuracy and F1-score on both the validation set and the test.
For the other 4 architectures, the results are closer and more mixed
across the different criteria. In the validation set the accuracy is
almost the same with 54% for the Context Encoding Stream with
both type of input images and 55% for the Face Encoding Stream
and Main Architecture. In terms of F1-score, Context Encoding
stream with full input images performs the best with 0.52 closely
followed by the Main Architecture with 0.51. The Face and Con-
text Encoding stream both have an F1-score of 0.50. In the test set,
the Main architecture also scores highest in both accuracy (51%)
and F1-score (0.50). The Face Encoding stream Architecture has

an accuracy of 48% and an F1-score of 0.45. The Context Encoding
stream Architecture has an accuracy of 48% and an F1-score of 0.45.
The Face Encoding stream Architecture has an accuracy of 47%
and an F1-score of 0.45. The Body Encoding stream Architecture
has an accuracy of 46% and an F1-score of 0.43 and the Context
Encoding Stream with full input images has an accuracy of 48% and
an F1-score of 0.47.

Model selection: On the validation set, the Accuracy and F1-
score of all architectures except the Body Encoding stream were
very similar. On the test set, the Main Architecture outperformed
the closest baseline model, which is the Context Encoding Stream
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Validation set
Accuracy std F1-score std

Face im+Face ES 55% 1% 0.50 0.02
Context im+Context ES 54% 3% 0.50 0.05
Body im+Body ES 52% 3% 0.46 0.02
Full im+Context ES 54% 4% 0.52 0.04
Main Architecture 55% 3% 0.51 0.03

Test set
Accuracy std F1-score std

Face im+Face ES 48% 3% 0.45 0.03
Context im+Context ES 47% 3% 0.45 0.04
Body im+Body ES 46% 2% 0.43 0.02
Full im+Context ES 48% 2% 0.47 0.03
Main Architecture 51% 3% 0.50 0.01

Table 3: The Balanced accuracy and F1-score for the valida-
tion and test set across the 5 different folds for the different
architectures with their standard deviation. The first 4 ar-
chitectures are different combinations of the Architecture
shown in Figure 6. The last Architecture is the architecture
shown in Figure 5. im is short for image and ES is short for
Encoding Stream.

with full input images, by 3% in accuracy and 0.03 in F1-score. Fur-
thermore, the Main Architecture shows a much loss score on the
validation set. As the Accuracy and F1-score are not that much bet-
ter compared to the other architectures. This suggest that an error
is made on the same amount of data but that the error are smaller.
This could indicate that the Main Architecture is closer to predict-
ing the right labels. For the these reasons, the Main Architecture
will be chosen for the experiments in Section 5.3.

5.3 Experiments on the Main Architecture
For these experiments, the Main Architecture model was trained
on the whole training set shown in Table 1 for 50 epochs. This sub-
section will include the performance of the Main model in terms of
Balanced accuracy and F1-score, a Confusion matrix and a qualita-
tive analyses of the frames.

Performance in terms of Balanced accuracy and F1-score
on different labels after training on the Train-Test set split
compared training on the Train-Validation split: In Table 4
the performance of the Main Architecture is shown after training
it on the full dataset. Comparing these results to the average per-
formance of the cross fold validation on the training set shown
in Table 9, it can be seen that the overall performance is better
with the Accuracy going from 51% to 57% and the F1-score going
from 0.50 to 0.55. Interestingly, all the labels showed an increase in
performance in terms of accuracy and F1-score except for the label
"Parents-offs". The label "Friend" went from an accuracy of 60% to
62% and a F1-score of 0.69 to 0.72. Whilst the label "Stranger" went
from an accuracy of 30% to 60% and a F1-score of 0.24 to 0.41; the
label "Service: went from an accuracy of 52% to 60% and a F1-score
of 0.50 to 0.52; the label "Colleague" went from an accuracy of 94%
to 100% and a F1-score of 0.91 to 0.94: the label "Parents-offs" went

from an accuracy of 36% to 22% and a F1-score of 0.36 to 0.31 and the
label "Couple" went from an accuracy of 36% to 40% and a F1-score
of 0.28 to 0.39. Comparing this to the dataset exploration earlier,
most of the results are what was expected. Only the label Stranger
has a much higher accuracy than expected.

Test set
Accuracy F1-score

Friend 62% 0.72
Stranger 60% 0.41
Service 60% 0.52
Colleague 100% 0.94
Parents-offs 22% 0.31
Couple 40% 0.39
Average 57% 0.55
std 24% 0.22

Table 4: The Accuracy and F1-score for theMain Architecture
trained with the whole training set.

Confusion matrix: In Figure 11 the performance of the main
architecture on the testing set of Table 1 is shown in the form of a
confusion matrix. The first this that stands out is that the label Col-
league is always predicted correctly and no other label is predicted
as Colleague except for Friend which as predicted as colleague 3%
of the time. The label Friend furthermore is correct 62% of the time
and often miss classified as Stranger with 16% and Service with 12%
and sometimes as Couple with 6%. The label Stranger is predicted
60% correct, and is predicted often as Service 20%, Couple 13% and
sometimes as Friends with 7%. The label Service is predicted correct
60% and predicted most often wrong as Stranger with 20%. So the
label Stranger and Service are often miss classified as each other.
The label Parents-offs is only predicted correctly 22% of the time
and is often miss classified as Service with 33% and Friend with 22%,
whilst the labels Service and Friend are almost never miss classified
as Parents-offs. Lastly, the label couple is predicted correctly 40% of
time time, followed by being predicted as Friend 27%, as Service 20%
and Stranger 13% of the time. Comparing this Confusion matrix to
Figure 9c and 9f a lot of similarities can be seen. The labels Stranger
and Service have a lot of points close together. The label Friend
forms a pretty nice cluster but has a lot of outliers close to every
other cluster. The label Parents-offs has samples all over the plot
except for close to the label Colleague and only 2 samples of the
test data are close to the cluster formed in the train data. The label
Couple forms a pretty nice cluster in the plots of the train data
but a lot of test samples are very close to the Stranger and Service
clusters, which also comes back in the confusion matrix. Lastly, the
label Colleague has a pretty nice cluster with only some samples of
Friend close to it, which also is shown in the confusion matrix.

Examples of right and wrong classifications: In Figure 12,
3 examples are given of right classifications and 3 examples are
given of wrong classification for everyone of the 6 labels. Only
the first input image of the sequence (which consists of 8 images)
is shown. The category Colleague had no wrong classifications,
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Figure 11: Confusion matrix of the main architecture using
the testing set and after trainingwith the training set of Table
1 for 50 epochs.

therefore only the 3 correct examples are shown. The same goes
for the category Parents-offs, which only has 9 samples in the test
set of which only 2 were predicted correctly.

The most interesting result from the experiments is that the cat-
egory Colleague has a 100% accuracy. From labeling the videos, it
was notable that a lot of the videos that were labelled with colleague
had people with Asian ethnicity appearing. This unbalancedness
in ethnicity could make it easier for the model to distinguish this
category. Another thing that would make it easy to recognize is
that the most of the scenes in the videos took place in a conference
room or cafeteria and a lot of the time laptops appear inside the
video. These points are also reflected in the examples of Colleagues
shown in Figure 12.

For the service category, a lot of the video’s were filmed in the
same store. Therefore, the same personnel would appear in multiple
video’s and make it easier for the architecture to recognize these
people. Another thing that could help recognize personnel is the
employee card that they oftenwhorewith a chain around their neck.

From labeling the videos, it is clear that the first miss classifica-
tion of Friend and the third miss classification of Service should be
labeled as Service. But they are labeled as Couple. This shows that
in some video’s the person the camera wearer is talking to is not
always the person he is looking towards the most. This issue was
also evident when labeling the videos, in some videos the camera
wearer was constantly looking around or even looking at someone
else whilst talking to someone. Consequently, the assumption that
the main person appears in the middle of the video most of the time
does not always hold.

Furthermore, sometimes faces are recognized in other thing than
an actual person. In the third right example of Friend a mirror reflec-
tion of the camera wearer is recognized as the main person, in some
videos a face on a magazine is recognised as a person and in some
videos a manikin is recognized as a person. As the videos these
images are selected from were made from a transcript, therefore
someone has to be talking in these video’s. This again shows that
the assumption that the main person appears in the middle of the
video the majority of the time does not always hold. It is also clear
that this would make it harder for the architecture to classify the
video’s correctly because the person on which the label is based
does not even appear in the image.

What is also an issue is that in some of the frames the main
person is not clearly in the frame. This is shown in the second right
example of Friend, Stranger and Service and in the second wrong
example of Service and Parents-offs. This will likely distort the
learning of the model because the information on which it should
make its prediction is not or badly supplied.

Another point, which could make it easier for the model to rec-
ognize the categories Colleague and Service, is that colleague and
service are easier to recognise with only visual information. For
example a service worker can stand behind a counter or have a
checkout machine and a colleague can sit behind a desk or have a
laptop. Whilst differentiating between Friend, Stranger, Parents-offs
and Couple you have to look a lot more a facial expression and body
language, which is harder to read and there is probably an over-
lap in how you behave towards people in these categories wheres
Service and Colleague almost always behave in a professional and
polite manner.

6 DISCUSSION
In this section, first the research question formulated in the intro-
duction will be answered. Thereafter, some factors that have or
may have impacted the results will be discussed. This will include
the dataset and the selected parameters. Lastly, limitations of this
work will be discussed and a small ethical discussion will be given
about the consequences of this technology.

6.1 Addressing the proposed research questions
How can a framework be build with existing deep learning
techniques that can be used to recognize human relation-
ships in egocentric videos? A framework was build in python
using the python library. The layers that were chosen inside the
network were based on the Multi-cue adaptive emotion recognition
network [1]. In addition, an Convolution LSTM was placed inside
this network in order to allow for an input sequence of images. The
input images extracted from the videos were transformed in a way
that made sense for stream they were going to. Using these images
the Network was able to predict a label which indicated the human
relationship in that video.
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Figure 12: Examples of the first input image of the input sequence and their predicted label. For each of the classes present in
the dataset, 3 examples of right classification and 3 examples of wrong classification for every label are presented.

How do different visual cues, e.g. face, context or body,
help us to recognise the human relationship depicted in ego-
centric videos? Since this is a multi-class problem with 6 classes,
the baseline would a random prediction, which would be 1 in 6
or around 17%. Compared to this, all 3 cues definitely helped to
recognise the human relationship depicted in egocentric videos.
However, there is a big difference in the performance between the
classes. The face encoding stream shows a standard deviation of
22% between the classes for the validation set, whilst this is 13%
for the context and 24% body encoding stream. This is similar to
the test set with 26%, 26% and 27% respectively. In Table 5, 6 and
7 it can also be seen that the labels on which the models perform
well are very similar, indicating that this has more to do with the

dataset than the models. In terms of overall performance between
the models, it is very close. The Face Encoding Stream performs the
best with 55% accuracy and an F1-score of 0.50 on the validation
set and an accuracy of 48% and F1-score of 0.45 on the test set. The
Context Encoding Stream performs 1% worse in terms of accuracy
and performs the same in terms of F1-score. The Body Encoding
Stream has an accuracy of 52% and an F1-score of 0.46 on the valida-
tion set and an accuracy of 46% and an F1-score of 0.44 on the test set

How does combining the visual cues; face, context and
body; using an adaptive fusion module, help us to recognise
the human relationship depicted in egocentric videos? Using
an adaptive fusion model to combine the cues showed a very slight
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increase in terms of accuracy and F1-score, with a 3% accuracy
increase in the testing set and an increase of 0.05 in terms of F1-
score on the testing set. However, the main difference was found in
the loss, which was significantly lower than the loss of the separate
cues. This tells us that the mistakes in the predictions were smaller
but the eventual predicted labels stayed similar. This indicates that
the main model has more potential to do better, for example when
more samples of data is provided.

6.2 Addressing the contributions of this work
Dataset: The dataset used has some issues that could negatively
influence the performance of the architecture and the classification
results. First of all, the dataset is imbalanced as can be seen in Figure
1, meaning that not every category has the same amount of sam-
ples. Some categories do not have that many samples, for example
Parents-offs only has 46 samples. This low amount of training data
will make it harder to learn to predict this class well. Next, there
could have been made some mistakes in the labeling of the video’s,
as this was done by one person and it is very tedious work. Lastly,
padding was used to fill up missing pieces in the image creation.
It would probably have been better if this was not needed. The
fact that the models struggle to translate the data from training to
testing data might indicate low generalisation in the dataset.

Algorithm hyper parameter optimization: Algorithm hyper
parameters such as learning rate, number of epochs and batch size
have a big influence on the performance of the network. However,
not a great amount of effort was given towards optimizing these
parameters. As discussed earlier, the batch size was limited by mem-
ory space and a higher batch size could improve performance. For
the learning rate, it was set by looking at whether the initial learn-
ing of the well. This could be further optimised by for example a
decaying learning rate [39].

Selecting frames: In the selecting frame algorithm 14, 1 in every
10 frames were retrieved. This was done to reduce processing time,
not having the frames selected too close to each other and still
finding (almost) enough frames have a face in them. In hindsight,
this could still cause that only from a small part of the videos the
frames are selected. Since the videos are filmed in 30 frames per
second, in the worst case scenario all images are retrieved in only
a 3 second time span. Ideally you would like to have these images
more spread out throughout the video to capture more information.

6.3 Limitations
Size limitations: When putting a machine learning model on a
GPU (or CPU), the size of the model of course has to fit on the
GPU. Although there are a lot of factors determining the size of
the model, there are 2 that do not change the general architecture
but have a great effect on the size of the model and very possibly
the performance of the model. The first one of these factors is the
batch size. The smaller the batch size, the less memory is required.
However, a smaller batch size also means that the gradient of the
loss function will be less accurate. Meaning that the model will
have a harder time finding the optimum for its parameters. Because
there are 2 factors, the batch size was set to 8 and the maximum

value was found for the other. The other factor is the length of the
input sequence with the images. This one has a major effect on
the size of the model. The larger this sequence is the more images
have to be put on the GPU, but also the more Streams and LSTM
components there are. With a batch size of 8 it was found that the
maximum length of the input sequence is 8. If this number could
be higher there would be more information for the model to work
with, which also could lead to a better performance.

Face detection: Another limitation that might actually improve
the results of the model but in the unwanted way is face detection.
As mentioned before, some reappear in different videos. This al-
ready is the case in the original dataset, but because dataset set is
trimmed into smaller videos this happens even more often. Some
of the orinal videos would create 10 sub videos with sometimes
the same person reappearing 4 or 5 times. These videos are likely
spread over the different data split, which could cause the archi-
tectures to learn the faces instead of things like facial expression
and body language. One counterargument to this not happening
is that the Face Encoding Stream achieved similar performance as
the Context Encoding Stream, in which the faces are removed from
the images.

Dataset size: Another limitation of this work is the dataset size
for certain categories. The reason why the label Friend probably
had a relatively good performance is because a lot more examples
are provided in that category with almost half of the data, giving
the model much more data to learn from. For the labels Parents-offs,
Couple and Stranger, it could be the case that the model was not
provided enough data to distinguish them. This is also indicated by
the fact that the samples of these labels are very much overlapping
in the feature plots on the test data in Figure 9.

6.4 Possible negative consequences of this AI
technology

One could ask the question whether we would want this type of
technology in our lives. One of its main application is social me-
dia analysis. When this technology reaches more accurate results,
social media platforms could figure out exactly which of your fol-
lowers/friend on that platform are your friends, family, colleagues
or people who are strangers when posting pictures or videos. It is
imaginable that not everyone would like this.

7 CONCLUSION
In this work, an approach was represented for human relation-
ship recognition in egocentric videos. The approach consisted of
3 cues that each took important non-verbal communication as an
input. Using Convolutional LSTMs, multiple of these non-verbal
communications could be provided such that multiple points in
the video could be used as an input. The dataset used is a brand
new one called Ego4d. which was labeled in this work with the
categories: Friend, Stranger, Service, Colleague, Parents-offs and
Couple, multi-class classification model with 6 classes. The pro-
posed architecture reached an accuracy of 57% and and F1-score of
0.55. With the dataset having quite ’raw’ date and given there are
6 classes to predict, these numbers are quite alright as a first step
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into exploring human relation recognition in these type of videos.
Although there is still lots of room for improvement. Because the
performance form the baseline models was very similar to that of
the main model, overfitting because of a too complex model for
the given data does not seem to be the main issue. As all models
struggle to translate the training data to the testing data, the main
issue presumably the dataset. Making the dataset more balanced
and providing more samples such that the training data will gener-
alize better towards the testing data will probably give the biggest
improvement in performance.

8 FUTUREWORK
In this section there will be discussed what could be done in order
to improve this work.

LSTMplacement: Firstly, the LSTMplacement will be discussed.
The convolutional LSTM could have been placed at 3 different places.
Namely: between the input images and the streams, between the
streams and the Adaptive Fusion Network and behind Adaptive
Fusion Network. As a design choose the convolution LSTM was put
between the Streams and the Adaptive Fusion Network, because it
was easier to implement and no prediction could be made which
design choose would have been the best for performance. In Future
work, all 3 design option could be investigated. However, the most
interesting one would be the one between the input images and
the streams. This is because during the implementation it was dis-
covered that having every stream 20 times takes up a lot of RAM
space on the GPU. If the performance of this design choose would
be the same or even better it would definitely be a sensible choice,
since you can than also test out the performance of different image
and batch sizes.

Expanding the dataset: As already mentioned before, the date-
set is very imbalanced and some of the labels have a very limited
amount of samples. Expanding the dataset and making it more
balanced would be very beneficial to better test the architectures
described in this work. This could be done by expanding the amount
of videos of the current dataset. Or, if finding or creating similar
videos is difficult, data augmentation techniques could be used to
increase the volume of the dataset.

Using Audio information: In this work only the visual side
of the videos has been explored. However, in videos of course also
audio information is provided. This type of information can also
be very helpful in determining the human relationship between 2
people. Calling someone ’buddy’ or ’mate’ are strong indications
of people being friends, similar to ’honey’ for a couple or ’mom’
or ’dad’ for Parents-offs. And towards a service worker or stranger
more polite words would be used like ’sir’ or ’miss’. Therefore,
combing the visual information with audio information could defi-
nitely be beneficial in determining the human relationship.
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A APPENDIX

Figure 13: Algorithm used for trimming the video’s. Person-id = -1 means background noise, person-id = 0 means the camera
wearer. The algorithm tries to find an interaction between the camera wearer and one other person. As soon as a third person
enters the transcript, the last else statement is entered and the video is saved when the requirements are met.

Figure 14: Algorithm used for selecting frames. This algorithm is used to detect the main person in the video and also find the
8 most relevant frames
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(a) Fold 0 (b) Fold 1

(c) Fold 2 (d) Fold 3

(e) Fold 4

Figure 15: The Train and Validation loss of every fold for the Face Encoding Stream with a learning rate of 1e-4
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(a) Fold 0 (b) Fold 1

(c) Fold 2 (d) Fold 3

(e) Fold 4

Figure 16: The Train and Validation loss of every fold for the Context Encoding Stream with a learning rate of 1e-4
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(a) Fold 0 (b) Fold 1

(c) Fold 2 (d) Fold 3

(e) Fold 4

Figure 17: The Train and Validation loss of every fold for the Body Encoding Stream with a learning rate of 1e-4
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(a) Fold 0 (b) Fold 1

(c) Fold 2 (d) Fold 3

(e) Fold 4

Figure 18: The Train and Validation loss of every fold for the Context Encoding Stream with a learning rate of 1e-4 using the
full frame shown in Figure 4 as input.
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(a) Fold 0 (b) Fold 1

(c) Fold 2 (d) Fold 3

(e) Fold 4

Figure 19: The Train and Validation loss of every fold for the Main Architecture with a learning rate of 1e-4
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Face Encoding Stream
Accuracy validation set

fold 0 fold 1 fold2 fold 3 fold 4 Average Label std
Friend 61% 65% 65% 60% 50% 60% 6%
Stranger 37% 23% 66% 63% 47% 47% 18%
Service 68% 47% 47% 44% 69% 55% 12%
Colleague 100% 92% 90% 93% 100% 95% 5%
Parents-offs 40% 54% 40% 50% 55% 48% 7%
Couple 23% 33% 28% 13% 13% 22% 9%
Average fold 55% 52% 56% 54% 56% 55% 1%
std 25% 22% 20% 24% 26% 22%

F1-score validation set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.71 0.74 0.74 0.69 0.65 0.71 0.04
Stranger 0.32 0.27 0.37 0.45 0.31 0.34 0.07
Service 0.61 0.53 0.50 0.41 0.67 0.54 0.10
Colleague 0.83 0.67 0.92 0.90 0.82 0.83 0.10
Parents-offs 0.35 0.38 0.25 0.29 0.45 0.34 0.08
Couple 0.24 0.26 0.38 0.16 0.13 0.23 0.10
Average fold 0.51 0.48 0.53 0.48 0.51 0.50 0.02
std 0.22 0.19 0.23 0.25 0.23 0.21

Accuracy testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 58% 61% 57% 58% 58% 58% 2%
Stranger 26% 26% 53% 46% 40% 38% 12%
Service 56% 36% 20% 60% 68% 48% 20%
Colleague 100% 100% 87% 100% 100% 97% 6%
Parents-offs 22% 11% 44% 11% 33% 24% 14%
Couple 20% 40% 6% 13% 20% 20% 13%
Average fold 47% 46% 45% 48% 53% 48% 3%
std 28% 29% 26% 30% 26% 26%

F1-score testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.73 0.71 0.67 0.70 0.72 0.71 0.02
Stranger 0.24 0.27 0.23 0.29 0.31 0.27 0.03
Service 0.44 0.37 0.24 0.51 0.55 0.42 0.12
Colleague 0.89 0.78 0.90 0.91 0.80 0.86 0.06
Parents-offs 0.24 0.13 0.38 0.18 0.35 0.26 0.11
Couple 0.15 0.26 0.10 0.13 0.19 0.17 0.06
Average fold 0.45 0.42 0.42 0.45 0.49 0.45 0.03
std 0.27 0.24 0.28 0.28 0.22 0.25

Table 5: The Accuracy and F1-score of every category and in every fold of the k-fold cross validation for the validation set and
the testing set for the Face Encoding Stream. Furthermore, the average of the categories for every fold and the average of every
label across the 5 folds with standard deviation are reported. Also, the average average across the 5 folds for the average of
every fold is reported, also with standard deviation. Lastly, the standard deviation of the labels for every fold and the standard
deviation the average of the labels over the folds is reported.
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Context Encoding Stream
Accuracy validation set

fold 0 fold 1 fold2 fold 3 fold 4 Average Label std
Friend 76% 61% 74% 59% 59% 66% 8%
Stranger 18% 58% 33% 63% 41% 43% 18%
Service 56% 61% 64% 50% 65% 59% 6%
Colleague 86% 100% 100% 100% 81% 93% 9%
Parents-offs 50% 9% 0% 50% 44% 31% 24%
Couple 29% 33% 28% 0% 60% 30% 21%
Average fold 53% 54% 50% 54% 58% 54% 3%
std 24% 28% 33% 29% 13% 22%

F1 validation set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.80 0.72 0.81 0.72 0.67 0.74 0.06
Stranger 0.25 0.38 0.27 0.37 0.39 0.33 0.07
Service 0.57 0.52 0.51 0.45 0.58 0.53 0.05
Colleague 0.87 0.96 1.00 0.91 0.84 0.92 0.07
Parents-offs 0.45 0.15 0.00 0.15 0.57 0.26 0.24
Couple 0.21 0.28 0.28 0.00 0.43 0.24 0.16
Average fold 0.53 0.50 0.48 0.43 0.58 0.50 0.05
std 0.25 0.27 0.34 0.31 0.15 0.25

Accuracy testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 63% 62% 66% 54% 64% 62% 5%
Stranger 20% 46% 40% 46% 46% 40% 11%
Service 72% 60% 72% 48% 52% 61% 11%
Colleague 93% 87% 93% 87% 81% 88% 5%
Parents-offs 11% 11% 11% 22% 11% 13% 5%
Couple 33% 26% 6% 0% 20% 17% 14%
Average fold 49% 49% 48% 43% 46% 47% 3%
std 29% 25% 32% 27% 24% 26%

F1 testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.71 0.71 0.71 0.65 0.71 0.70 0.03
Stranger 0.22 0.30 0.27 0.23 0.36 0.28 0.06
Service 0.61 0.53 0.60 0.43 0.48 0.53 0.08
Colleague 0.91 0.93 0.94 0.76 0.90 0.89 0.07
Parents-offs 0.13 0.15 0.18 0.24 0.20 0.18 0.04
Couple 0.24 0.25 0.09 0.00 0.15 0.15 0.11
Average fold 0.47 0.48 0.47 0.39 0.47 0.45 0.04
std 0.29 0.27 0.31 0.26 0.27 0.28

Table 6: The Accuracy and F1-score of every category and in every fold of the k-fold cross validation for the validation set and
the testing set for the Context Encoding Stream. Furthermore, the average of the categories for every fold and the average of
every label across the 5 folds with standard deviation are reported. Also, the average average across the 5 folds for the average of
every fold is reported, also with standard deviation. Lastly, the standard deviation of the labels for every fold and the standard
deviation the average of the labels over the folds is reported.
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Body Encoding Stream
Accuracy validation set

fold 0 fold 1 fold2 fold 3 fold 4 Average Label std
Friend 65% 65% 46% 60% 40% 55% 12%
Stranger 31% 47% 46% 27% 23% 35% 11%
Service 44% 57% 70% 77% 61% 62% 13%
Colleague 93% 92% 100% 100% 100% 97% 4%
Parents-offs 10% 0% 20% 50% 66% 29% 28%
Couple 47% 25% 35% 17% 33% 31% 11%
Average fold 48% 48% 53% 55% 54% 52% 3%
std 26% 29% 26% 28% 26% 24%

F1 validation set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.72 0.71 0.63 0.69 0.57 0.66 0.06
Stranger 0.20 0.37 0.38 0.32 0.29 0.31 0.07
Service 0.42 0.62 0.41 0.45 0.51 0.48 0.09
Colleague 0.85 0.75 0.87 0.83 0.84 0.83 0.05
Parents-offs 0.15 0.00 0.20 0.40 0.34 0.22 0.16
Couple 0.48 0.17 0.30 0.22 0.23 0.28 0.12
Average fold 0.47 0.44 0.47 0.49 0.46 0.46 0.02
std 0.25 0.28 0.22 0.21 0.21 0.22

Accuracy testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 61% 67% 44% 59% 50% 56% 9%
Stranger 33% 26% 40% 6% 20% 25% 13%
Service 52% 36% 60% 56% 56% 52% 9%
Colleague 93% 100% 100% 100% 100% 99% 3%
Parents-offs 22% 0% 11% 44% 44% 24% 20%
Couple 6% 26% 33% 13% 20% 20% 11%
Average fold 45% 43% 48% 46% 48% 46% 2%
std 28% 32% 27% 31% 27% 27%

F1 testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.72 0.73 0.60 0.67 0.67 0.68 0.05
Stranger 0.29 0.19 0.29 0.08 0.18 0.21 0.09
Service 0.39 0.38 0.48 0.44 0.44 0.43 0.04
Colleague 0.94 0.86 0.82 0.78 0.86 0.85 0.06
Parents-offs 0.24 0.00 0.12 0.50 0.32 0.24 0.19
Couple 0.06 0.22 0.25 0.13 0.15 0.16 0.08
Average fold 0.44 0.40 0.43 0.43 0.44 0.43 0.02
std 0.30 0.30 0.24 0.26 0.26 0.26

Table 7: The Accuracy and F1-score of every category and in every fold of the k-fold cross validation for the validation set and
the testing set for the Body Encoding Stream. Furthermore, the average of the categories for every fold and the average of every
label across the 5 folds with standard deviation are reported. Also, the average average across the 5 folds for the average of
every fold is reported, also with standard deviation. Lastly, the standard deviation of the labels for every fold and the standard
deviation the average of the labels over the folds is reported.
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Context Encoding Stream (full input image)
Accuracy validation set

fold 0 fold 1 fold2 fold 3 fold 4 Average Label std
Friend 73% 71% 63% 77% 60% 69% 7%
Stranger 43% 47% 60% 36% 47% 47% 9%
Service 52% 57% 47% 44% 65% 53% 8%
Colleague 100% 100% 100% 100% 100% 100% 0%
Parents-offs 30% 18% 40% 0% 55% 29% 21%
Couple 17% 33% 28% 26% 26% 26% 6%
Average fold 53% 54% 56% 47% 59% 54% 4%
std 27% 26% 23% 33% 22% 25%

F1 validation set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.82 0.78 0.77 0.78 0.70 0.77 0.04
Stranger 0.33 0.43 0.37 0.40 0.34 0.37 0.04
Service 0.52 0.50 0.40 0.33 0.61 0.47 0.11
Colleague 0.88 0.96 0.95 1.00 0.97 0.95 0.04
Parents-offs 0.35 0.27 0.21 0.00 0.56 0.28 0.20
Couple 0.17 0.23 0.40 0.31 0.25 0.27 0.09
Average fold 0.51 0.53 0.52 0.47 0.57 0.52 0.04
std 0.26 0.26 0.26 0.33 0.24 0.26

Accuracy testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 63% 68% 61% 68% 67% 65% 3%
Stranger 40% 33% 60% 20% 46% 40% 15%
Service 52% 72% 52% 72% 56% 61% 10%
Colleague 100% 93% 87% 93% 93% 93% 5%
Parents-offs 0% 11% 33% 11% 11% 13% 12%
Couple 13% 20% 0% 26% 13% 14% 10%
Average fold 45% 50% 49% 48% 48% 48% 2%
std 33% 30% 27% 31% 29% 29%

F1 testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.73 0.75 0.70 0.71 0.74 0.73 0.02
Stranger 0.28 0.29 0.34 0.23 0.31 0.29 0.04
Service 0.47 0.60 0.51 0.58 0.56 0.54 0.05
Colleague 0.97 0.97 0.88 0.97 0.97 0.95 0.04
Parents-offs 0.00 0.20 0.30 0.14 0.18 0.16 0.11
Couple 0.11 0.16 0.00 0.25 0.11 0.13 0.09
Average fold 0.43 0.50 0.46 0.48 0.48 0.47 0.03
std 0.34 0.30 0.29 0.30 0.31 0.30

Table 8: The Accuracy and F1-score of every category and in every fold of the k-fold cross validation for the validation set and
the testing set for the Context Encoding Stream using the full frame shown in Figure 4 as input. Furthermore, the average of
the categories for every fold and the average of every label across the 5 folds with standard deviation are reported. Also, the
average average across the 5 folds for the average of every fold is reported, also with standard deviation. Lastly, the standard
deviation of the labels for every fold and the standard deviation the average of the labels over the folds is reported.
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Main architecture
Accuracy validation set

fold 0 fold 1 fold2 fold 3 fold 4 Average Label std
Friend 80% 62% 44% 66% 59% 62% 13%
Stranger 25% 70% 46% 50% 35% 45% 17%
Service 36% 61% 52% 44% 65% 52% 12%
Colleague 100% 100% 100% 100% 100% 100% 0%
Parents-offs 60% 27% 20% 50% 44% 40% 16%
Couple 29% 8% 35% 34% 33% 28% 11%
Average fold 55% 55% 50% 57% 56% 55% 3%
std 28% 30% 25% 21% 23% 23%

F1 validation set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.78 0.73 0.61 0.74 0.69 0.71 0.06
Stranger 0.27 0.47 0.31 0.42 0.29 0.35 0.09
Service 0.44 0.52 0.55 0.46 0.69 0.53 0.10
Colleague 0.94 0.96 0.91 0.94 0.94 0.94 0.02
Parents-offs 0.48 0.32 0.09 0.22 0.31 0.28 0.14
Couple 0.29 0.08 0.24 0.34 0.27 0.24 0.10
Average fold 0.53 0.51 0.45 0.52 0.53 0.51 0.03
std 0.25 0.28 0.27 0.25 0.26 0.25

Accuracy testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 66% 62% 38% 66% 66% 60% 12%
Stranger 20% 40% 40% 26% 26% 30% 9%
Service 48% 56% 60% 44% 52% 52% 6%
Colleague 100% 100% 93% 75% 100% 94% 11%
Parents-offs 44% 33% 55% 33% 22% 37% 13%
Couple 33% 33% 40% 40% 33% 36% 4%
Average fold 52% 54% 54% 47% 50% 51% 3%
std 26% 23% 19% 18% 27% 21%

F1 testing set
fold 0 fold 1 fold2 fold 3 fold 4 Average Label std

Friend 0.71 0.73 0.56 0.74 0.72 0.69 0.07
Stranger 0.18 0.30 0.31 0.18 0.21 0.24 0.06
Service 0.52 0.50 0.52 0.44 0.52 0.50 0.03
Colleague 0.97 0.94 0.83 0.86 0.94 0.91 0.06
Parents-offs 0.33 0.35 0.43 0.40 0.31 0.36 0.05
Couple 0.29 0.29 0.24 0.30 0.27 0.28 0.02
Average fold 0.50 0.52 0.48 0.49 0.50 0.50 0.01
std 0.27 0.24 0.19 0.24 0.26 0.24

Table 9: The Accuracy and F1-score of every category and in every fold of the k-fold cross validation for the validation set and
the testing set for the whole architecture. Furthermore, the average of the categories for every fold and the average of every
label across the 5 folds with standard deviation are reported. Also, the average average across the 5 folds for the average of
every fold is reported, also with standard deviation. Lastly, the standard deviation of the labels for every fold and the standard
deviation the average of the labels over the folds is reported.
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