
1

Faculty of Electrical Engineering,

Mathematics & Computer Science

Emulation of Analog Mixed-Signal
Circuits on an FPGA

N. Sulzer

MSc. Thesis
December 2022

Supervisors
prof. dr. ir. B. Nauta
dr.ir. M.S. Oude Alink

dr.ir. S.H. Gerez

Chair of Integrated Circuit Design
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede
The Netherlands

iii

Abstract

Verifying analog mixed-signal (AMS) designs with conventional methods
has the downsides of being expensive – in the case of hardware-in-the-loop
(HIL) verification – or tedious – in the case of analog and digital co-simulation.
Another verification technique is explored in this thesis: emulation using field-
programmable gate arrays (FPGAs). Analog designs are modelled in synthesiz-
able register transfer level (RTL) which can be run on an FPGA, sacrificing ac-
curacy for faster run times. Based on the tools svreal, msdsl and anasymod
developed at Stanford, analog designs are modelled in Python using various
techniques, and hardware description language (HDL) descriptions are gener-
ated. This process is applied to a first-order and second-order audio continuous-
time sigma-delta (CTΣ∆) converter. Emulation shows near identical perform-
ance to Simulink models. The existing tool is also extended to allow sweeping
analog model parameters during emulation, opening the use of emulation for
analog design-space exploration. A standalone FPGA demo is built on a Xilinx
XC7Z020 platform, with an emulated CTΣ∆ analog to digital converter (ADC)
with the ability to change model parameters, in a real-time audio application.
The design takes less than 6% of the available FPGA resources. Analog emu-
lation is shown to be a feasible technique for this use-case, given that longer
emulation times can be achieved in the future.

Contents

1 Introduction 1

1.1 Conventional Verification . 1

1.2 AMS Verification . 2

1.3 The Case for Emulation . 2

1.3.1 Beyond Emulation . 3

1.4 Research Goals . 3

1.5 Contributions . 4

1.6 Outline . 4

2 Emulation Methods 7

2.1 Oversampled Methods . 7

2.1.1 Tools . 8

2.2 Variable-Timestep Methods . 8

2.2.1 Time Resolution and Area Trade-off 8

2.2.2 Piecewise Linear . 9

2.2.3 Other Features . 9

2.2.4 Tools . 10

2.3 Abstraction Levels . 10

2.3.1 Component Level . 10

2.3.2 Circuit Level . 10

2.3.3 Macromodels . 10

2.4 Summary . 11

3 The Tools: svreal, msdsl and anasymod 13

3.1 Number Formats using svreal . 14

3.1.1 Fixed-Point . 14

3.2 Models and Abstractions . 15

3.2.1 State-Update Equation . 16

3.2.2 Differential Equation . 16

3.2.3 Transfer Function . 18

3.2.4 Netlist . 19

3.2.5 Non-linear models . 19

3.2.5.A Switches . 19

3.2.5.B Piecewise Approximations 20

3.2.5.C Other modelling methods 21

3.3 anasymod . 21

3.3.1 Simulation and Emulation . 22

iv

CONTENTS v

3.3.2 Control Infrastructure . 22
3.4 Comparison of Models . 23

3.4.1 HDL and Synthesis . 24

4 Design Space Exploration 27
4.1 Coefficient Calculation . 27

4.1.1 Runtime calculation . 28
4.1.2 Pre-computation . 28

4.2 Lookup Tables in msdsl . 28
4.3 Implementation . 29

5 Sigma-Delta Models 31
5.1 Sigma Delta ADC . 31

5.1.1 Modulator . 31
5.1.2 Decimation . 32

5.2 Modulator Models . 33
5.2.1 First-Order Model . 33
5.2.2 Second-Order Model . 35

5.2.2.A Parameter Sweeping 35

6 Model and Emulation Verification 39
6.1 Verification Setup . 39

6.1.1 HDL Simulation . 40
6.1.2 Emulation . 40

6.2 Synthesis Results . 41
6.2.1 Timing Violations . 41

6.3 First-Order Model . 43
6.4 Second-Order Model . 43
6.5 Discussion . 43

7 Demo 45
7.1 Decimation . 45
7.2 CODEC . 45
7.3 XADC . 46
7.4 Synthesis . 46
7.5 Verification . 47
7.6 Measurements . 48
7.7 Results . 48
7.8 Discussion . 49

8 Conclusions and Recommendations 53
8.1 Conclusions . 53
8.2 Discussion . 54
8.3 Recommendations . 55

8.3.1 Emulation Infrastructure . 55
8.3.2 Model Verification . 55
8.3.3 Modelling . 55

Bibliography 57

vi CONTENTS

A Post-Synthesis Simulation with anasymod 61
A.1 Infrastructure . 61
A.2 Implementation . 62
A.3 Listings . 62

B anasymod Control Infrastructure 65
B.1 Modules . 65
B.2 Signals . 67
B.3 Extensions . 68

B.3.1 Write Signals to File . 68
B.3.2 Physical Ports . 68

C Code Listings 69
C.1 Generated SystemVerilog Descriptions 69
C.2 Python msdsl Models . 75
C.3 Extension of msdsl . 78

List of Figures

3.1 Simple RC network . 16
3.2 anasymod control infrastructure . 24

4.1 Coefficient lookup implemented by msdsl 29

5.1 Block diagram of CTΣ∆ modulator . 32
5.2 Decimation filters out the noise which has been shaped out of the passband 33
5.3 Simulink model of fist-order modulator 34
5.4 Simulink model of second-order modulator 35

6.1 Block diagram of simulation setup for standalone modulator 40
6.2 Block diagram of emulation setup for standalone modulator 41
6.3 Comparison of power spectra of bitstreams of first-order modulator . . . 44
6.4 Comparison of power spectra of bitstreams of second-order modulator . 44

7.1 Complete signal chain of demo setup with parameter sweeping 46
7.2 Block diagram of demo HDL description 47
7.3 Block diagram of verification signal chain of demo 47
7.4 Signal chain of demo measurement setup 48
7.5 Physical demo measurement setup . 49
7.6 Block diagram of codec verification . 49
7.7 Post-synthesis simulation power spectra of bitstream and output of first-

order converter . 50
7.8 Post-synthesis simulation power spectra of bitstream and output of second-

order converter . 50
7.9 Measured power spectrum of first-order converter 51
7.10 Measured power spectrum of second-order converter 51

B.1 anasymod control infrastructure . 66

vii

List of Tables

3.1 Summary comparison of different modelling capabilities 24
3.2 Comparison of generated HDL descriptions of RC network 25
3.3 Comparison of gate-level synthesis results of RC network descriptions . 25

6.1 Area report of first-order modulator model 42
6.2 Area report of second-order modulator model 42

7.1 Parameters of CIC decimation stages . 46
7.2 Area report of demo with second-order model and parameter sweeping . 48

viii

List of Listings

3.1 Modelling using a state-update equation in msdsl 17
3.2 Generated HDL description from msdsl state-update equation 18
3.3 Modelling using a DE msdsl . 18
3.4 Modelling a TF in msdsl . 19
3.5 Modelling from a netlist in msdsl . 19
3.6 Generating HDL description from a TF using msdsl 21

4.1 Use of make_coef_sweep . 29

5.1 msdsl description of first-order Σ∆ model 34
5.2 msdsl description of second-order Σ∆ model 36
5.3 msdsl description of second-order Σ∆ model with parameter sweeping . 37

A.1 Generating TCL commands for opening a Vivado project 62
A.2 Generating TCL commands to run post-synthesis simulation in Vivado . 63
A.3 Calling post-synthesis simulation in anasymod 64

C.1 Generated HDL description from msdsl DE 69
C.2 Generated HDL description from msdsl TF 70
C.3 Generated HDL description from msdsl netlist 71
C.4 Generated HDL description from msdsl DE with switch 72
C.5 Generated HDL description from msdsl update equation with variable-

timestep . 73
C.6 Modelling a DE with a switch in msdsl 75
C.7 msdsl model of first-order Σ∆ modulator 76
C.8 msdsl model of second-order Σ∆ modulator 77
C.9 Function for coefficient sweeping . 78

ix

List of Abbreviations

Σ∆ Sigma Delta
ADC Analog To Digital Converter
AMS Analog Mixed-signal
BRAM Block RAM
CIC Cascaded Integrator-comb
CTΣ∆ Continuous-time Sigma-delta
DAC Digital To Analog Converter
DE Differential Equation
DSP Digital Signal Processing
DUT Design Under Test
FF Flip-flop
FIR Finite Impulse Response
FPGA Field-programmable Gate Array
HDL Hardware Description Language
HIL Hardware-in-the-loop
I2S Inter-IC Sound
ILA Xilinx Integrated Logic Analyzer
LUT Look-up Table
NTF Noise Transfer Function
OSR Oversampling Ratio
PCB Printed Circuit Board
PL Programmable Logic
PS Processing System
PWL Piece-wise Linear
RTL Register Transfer Level
SNQR Signal-to-quantization-noise Ratio
SNR Signal-to-noise Ratio
SoC System-on-chip
STF Signal Transfer Function
TF Transfer Function
VIO Xilinx Virtual-IO
WDF Wave Digital Filter

x

Chapter 1

Introduction

A crucial step in the design of any system is verification. This is especially true in
the design of systems-on-chip (SoCs), where the manufacturing of the final product
is time-consuming and expensive. Knowing that each part of the SoC will function
separately and together is imperative. Verification is not an easy task in mod-
ern SoCs which comprise complex analog mixed-signal (AMS) designs where analog
blocks are combined with digital control, calibration and filtering. On top of this,
many digital designs that are part of an SoC run firmware that also requires verifica-
tion. There are well-accepted verification techniques for separate analog and digital
designs, for AMS designs there are several methods, each with their own trade-offs.

1.1 Conventional Verification

To understand the trade-offs in AMS verification, it is important to understand
conventional verification of separate analog and digital designs.

For analog designs, the convention is simulation using SPICE [1] or comparable
tools. SPICE will refer to all circuit-level simulators for the rest of this text. Designs
are modelled with a netlist: a list of components, their properties, and connections
to other components. These simulations, which calculate voltages and currents, can
be done on a number of levels with varying detail; from a functional schematic level,
to device level simulations of a chip layout. This is necessary, as test chips for
physical testing are expensive and associated with long lead times. Sometimes it is
possible to do physical testing on a scaled version of the analog design using discrete
components, though this technique can be lacking in accuracy.

Digital verification takes a different approach. Digital designs are usually mod-
elled, or described, in a hardware description language (HDL) such as (System)Verilog
or VHDL. A subset of these HDL descriptions, so called register transfer level (RTL)
descriptions, are synthesizable; they can be translated to hardware. The RTL de-
scription is then synthesized into gate-level description which describes the connec-
tion of standard logic gates which can be implemented physically on a chip. HDL
designs (at the non-synthesisable behavioural, RTL, and gate-level) are convention-
ally verified using event-driven simulation in which digital signals are represented
as ones and zeros. In fact, in the context of HDL descriptions, simulation is al-
ways event-driven. Event-driven simulation, however, may become prohibitively
slow when it is used to develop firmware that might run on the digital chip, and test

1

2 CHAPTER 1. INTRODUCTION

chips, come with the same cost and lead-time issues as their analog counterparts.
The solution to slow simulation is prototyping digital designs on a field-programmable
gate array (FPGA). The logic gates and look-up tables (LUTs) on these devices are
configured to the desired RTL behaviour. The FPGA allows for verification and
firmware development as if it was the final hardware, and is easily updated as the
RTL design changes.

1.2 AMS Verification

In the move to AMS verification, the techniques above are essentially combined and
adapted. A hybrid approach combines the physical verification of analog designs
with digital verification on an FPGA. Analog test chips are interfaced with the
digital verification platform, also called hardware-in-the-loop (HIL). However, these
setups are expensive and impractical. Because of the lead time associated with
analog chips it is not possible to effectively verify digital designs alongside the analog
design process, since a change in the analog design is not immediately available for
digital verification. Therefore, this method is only practical when the analog design
has been finalised.

The other conventional solution for AMS verification is analog and digital co-
simulation. This combines SPICE simulation with digital event-driven simulation,
bringing the digital design into an analog verification environment. This type of
simulation requires converting between the representations used by the simulation
engines; voltages and currents, and digital signals respectively. The big drawback of
this method is the speed of SPICE simulation, especially in comparison to digital-
only simulation, which is a bottleneck for efficient digital verification, especially
when verifying firmware. Additionally, the level of detail of the analog design is
often higher than what is required for digital verification or firmware development.
Neither does this method allow for digital prototyping on FPGA, which is standard
practice.

The final option for AMS verification is to bring the analog model fully into the
digital verification environment. This involves describing analog models in behavi-
oural (non-synthesisable) HDL and simulating them using event-driven simulation.
Provided that the HDL model is synthesisable, synthesizing and running these AMS
designs on an FPGA is called emulation. While simulating analog models using
behavioural HDL such as Verilog-AMS is a well-accepted technique, most methods
stop there and are not synthesizable and therefore not capable of running on an
FPGA. This thesis explores the techniques for taking the step towards emulation
which requires synthesisable RTL models.

1.3 The Case for Emulation

The term emulation comes from the fact that the analog behaviour running on the
FPGA is not truly analog, but an imitation of the desired behaviour.

Like with the other AMS verification techniques presented above, there are trade-
offs to emulation. Running analog models in HDL simulation can give a speed-up
of 2-3 orders of magnitude, though at the cost of accuracy [2]. Running these
designs on an FPGA can give an additional speed-up of 2 orders of magnitude [2]

1.4. RESEARCH GOALS 3

at the same accuracy. Despite this lower accuracy, emulation has a clear use case
in verifying AMS designs with large digital parts that could run firmware, where
extremely detailed analog behaviour is not required to verify the digital design that
relies on the analog behaviour. Additionally, the digital design is directly verified in
hardware.

1.3.1 Beyond Emulation

Even though emulation in this context has been developed for AMS design, there
is no reason why the techniques could not be used for analog design alone. While
the accuracy afforded by emulation may not match conventional SPICE simulation,
there is something to be said for the speed-ups afforded by the use of FPGAs. One
possible use case is in design-space exploration. If an analog circuit can be emulated
with the speed-ups possible through emulation with the ability to change parameters,
it can become a tool for rapid exploration. The limiting factor becomes the detail
that can be emulated at on the FPGA, rather than the speed of simulation. This
capability adds another tool to the toolbox of an analog or AMS designer.

1.4 Research Goals

The goal of this thesis is to explore the possibilities of emulation for AMS verification
and analog design-space exploration. As a vehicle for exploration, an audio-band
continuous-time sigma-delta (CTΣ∆) converter is used. Since speed-up is one of
the clearest advantages of emulation, the speed target for this converter will be
real-time. While not necessary for verification, or feasible for all designs (especially
higher frequency designs), this target also allows the converter to be run on an
FPGA as a practical demo. Thus, the overarching research question for this thesis
is formulated as follows:

Can an analog mixed-signal design be emulated in real-time on an FPGA?

To help answer the research question, a number of other questions are formulated.
First, an exploration of FPGA emulation is required. It is not feasible to design an
entire emulation workflow, so various existing emulation tools will be compared, to
find a suitable platform:

1. What tools are available for emulation on an FPGA?

The chosen platform or tool is used as a basis for modelling the CTΣ∆ converter.

The first thing to consider in emulation is whether a design is suitable. There may
be trade-offs in whether analog or digital design is dominant, or limits to the analog
dynamics and detail that can be modelled. Further, while FPGAs are powerful tools
for verification, they are limited in their resources. Synthesized RTL designs need to
fit on to the available resources, possibly constraining the complexity of AMS designs
that should be emulated. The following research question encompasses these ideas:

2. Which designs are suitable for emulation on an FPGA?

The answer to this question depends on the chosen tool and the implementation
of emulation. Most importantly, the FPGA resource usage of synthesized designs
needs to be evaluated.

4 CHAPTER 1. INTRODUCTION

The next thing to consider is the way that analog behaviour is modelled. Ideally,
the same detail and abstraction levels can be used as in conventional analog verific-
ation, with as little manual work as possible. This may differ for emulation, raising
the question:

3. What models are appropriate for modelling analog behaviour?
A review of modelling methods, as well as experience implementing a design in
emulation will give insight into this question.

Finally, the aim of this thesis is to suggest a use-case for emulation in analog-only
design, as opposed to AMS verification. This comes down to comparing it to the
state-of-the-art conventional simulation, raising the final question:

4. Which advantages does emulation present over conventional simulation?
Some differences have already been mentioned which suggest that this is a broader
comparison than simply speed and accuracy. As a potential answer to this question,
emulation is proposed as a tool for design-space exploration where conventional
simulation may be less suited. This use-case will be evaluated.

The research questions are summarised below:

Can an analog mixed-signal design be emulated in real-time on an FPGA?

1. What tools are available for emulation on an FPGA?

2. Which designs are suitable for emulation on an FPGA?

3. What models are appropriate for modelling analog behaviour?

4. Which advantages does emulation present over conventional simulation?

1.5 Contributions

A large part of this thesis is built upon the set of emulation tools (svreal, msdsl
and anasymod) developed at Stanford by Herbst et al. [3, 4]. However, several
extensions are made to the tool. Because the documentation for the tools is lacking
in some areas, especially in the details of the anasymod control infrastructure, a
detailed overview of these functions is presented in this work. Further, the existing
tool msdsl is extended to enable creating models that support sweeping paramet-
ers using an analog input. This enables design-space exploration in purely analog
models, without the need for manual digital design. To aid in testing and debug-
ging HDL models created with the tool, an extension has been added to the tool
anasymod, enabling direct post-synthesis simulation.

All of these contributions are shown together in a standalone demo on an FPGA,
showing emulation being used in a setting usually reserved for discrete analog elec-
tronics or custom HDL design.

1.6 Outline

The report begins with an exploration of the state of emulation in Chapter 2. A
comprehensive overview of the capabilities of the emulation tools used in the rest
of this thesis is given in Chapter 3. Chapter 4 details the extensions made to the

1.6. OUTLINE 5

tool in order to allow for parameter sweeping in analog models. Next, the tools
are applied to a design in Chapter 5; the CTΣ∆ is introduced, and the various
AMS models are described. Chapter 6 presents the verification of the models from
the previous chapter, comparing them to reference models. The CTΣ∆ models are
developed into a standalone FPGA demo with parameter sweeping, which is detailed
in Chapter 7. Finally, Chapter 8 concludes this report and presents a discussion of
the findings. Recommendations for further work are also given in this chapter.

Chapter 2

Emulation Methods

The goal of this chapter is to provide an overview of the state of AMS emulation
on FPGAs, with focus on the tools used to facilitate modelling and emulation. A
similar overview has been published as recently as 2021 by Stanley et al. [2], which
takes a broad look at AMS verification though both simulation and emulation.

This overview includes simulation, as many emulation techniques stem from
event-driven simulation using behavioural HDL descriptions. It can only be called
emulation if the HDL is synthesizable RTL, and thus capable of being implemented
on an FPGA. The availability of the tools, or the source code of the tools is also
considered.

The methods for AMS emulation can be roughly categorised into fixed-timestep
approaches in Section 2.1 and variable-timestep approaches in Section 2.2. Each
approach will be outlined, and a number of implementations of the methods will
be presented. Section 2.3 provides an overview of the abstraction levels used in
emulation. Finally, Section 2.4 summarises the findings with a justification for the
choice of tool that will be used for further exploration.

2.1 Oversampled Methods

The simplest technique for emulating analog models on an FPGA is to discretise the
dynamics of the system using a fixed timestep – using, for example, the Euler method
[5] – resulting in difference equations with fixed coefficients. As long as the timestep
fulfils the Nyquist criterion for the bandwidth of the analog dynamics, the dynamics
can be modelled. As a result, the timestep required to represent analog dynamics
is often much smaller than the clock periods used in digital control. Therefore,
this approach is often called oversampled ; the analog emulation clock is much faster
than the digital clocks. These models however, can still suffer from discretisation
errors such as numerical errors or instability. Weakly non-linear systems can be
modelled by using the internal states to select an operating region (case). Each
operating region has its own set of coefficients, which are stored in memory. Switched
systems with low bandwidth, such as DCDC converters, are a common target for
this technique [6, 7]. However, it has also been applied to analog-only designs, such
as simulating MOS transistor circuits [8].

7

8 CHAPTER 2. EMULATION METHODS

2.1.1 Tools

A common method for creating oversampled models that are synthesizable is by
starting from block diagrams in Simulink [6] or Xilinx System Generator [7, 8], which
can generate synthesizable VHDL or Verilog and automatically optimise fixed-point
implementations. While these tools are available, they are limited to the blocks
available in the given tool and require manual derivation of the block diagram.
Aside from this, they do not implicitly support switched systems, thus requiring
explicit elaboration of every case.

The tool msdsl described by Herbst et al. [3, 4] takes a different approach. It
solves the discrete state-update equation from a state-space description which can
be defined in several ways (transfer function, netlist, differential equation, direct
state-update equation, etc.) using Python. The state-update equation is then used
to generate an HDL description in SystemVerilog. Switched cases are supported by
adding logic to select appropriate constants in the state-update equation, and are
automatically elaborated. This tool is open-source software and available on GitHub
[9].

Wu et al. [10] propose using wave digital filter (WDF) to describe the dynamics
of a system. Each WDF module is implemented as a difference equation in syn-
thesizable Verilog. They generate a network of WDF modules from a netlist, which
can then be realised using the library of synthesizable WDF modules for emulation.
They claim “virtually perfect” correspondence between emulation and conventional
SPICE simulation. Unfortunately, none of the source code for this method is avail-
able.

A similar approach is taken by Tertel and Hedrich [11], using blocks for low-and
high-pass filters, summing and non-inverting op-amp configurations, half-wave and
full-wave rectifiers and sample and hold modules. These blocks are strung together
to create full systems. Again, the source is not available for this emulation technique.

2.2 Variable-Timestep Methods

Unlike the piecewise-constant representation of the fixed-timestep approach, a variable-
timestep approach needs a time-dependent function to represent the signal between
two timesteps. The variable-timestep approach is often partially or fully event-
driven, reducing the number of timesteps that need to be evaluated. Events can be
changing inputs, switching operating regions, or triggers to re-evaluate signals when
the error gets too large.

2.2.1 Time Resolution and Area Trade-off

Before going further into variable-timestep methods, it is interesting to consider what
the advantages of it are, especially in the context of FPGA emulation. In digital
hardware, synchronous events are driven by a clock, or several clocks of different
frequencies. There is always a maximum clock frequency that can be achieved.
Either because the hardware cannot produce a faster clock signal, or because long
setup and hold times result in timing violations, where the clock “arrives” before a
signal is steady.

In the oversampled designs seen so far, the timestep ∆t is fixed to a certain
emulation clock frequency, which in FPGA emulation is inherently limited by the

2.2. VARIABLE-TIMESTEP METHODS 9

available clock frequencies from a clock generator. The maximum time resolution
is thus fixed to ∆t which limits the dynamics that can be emulated. This can lead
to faster clocks being required for the analog emulation than are necessary for the
digital systems, which is wasteful of resources.

At the expense of area on the FPGA, more complex calculations can be used to
adapt the timestep, to increase and decrease the time resolution as needed, similar
to conventional analog simulation tools like SPICE.

2.2.2 Piecewise Linear

The most common method is using piece-wise linear (PWL) functions that are stored
as a value and a slope at a certain time. This has been proposed in the 1990s by
Cottrell [12] and implemented in behavioural HDL description by Pichon et al. [13].
A more recent approach is given by Lim and Horowitz [14], who also add constraints
to detect steady states and thus allow feedback loops without oscillations caused by
constant re-evaluation. Unless an input triggers an event, the size of the timestep
in the PWL model is determined by the maximum timestep that could be taken
while staying below a certain error threshold. Neither of these works, however, are
synthesizable.

The msdsl tool from Herbst [3] allows for a time-varying approach using PWL,
though in a less sophisticated way. The response of a system can be stored as PWL
(or higher order) values for a number of evenly spaced timesteps. When a timestep
is taken, the appropriate PWL value is read from the table.

2.2.3 Other Features

Aside from PWL, other signal representations have been proposed. Jang et al.
[15] present a method using summations of exponential functions of the form c �
tm�1e�atuptq. This method however, is not synthesizable, rather targeting event-
driven simulation using Verilog.

Herbst et al. [16] present a similar method where analog outputs are represented
as summations of step responses to digital inputs. While the method presented
in this work is synthesizable, it is limited to digitally-driven analog circuits, where
the output is only dependent on digital inputs, eliminating analog-only events. In
order to synthesize the models for an FPGA, the step-responses of various parts of
the system are pre-computed at compile-time and stored in lookup tables as PWL
representations.

In later work, Herbst proposes using spline interpolation between points at vary-
ing timesteps [3]. This approach projects a number of equally spaced “hidden” spline
points over a certain maximum time interval. This is similar to oversampling, except
that several points are calculated in parallel in one emulator step. The emulator
can then take any timestep smaller than the maximum time interval and the value
at that timestep can be interpolated from the “hidden” points. Then a number of
“hidden” points will again be projected for the next emulator timestep. Compared
to the oversampled approach, this method can be event-driven and take much bigger
timesteps, at the expense of more area to calculate “hidden” timesteps in parallel
and to interpolate between points.

10 CHAPTER 2. EMULATION METHODS

2.2.4 Tools

Of the mentioned methods, only two have resulted in simulation or emulation tools.
The first, XMODEL [17, 18], which incorporates methods from [15], is a commercial
tool from Scientific Analog for circuit-level simulation using SystemVerilog. The
models used by XMODEL however are not synthesizable, and thus not useful for
hardware emulation.

Again, the work by Herbst [3] is the only available tool that can generate syn-
thesizable RTL descriptions for variable-timestep emulation. This is achieved using
PWL tables or spline points as mentioned earlier. In fact, a feature of variable-
timestep approaches in general is the necessity to keep track of timesteps. Herbst
et al. [3, 16] solve this by implementing a time-manager that handles requests for
timesteps of varying duration.

2.3 Abstraction Levels

A choice of abstraction level can have a significant impact on the emulation speed
depending on the accuracy required. Different tools have focussed on different ab-
straction levels.

2.3.1 Component Level

The WDF based tool presented by Wu et al. [10] takes a component level approach.
Transistors can be modelled using the small-signal equivalent circuit with lookup-
table for parameters based on operating-point voltages Vd, Vg, and Vs. Large-signal
behaviour using dynamic lookup tables based on the current operating point is
mentioned as future improvement. The msdsl tool in [3] allows for component level
emulation using the netlist interface. In this case transistors can be modelled as
switches with parasitics, or as PWL functions as also done in XMODEL [17].

The advantage of the transistor-level emulation is that it does not require addi-
tional modelling, and can be implemented (or indeed automatically created) from
an existing netlist. This advantage is not to be underestimated, as every manual
step is error-prone and requires separate verification.

2.3.2 Circuit Level

The circuit level approach groups components into clusters, as done in XMODEL
[17]. Each circuit cluster is modelled by its transfer function. The difficulty with
this approach is the appropriate choice of clusters and divisions.

2.3.3 Macromodels

The most common approach, especially in oversampled systems, is using macro-
models. These are derived from the dynamic behaviour of the system, and do not
necessarily show any resemblance to the analog circuit they are modelling. The ad-
vantage of these models is often their increased throughput, because internal nodes
can be abstracted away. Bhattacharya et al. [7] split their oversampled model into
several higher level systems, each of which is a macromodel of a component in the
analog system.

A higher level approach can also use blocks (such as low-and high-pass filters,
summing and non-inverting op-amp configurations, half-wave and full-wave rectifiers

2.4. SUMMARY 11

and sample-and-hold modules), as done by Tertel and Hedrich in [11]. Each block
is instantiated with its own set of parameters. In the same spirit, Lim and Horowitz
[19] propose a library of blocks, or templates, with optional inputs for controlling
the parameters of the block. This allows for more complex systems, and can directly
enable digital control of analog parameters, as is the case in switched systems.

Herbst [3] implements a number of high-level blocks that are modelled using
splines. These blocks are characterised in different ways; using poles and zeros,
S-parameters, or state-space systems.

Higher levels of abstraction necessarily require more knowledge in the face of
building the model, as choices have to be made regarding the effects that have to
modelled, and the required accuracy.

2.4 Summary

A number of emulation methods and tools have been presented in this chapter.
Of these, surprisingly few support emulation, usually because their HDL descrip-
tions are purely behavioural, and not synthesizable. Most of the tools that support
emulation only support oversampling, as opposed to variable-timestep emulation.
Therefore, The set of tools described by Herbst in [3] has been chosen as a found-
ation for further exploration as it presents the only open-source framework that
supports emulation, and is the only one that supports variable-timestep emulation.

The tool covers a range of emulation techniques described above; oversampled,
and time-varying approaches using PWL or splines. Neither is the tool limited to a
certain abstraction level, allowing for component-level models, as well as macromodel
descriptions using fixed blocks or mathematical descriptions such as state-space
descriptions or transfer functions. Most important, however, is the fact that it
is the only tool that consistently supports synthesis of the different functions, a
necessary requirement for making use of the acceleration afforded by using FPGAs.
The open-source nature of the tool makes it customisable and extendable, allowing
great freedom of exploration, and the ability to adapt it to specific needs beyond
just AMS verification.

Chapter 3

The Tools: svreal, msdsl and
anasymod

Based on the emulation tools presented in the previous chapter, the tool developed
at Stanford by Herbst [3] will be used as a platform for modelling AMS designs. The
tool consists of three separate packages1: svreal [20], msdsl [9] and anasymod [21].
These open-source packages are written in Python and implement SystemVerilog as
HDL.

This chapter aims to give an overview of the functions of these packages. Each
package does the following:

� svreal is a SystemVerilog macro library that allows the same HDL description
to be synthesized as fixed-point or floating-point arithmetic.

� msdsl is used to generate synthesizable HDL descriptions of dynamic systems
in SystemVerilog. Several modelling techniques and abstraction levels are
supported, which are written in Python. It makes use of svreal to define
types in SystemVerilog HDL descriptions.

� anasymod is used to control simulation and FPGA emulation of designs cre-
ated with msdsl. It generates control infrastructure (which is synthesizable
where needed) around the msdsl models for simulation control, and clock and
timestep management. It also handles integration of other HDL designs that
interface with the msdsl models. anasymod can call simulators to perform
simulation, and directly call Xilinx Vivado to generate bitstreams for suppor-
ted FPGAs. Finally, it can also be used to interface a PC with FPGAs to
control emulation.

Together, the tools offer a complete workflow. However, the documentation for
these is not always complete, and there exist several undocumented features. The
explanations in this chapter aim to complement the existing documentation available
on GitHub and in the work of Herbst et al. [3, 4].

The rest of the chapter will focus on the different modelling options provided by
msdsl. First there will be a brief look in Section 3.1 at the number formats enabled

1The packages may also be called tools individually. It should be clear from context whether
an individual tool/package, or the set of all three is meant.

13

14 CHAPTER 3. SVREAL, MSDSL AND ANASYMOD

by svreal. Then the modelling methods will be described in Section 3.2. The
control infrastructure and other anasymod functions are presented in Section 3.3.
Finally, in Section 3.4 the modelling methods will be compared and discussed, and
the generated HDL descriptions and RTL synthesis results will be compared to get
an idea of the hardware described by msdsl.

3.1 Number Formats using svreal

Before going into the AMS modelling capabilities of msdsl, it is useful to know
how the analog values are represented during simulation and emulation. Using the
macros defined by svreal, it is possible to simulate and synthesize models created by
msdsl for both fixed-point and floating-point data types. Synthesis is done in fixed-
point by default, but the Berkeley HardFloat library [22] can be used to synthesize
floating-point arithmetic, though this is not treated further in this thesis. Simulation
can be performed using the aforementioned types, as well as the non-synthesizable
SystemVerilog real type. The latter can be used to debug numerical errors and
fixed-point effects such as truncation and wrap-around. The SystemVerilog real
should not be confused with the svreal “type”, which actually refers to the macros
defined by the svreal package, and for the purposes of this thesis represents a
fixed-point type (though it could also represent a floating-point representation with
HardFloat).

The different number formats are interchanged by defining all signal and oper-
ations as macros, and changing the definition of these macros as appropriate. For
example, a signal x declared using the macro `DECL_REAL(x) could either be de-
clared as a SystemVerilog real type – real x – or as a fixed-point signal which is
discussed below. Note that the choice of number format does affect whether the
HDL generated by msdsl is synthesizable or not. When the SystemVerilog real
type is used, the generated HDL is behavioural (non-synthesizable), and can only
be simulated with event-driven HDL simulation. The other choices – fixed-point
and floating-point using HardFloat – result in synthesizable RTL that is suitable for
emulation.

3.1.1 Fixed-Point

Fixed-point is the default mode of svreal. A number a is represented as a two’s
complement signed integer s of a word length w with an implied exponent p. The
value of the number a is approximately:

a � s � 2p

An exponent of 0 is equivalent to a signed integer and a negative exponent can
represent numbers 1. Relating the exponent p to a fixed-point representation
with integer and fractional bits, given that p is negative the number of fractional
bits is �p, while the number of integer bits is w � 1� p.

The word lengths of the fixed point numbers are tailored to the word lengths used
in the digital signal processing (DSP) cores of FPGAs. This is often two different
word lengths; one for constants and one for other signals. Therefore, signals and
constants are declared explicitly. For the Xilinx FPGAs used later in this thesis,
the shorter (constant) word length is 18 bits, while the longer one is 25 bits.

3.2. MODELS AND ABSTRACTIONS 15

The choice of exponent presents a trade-off between resolution and range. In-
creasing one reduces the other. In svreal, the exponent is chosen based on the range
of the signal, a higher exponent results in a larger range, while a smaller exponent
provides more resolution. For a signal of range �R, the exponent is calculated as
follows [3]:

p �
R
log2

�
R

2w�1 � 1

V

The information about range, exponent length and word length have to be passed
along with the signal through use of the appropriate macros The operations with
fixed-point number in svreal are fairly basic. When doing operations with or con-
versions between signals of different word lengths and exponents, the inputs are
aligned to the exponent of the resulting signal, and extended or truncated to the
destination word length. Overflows of the fixed-point range are not handled either,
there being no option for other behaviour such as saturation.

3.2 Models and Abstractions

In general, analog circuits can be modelled as dynamic systems, and in many cases
as (piecewise) linear dynamic systems. The principle of msdsl is to solve the state-
update equation of a linear dynamic system from its state-space equations. First,
a set of equations is compiled, and transformed into the state-space equations with
input x, output y and state-space variables v:

9vptq � Avptq �Bxptq (3.1)

yptq � Cvptq �Dxptq (3.2)

Equation (3.1) is called the state equation, and Equation (3.2) is called the state
output equation. From here, the state-update equation is solved [23]:

vpt�∆tq � Ãvptq � B̃xptq (3.3)

with:

Ã � e∆tA and B̃ � A�1 �
�
Ã� I

	
�B

The equations (3.3) and (3.2) are then implemented in SystemVerilog to calculate
the output at each timestep. The coefficients Ã, B̃, C and D are computed at
compile-time. Thus, in general, the timestep ∆t must be known at compile-time as
well, resulting in fixed-timestep emulation.

Each modelling method and abstraction performs similar steps in generating the
HDL description, depending on the starting representation. The different modelling
methods can be combined in one model to varying degrees. Using the example of an
RC network shown in Figure 3.1, the different modelling methods will be presented.
While this example uses input and output voltages, the inputs, outputs and states
of a model could be voltages or currents.

16 CHAPTER 3. SVREAL, MSDSL AND ANASYMOD

Figure 3.1: Simple RC network

3.2.1 State-Update Equation

The first modelling method is the most straightforward. For multiple inputs x and
states v the single output y is directly defined by a state-update equation. Modelling
this way requires manually deriving the state-update equation, which for the RC
low-pass filter network is

ypt�∆tq � ayptq � p1� aqxptq with a � e�∆t{RC (3.4)

In this case, msdsl skips all steps discussed above, and generates an HDL description
from the given state-update equation. The full Python code to create such a system
is shown in Listing 3.1. The majority of this code will be identical for every model,
as it also handles passing arguments from anasymod (lines 19-23) and compiling
the model to SystemVerilog (lines 26-33). The highlighted lines of interest are lines
7-12; inputs and outputs to the system (which could be digital of analog) are defined,
and an equation for the next cycle is given.

The generated HDL description is shown in Listing 3.2. The input and output
signals and ports are defined explicitly in lines 9-10 and 12-13 respectively. It then
clearly shows the steps of the state-update equation; input and output are multiplied
by constants (a and p1� aq), then added and clocked to the output. Each of these
operations uses an svreal macro, and can thus be synthesized to fixed- or floating-
point by changing the definition of the macro.

The first two arguments of each macro are the LHS and RHS inputs, and the
final argument is the resulting signal which will be created or written to. Thus,
`MUL_CONST_REAL on line 16 multiplies the signal v_out with a constant, and assigns
the result to the signal tmp0. On line 18, the signals tmp_0 and tmp_1 are added
and assigned to tmp_2 The final macro `DFF_INTO_REAL implements a D-flip-flop
(FF) to clock the data to the output. The reset signal is given by the msdsl macro
`RST_MSDSL like the clock which is given by `CLK_MSDSL, and the enable signal is
always high. Note that this macro uses _INTO_ to assign its result to an existing
signal, as opposed to defining the output signal. That means that the signals that
are not explicitly defined (such as tmp_0), are defined within the macros that require
them.

3.2.2 Differential Equation

The next method uses symbolic systems of linear differential equations (DEs). For
example, the RC filter can be modelled by the differential equation:

C
dy

dt
� x� y

R

The relevant code is shown in Listing 3.3. Comparing to the relevant lines from List-
ing 3.1, the DE method is negligibly shorter, but does save the manual calculation
of the state-update equation.

3.2. MODELS AND ABSTRACTIONS 17

Listing 3.1: Modelling using a state-update equation in msdsl
Python

1 from pathlib import Path

2 from argparse import ArgumentParser

3 from msdsl import MixedSignalModel, VerilogGenerator

4 from numpy import exp

5

6 def make_model(name, build_dir, dt=1e6, r=1e3, c=1e-9):

7 m = MixedSignalModel(name, dt=dt, build_dir=build_dir)

8 m.add_analog_input('v_in')

9 m.add_analog_output('v_out')

10 # apply dynamics

11 a = exp(-dt/(r*c))

12 m.set_next_cycle(m.v_out, a*m.v_out+ (1-a)*m.v_in)

13 return m

14

15 def main(name='rc_eq'):

16 print('Running model generator...')

17

18 # parse command line arguments

19 parser = ArgumentParser()

20 parser.add_argument('-o', '--output', type=str,

default=name+'/build/models/default/main')ãÑ

21 parser.add_argument('--dt', type=float, default=1e-6)

22 args = parser.parse_args()

23 build_dir = Path(args.output).resolve()

24

25 r, c = 1e3, 1e-9

26 m = make_model(name, build_dir, args.dt, r, c)

27

28 # determine the output filename

29 filename = build_dir / f'{m.module_name}.sv'

30 print(f'Model will be written to: {filename}')

31

32 # generate the model

33 m.compile_to_file(VerilogGenerator(), filename)

34

35 if __name__ == '__main__':

36 main()

The generated HDL description is identical to that in the previous section, as can
be seen in Listing C.1 in the Appendix. This is to be expected, since the state-update
equation derived from the DE description is the same as that derived manually in
the previous section, as shown in the following. Deriving the state-space equations
from the DE as msdsl would do, gives:

9v �
�
� 1

RC

�
vptq �

�
1

RC

�
xptq

yptq � r1s vptq � r0sxptq

18 CHAPTER 3. SVREAL, MSDSL AND ANASYMOD

Listing 3.2: Generated HDL description from msdsl state-update equation
SystemVerilog

8 module rc_eq #(

9 `DECL_REAL(v_in),

10 `DECL_REAL(v_out)

11) (

12 `INPUT_REAL(v_in),

13 `OUTPUT_REAL(v_out)

14);

15 // Assign signal: v_out

16 `MUL_CONST_REAL(0.9048374180359596, v_out, tmp0);

17 `MUL_CONST_REAL(0.09516258196404037, v_in, tmp1);

18 `ADD_REAL(tmp0, tmp1, tmp2);

19 `DFF_INTO_REAL(tmp2, v_out, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

20 endmodule

Listing 3.3: Modelling using a DE msdsl
Python

1 m = MixedSignalModel(name, dt=dt, build_dir=build_dir)

2 m.add_analog_input('v_in')

3 m.add_analog_output('v_out')

4 # apply dynamics

5 m.add_eqn_sys([c*Deriv(m.v_out) == (m.v_in-m.v_out)/r])

The equivalence to Equation (3.4) becomes apparent in the coefficients of the state-
update and state output equations:

Ã � e�
1

RC
∆t, B̃ � 1� e�

1
RC

∆t, C � 1, D � 0

While this example is simple, msdsl is capable of handling systems of several lin-
ear DEs, with multiple inputs, outputs and states as long as the number of equations
is equal to the number of unknowns.

3.2.3 Transfer Function

The third way to describe a dynamic system is by transfer function (TF). The TF
of the RC low-pass filter is:

Hpsq � 1

sRC � 1

This can be specified in msdsl using the coefficients of the numerator and denomin-
ator, as shown in Listing 3.4. The TF is discretized and the state-update equation is
derived, though unlike other methods the state-space description (a necessary step)
is calculated internally in a SciPy function [24], rather than explicitly by msdsl.
The advantage of a TF model is that the TF could be calculated from existing
SPICE models, for example.

The HDL description can be found in Listing C.2 in the Appendix. While similar
to the previous two, this HDL description adds an extra clock period of latency, as
the inputs are clocked in as well. The extra delays generated at the input and
output of the TF are generated to save an input and output history, something not

3.2. MODELS AND ABSTRACTIONS 19

Listing 3.4: Modelling a TF in msdsl
Python

1 m = MixedSignalModel(name, dt=dt, build_dir=build_dir)

2 m.add_analog_input('v_in')

3 m.add_analog_output('v_out')

4 # apply dynamics

5 m.set_tf(m.v_in, m.v_out, [[1], [r*c, 1]])

Listing 3.5: Modelling from a netlist in msdsl
Python

1 m = MixedSignalModel(name, dt=dt, build_dir=build_dir)

2 m.add_analog_input('v_in')

3 m.add_analog_output('v_out')

4 # apply dynamics

5 circ = m.make_circuit()

6 gnd = circ.make_ground()

7 circ.voltage('net_x', gnd, m.v_in)

8 circ.resistor('net_x', 'net_y', r)

9 circ.capacitor('net_y', gnd, c, voltage_range=RangeOf(m.v_in))

10 circ.add_eqns(AnalogSignal('net_y') == m.v_out)

necessary for the simple RC model used here, but required for more complex TFs
where delayed samples of input are necessary.

3.2.4 Netlist

Finally, msdsl has the capability to derive the state-update equation from a netlist.
The code for this is shown in Listing 3.5. Each component is defined between two
nodes. For storage elements (capacitors and inductors) the voltage and current range
respectively has to be given, though msdsl supports automatic calculation of this
based on existing, defined voltage or current nodes. Other supported elements are
diodes and switches. These will be discussed later. The netlist is broken down into
equations, compiled into a state-space description, and the state-update equation is
found.

Again, the generated HDL description is almost identical to the other methods.
The difference is that the state variable is explicitly present as a signal tmp_circ_2,
which is defined from the input signal, and assigned to the output. The HDL
description can be found in Listing C.3 in the Appendix.

3.2.5 Non-linear models

msdsl has support for non-linear modelling as well. This allows for both imple-
mentation of switches, non-linear functions, different types of random noise and the
use of variable-timesteps.

3.2.5.A Switches

Switches can be described in a number of ways, depending on the modelling method.
First, a digital signal must be defined which will control the switch:

20 CHAPTER 3. SVREAL, MSDSL AND ANASYMOD

1 m.add_digital_input('sw')

Then a constant can be defined with different values based on the state of the switch
signal. For example, changing the resistance of the resistor in the RC network from
R1 to R2 by changing constants in the DE example above:

1 rsw = eqn_case([1/r1, 1/r2], [m.sw])

2 m.add_eqn_sys([c*Deriv(m.v_out) == (m.v_in-m.v_out)*rsw])

Note that rsw is defined as the inverse of r1 and r2, since division by an eqn_case

object is not supported, thus we must multiply by the inverse.

When using a netlist, the switch element can be used to the same effect. This
element has two values based on the state of the switch; on resistance and off res-
istance.

1 circ.switch('net_x', 'net_y', ctl=m.sw, r_on, r_off)

The diode model available in the netlist mode is similar to the switch, with the
difference that it is not activated by a switching signal, but by the current through
the diode. The diode will only turn on when the voltage across it (from net_x to
net_y) is above a voltage threshold, and will turn off when the current is below a
certain threshold. The diode has a forward voltage drop vf that can be defined,
along with the on- and off-resistance of the diode.

1 circ.diode('net_x', 'net_y',r_on, r_off, vf)

From testing, the methods named above are the only switch implementations
that work. That is, the switch case does not work for models described by state-
update equation or TF. This is likely because these methods fully derive the state-
space equations and state-update equation.

Both methods are implemented in the same manner. In each iteration the value
of each state-space coefficient Ã, B̃, C and D is selected from a table, based on the
state of the switch. The full Python code and generated HDL description for the DE
with switch can be found in Listing C.4 and Listing C.6 in the Appendix. On the
implementation side, the tables of coefficients are stored in LUTRAM as opposed to
block RAM (BRAM), as the latter would introduce one clock cycle delay in fetching
the coefficients, every time they are required.

3.2.5.B Piecewise Approximations

msdsl allows for approximating arbitrary functions as piecewise nth order linear
approximations. The coefficients ta1, . . . anu of the function approximation fptq �
a1�a2t�a3t

2� . . .�ant
n�1 for a chosen domain of t (such as a number of timesteps

∆t) are computed at compile-time and stored in BRAM.

A special use of the function approximation is for variable-timestep approx-
imations. Take Equation (3.4), for a variable-timestep the state-update equation
becomes:

ypt�∆tq � ap∆tqyptq � p1� ap∆tqqxptq

3.3. ANASYMOD 21

Listing 3.6: Generating HDL description from a TF using msdsl
Python

1 m = MixedSignalModel(name, dt=dt, build_dir=build_dir)

2 m.add_analog_input('v_in')

3 m.add_analog_output('v_out')

4 m.add_analog_input('dt')

5 # apply dynamics

6 func = lambda dt: exp(-dt/(r*c))

7 f = m.make_function(func, domain=[0, 10*r*c], numel=512, order=1)

8 a = m.set_from_sync_func('a', f, m.dt)

9 v_in_prev= m.cycle_delay(m.v_in, 1)

10 v_out_prev= m.cycle_delay(m.v_out, 1)

11 m.set_this_cycle(m.v_out, a*v_out_prev+ (1-a)*v_in_prev)

Now the timestep-dependent coefficient ap∆tq � e�∆t{RC can be implemented as a
function and approximated. The code in Listing 3.6 would be used to generate a
piecewise-linear (order 1) approximation of ap∆tq. Notable differences to those in
Listing 3.3 are highlighted. The resulting HDL description is shown in Listing C.5
in the Appendix. The original two multiplications and one addition are still clearly
visible (and highlighted) alongside the extra hardware generated to compute ap∆tq �
a1 � a2∆t and 1� ap∆tq from the coefficient tables stored in memory.

While variable-timestep emulation will not be further treated, the piecewise func-
tion approximation is used for parameter sweeping in Section 4.2.

3.2.5.C Other modelling methods

For completeness, the other (non-linear) modelling capabilities of msdsl are briefly
outlined, though these are not further treated in the scope of this thesis.

One is pseudorandom noise generation using PWL tables. This feature be ex-
tremely useful for modelling noise sources in analog circuits.

The final modelling option uses splines to interpolate between timesteps. The
spline representation is implemented in some high-level blocks to provide some high-
level abstractions in msdsl. Currently, this includes saturation non-linearity, a lossy
channel specified from S-parameters and a continuous-time linear equalization model
which is specified by pole and zero values. Each of these blocks represents its own
model, which can be interfaced with other msdsl models using anasymod.

3.3 anasymod

Before moving on to HDL simulation, synthesis and emulation of the msdsl models,
some attention has to be given to the simulation and emulation process, and espe-
cially the control of the mixed-signal msdsl models. HDL models generally require
clock and reset signals for their synchronous elements, and variable-timestep msdsl
models need to know the length of timesteps. Furthermore, simulation and emula-
tion requires some way to pass data to and from the design under test (DUT) – the
msdsl model and other digital designs. Therefore, it is not possible to run msdsl
models on their own. This is where the tool anasymod comes in. It provides two

22 CHAPTER 3. SVREAL, MSDSL AND ANASYMOD

vital functions; a means of calling simulation tools and running interactive emu-
lation straight from Python, and generating the control infrastructure around the
DUT. When an msdsl model is run, it is always with the anasymod infrastructure
wrapped around it.

3.3.1 Simulation and Emulation

anasymod provides integration with Icarus Verilog [25] for SystemVerilog simula-
tion, and Xilinx Vivado [26] for (mixed language) simulation, synthesis and emu-
lation. anasymod reads project configurations, written as yaml files, calls msdsl
to generate the SystemVerilog descriptions of any models, and generates all the
SystemVerilog descriptions of the control infrastructure. Finally, Icarus Verilog or
Vivado are called to run the simulation or emulation. In the case of emulation,
which requires programming the FPGA, this step includes configuring Vivado to
synthesize the HDL, and checking the resulting RTL description. At this point,
post-synthesis simulations can be run; the ability to launch these from anasymod
has been added in the scope of this thesis2, but is not further treated except for the
implementation details given in Appendix A. Finally, a bitstream is generated that
can be used to program the FPGA.

Emulation, and emulation control are also handled by anasymod. There are
two methods for using a computer to control an emulation running on an FPGA.
One is a custom firmware-in-the-middle approach that requires an SoC incorporating
a processing system (PS) like a CPU alongside the programmable logic (PL) with
comprises the FPGA. Firmware on the PS can directly interface with the emulation
running in PL.

The other slower, but more general, method uses Xilinx Virtual-IO (VIO) [27]
and Xilinx Integrated Logic Analyzer (ILA) [28] for direct control of the FPGA from
a computer. anasymod sets up VIO for default control signals, as well as custom
signals (specified in a yaml file) anywhere in the testbench. Reading signals through
VIO is done by recording the signals to BRAM on the FPGA during emulation,
stopping the emulation when BRAM is full, and then using VIO to read the signals
from BRAM to a computer. This has the major disadvantage that the duration of
an emulation run is limited by a combination of the size of signals, and the amount
of BRAM available to the VIO. An outline of a solution for working around the
problem is given in the recommendations (Section 8.3), but not further treated due
to time constraints.

3.3.2 Control Infrastructure

anasymod generates a SystemVerilog control infrastructure around the DUT con-
taining the msdsl model and any other digital design. The various modules of the
control infrastructure are shown in Figure 3.2, and their functions are briefly out-
lined below. Each of the modules in the infrastructure are generated from templates,
based on settings specified in various yaml configuration files. While this does not
cover all the details of the infrastructure, it should give a sufficient overview for
the purposes of this thesis. The functional details of timestep management can be
found in Chapters 5.3 of [3], while a more detailed explanation of the modules and

2This extended fork of anasymod is available on GitHub (https://github.com/nsulzer/
anasymod)

https://github.com/nsulzer/anasymod
https://github.com/nsulzer/anasymod

3.4. COMPARISON OF MODELS 23

signals in the control infrastructure can be found in Appendix B. The latter aims
to complement former on an implementation level, where documentation is lacking.

clk gen is a wrapper for Xilinx IP that generates a clock with double the
emulation clock frequency, and any other required clocks, from a
master clock.

time manager

calculates the minimum of all timestep requests, and communicates
this value back as emu_dt. It also keeps track of emu_time, the ab-
solute emulation time across varying timesteps.

osc model is required for designs that do not generate any analog clocks. In
that case, this module creates the timestep requests (emu_dt_req)
required for the desired emulation frequency that is eventually tied
to `CLK_MSDSL.

gen emu clks

generates the actual clocks as requested by modules such as the os-
cillator. These clocks are synchronised to the master emulation clock
emu_clk_2x. This synchronisation limits the time-resolution of any
clock to that of the emulation clock, as the rising edges are aligned.

sim ctrl gen

is a wrapper for the VIO IP required for emulation control from a
host PC, as will be explained in the following section. The global
reset signal emu_rst, accessed with the macro `RST_MSDSL is also
generated here. During simulation, it is a wrapper for the for user-
written module sim_ctrl for simulation control.

trace port is a wrapper for the ILA IP used for monitoring signals in the design.

ctrl anasymod

is responsible for emulation control such as starting, pausing, and
stopping emulation by influencing the time manager. It takes a num-
ber of signals from trace_port to switch between these modes.

tb is a user-written module and acts as a testbench for any msdsl and
custom HDL modules, essentially it is the DUT. All analog signals
generated in the rest of the control infrastructure are inputs to this
module.

gen top is the top-level entity that instantiates all of these modules.

3.4 Comparison of Models

After presenting the various modelling techniques, a comparison of the different
models is given in Table 3.1, as to which features they support and any peculiarities.

24 CHAPTER 3. SVREAL, MSDSL AND ANASYMOD

Figure 3.2: anasymod control infrastructure

Table 3.1: Summary comparison of different modelling capabilities

Model Section
Requires
Manual

Derivation

Supports
Function

Approximation

Supports
Switches

Notes

Update
Equation

3.2.1 Yes Yes No

DE 3.2.2 Yes No Yes

TF 3.2.3 Yes No No
Additional
input and

output delays
Netlist 3.2.4 No No Yes

Later, the generated HDL descriptions and the hardware synthesized from these will
be discussed3.

The ability to use each of the modelling techniques together in one model is
crucial, since they each support different features. A model using a netlist can, for
example, be augmented with TF modelling or PWL tables for (non-linear) com-
ponents. This is especially necessary for the netlist, as it lacks components such as
transistors, which would need to be modelled with, for example, PWL functions.

3.4.1 HDL and Synthesis

A comparison of the generated HDL descriptions is given in Table 3.2. The number
of D-FFs is given on the word level, since the choice of number representation with
svreal could still change the underlying behavioural or RTL description. Most
notable is the variable-timestep model, for which extra hardware is generated to

3All models and simulation setups are available on GitLab (https://gitlab.utwente.nl/s1788973/
anasymod-synthesis)

https://gitlab.utwente.nl/s1788973/anasymod-synthesis
https://gitlab.utwente.nl/s1788973/anasymod-synthesis

3.4. COMPARISON OF MODELS 25

Table 3.2: Comparison of generated HDL descriptions of RC network

Model Timestep
Python

Description
Listing

Generated
HDL
Listing

Multipli-
cations

Additions DFFs

Update Equation Fixed 3.1 3.2 2 1 1
DE Fixed 3.3 C.1 2 1 1
TF Fixed 3.4 C.2 2 1 3
Netlist Fixed 3.5 C.3 2 1 1
DE w. switch Fixed C.6 C.4 2 1 1
Equation Variable 3.6 C.5 3 4 3

Table 3.3: Comparison of gate-level synthesis results of RC network descriptions

Model Timestep LUT Logic LUTRAM FF BRAM DSP

Update Equation Fixed 25 0 25 0 2
DE Fixed 25 0 25 0 2
TF Fixed 25 0 25 0 2
Netlist Fixed 25 0 25 0 2
DE w. switch Fixed 26 0 25 0 2
Equation Variable 67 0 1 0.5 5

anasymod infrastructure 2124 287 3921 13 0

fetch coefficients from BRAM, and the extra D-FFs generated at the input and
output of the TF model.

After synthesis however, all fixed-timestep models show the same generated hard-
ware. Choosing a fixed-point type in svreal ensures that the HDL generated by
msdsl is a synthesizable RTL description. This is then synthesized to gate-level.
Synthesis results for the RC filter models are summarized in Table 3.3, this time
on a bit level. The number of instantiated FFs confirms a word length of 25 bits
for analog signals. It is also clear that multiplications are mapped to DSP slices,
while addition is implemented with LUTs. The additional memory described for the
TF model is not explicitly instantiated, but incorporated into registers in the DSP
blocks. Adding a switch to the design adds only one extra LUT (an inverter), as
the switch signal itself is used to generate the appropriate bit pattern for either of
the two coefficients.

The variable-timestep implementation is the only one that is notably different.
Here three extra DSPs are implemented; two in calculating the address of the PWL
coefficients, and one multiplying the PWL coefficient with the timestep. Addition-
ally and it takes BRAM blocks to store the coefficient tables.

Much larger than the models themselves, is the overhead added by anasymod,
as seen in the last row of Table 3.3. The 13 BRAM blocks are reserved by the ILA
for storing monitored signals.

Chapter 4

Design Space Exploration

So far, attention had been paid to the original use-case for emulation, namely AMS
verification. However, this workflow surprisingly may lend itself to analog design
as well. The big advantage of emulation is the much higher speed at which models
can be run, something that cannot be paralleled with conventional simulation. This
property can be exploited for design-space exploration. While not matching the
component-level accuracy of simulation, it may be advantageous to emulate models
with the ability to tune parameters to find, for example, stable operating regions of
complex designs.

The goal then is to implement the ability to tune model parameters during
emulation.

4.1 Coefficient Calculation

The challenge for tuning parameters is that changing one parameter in the state-
space equation has an effect on multiple coefficients of the state-update equation,
requiring a change in several model coefficients.

Consider the example of the RC network from the previous chapter (Figure 3.1).
The state space equations are as follows:

9v �
�
� 1

RC

�
vptq �

�
1

RC

�
xptq

yptq � r1s vptq � r0sxptq
with the solution:

Ã � e�
1

RC
∆t, B̃ � 1� e�

1
RC

∆t, C � 1, D � 0

Sweeping the paramter R, for example, requires sweeping both the coefficients Ã
and B̃. All coefficients affected by one parameter are called the coefficient set –

in this case
!
Ã, B̃

)
. In a more complex state-space equation, all coefficients could

potentially be affected. Further, each coefficient is potentially a matrix of coefficient,
if the number of inputs, outputs or states is larger than one.

There are two methods to deal with these changing coefficients: compile-time or
runtime calculation.

27

28 CHAPTER 4. DESIGN SPACE EXPLORATION

4.1.1 Runtime calculation

Computing the coefficients at run-time gives the greatest flexibility. Any parameter
could be arbitrarily tuned. However, the calculation of coefficients at runtime is not
feasible for an arbitrarily sized design. As discussed in Section 3.2, calculating the
update equation requires matrix inversion and exponentiation, since:

Ã � e∆tA and B̃ � A�1 �
�
Ã� I

	
�B

Performing these calculations on an FPGA is area expensive – especially consid-
ering the number of coefficients that may be affected by a single parameter – taking
resources away from models themselves.

4.1.2 Pre-computation

To eliminate the issue of expensive computations, the coefficients can be pre-computed
at compile-time and stored in memory. Of course, this limits the range and resol-
ution of the sweep to a range and number of steps that is defined at compile-time.
Each coefficient in a coefficient set is calculated for every possible value of the para-
meter. The resulting precalculated coefficients are called a coefficient array ; a table
of coefficients for different parameter values. In the RC network example, sweeping
the parameter R over 512 value, results in the coefficient arrays

!
Ã0, . . . , Ã511

)
and

!
B̃0, . . . , B̃511

)

The larger obstacle to this method however, is the storage required for all coef-
ficient arrays. Arrays can be stored in LUTRAM (LUTs used as memory), or in
BRAM. The former impacts the size of designs, as LUTs are required to implement
designs in PL, while the latter requires an extra clock cycle to fetch the coefficients
from BRAM. Take, for example, the ZedBoard which has 3.4Mb of LUTRAM. If half
of the LUTRAM is used for storing coefficients – leaving the other half for design
– that corresponds to about 70800 24-bit coefficients. Assuming that sweeping 512
steps would be sufficient, that is 138 coefficient arrays of 512 coefficients each. Then,
the number of parameters that can be swept depends on the size of the coefficient
set of each parameter.

Since msdsl already has built in support for creating lookup tables in BRAM,
that method will be used to add parameter sweeping functionality to the tool.

4.2 Lookup Tables in msdsl

msdsl has native support for creating lookup tables. These are originally used
for PWL approximation for custom functions or variable-timestep emulation, as
introduced in Section 3.2.5.B. For parameter sweeping, these tables are used to
store a range of coefficients. Figure 4.1 shows the hardware generated my msdsl for
retrieving a coefficient from BRAM based on a control input c. The control input
is converted to an address in BRAM, by mapping the full range of control inputs
on the full range of 2n coefficients, and the coefficient at that address is returned as
data. Aside from BRAM, the structure requires one DSP for multiplication, and a
number of LUTs to implement the addition.

4.3. IMPLEMENTATION 29

Figure 4.1: Coefficient lookup implemented by msdsl (adapted from [3])

Listing 4.1: Use of make_coef_sweep
Python

1 m = MixedSignalModel('model') # make a model

2 control = m.add_analog_input('control') # control input

3 param = m.make_coef_sweep('param', control, 'lin', [0, 1], 512)

4 m.add_analog_output('out') # some function using param

5 m.set_this_cycle(m.out, param) # some function using param

4.3 Implementation

Using the existing msdsl function for table creation, msdsl is extended1 with the
function make_coef_sweep. So far, the function is only a limited implementation
of what is described above. Only parameters can be swept that affect a single
coefficient, and it has only been tested with update equation modelling in msdsl.

Use of the function is shown in Listing 4.1. An analog signal param is created,
which is swept using the control signal control, which can be defined explicitly
as above or implicitly by passing a string. The sweep then consists of 512 linearly
spaced elements in the range r0, 1s. Aside from linear sweeps, the function currently
supports logarithmic sweeps, and can be easily extended. Since the msdsl tables
require the domain of a signal, the function automatically calculates the required
domain from the given range. The function then builds the lookup table using
make_function and applies it to the parameter using set_from_sync_func. The
full function can be found in Listing C.9 in the Appendix.

1This extended fork of msdsl is available on GitHub (https://github.com/nsulzer/msdsl)

https://github.com/nsulzer/msdsl

Chapter 5

Sigma-Delta Models

While the RC circuit presented in Chapter 3 is useful for verifying the emulation
capabilities of a tool, it does not present a mixed-signal model. For this work, the
sigma delta (Σ∆) analog to digital converter (ADC) was chosen as a vehicle to fur-
ther explore AMS emulation. The converter, explained in more detail in Section 5.1
consists of a continuous-time sigma-delta (CTΣ∆) modulator which generates a bit-
stream, followed by digital decimation to convert the bitstream to a digital signal.
CTΣ∆s present an interesting case for two reasons. The complexity can easily be
increased by increasing the order of the modulator, the detail of the integrators, or
the number of bits used in the converter. Second, in practical development of the di-
gital decimation filtering that is required after the modulator, a model of the analog
modulator is required for testing. Thus emulating the mixed-signal Σ∆ modulator
is a clear use-case where emulation can aid in the design of digital blocks.

This chapter begins with an introduction to Σ∆ modulators in Section 5.1, fol-
lowed descriptions of the Σ∆ designs and the models made withmsdsl in Section 5.2.

5.1 Sigma Delta ADC

As the case study for emulation, Σ∆ converters, which operate on the principle
of oversampling and noise shaping, warrant some explanation. The converter owes
its name to the Σ∆ modulator, which constitutes one part of the converter, the
other part being digital decimation. Decimation is required to downsample the high
frequency bitstream produced by the modulator into a usable digital signal.

5.1.1 Modulator

The modulator is essentially a feedback loop as shown in Figure 5.1. Before each
part of the loop is explained, it is important to have an overview of oversampling
and noise shaping.

Non-oversampled (Nyquist) ADCs, have a bandwidth fb, and a sampling rate
fs,Nq � 2 � fb whereby the total quantisation noise power is spread over the band-
width fb. Oversampling in ADCs reduces the power density of the quantisation
error, by spreading the total quantisation noise NQpfq over a larger frequency range
by increasing the sample rate. The oversampling ratio (OSR) is then defined as
OSR � fs

2fb
.

31

32 CHAPTER 5. SIGMA-DELTA MODELS

Figure 5.1: Block diagram of CTΣ∆ modulator

Due to the oversampled nature of the modulator, it can employ noise shaping
to filter quantisation noise of a simple quantizer to high frequencies, outside the
passband fb. The modulator comprises a loop consisting of a filter Gpsq, quantizer
Q, and digital to analog converter (DAC). The digital output of the quantizer is fed
back to the input, and subtracted from it.

Noise shaping is achieved by appropriate choice of the loop filter function Gpsq,
which results in the noise transfer function (NTF) and signal transfer function
(STF) that represent how the signal and noise are shaped. They are defined as
follows, where c is the gain of the quantizer:

NTF psq � 1

1� cGpsq

STF psq � cGpsq
1� cGpsq

Essentially, the signal is passed in the passband fb, while the noise is attenuated.
A transfer function Gpsq � 1

s – an integrator – achieves first-order noise shaping.
This is also called a first-order modulator. The NTFs of the first and second-order
modulator can be seen in Figure 5.2. Higher orders 1

sn are also possible, and each
increase the signal-to-quantization-noise ratio (SNQR) in the passband by shaping
more noise to higher frequencies. The theoretical SNQR of a modulator with order
n is given in [29] as

SNQR � 20 log10

�
OSRn�0.5

?
2n� 1

πn

(5.1)

5.1.2 Decimation

The other vital part of a Σ∆ converter is the decimation stage that downsamples the
bitstream and filters out the out-of-band noise, as shown in Figure 5.2. The result
of this process is a multi-bit signal at a lower sample rate. An ideal decimation filter
removes everything outside the passband without introducing ripple or aliasing. Un-
fortunately such an ideal filter is not realizable. Instead, cascaded integrator-comb
(CIC) filters [30] are commonly used structures that both filter and downsample.
These structures filter by means of a number of integrator stages, followed by decim-
ation and then comb stages for further filtering at a lower sample rate. Because these
structures can introduce droop in the passband, finite impulse response (FIR) com-
pensation filters are often used to correct these effects, but only at the end; at the
lowest sample rate.

5.2. MODULATOR MODELS 33

Figure 5.2: Decimation filters out the noise which has been shaped out of the pass-
band

The details – topology and implementation – of the decimator used in this design
are discussed in more detail in the scope of the implementation of the demo of the
full converter, in Section 7.1. For now, the focus will be on the AMS models of the
modulator.

5.2 Modulator Models

Since the complete design of a CTΣ∆ falls outside the scope of this thesis, an existing
second-order Σ∆ design was used [31]. This design has already been calculated, and
has an existing HDL description of the decimator. The specifications of the converter
are taken from this earlier work designed to achieve an SNQR of 80dB for audio-band
signals (up to 20kHz). The audio signals are sampled at 48.8kHz, with an OSR of
128 leading to a Σ∆ sampling frequency fs of 6.25MHz. The advantage of these
sample rates, is that they are low enough to make real-time emulation possible,
with the bandwidth of the analog (audio) signals being far below the achievable
clock frequencies in common FPGAs. The emulation clock frequency used in these
models is 100MHz; a timestep of 10ns.

In addition to the second-order model, a first-order model was implemented as
a more basic test of the emulation techniques. The first-order modulator is always
stable, and can act as a control, which may help in debugging. The specifications
of the first-order model were kept similar to the second-order model where possible,
especially in order to allow re-use of the decimation structure. That means that the
number of bits, and OSR and resulting sample rates in the modulator and decimation
are kept the same. As a reference for the msdsl models, Simulink models are used.
These models were used in previous work [31] to generate a bitstream that will
be used to test the decimation in HDL; a function that should now fall to the
msdsl model instead. These two models, and their msdsl implementations will be
described in more detail in the following.

5.2.1 First-Order Model

The first-order CTΣ∆ model represents the most basic Σ∆ modulator. It has an
order of one, and 1-bit bitstream output. Therefore, the loop filter has the TF
Gpsq � 1

s , the quantizer is a simple comparator which detects whether the signal is
greater than or smaller than 0, and the DAC converts the bitstream to �1. Only the
input gain has been adjusted to keep within the dynamic range of the modulator.
Its reference Simulink block diagram is shown in Figure 5.3.

34 CHAPTER 5. SIGMA-DELTA MODELS

DAC

In 	S/H

y

6.25MHz

a

+−
							e

fb_gain
Quantizefreq_gainin_gainSinewave

+−

d

Figure 5.3: Simulink model of fist-order modulator

Listing 5.1: msdsl description of first-order Σ∆ model
Python

6 m = MixedSignalModel('sd_model', dt=args.dt)

7

8 in_gain, fb_gain, freq_gain = 0.45, 1, 6.25e6

9 G = [[freq_gain],[1, 0]] # TF of loop filter

10

11 fs = m.add_digital_input('fs') # 6.25MHz sample clock

12 x = m.add_analog_input('x') # analog input

13 y = m.add_digital_output('y') # digital output

14 e = m.add_analog_state('e', 4, init=1) # node after summation

15 a = m.add_analog_state('a', 4, init=0) # node after integrator

16 d = m.add_analog_state('d', 1, init=-1) # node after DAC

17

18 m.set_this_cycle(e, x*in_gain-d*fb_gain) # adder

19 m.set_tf(e, a, G) # loop filter

20 m.set_next_cycle(y, a>0, ce=fs) # quantiser

21 m.set_next_cycle(d, y*2-1.0) # DAC

While it would be possible to describe the modulator using a state-space de-
scription, this is not done. Taking advantage of the many modelling methods in
msdsl, the model is described in the manner of the block diagram Figure 5.1. This
allows for easy understanding of the model, and direct comparison to, for example,
Simulink models. The final HDL description will be largely the same, regardless of
the modelling technique.

The msdsl description of the first-order model is given in Listing 5.1, the full
Python script can be found in Listing C.7 in the Appendix. All parameters of the
model are defined in lines 6-8. The TF of the loop filter is defined in line 9. Lines
11-13 define the inputs and outputs to the modulator. The generation of these input
signals will be described later. Due to the choice of model description, the analog
states internal to the modulator have to be explicitly defined, as done in lines 14-
16. Note the second argument which is the range of the state. This influences the
exponent used in the svreal type. A range that is too small may lead to saturation
in a real analog circuit, but in this digital environment it leads to wrap-around – a
very different effect. This is a limitation of svreal which does not support saturation
in fixed-point operations. With all parameters, inputs, outputs and states defined,
the model can be described. The input summation node is described in line 18 with

5.2. MODULATOR MODELS 35

DAC

In 	S/H

y

6.25MHz

a

+−
							e a2

+−
									e2

fb_gain fb_gain2

Quantizefreq_gain freq_gain2 c2in_gain2in_gainSinewave

Figure 5.4: Simulink model of second-order modulator

an equation. The loop filter is set from a TF in line 19. The comparator is described
in line 20, as an equation whose output is clocked with the sample clock fs. In HDL
this implements a D-FF with a clock-enable signal given by fs. Finally, the DAC is
implemented with the expression d � 2y � 1, converting the bitstream with values
t0, 1u to an analog signal with values t�1, 1u.

5.2.2 Second-Order Model

The second-order model is a more practical design. This model was designed in
previous work and implemented on a Printed circuit board (PCB) using discrete
components [31] and is adapted for this work. The decimation was done on an
FPGA with input voltages of 3.3V. Therefore, as opposed to the first-order model,
this model has a range of 0-3.3V, biased at 1.65V. The coefficients, calculated using
the MATLAB [32] Delta Sigma Toolbox [33], are scaled to handle a 2.1V input
without saturating the 0-3.3V range. This also means that the full-scale input is
scaled to fit the range. Again, the reference Simulink model is shown in Figure 5.4.

Similarly to the first-order modulator, the second-order modulator is described
in a readable way, with each integrator described by its own TF. Listing 5.2 gives the
model of the second-order modulator, while the full script can be found in Listing C.8
in the Appendix.

5.2.2.A Parameter Sweeping

Parameter sweeping, described in Chapter 4, is implemented on the second-order
model for the parameters in_gain2, fb_gain and fb_gain2. The msdsl model for
this is given in Listing 5.3. Each parameter is swept linearly in the range r0, 1s.
The names of the input signals are a result of the demo implementation which is
discussed later.

36 CHAPTER 5. SIGMA-DELTA MODELS

Listing 5.2: msdsl description of second-order Σ∆ model
Python

6 m = MixedSignalModel('sd_model', dt=args.dt)

7

8 v_of = 3.3/2 # bias voltage

9 in_gain , fb_gain , freq_gain = 0.2826 , 0.2824 , 6.25e6

10 in_gain2 , fb_gain2 , freq_gain2 = 0.6520 , 0.5677 , 6.25e6

11 G = [[freq_gain],[1, 0]] # TF of integrator 1

12 G2 = [[freq_gain2],[1, 0]] # TF of integrator 2

13

14 fs = m.add_digital_input('fs') # 6.25MHz sample clock

15 x = m.add_analog_input('x') # analog input

16 y = m.add_digital_output('y') # digital output

17 xs = m.add_analog_state('xs', 4, init=0) # scaled input

18 e = m.add_analog_state('e' , 4, init=1) # node after summation 1

19 a = m.add_analog_state('a' , 4, init=0) # node after integrator 1

20 e2 = m.add_analog_state('e2', 4, init=1) # node after summation 2

21 a2 = m.add_analog_state('a2', 4, init=0) # node after integrator 2

22 d = m.add_analog_state('d' , 4, init=-1) # node after DAC

23

24 m.set_this_cycle(xs, 0.65*v_of*x + v_of) # scale input

25 m.set_this_cycle(e, xs*in_gain-d*fb_gain) # summation node 1

26 m.set_tf(e, a, G) # integrator 1

27 m.set_this_cycle(e2 , a*in_gain2-d*fb_gain2) # summation node 2

28 m.set_tf(e2, a2, G2) # integrator 2

29 m.set_next_cycle(y, a2>v_of, ce=fs) # quantiser

30 m.set_next_cycle(d, (y*3.3)) # DAC

5.2. MODULATOR MODELS 37

Listing 5.3: msdsl description of second-order Σ∆ model with parameter sweeping
Python

6 m = MixedSignalModel('sd_model', dt=args.dt)

7

8 v_of = 3.3/2 # bias voltage

9 in_gain = 0.2826

10 freq_gain = 6.25e6

11 freq_gain2 = 6.25e6

12 G = [[freq_gain],[1, 0]] # TF of integrator 1

13 G2 = [[freq_gain2],[1, 0]] # TF of integrator 2

14

15 fs = m.add_digital_input('fs') # 6.25MHz sample clock

16 x = m.add_analog_input('x') # analog input

17 y = m.add_digital_output('y') # digital output

18 xs = m.add_analog_state('xs', 4, init=1) # scaled input

19 e = m.add_analog_state('e' , 4, init=1) # node after input summation

20 a = m.add_analog_state('a' , 4, init=0) # node after integrator 1

21 e2 = m.add_analog_state('e2', 4, init=1) # node after second

summation

22 a2 = m.add_analog_state('a2', 4, init=0) # node after integrator 2

23 d = m.add_analog_state('d' , 4, init=-1) # node after DAC

24

25 in_gain2 = m.make_coef_sweep('in_gain2','n', 'lin',[0, 1],512,order=0)

26 fb_gain = m.make_coef_sweep('fb_gain' ,'vaux0','lin',[0, 2],512,order=0)

27 fb_gain2 = m.make_coef_sweep('fb_gain2','vaux8','lin',[0, 2],512,order=0)

28

29 m.set_this_cycle(xs, 0.65*v_of*x + v_of) # scale input

30 m.set_this_cycle(e, xs*in_gain-d*fb_gain) # summation node 1

31 m.set_tf(e, a, G) # integrator 1

32 m.set_this_cycle(e2 , a*in_gain2-d*fb_gain2) # summation node 2

33 m.set_tf(e2, a2, G2) # integrator 2

34 m.set_next_cycle(y, a2>v_of, ce=fs) # quantiser

35 m.set_next_cycle(d, (y*3.3)) # DAC

Chapter 6

Model and Emulation
Verification

After introducing the mixed-signal CTΣ∆ models in the previous chapter, they
are validated in this chapter. The aim is to confirm the correctness of the msdsl
modulator models against the ideal Simulink models. The main tool for comparison
is signal-to-noise ratio (SNR). Additionally, the models are compared to the shape
of the ideal NTF to confirm that noise shaping takes place as intended. The msdsl
models are both verified in a number of different ways:

1. HDL simulation of a behavioural HDL model using SystemVerilog real type.
Call this run Sim. Real.

2. HDL simulation of a synthesizable RTL model using the fixed-point svreal
type. Call this run Simulation.

3. Emulation of the synthesized RTL model on an FPGA. Call this run Emulation

The former acts as a direct comparison to the floating-point Simulink models. The
next acts as a general verification of the generated RTL description, while the latter
ensures that the design is functional even after synthesis.

Before running any simulation or emulation, the synthesis results for each design
are presented. This is necessary to verify that the design fits onto the available
FPGA resources, and identify any potential timing related issues. The amount of
free FPGA resources also give an indication for the limits to larger potential designs.

First, the verification setups are detailed in Section 6.1, followed by synthesis
results in Section 6.2 and finally the results of the various model runs listed above are
presented in Sections 6.3 and 6.4 for the first- and second-order models respectively.
Section 6.5 concludes this chapter with a discussion of the results.

6.1 Verification Setup

Each modulator model is run for 20 periods of a 1kHz sine wave, or 20ms (only 10
periods, 10ms, are used for emulation). In order to remove modulator startup effects,
the first period is discarded. The resulting signal is windowed with a Hanning win-
dow and the power spectrum is calculated. Unless specified otherwise, a smoothed

39

40 CHAPTER 6. MODEL AND EMULATION VERIFICATION

Figure 6.1: Block diagram of simulation setup for standalone modulator

spectrum is presented. The frequency responses of different runs are compared,
rather than the time-domain signals in order to be less susceptible to small numeric
differences that could arise from the different number formats used in the Simulink
models (floating-point) and the emulated models (fixed-point). The ideal NTF of
each model is calculated using the MATLAB [32] Delta-Sigma toolbox [33], and is
overlaid on the frequency response. The expectation is that the frequency responses
show the 20dB/decade and 40dB/decade behaviour of the first- and second-order
response respectively.

For each run, the SNR will be calculated in the conventional 20kHz audio band-
width fb. This can be compared to the SNQR calculated using Equation (5.1). The
SNR calculation is performed by considering the signal power as the power in 3 bins
around 1000Hz of the main harmonic. SNR is then calculated as:

SNR � 10 log10

�
Psignal

Ptotal � Psignal

In the following, the details of the simulation and emulation are discussed.

6.1.1 HDL Simulation

The block diagram of the simulation setup for the standalone modulator is shown in
Figure 6.1. The input is generated at 100MHz as a real number and converted to an
svreal type in the testbench. Due to a limitation of the testbench and anasymod
framework, the outputs are all (over)sampled at 100MHz, though the block diagrams
show the underlying sample rates of the data.

6.1.2 Emulation

As discussed previously in Section 3.3.1, the BRAM limitation prohibits longer emu-
lation runs. This is especially true for the slow audio sample rates in the Σ∆ mod-
ulator.

Consider that one period of a 1kHz sine wave sampled at 100MHz consists of
100,000 samples. Monitoring the input and output of the modulator requires 26 bits
(25 for the svreal input, and 1 for the digital output) so a total 2.6Mb of data, This
amount of data is more than half of the available BRAM on the FPGA available.
Even if no other parts of the design require BRAM, only about 1.5 periods of data
could be collected.

Therefore, emulation of the modulator is not practical, because it cannot gener-
ate enough data for meaningful spectral analysis, thus excluding verification by ac-
tual emulation. However, event-driven HDL simulation of the synthesized gate-level
model (post-synthesis simulation) is possible, which should show identical behaviour
to the emulation running on the FPGA. While accurate, post-synthesis simulation
should be reserved for verifying and debugging the emulation itself – as opposed to

6.2. SYNTHESIS RESULTS 41

Figure 6.2: Block diagram of emulation setup for standalone modulator

verifying models – as it runs significantly slower than emulation. This is also the
reason why the run is shorter than the others.

Post-synthesis simulation results will be presented and for the rest of the chapter
emulation and post-synthesis simulation will be used interchangeably. A possible
solution to the BRAM limitation is given in the recommendations in Section 8.3

The setup used in post-synthesis simulation is shown in Figure 6.2. The reasons
for – and functions of – the I2S input and deserialise and to_svreal blocks will
become apparent in Chapter 7. For now, it is sufficient to say that a sine wave input
is generated at the input to the modulator, with the full range of the svreal floating
point type.

6.2 Synthesis Results

In order to get an idea of the size of the models, the area results are presented in
Tables 6.1 and 6.2 for the first and second-order models respectively. Percentages
less than 0.01% are rounded up to 0.01%. The FPGA used is a Xilinx XC7Z020
with 53,200 LUTs, 106,400 FFs, 140 BRAM blocks and 220 DSP slices [34]. The
total number of LUTs is split into LUTs used for logic and LUTs used for memory
(LUTRAM). BRAM is given in 36Kb blocks for a total of 4.9Mb.

It is evident that the anasymod control infrastructure takes the majority of
the resources. However, that comes down to the small size of the Σ∆ models. The
large BRAM usage of the traceport module is due to BRAM being reserved for
monitoring signals during emulation.

6.2.1 Timing Violations

Important to note are timing violations encountered during simulation. The viol-
ations are setup violations in the anasymod control infrastructure from the VIO
control inputs (sim_ctrl_gen), through the control infrastructure to the time man-
ager and further to the emulation clock generator (emu_clks). For reference of
these blocks and signals, refer back to Section 3.3 for Figure 3.2 and the detailed
description of the control infrastructure in Appendix B. The signal associated with
the violated path is emu_ctrl_data which is used to pass timing data to the time
manager in order to pause the emulation or force a certain timestep. There are
several setup violations along this path:

� From VIO control inputs (sim_ctrl_gen) to the time manager (time_manager)
with a slack of -2.8ns.

� From VIO control inputs (sim_ctrl_gen) to the oscillator (osc_model) with
a slack of -2.7ns.

42 CHAPTER 6. MODEL AND EMULATION VERIFICATION

Table 6.1: Area report of first-order modulator model

LUT Logic LUTRAM FF BRAM DSP

n % n % n % n % n %

Σ∆ model 52 0.10 0 0 50 0.05 0 0 2 0.91

anasymod 1981 3.72 193 1.11 3307 3.10 29.5 21.07 0 0
ë clk 0 0 0 0 0 0 0 0 0 0
ë emu_clks 2 0.01 0 0 2 0.01 0 0 0 0
ë osc_model 83 0.16 0 0 64 0.06 0 0 0 0
ë time_manager 80 0.15 0 0 64 0.06 0 0 0 0
ë ctrl_anasymod 258 0.48 0 0 24 0.02 0 0 0 0
ë sim_ctrl_gen 372 0.70 0 0 820 0.77 0 0 0 0
ë trace_port 754 1.42 169 0.97 1594 1.50 29.5 21.07 0 0
ë debug 432 0.81 24 0.14 739 0.69 0 0 0 0

Table 6.2: Area report of second-order modulator model

LUT Logic LUTRAM FF BRAM DSP

n % n % n % n % n %

Σ∆ model 134 0.25 0 0 118 0.11 0 0 7 3.18

anasymod 1976 3.73 193 1.11 3307 3.11 29.5 21.07 0 0
ë clk 0 0 0 0 0 0 0 0 0 0
ë emu_clks 2 0.01 0 0 2 0.01 0 0 0 0
ë osc_model 83 0.16 0 0 64 0.06 0 0 0 0
ë time_manager 80 0.15 0 0 64 0.06 0 0 0 0
ë ctrl_anasymod 254 0.48 0 0 24 0.02 0 0 0 0
ë sim_ctrl_gen 372 0.70 0 0 820 0.77 0 0 0 0
ë trace_port 753 1.42 169 0.97 1594 1.50 29.5 21.07 0 0
ë debug 432 0.81 24 0.14 739 0.69 0 0 0 0

� From VIO control inputs (sim_ctrl_gen) to the time manager (emu_clks)
with a slack of -10.8n.

Fortunately, the timing violations are not relevant for the testing methodology
used, as the BRAM limitations prevent use of the anasymod control infrastructure
for emulation anyway. Brief testing for short emulation durations has shown that
emulation still seems to work, likely because the fixed-timesep approach is less reliant
on the control infrastructure. Testing was not comprehensive enough to provide more
insight.

The above should not take away from the severity of the error however, which
definitely should be solved. While a simple solution would be to decrease the clock
frequency of the control infrastructure, this also limits the emulation clock, decreas-
ing time resolution.

In this case, the total setup time for the last violation is 20.8ns (10.8ns� 1
100MHz).

Reducing the emulation clock to fix the violation would require a clock of 48MHz;
less than half of the time resolution.

6.3. FIRST-ORDER MODEL 43

6.3 First-Order Model

Testing the standalone Σ∆ modulator with the setup from Figure 6.1, produces
the results shown in Figure 6.3. The fixed-point msdsl models (Simulation and
Emulation) produce similar results, though significantly different to the floating-
point simulations. All runs however, show SNR comparable to the theoretical 58dB,
and show expected 20dB/decade first-order noise shaping. Further, all models show
a pronounced third harmonic.

The lower SNR of the Simulink and floating-point msdsl model (Sim. Real)
is surprising, but clearly related to the difference in response, with those responses
showing extreme peaks. These responses are not smoothed, in order to show this
behaviour clearly. Since the number format is what these models have in common,
that is likely the cause of this behaviour.

6.4 Second-Order Model

Testing the second-order Σ∆ modulator produces the results shown in Figure 6.4.
Simulink, msdsl simulation and emulation all produce similar results, showing the
expected second-order noise shaping, but have a lower SNR than the theoretical
SNR of 92dB. These results are closer to expected results than for the first-order
model, with the peaks in the floating-point models no longer present. The emulated
bitstream shows more harmonics than the rest.

6.5 Discussion

While both models show approximately the desired noise shaping behaviour, the
results are not entirely conclusive. The expectation would be that the Simulink and
Sim. Real runs have almost identical behaviour with slightly higher SNR than the
Simulation and Emulation runs, which should also show near identical behaviour.
Differences between Simulation and emulation can be related to the difference in
run times. The floating-point effects in the first-order model remain unexplained,
however. On the other hand, there is no direct evidence for the msdsl models being
incorrectly modelled.

44 CHAPTER 6. MODEL AND EMULATION VERIFICATION

102 103 104 105 106

Frequency [Hz], RBW 53Hz

-150

-100

-50

0

M
a
g
n
it
u
d
e
 [
d
B

F
S

]

SNR Simulink: 57.3dB

SNR Sim. Real: 58.0dB

SNR Simulation: 59.5dB

SNR Emulation: 59.3dB

Input

Simulink

Sim. Real

Simulation

Emulation

Ideal NTF

Figure 6.3: Comparison of power spectra of bitstreams of first-order modulator

102 103 104 105 106

Frequency [Hz], RBW 53Hz

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 [
d
B

F
S

]

SNR Simulink: 88.1dB

SNR Sim. Real: 87.6dB

SNR Simulation: 88.4dB

SNR Emulation: 87.1dB

Input

Simulink

Sim. Real

Simulation

Emulation

Ideal NTF

Figure 6.4: Comparison of power spectra of bitstreams of second-order modulator

Chapter 7

Demo

In order to show the capabilities of emulation and parameter sweeping in real-time,
a demo has been set up and measured. The demo involves the implementation of the
CTΣ∆ models on an FPGA development board. The chosen board is a ZedBoard,
with a Xilinx Zynq-7020 SoC. This SoC incorporates the same XC7Z020 FPGA that
is targeted for synthesis in Section 6.2 (the PL part), as well as an ARM processor
(PS) which is not used the scope of the demo [34]. Moreover, the board incorporates
an audio codec, and ADCs which are accessible from the PL of the SoC [35].

The details of this implementation will be discussed in this chapter, starting
with the decimation structure in Section 7.1. Then the interfaces with the codec
and ADCs are presented in Sections 7.2 and 7.3 respectively, including the chal-
lenges encountered when interfacing svreal types with existing HDL descriptions.
Synthesis results are presented in Section 7.4. Verification and measurement of the
CTΣ∆ models are described in Sections 7.5 and 7.6 respectively, while the result
and presented in Section 7.7. A discussion of the demo setup and measurement
results in Section 7.8 concludes this chapter.

7.1 Decimation

The output of the decimation was originally a 16-bit 48.8kHz signal in [31], but has
been adapted to 24-bit to fit the audio codec on the ZedBoard. The decimation
structure decimates the 1-bit 6.25MHz bitstream into a 24-bit 48.8kHz audio signal.
The structure consists of three CIC filters, followed by FIR compensation filter which
outputs the final 24-bit signal. The CICs are implemented in custom VHDL, while
the compensation filter is implemented with the Xilinx FIR Compiler IP [36]. The
original sizes of the CICs have been increased, adding more bits at each intermediary
stage. Table 7.1 gives the details of the CIC decimation stages.

A separate SystemVerilog module generates the Σ∆ sample clock and the neces-
sary clocks for decimation from the 100MHz emulation clock `CLK_MSDSL.

7.2 CODEC

In order to implement the CTΣ∆ model as a standalone demo on an FPGA, there
needs to be a way of interfacing with analog signals. To this end, the Audio codec
on the ZedBoard is used, an Analog Devices ADAU1761 [37]. The codec contains

45

46 CHAPTER 7. DEMO

Table 7.1: Parameters of CIC decimation stages

Stage Name
Decimation
Factor

Sample
Rate In

Sample
Rate Out

Order
Intermediary

Bits
Bits Out

1 CIC0 8 6.25MHz 781kHz 2 10 8
2 CIC1 8 781kHz 97.7kHz 4 15 13
3 CIC2 2 97.7kHz 48.8kHz 16 29 16

Figure 7.1: Complete signal chain of demo setup with parameter sweeping

an ADC which generates a Inter-IC Sound (I2S) signal to send audio data to the
FPGA, and a DAC which takes an I2S signal from the FPGA. The interface to the
codec is based on work by Isaac Verdu [38], who implements an SPI connection to
configure the codec and blocks to serialize and deserialize the I2S signal to a 24-bit
audio signal1.

An extra DAC step is necessary to convert the deserialized I2S signal to an
“analog” svreal type for the modulator input. This is done by the block to_svreal.
An overview of the signal chain of the FPGA demo is shown in Figure 7.1. The more
detailed RTL hierarchy is given in Figure 7.2.

7.3 XADC

In order to sweep the desired parameters, a control input is required. In emula-
tion this input would be set using the anasymod control infrastructure. However,
use in a full FPGA implementation such as done with the CTΣ∆ models requires
an external input. To this end, the ADCs on the ZedBoard – part of the Xilinx
Analog-to-Digital Converter (XADC) – are used to read a voltage set using a po-
tentiometer. Using the Xilinx XADC Wizard [39], up to 3 ADCs can be used to set
parameter sweeps. Figure 7.1 shows how the XADC on the ZedBoard is integrated
for parameter sweeping.

7.4 Synthesis

The synthesis results of the full demo with the second-order modulator, decimator
and parameter sweeping of in_gain2, fb_gain and fb_gain2 are shown in Table 7.2.
Percentages less than 0.01% are rounded up to 0.01%. Comparing these to the area
reports in the previous sections, the anasymod framework uses the same area.
Again, the large BRAM usage of the traceport module is due to BRAM being

1This work is available on GitLab (https://gitlab.com/rtlaudiolab/fpga audio processor)

https://gitlab.com/rtlaudiolab/fpga_audio_processor

7.5. VERIFICATION 47

Figure 7.2: Block diagram of demo HDL description

Figure 7.3: Block diagram of verification signal chain of demo

reserved for monitoring signals during emulation, although for the demo use case
this could be reduced by adjusting the appropriate anasymod settings.

Comparing to the Σ∆ modulator from the previous chapter – which is identical
except for the added parameter sweeping – shows a clear increase in BRAM us-
age. This is no surprise, as the implementation relies on tables stored in BRAM.
Parameter sweeping also results in an increase in the number of LUTs involved in
calculating addresses. Of the additional five DSPs, three are related to scaling the
sweep control signals, while two are used to invert fb_gain and fb_gain2.

The area added by the digital design is dominated by the decimation, but
nowhere near the limits of the FPGA, and not limiting to anasymod or the msdsl
model, even with the extra overhead from parameter sweeping.

The same timing violations are encountered as described in Section 6.2.1. These
do not have an impact on the demo, however, as the anasymod control infrastruc-
ture is not used.

7.5 Verification

In order to verify functionality of the demo setup, post-synthesis HDL simulation is
done in the manner of Figure 7.3. The full system is simulated with an I2S input.
The output is sampled before the deserializer, in order to skip the step of converting
the final I2S signal. The input a 1V 1kHz sine wave for a duration of 10ms.

48 CHAPTER 7. DEMO

Table 7.2: Area report of demo with second-order model and parameter sweeping

LUT Logic LUTRAM FF BRAM DSP

n % n % n % n % n %

Σ∆ model 259 0.49 0 0 117 0.11 1.5 1.07 13 5.91
ë coefficients 0 0 0 0 0 0 1.5 1.07 0 0

anasymod 1978 3.72 193 1.11 3307 3.10 29.5 21.07 0 0
ë clk 0 0 0 0 0 0 0 0 0 0
ë emu_clks 2 0.01 0 0 2 0.01 0 0 0 0
ë osc_model 83 0.16 0 0 64 0.06 0 0 0 0
ë time_manager 80 0.15 0 0 64 0.06 0 0 0 0
ë ctrl_anasymod 255 0.48 0 0 24 0.02 0 0 0 0
ë sim_ctrl_gen 372 0.70 0 0 820 0.77 0 0 0 0
ë trace_port 754 1.42 169 0.97 1594 1.50 29.5 21.07 0 0
ë debug 432 0.81 24 0.14 739 0.69 0 0 0 0

digital 1050 1.97 47 0.27 1814 1.70 0 0 1 0.45
ë clkdiv 11 0.02 0 0 16 0.02 0 0 0 0
ë to_svreal 36 0.07 0 0 23 0.02 0 0 0 0
ë decimation 633 1.19 47 0.27 1376 1.29 0 0 1 0.45
ë xadc_wiz 0 0 0 0 0 0.05 0 0 0 0
ë read_xadc 3 0 0 0 54 0 0 0 0 0
ë codec 367 0.69 0 0 345 0.32 0 0 0 0

Figure 7.4: Signal chain of demo measurement setup

7.6 Measurements

After synthesis, the full Σ∆ converter is characterised on the FPGA. The block
diagram in Figure 7.4 shows the full system including the audio codec. For these
measurements no parameter sweeping is enabled. Measurements have been done
using the NI myDAQ as function generator and oscilloscope. Like in previous sim-
ulations and emulations, the input is a 1kHz sine wave at 1V.

The codec is characterised in the same manner as the converter, by sending the
data from the serializer directly to the deserializer, as shown in Figure 7.6.

7.7 Results

The post-synthesis results are shown in Figures 7.7 and 7.8 for the first-order and
second-order models respectively. These results show the spectra at different points
in the signal chain; after the bitstream (which is identical to the results in the
previous chapter), after the last CIC decimator (CIC2), and at the audio output
after the FIR filter. The droop introduced by the CICs is clearly visible, and barely
compensated by the FIR filter.

7.8. DISCUSSION 49

Figure 7.5: Physical demo measurement setup

Figure 7.6: Block diagram of codec verification

The measured response, compared to the standalone codec, for the second-order
CTΣ∆ is given in Figure 7.9 Comparing the measured results to the simulations and
emulation in the previous chapter shows clearly the adverse effects of decimation.
Due to the decimation stage in between, little can be said for the effect of emulation
on the results. However, given the attenuation shown in the intermediary stages in
Figure 7.7, 52dB SNR is plausible. The third harmonic present post-simulation is
not visible. Instead, there is a visible fourth harmonic.

For the second-order modulator, the results are shown in Figure 7.10 Compared
to the first-order modulator, the SNR is better as a result of higher order noise
shaping, but lower than expected. Furthermore, the noise floor is no longer flat.

7.8 Discussion

There are several noteworthy points in the post-synthesis and measurement results.
The first is that the effects of the FIR compensation filter are not visible, indicating
incorrect design of coefficients. The compensation filter only attenuates the output.
Second is the shaped noise floor of the second-order CTΣ∆ measurements.

The measurements do show that the demo works, however. While having low
quality, the CTΣ∆ does produce a distinguishable output. The design is probably
equally hindered by poor design of the decimation, as it is by effects of emulation.

50 CHAPTER 7. DEMO

102 103 104

Frequency [Hz], RBW 111Hz

-140

-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 [
d
B

F
S

]

Input

Bitstream

CIC2

Audio Output

Figure 7.7: Post-synthesis simulation power spectra of bitstream and output of first-
order converter

102 103 104

Frequency [Hz], RBW 111Hz

-140

-120

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 [
d
B

F
S

]

Input

Bitstream

CIC2

Audio Output

Figure 7.8: Post-synthesis simulation power spectra of bitstream and output of
second-order converter

The 74dB SNR of the codec itself is also low. Though the equal noise floor of the
converter and the standalone codec point to the rudimentary measurement setup as
the cause.

With all the added complexity, the demo is not an effective way of accessing the
correctness of an emulated model. Intermediary stages, including additional gain
stages in the codec ADC and DAC all need to be taken into account before isolating
the emulated design itself.

7.8. DISCUSSION 51

102 103 104

Frequency [Hz]

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 [
d
B

V
rm

s
]

SNR: 52.7dB

CODEC SNR: 74.0dB

Codec Response

Output

Noise Power in f
b

Figure 7.9: Measured power spectrum of first-order converter

102 103 104

Frequency [Hz]

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 [
d
B

V
rm

s
]

SNR: 61.0dB

CODEC SNR: 74.0dB

Codec Response

Output

Noise Power in f
b

Figure 7.10: Measured power spectrum of second-order converter

Chapter 8

Conclusions and
Recommendations

8.1 Conclusions

The guiding research question for this thesis was:

Can an analog mixed-signal design be emulated in real-time on an FPGA?

Before answering the overarching question, consider the sub-questions.

1. What tools are available for emulation on an FPGA?
Available tools were explored in Chapter 2. Only very few tools exist that support
emulation, and of these only one is open-source. Therefore, the set of tools svreal,
msdsl and anasymod were chosen as a basis for further exploration of emulation.

2. Which designs are suitable for emulation on an FPGA?
Whether a design is suitable for emulation comes down to the required accuracy
of the design. With regard to the size of design that is suitable for emulation,
Table 7.2 makes clear that emulation overhead takes only a small fraction of available
FPGA resources, and the CTΣ∆ model itself is also small, leaving space for much
larger designs. On the other hand, the available resources can be used to improve
the accuracy of the emulation, as the size of a model is related to the number of
coefficients in the state space description.

3. What models are appropriate for modelling analog behaviour?
The modelling options are explored broadly in Section 2.3 and in detail for msdsl in
Section 3.2. The preference for modelling methods is indeed to reduce the amount
of manual derivation. Thus, many tools focus on generating models from a netlist.
In msdsl however, this method is limited in complexity. Therefore, combining
modelling methods is the most comprehensive way to model a system, as done in the
CTΣ∆ converter model. The designer can choose between state-update equation,
differential equation, or transfer function modelling where the netlist is not sufficient.
Fortunately, this is easy to do in msdsl as modelling methods are easy to work
with, and each produce identical results, reducing the number of possible modelling
mistakes due to incorrect choice of technique.

53

54 CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

4. Which advantages does emulation present over conventional simulation?

As the results in Chapter 6 show, emulation comes very close to the accuracy of
Simulink simulation. But, due to the use of fixed-point numbers, the accuracy
of, for example SPICE simulations can not be matched. The level of detail possible
with emulation, as mentioned already, comes down to the available FPGA resources.
However, Chapter 4 presents a clear use case that cannot be matched by simulation.
Parameter sweeping was implemented in a way that makes it easy to add to existing
models, and thus use emulation for design-space exploration.

In short, the answer to the main research question:

Can an analog mixed-signal design be emulated in real-time on an FPGA?

Would be a resounding yes for the CTΣ∆ ADC. The FPGA demo shows that
reaching real-time emulation is well possible, while barely using the available FPGA
resources. However, due to the BRAM limitation that prevents long emulation runs,
it is hardly usable for verification using existing tools, where being able to monitor
internal signals directly is a requirement. Even if the BRAM limitation had not
been, however, the timing errors encountered during synthesis may have hindered
emulation, especially in real-time. The target of real-time emulation may not be
practical, and the emulation duration may be limited, but with the tools svreal,
msdsl and anasymod, there is a framework for emulating AMS designs on FPGA.
The limits to size and complexity are the resources of the FPGA and the necessary
manual derivation required to model a design with the existing built-in techniques.
If it were not for the shortcomings of the tool regarding signal monitoring and netlist
modelling, emulation does present a worthwhile workflow for verifying AMS designs.

8.2 Discussion

The conclusion presents a mix of promising results and large pitfalls. This is partly
due to shortcomings in the tool that were not able to be remedied in the scope of
this thesis, and partly due to the method used to evaluate emulation.

Starting with the latter, while the CTΣ∆ converter is a suitable design for
emulation, it is not complex enough to show the true capabilities of emulation, or
even make use of many of the modelling techniques. A more representative design
would be a transistor level design with more states. On the other hand, this would
require more manual derivation, as only few components are available to the netlist
modelling method of msdsl, while no manual derivation was necessary for the Σ∆
models because of the ideality of the models. What further confuses the testing with
the CTΣ∆ converter is the immaturity of the design. In the demo it is still unclear
whether some effects are due to the emulated model, or mistakes in the decimation
implementation.

The extension for parameter sweeping is still in its infancy as well, limited to
sweeping states in update equations. When parameter sweeping becomes especially
interesting, is when not just state variables, but also the parameter from which state
variables are derived, can be swept. Only more development and testing will show
whether design-space exploration with emulation proves to be a useful addition to
an analog designer’s toolbox.

8.3. RECOMMENDATIONS 55

With regard to the tools, not being able to extend the emulation duration, and
therefore not doing much emulation, makes the conclusion somewhat vague. The
low (audio) sample rates do not lend themselves to shorter testing within the BRAM
limitation encountered. Thus, the limited emulation testing that was done is not
presented, as it could not give any insight into the correctness of the emulated model.

8.3 Recommendations

Based on the discussion, it is evident that there is still much work to be done on
emulation; both in the exploration of existing tools, and in the development of these
tools.

8.3.1 Emulation Infrastructure

Starting with the largest obstacle to emulation in this work, the emulation duration
needs to be addressed. First, the ILA settings can be tuned, but the only document-
ation for how these settings are implemented is in the comments of the anasymod
source itself. Another solution exists, and is a method for stopping emulation when
BRAM is full, exporting the data to a host PC, and then resuming emulation,
writing to the same BRAM again. This involves an appropriate sequence of VIO
commands, as well as making sure that the timing of emulations is not affected.
Implementation of either of these solutions was not possible in the time-frame of
this thesis. Ideally, there is no limit to the duration of an emulation, or signals that
can be monitored.

Further, the effects of the timing errors need to be explored. Since it is the
limiting factor for emulation speed, an effort should be made to reduce the critical
paths in the anasymod control infrastructure, if indeed the present errors impact
emulation. If not, these parts of the infrastructure may be removed for fixed-timestep
emulation, simplifying the control infrastructure.

8.3.2 Model Verification

While this thesis makes a start at verifying the accuracy of the models produced
by msdsl, it could be more thorough. More testing is required with more ma-
ture designs. This could also lead into more detailed comparison to conventional
verification techniques, comparing accuracy, detail and speed in both the time and
frequency domain. Ideally, emulation should be implemented on a design that has
already been tested by an industry standard AMS verification method, and then
compared.

8.3.3 Modelling

As mentioned in the discussion, future testing should use more mature, and more
complex designs also to push the limits of synthesizable RTL modelling. In order
to avoid the manual derivation that comes with modelling such designs, a benefi-
cial extension to msdsl could be the building of a library of non-ideal components
with definable parameters, such as op-amps and comparators or, on a lower level,
transistors. This would make it easier to model real circuits and pave the way for
automatic model generation from, for example, an existing SPICE netlist. Entirely
removing manual modelling should be the goal to make emulation a useful tool.

56 CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

Another shortcoming of the models that should be addressed, is behaviour re-
lated to the svreal fixed-point number format. Support for saturation as an altern-
ative to wrap-around can prevent fixed-point-range-related modelling mistakes.

Variable-timestep modelling is almost entirely neglected in this work, despite
being the main reason for many of the functions of the anasymod control infra-
structure. Because of how close it comes to conventional event-driven simulation,
it certainly warrants its own exploration, especially as a way of improving time-
resolution in emulation.

Finally, the parameter sweeping extension to msdsl described in Chapter 4 is
still only a basic implementation. To be truly useful, it should be extended to sweep
parameters in several modelling methods, beginning with the ability to sweep a
parameter that affects multiple state-space coefficients.

Bibliography

[1] L. W. Nagel and D. Pederson, “SPICE (simulation program with
integrated circuit emphasis),” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M382, Apr. 1973. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

[2] D. Stanley, C. Wang, S.-J. Kim, S. Herbst, J. Kim, and M. Horowitz, “Fast
validation of mixed-signal SoCs,” IEEE Open Journal of the Solid-State Circuits
Society, vol. 1, pp. 184–195, 2021. doi: 10.1109/OJSSCS.2021.3122397

[3] S. G. Herbst, “An open-source framework for FPGA emulation
of analog/mixed-signal integrated circuit designs,” Ph.D. disserta-
tion, Stanford University, Jun. 2021. [Online]. Available: http:
//purl.stanford.edu/gj828vr5382

[4] S. Herbst, G. Rutsch, W. Ecker, and M. Horowitz, “An open-source framework
for FPGA emulation of analog/mixed-signal integrated circuit designs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 7, pp. 2223–2236, Jul. 2022. doi: 10.1109/TCAD.2021.3102516

[5] M. A. Zidan, A. G. Radwan, and K. N. Salama, “The effect of numerical tech-
niques on differential equation based chaotic generators,” in ICM 2011 Proceed-
ing, 2011, pp. 1–4. doi: 10.1109/ICM.2011.6177395

[6] Y. D. Staal, “FPGA emulation of analog subsystems for mixed-signal
integrated circuit prototyping,” Bachelor’s thesis, University of Twente, 2021.
[Online]. Available: http://essay.utwente.nl/87535/

[7] R. Bhattacharya, S. Biswas, and S. Mukhopadhyay, “FPGA based chip emu-
lation system for test development of analog and mixed signal circuits: A case
study of DC–DC buck converter,” Measurement, vol. 45, no. 8, pp. 1997–2020,
Oct. 2012. doi: 10.1016/J.MEASUREMENT.2012.04.022

[8] B. S. Deepaksubramanyan, P. Parakh, Z. Chen, H. Diab, D. Marcy, and
F. H. Schlereth, “An FPGA-based MOS circuit simulator,” in 48th Midwest
Symposium on Circuits and Systems, vol. 1, 2005, pp. 655–658 Vol. 1. doi:
10.1109/MWSCAS.2005.1594186

[9] S. Herbst. (2021) msdsl. [Online]. Available: https://git.io/msdsl

57

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
https://doi.org/10.1109/OJSSCS.2021.3122397
http://purl.stanford.edu/gj828vr5382
http://purl.stanford.edu/gj828vr5382
https://doi.org/10.1109/TCAD.2021.3102516
https://doi.org/10.1109/ICM.2011.6177395
http://essay.utwente.nl/87535/
https://doi.org/10.1016/J.MEASUREMENT.2012.04.022
https://doi.org/10.1109/MWSCAS.2005.1594186
https://git.io/msdsl

58 BIBLIOGRAPHY

[10] W. Wu, Y. L. Chen, Y. Ma, C. N. J. Liu, J. Y. Jou, S. Pamarti, and L. He,
“Wave digital filter based analog circuit emulation on FPGA,” in 2016 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), Jul. 2016, pp. 1286–
1289. doi: 10.1109/ISCAS.2016.7527483

[11] P. Tertel and L. Hedrich, “Real-time emulation of block-based analog circuits on
an FPGA,” in 2017 14th International Conference on Synthesis, Modeling, Ana-
lysis and Simulation Methods and Applications to Circuit Design (SMACD),
Jul. 2017, pp. 1–4. doi: 10.1109/SMACD.2017.7981562

[12] R. A. Cottrell, “Event-driven behavioural simulation of analogue transfer func-
tions,” in Proceedings of the European Design Automation Conference, 1990.,
EDAC., 1990, pp. 240–243. doi: 10.1109/EDAC.1990.136652

[13] F. Pichon, S. Blanc, and B. Candaele, “Mixed-signal modelling in VHDL for
system-on-chip applications,” in Proceedings the European Design and Test
Conference. ED&TC 1995. Association for Computing Machinery, Inc, Mar.
1995, pp. 218–222. doi: 10.1109/EDTC.1995.470400

[14] B. C. Lim and M. Horowitz, “Error control and limit cycle elimination in event-
driven piecewise linear analog functional models,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 63, no. 1, pp. 23–33, Jan. 2016. doi:
10.1109/TCSI.2015.2512699

[15] J. E. Jang, M. J. Park, D. Lee, and J. Kim, “True event-driven simulation of
analog/mixed-signal behaviors in SystemVerilog: A decision-feedback equaliz-
ing (DFE) receiver example,” in Proceedings of the IEEE 2012 Custom Integ-
rated Circuits Conference, 2012, pp. 1–4. doi: 10.1109/CICC.2012.6330558

[16] S. Herbst, B. C. Lim, and M. Horowitz, “Fast FPGA emulation of ana-
log dynamics in digitally-driven systems,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov. 2018, p. 1–8. doi:
10.1145/3240765.3240808

[17] J. Kim, “Efficient simulation of analog/mixed-signal circuits in SystemVerilog
with auto-generated models,” presented at the 2022 IEEE Custom Integrated
Circuits Conference (CICC), Apr. 2022, Presentation.

[18] XMODEL: Empower SystemVerilog with event-driven analog models. Scientific
Analog. [Online]. Available: https://www.scianalog.com/xmodel/

[19] B. C. Lim and M. Horowitz, “An analog model template library: Simplifying
chip-level, mixed-signal design verification,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 193–204, Jan. 2019. doi:
10.1109/TVLSI.2018.2873387

[20] S. Herbst. (2021) svreal. [Online]. Available: https://git.io/svreal

[21] G. Rutsch and S. Herbst. (2021) anasymod. [Online]. Available: https:
//git.io/anasymod

https://doi.org/10.1109/ISCAS.2016.7527483
https://doi.org/10.1109/SMACD.2017.7981562
https://doi.org/10.1109/EDAC.1990.136652
https://doi.org/10.1109/EDTC.1995.470400
https://doi.org/10.1109/TCSI.2015.2512699
https://doi.org/10.1109/CICC.2012.6330558
https://doi.org/10.1145/3240765.3240808
https://www.scianalog.com/xmodel/
https://doi.org/10.1109/TVLSI.2018.2873387
https://git.io/svreal
https://git.io/anasymod
https://git.io/anasymod

BIBLIOGRAPHY 59

[22] J. R. Hauser. (2019) Berkeley HardFloat. [Online]. Available: http:
//www.jhauser.us/arithmetic/HardFloat.html

[23] Z. Gajic, Linear Dynamic Systems and Signals. Prentice Hall, 2002.

[24] (2022) scipy.signal.cont2discrete. The SciPy Community. [Online].
Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
cont2discrete.html

[25] S. Williams. (2021) Icarus Verilog. [Online]. Available: http://iverilog.icarus.
com/

[26] (2020) Vivado v2020.1. Xilinx, Inc. San Jose. [Online]. Available: https:
//www.xilinx.com/products/design-tools/vivado.html

[27] Virtual Input/Output v3.0 Product Guide (PG159), Xilinx Inc., 2018. [Online].
Available: https://docs.xilinx.com/v/u/en-US/pg159-vio

[28] Integrated Logic Analyzer (ILA) v6.2 Product Guide (PG172), Xilinx Inc.,
2016. [Online]. Available: https://docs.xilinx.com/v/u/en-US/pg172-ila

[29] M. J. Pelgrom, Analog-to-Digital Conversion, 4th ed. Springer Cham, 2022.
doi: 10.1007/978-3-030-90808-9

[30] E. B. Hogenauer, “An economical class of digital filters for decimation and
interpolation,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 29, no. 2, pp. 155–162, Apr. 1981. doi: 10.1109/TASSP.1981.1163535

[31] J. Huiden, L. van Dijk, M. van Minnen, and N. Sulzer, “System-on-chip design:
Final project,” Final project report, SoC Design course, University of Twente,
Jan. 2021, unpublished.

[32] (2022) MATLAB R2022a. The Mathworks Inc. Natick, MA, USA. [Online].
Available: https://nl.mathworks.com/products/matlab.html

[33] R. Schreier, S. Pavan, and G. C. Temes, Understanding Delta-Sigma
Data Converters, 2nd ed. John Wiley & Sons, Inc., Apr. 2017. doi:
10.1002/9781119258308

[34] Zynq-7000 SoC Data Sheet: Overview (DS190), Xilinx, Inc., 2018. [Online].
Available: https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

[35] ZedBoard (Zynq Evaluation and Development) Hardware User’s Guide, Avnet,
Inc., Jan. 2014, v2.2. [Online]. Available: https://digilent.com/reference/
media/zedboard:zedboard ug.pdf

[36] FIR Compiler v7.2 Product Guide (PG149), Xilinx Inc., 2021. [Online].
Available: https://docs.xilinx.com/v/u/en-US/pg149-fir-compiler

[37] “SigmaDSP Stereo, Low Power, 96 kHz, 24-Bit Audio Codec with Integrated
PLL,” Analog Devices, Inc., Oct. 2018. [Online]. Available: https://www.
analog.com/media/en/technical-documentation/data-sheets/ADAU1761.pdf

http://www.jhauser.us/arithmetic/HardFloat.html
http://www.jhauser.us/arithmetic/HardFloat.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html
http://iverilog.icarus.com/
http://iverilog.icarus.com/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://docs.xilinx.com/v/u/en-US/pg159-vio
https://docs.xilinx.com/v/u/en-US/pg172-ila
https://doi.org/10.1007/978-3-030-90808-9
https://doi.org/10.1109/TASSP.1981.1163535
https://nl.mathworks.com/products/matlab.html
https://doi.org/10.1002/9781119258308
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://digilent.com/reference/_media/zedboard:zedboard_ug.pdf
https://digilent.com/reference/_media/zedboard:zedboard_ug.pdf
https://docs.xilinx.com/v/u/en-US/pg149-fir-compiler
https://www.analog.com/media/en/technical-documentation/data-sheets/ADAU1761.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADAU1761.pdf

60 BIBLIOGRAPHY

[38] I. Verdu. (2021, Jul.) Zedboard audio processor. [Online]. Available:
https://rtlaudiolab.com/blog/001-zedboard-audio-processor

[39] XADC Wizard v3.3 Product Guide (PG091), Xilinx Inc., 2016. [Online].
Available: https://docs.xilinx.com/v/u/en-US/pg091-xadc-wiz

https://rtlaudiolab.com/blog/001-zedboard-audio-processor
https://docs.xilinx.com/v/u/en-US/pg091-xadc-wiz

Appendix A

Post-Synthesis Simulation with
anasymod

This appendix documents the extension to anasymod1 enabling post-synthesis
event-driven simulation with Xilinx Vivado directly from anasymod. The exten-
sion2 is not meant to be final code, but a preliminary implementation.

A.1 Infrastructure

Interaction with Vivado is done by calling Vivado in headless mode with a TCL
script containing commands to be run by Vivado. These TCL scripts are gener-
ated by anasymod based on templates, before being passed to Vivado. Enabling
post-synthesis simulation thus requires sending the appropriate TCL commands to
Vivado. The post-synthesis simulation workflow is as follows:

1. Create a Vivado project
2. Add necessary files to the project fileset
3. Run synthesis

(Open existing project)
4. Create a post-synthesis simulation fileset
5. Open post-synthesis simulation
6. Configure and run post-synthesis simulation

The first three steps are identical to those of bitstream generation. Since bitstream
generation does not take much time compared to synthesis, the first three steps
are not implemented for post synthesis simulation, instead, an exiting project is
opened. Thus, running bitstream generation is required before running post-synthesis
simulation.

The main anasymod class is Analysis, in analysis.py. From this class,
simulation, emulation, and other workflows can be called, including the new post-
synthesis simulation. Starting a workflow amounts to calling a function in a class
– in this case VivadoEmulation – which generates the TCL script that is passed
to Vivado. This class is a subclass of VivadoTCLGenerator, which is a subclass of
CodeGenerator, responsible, as the name suggest, for generating code to a file. The

1anasymod by S. Herbst and G. Rutsch is available on GitHub (https://git.io/anasymod)
2The extension is available as fork of anasymod on GitHub (https://github.com/nsulzer/

anasymod)

61

https://git.io/anasymod
https://github.com/nsulzer/anasymod
https://github.com/nsulzer/anasymod

62 APPENDIX A. POST-SYNTHESIS SIMULATION WITH ANASYMOD

generated TCL scripts contains commands for opening an existing project, creating
the simulation fileset (step 4), open the simulation (step 5), and configuring and
running the simulation (step 6).

Step 6 is executed by passing another TCL script to Vivado to configure the
wave window, and run the simulation. This script can either be user-generated or
automatically generated from anasymod. If the script is user-generated, it is passed
as an argument to the workflow post-simulation workflow function in the Analysis
class. Else it is generated by that function.

Note that there is a known bug in Vivado, due to which signals that are not
shown in the signal window will not be considered in simulation, and therefore not
written to file. One solution seems to be to re-run the simulation.

A.2 Implementation

The implementation adds three functions to three respective files. These are de-
scribed below:

open_project(project_name, project_directory,full_part_name)

This function in the file generators/vivado.py, of the general VivadoTCLGenerator
class generates TCL commands to open an existing Vivado project, based on the
project location and naming conventions followed by anasymod. The function code
is shown in Listing A.1.

post_simulate(tcl_script)

This function in the file emu/vivado_emu.py, of the VivadoEmulation class gener-
ates a TCL and calls Vivado with said script. The TCL script contains commands
for opening a project, and steps 4-6 from the list above. The function code is shown
in Listing A.2.

simulate_post(tcl_script)

This function in the file analysis.py, of the main anasymod Analysis class calls
the function post_simulate. Before doing so, results folders are created, and no
tcl_script is given, it is generated, via the CodeGenerator class. The function
code is shown in Listing A.3.

A.3 Listings

Listing A.1: Generating TCL commands for opening a Vivado project
Python

41 def open_project(self, project_name,

project_directory,full_part_name=None):ãÑ

42 # open the project

43 cmd = ['open_project']

44 cmd.append('"'+back2fwd(project_directory+'/'+project_name)+'.xpr''"')

45 if full_part_name is not None:

46 cmd.extend(['-part', full_part_name])

47 self.writeln(' '.join(cmd))

A.3. LISTINGS 63

Listing A.2: Generating TCL commands to run post-synthesis simulation in Vivado
Python

229 def post_simulate(self, tcl_script):

230

231 project_root = self.target.project_root

232

233 self.open_project(

234 project_name=self.target.prj_cfg.vivado_config.project_name,

235 project_directory=project_root

236 # full_part_name=self.target.prj_cfg.board.full_part_name

237)

238

239 self.writeln('# Post synthesis simulation')

240 self.set_property('top', '{post_tb}', '[get_filesets {sim_1}]')

241 self.add_project_defines(content=self.target.content,

fileset='[get_filesets {sim_1}]')ãÑ

...

258 if tcl_script is not None:

259 self.set_property('{xsim.simulate.custom_tcl}',

f'{{{back2fwd(tcl_script)}}}', '[get_fileset sim_1]')ãÑ

260 self.writeln('launch_simulation -mode post-implementation -type

functional')\ãÑ

261 # run post simulation

262 try:

263 self.run(filename=r"post_simulation.tcl")

264 except:

265 # remove and restore drive substitutions

266 if os.name == 'nt':

267 if self.subst:

268 try:

269 subprocess.call(f'subst {drive} /d', shell=True)

270 except:

271 print(f'WARNING: Removing mapped drive:{drive} did not

work.')ãÑ

272 if self.old_subst:

273 try:

274 subprocess.call(f'subst {drive} {self.old_subst}',

shell=True)ãÑ

275 except:

276 print(f'WARNING: Mapping of drive:{drive} to

network path: {self.old_subst} did not work.')ãÑ

277 # then re-raise the original exception

278 raise

64 APPENDIX A. POST-SYNTHESIS SIMULATION WITH ANASYMOD

Listing A.3: Calling post-synthesis simulation in anasymod
Python

345 def simulate_post(self, tcl_script=None):

346 """

347 Run post-implementation simulation

348

349 :param tcl_script: custom TCL file for running the simulation

350 """

351

352 if not hasattr(self, self.act_fpga_target):

353 self._setup_targets(target=self.act_fpga_target,

gen_structures=True)ãÑ

354

355 # Check if active target is an FPGA target

356 target = getattr(self, self.act_fpga_target)

357

358 # create sim result folders

359 if not os.path.exists(os.path.dirname(target.cfg.vcd_path)):

360 mkdir_p(os.path.dirname(target.cfg.vcd_path))

361

362 if not os.path.exists(os.path.dirname(target.result_path_raw)):

363 mkdir_p(os.path.dirname(target.result_path_raw))

364

365 if tcl_script is None:

366 codegen = CodeGenerator()

367 codegen.writeln(f'set curr_wave [current_wave_config]')

368 codegen.writeln(f'if {{ [string length $curr_wave] == 0 }} {{')

369 codegen.writeln(f' if {{ [llength [get_objects]] > 0}} {{')

370 codegen.writeln(f' add_wave /')

371 codegen.writeln(f' set_property needs_save false

[current_wave_config]')ãÑ

372 codegen.writeln(f' }} else {{')

373 codegen.writeln(f' send_msg_id Add_Wave-1 WARNING "No top level

signals found. Simulator will start without a wave window."')ãÑ

374 codegen.writeln(f' }}')

375 codegen.writeln(f'}}')

376 codegen.writeln(f'run all')

377 tcl_script = os.path.join(target.prj_cfg.build_root,

'post_sim.tcl')ãÑ

378 codegen.write_to_file(tcl_script)

379

380 # run the post-simulation

381 VivadoEmulation(target=target).post_simulate(tcl_script)

382

383 statpro.statpro_update(statpro.FEATURES.anasymod_post_vivado)

Appendix B

anasymod Control
Infrastructure

This chapter gives an overview of the control infrastructure generated by anasy-
mod1, as the documentation from the tool itself is lacking. Not all details of vari-
able timestep management and clock generation are discussed; details of these can
be found in Chapter 5.3 of [3]. Rather, this piece focuses on the implementation
of the infrastructure and its generation in SystemVerilog and Python respectively.
Where necessary, the anasymod Python library is referenced.

Appendix B.1 gives an overview of the functions of each module. Appendix B.2
gives a description of each signal, and the data it carries. The connections of modules
and signals are shown in Figure B.1.

B.1 Modules

Many of the modules are generated from templates in Python, so called structures.
This way the SystemVerilog modules can be modified depending on the config files
prj.yaml, clks.yaml and simctrl.yaml. The function of each module is outlined
below.

clk gen is a wrapper for Xilinx IP that generates a clock with double the emu-
lation clock frequency, and any other required independent clocks,
from a master clock. Independent clocks are specified in the config
file clks.yaml.

gen time manager

calculates the minimum of all timestep requests, and communicates
this value back as emu_dt. It also keeps track of emu_time, the ab-
solute emulation time across varying timesteps.

osc model is required for designs that do not generate any analog clocks. In
that case, this module creates the timestep requests (emu_dt_req)
required for the desired emulation frequency that is eventually tied
to `CLK_MSDSL.

1anasymod by S. Herbst and G. Rutsch is available on GitHub (https://git.io/anasymod)

65

https://git.io/anasymod

66 APPENDIX B. ANASYMOD CONTROL INFRASTRUCTURE

Figure B.1: anasymod control infrastructure

gen emu clks

generates the actual clocks as requested by modules such as the os-
cillator. These clocks are synchronised to the master emulation clock
emu_clk_2x. This synchronisation limits the time-resolution of any
clock to that of the emulation clock, as the rising edges are aligned.

sim ctrl gen

is a wrapper for the Xilinx Virtual-IO (VIO) IP required for emu-
lation control from a host PC, as will be explained in the following
section. The global reset signal emu_rst, accessed with the macro
`RST_MSDSL is also generated here. During simulation, it is a wrap-
per for the for user-written module sim_ctrl for simulation control.

trace port gen

is a wrapper for the Xilinx Integrated Logic Analyzer (ILA) IP used
for monitoring signals in the design. Inputs to this module are signal
probes specified in simctrl.yaml.

ctrl anasymod

is responsible for emulation control such as starting, pausing, and
stopping emulation by influencing the time manager. It takes a num-
ber of signals from trace_port to switch between these modes.

tb is a user-written module and acts as a testbench for any msdsl and
custom hardware description language (HDL) modules, essentially it
is the design under test (DUT). All analog signals generated in the
rest of the control infrastructure are inputs to this module.

gen top is the top-level entity that instantiates all of these modules.

B.2. SIGNALS 67

B.2 Signals

emu_dt The size of the timestep taken.

emu_clk The clock representing timestep changes.

emu_time Counts the emulation time in number of minimum timesteps.

emu_rst Reset signal.

emu_clk_2x Clock used to synchronise other clocks to. Twice the emulation clock
frequency.

clk_val_default_osc

The un-synchronised clock generated by the oscillator.

clk_default_osc

The main emulation clock tied to `CLK_MSDSL, generated by the os-
cillator and synchronised to emu_clk.

dt_req_osc Timestep request from the oscillator.

clock_in Clock signal from the field-programmable gate array (FPGA).

emu_dec_thr Manage decimation ratio for capturing probe samples.

emu_dec_cmp Triggers sampling of the ILA based on emu_dec_th.

emu_dt_stall

Carries a signal telling the time manager to stall the emulator.

emu_ctrl_mode

The mode of the emulator. This signal is used to determine the state
of emu_dt_stall:

0 Run emulator. Set emu_dt_stall to 0.

1 Stall emulator. Set emu_dt_stall to 1.

2 Stall emulator after a certain time.

3 Stall emulation when certain time is reached.

emu_ctrl_data

Carries data used by emu_ctrl_mode, such as the time.

Other ports Physical FPGA pins passed to the testbench.

control signals
Signals specified in simctrl.yaml, passed to the ILA.

68 APPENDIX B. ANASYMOD CONTROL INFRASTRUCTURE

B.3 Extensions

Two small extensions have been made to the control infrastructure. They are avail-
able in a fork of anasymod2. These extensions are not explained in further details,
as they are rather simple. Both add options to prj.yaml, which add code in struc-
ture generation.

B.3.1 Write Signals to File

This extension adds code to write signals specified in simctrl.yaml to file. The
structure for gen_top is extended with code to create and open files, and write the
specified signals to file. An option probe_to_file is added that is configurable from
prj.yaml.

B.3.2 Physical Ports

The second extension is for passing physical pins to and from the FPGA, through
gen_top. The ports specified in prj.yaml are added as input and output ports to
gen_top and passed to tb.

2The fork is available on GitHub https://github.com/nsulzer/anasymod

https://github.com/nsulzer/anasymod

Appendix C

Code Listings

C.1 Generated SystemVerilog Descriptions

Listing C.1: Generated HDL description from msdsl DE
SystemVerilog

1 `timescale 1ns/1ps

2

3 `include "svreal.sv"

4 `include "msdsl.sv"

5

6 `default_nettype none

7

8 module rc_de #(

9 `DECL_REAL(v_in),

10 `DECL_REAL(v_out)

11) (

12 `INPUT_REAL(v_in),

13 `OUTPUT_REAL(v_out)

14);

15 // Assign signal: v_out

16 `MUL_CONST_REAL(0.9048374180359596, v_out, tmp0);

17 `MUL_CONST_REAL(0.09516258196404037, v_in, tmp1);

18 `ADD_REAL(tmp0, tmp1, tmp2);

19 `DFF_INTO_REAL(tmp2, v_out, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

20 endmodule

21

22 `default_nettype wire

69

70 APPENDIX C. CODE LISTINGS

Listing C.2: Generated HDL description from msdsl TF
SystemVerilog

1 `timescale 1ns/1ps

2

3 `include "svreal.sv"

4 `include "msdsl.sv"

5

6 `default_nettype none

7

8 module rc_tf #(

9 `DECL_REAL(v_in),

10 `DECL_REAL(v_out)

11) (

12 `INPUT_REAL(v_in),

13 `OUTPUT_REAL(v_out)

14);

15 // Declaring internal variables.

16 `MAKE_FORMAT_REAL(v_in_1, `RANGE_PARAM_REAL(v_in),

`WIDTH_PARAM_REAL(v_in), `EXPONENT_PARAM_REAL(v_in));ãÑ

17 `MAKE_FORMAT_REAL(v_out_1, `RANGE_PARAM_REAL(v_out),

`WIDTH_PARAM_REAL(v_out), `EXPONENT_PARAM_REAL(v_out));ãÑ

18 // Assign signal: v_in_1

19 `DFF_INTO_REAL(v_in, v_in_1, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

20 // Assign signal: v_out_1

21 `DFF_INTO_REAL(v_out, v_out_1, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

22 // Assign signal: v_out

23 `MUL_CONST_REAL(0.09516258196404048, v_in_1, tmp0);

24 `MUL_CONST_REAL(0.9048374180359597, v_out, tmp1);

25 `ADD_REAL(tmp0, tmp1, tmp2);

26 `DFF_INTO_REAL(tmp2, v_out, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

27 endmodule

28

29 `default_nettype wire

C.1. GENERATED SYSTEMVERILOG DESCRIPTIONS 71

Listing C.3: Generated HDL description from msdsl netlist
SystemVerilog

1 `timescale 1ns/1ps

2

3 `include "svreal.sv"

4 `include "msdsl.sv"

5

6 `default_nettype none

7

8 module rc_nl #(

9 `DECL_REAL(v_in),

10 `DECL_REAL(v_out)

11) (

12 `INPUT_REAL(v_in),

13 `OUTPUT_REAL(v_out)

14);

15 // Declaring internal variables.

16 `MAKE_REAL(tmp_circ_2, `RANGE_PARAM_REAL(v_in));

17 // Assign signal: tmp_circ_2

18 `MUL_CONST_REAL(0.9048374180359596, tmp_circ_2, tmp0);

19 `MUL_CONST_REAL(0.09516258196404037, v_in, tmp1);

20 `ADD_REAL(tmp0, tmp1, tmp2);

21 `DFF_INTO_REAL(tmp2, tmp_circ_2, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

22 // Assign signal: v_out

23 `ASSIGN_REAL(tmp_circ_2, v_out);

24 endmodule

25

26 `default_nettype wire

72 APPENDIX C. CODE LISTINGS

Listing C.4: Generated HDL description from msdsl DE with switch
SystemVerilog

1 `timescale 1ns/1ps

2

3 `include "svreal.sv"

4 `include "msdsl.sv"

5

6 `default_nettype none

7

8 module rc_de_sw #(

9 `DECL_REAL(v_in),

10 `DECL_REAL(v_out)

11) (

12 `INPUT_REAL(v_in),

13 `OUTPUT_REAL(v_out),

14 input wire logic sw

15);

16 // Assign signal: v_out

17 `MAKE_SHORT_REAL(tmp1, 0.944862054881934);

18 `MUL_REAL(tmp1, v_out, tmp0);

19 always @(*) begin

20 case (sw)

21 0: tmp1 = `FROM_REAL(0.9355069850316178, tmp1);

22 1: tmp1 = `FROM_REAL(0.8187307530779819, tmp1);

23 default: tmp1 = 0;

24 endcase

25 end

26 `MAKE_SHORT_REAL(tmp3, 0.18308193939123826);

27 `MUL_REAL(tmp3, v_in, tmp2);

28 always @(*) begin

29 case (sw)

30 0: tmp3 = `FROM_REAL(0.06449301496838222, tmp3);

31 1: tmp3 = `FROM_REAL(0.18126924692201807, tmp3);

32 default: tmp3 = 0;

33 endcase

34 end

35 `ADD_REAL(tmp0, tmp2, tmp4);

36 `DFF_INTO_REAL(tmp4, v_out, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

37 endmodule

38

39 `default_nettype wire

C.1. GENERATED SYSTEMVERILOG DESCRIPTIONS 73

Listing C.5: Generated HDL description from msdsl update equation with variable-
timestep

SystemVerilog

1 `timescale 1ns/1ps

2

3 `include "svreal.sv"

4 `include "msdsl.sv"

5

6 `default_nettype none

7

8 module rc_eq_pwl #(

9 `DECL_REAL(v_in),

10 `DECL_REAL(v_out),

11 `DECL_REAL(dt)

12) (

13 `INPUT_REAL(v_in),

14 `OUTPUT_REAL(v_out),

15 `INPUT_REAL(dt)

16);

17 // Declaring internal variables.

18 `MAKE_FORMAT_REAL(real_func_0_coeff_0_0, 1.01, 18, -16);

19 `MAKE_FORMAT_REAL(real_func_0_coeff_1_0, 0.019573024820237348, 18,

-22);ãÑ

20 `MAKE_REAL(real_func_0_prod_del_0_0, 1.01);

21 `MAKE_FORMAT_REAL(v_in_1, `RANGE_PARAM_REAL(v_in),

`WIDTH_PARAM_REAL(v_in), `EXPONENT_PARAM_REAL(v_in));ãÑ

22 `MAKE_FORMAT_REAL(v_out_1, `RANGE_PARAM_REAL(v_out),

`WIDTH_PARAM_REAL(v_out), `EXPONENT_PARAM_REAL(v_out));ãÑ

23 // Assign signal: real_func_0_addr_real_0

24 `MAKE_CONST_REAL(5.109999999999999, tmp0);

25 `MAKE_REAL(real_func_0_addr_real_0, 511.0);

26 `ASSIGN_REAL(tmp0, real_func_0_addr_real_0);

27 // Assign signal: real_func_0_addr_sint_0

28 `REAL_TO_INT(real_func_0_addr_real_0, 10, tmp1);

29 logic signed tmp2;

30 assign tmp2 = 0;

31 logic signed [9:0] tmp3;

32 assign tmp3 = ((tmp1 > tmp2) ? tmp1 : tmp2);

33 logic signed [9:0] tmp4;

34 assign tmp4 = 511;

35 logic signed [9:0] tmp5;

36 assign tmp5 = ((tmp3 < tmp4) ? tmp3 : tmp4);

37 logic signed [9:0] real_func_0_addr_sint_0;

38 assign real_func_0_addr_sint_0 = tmp5;

39 // Assign signal: real_func_0_addr_uint_0

40 logic [8:0] tmp6;

41 assign tmp6 = real_func_0_addr_sint_0[8:0]; // SInt -> UInt

42 logic [8:0] real_func_0_addr_uint_0;

43 assign real_func_0_addr_uint_0 = tmp6;

44 // Assign signal: real_func_0_addr_frac_0

45 logic signed tmp8;

46 assign tmp8 = -1;

47 logic signed [9:0] tmp9;

74 APPENDIX C. CODE LISTINGS

48 assign tmp9 = (real_func_0_addr_sint_0*tmp8);

49 `INT_TO_REAL(tmp9, 10, tmp7);

50 `ADD_REAL(real_func_0_addr_real_0, tmp7, tmp10);

51 `MAKE_REAL(real_func_0_addr_frac_0, 1.01);

52 `ASSIGN_REAL(tmp10, real_func_0_addr_frac_0);

53 // Assign signal: real_func_0_coeff_0_0

54 `SYNC_ROM_INTO_REAL(real_func_0_addr_uint_0, real_func_0_coeff_0_0,

`CLK_MSDSL, 1'b1, 9, 18, "path/to/real_func_0_lut_0_exp_-16.mem",

-16);

ãÑ

ãÑ

55 // Assign signal: real_func_0_coeff_1_0

56 `SYNC_ROM_INTO_REAL(real_func_0_addr_uint_0, real_func_0_coeff_1_0,

`CLK_MSDSL, 1'b1, 9, 18, "path/to/real_func_0_lut_1_exp_-22.mem",

-22);

ãÑ

ãÑ

57 // Assign signal: real_func_0_prod_imm_0_0

58 `MAKE_REAL(real_func_0_prod_imm_0_0, 1.01);

59 `ASSIGN_REAL(real_func_0_addr_frac_0, real_func_0_prod_imm_0_0);

60 // Assign signal: real_func_0_prod_del_0_0

61 `DFF_INTO_REAL(real_func_0_prod_imm_0_0, real_func_0_prod_del_0_0,

`RST_MSDSL, `CLK_MSDSL, 1'b1, 0);ãÑ

62 // Assign signal: a

63 `MUL_REAL(real_func_0_coeff_1_0, real_func_0_prod_del_0_0, tmp11);

64 `ADD_REAL(real_func_0_coeff_0_0, tmp11, tmp12);

65 `MAKE_REAL(a, 1.0297687550684398);

66 `ASSIGN_REAL(tmp12, a);

67 // Assign signal: v_in_1

68 `DFF_INTO_REAL(v_in, v_in_1, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

69 // Assign signal: v_out_1

70 `DFF_INTO_REAL(v_out, v_out_1, `RST_MSDSL, `CLK_MSDSL, 1'b1, 0);

71 // Assign signal: v_out

72 `MUL_REAL(a, v_out_1, tmp13);

73 `NEGATE_REAL(a, tmp14);

74 `MAKE_CONST_REAL(1.0, tmp15);

75 `ADD_REAL(tmp14, tmp15, tmp16);

76 `MUL_REAL(tmp16, v_in_1, tmp17);

77 `ADD_REAL(tmp13, tmp17, tmp18);

78 `ASSIGN_REAL(tmp18, v_out);

79 endmodule

80

81 `default_nettype wire

C.2. PYTHON MSDSL MODELS 75

C.2 Python msdsl Models

Listing C.6: Modelling a DE with a switch in msdsl
Python

1 from pathlib import Path

2 from argparse import ArgumentParser

3 from msdsl import MixedSignalModel, VerilogGenerator, Deriv, eqn_case

4

5

6 def make_model(name, build_dir, dt=1e6, r=1e3, c=1e-9):

7 m = MixedSignalModel(name, dt=dt, build_dir=build_dir)

8 m.add_analog_input('v_in')

9 m.add_analog_output('v_out')

10 m.add_digital_input('sw')

11

12 # apply dynamics

13 r1, r2 = r+0.5e3, r-0.5e3

14 rsw = eqn_case([1/r1, 1/r2], [m.sw])

15 m.add_eqn_sys([c*Deriv(m.v_out) == (m.v_in-m.v_out)*rsw])

16 return m

17

18 def main(name='rc_de_sw'):

19 print('Running model generator...')

20

21 # parse command line arguments

22 parser = ArgumentParser()

23 parser.add_argument('-o', '--output', type=str,

default=name+'/build/models/default/main')ãÑ

24 parser.add_argument('--dt', type=float, default=1e-6)

25 args = parser.parse_args()

26 build_dir = Path(args.output).resolve()

27

28 r, c = 1e3, 1e-9

29 m = make_model(name, build_dir, args.dt, r, c)

30

31 # determine the output filename

32 filename = build_dir / f'{m.module_name}.sv'

33 print(f'Model will be written to: {filename}')

34

35 # generate the model

36 m.compile_to_file(VerilogGenerator(), filename)

37

38 if __name__ == '__main__':

39 main()

76 APPENDIX C. CODE LISTINGS

Listing C.7: msdsl model of first-order Σ∆ modulator
Python

1 from pathlib import Path

2 from argparse import ArgumentParser

3 from msdsl import *

4

5 def makeModel(args):

6 m = MixedSignalModel('sd_model', dt=args.dt)

7

8 in_gain, fb_gain, freq_gain = 0.45, 1, 6.25e6

9 G = [[freq_gain],[1, 0]] # TF of loop filter

10

11 fs = m.add_digital_input('fs') # 6.25MHz sample clock

12 x = m.add_analog_input('x') # analog input

13 y = m.add_digital_output('y') # digital output

14 e = m.add_analog_state('e', 4, init=1) # node after summation

15 a = m.add_analog_state('a', 4, init=0) # node after integrator

16 d = m.add_analog_state('d', 1, init=-1) # node after DAC

17

18 m.set_this_cycle(e, x*in_gain-d*fb_gain) # adder

19 m.set_tf(e, a, G) # loop filter

20 m.set_next_cycle(y, a>0, ce=fs) # quantiser

21 m.set_next_cycle(d, y*2-1.0) # DAC

22 return m

23

24 def main():

25 print('Running model generator...')

26

27 # parse command line arguments

28 parser = ArgumentParser()

29 parser.add_argument('-o', '--output', type=str,

default='build/o1b1/models/default/main')ãÑ

30 parser.add_argument('--dt', type=float, default=50e-6)

31 args = parser.parse_args()

32

33 # create the model

34 m = makeModel(args)

35

36 # determine the output filename

37 filename = Path(args.output).resolve() / f'{m.module_name}.sv'

38 print(f'Model will be written to: {filename}')

39

40 # generate the model

41 m.compile_to_file(VerilogGenerator(), filename)

42

43 if __name__ == '__main__':

44 main()

C.2. PYTHON MSDSL MODELS 77

Listing C.8: msdsl model of second-order Σ∆ modulator

Python

1 from pathlib import Path

2 from argparse import ArgumentParser

3 from msdsl import *

4

5 def makeModel(args):

6 m = MixedSignalModel('sd_model', dt=args.dt)

7

8 v_of = 3.3/2 # bias voltage

9 in_gain , fb_gain , freq_gain = 0.2826 , 0.2824 , 6.25e6

10 in_gain2 , fb_gain2 , freq_gain2 = 0.6520 , 0.5677 , 6.25e6

11 G = [[freq_gain],[1, 0]] # TF of integrator 1

12 G2 = [[freq_gain2],[1, 0]] # TF of integrator 2

13

14 fs = m.add_digital_input('fs') # 6.25MHz sample clock

15 x = m.add_analog_input('x') # analog input

16 y = m.add_digital_output('y') # digital output

17 xs = m.add_analog_state('xs', 4, init=0) # scaled input

18 e = m.add_analog_state('e' , 4, init=1) # node after summation 1

19 a = m.add_analog_state('a' , 4, init=0) # node after integrator 1

20 e2 = m.add_analog_state('e2', 4, init=1) # node after summation 2

21 a2 = m.add_analog_state('a2', 4, init=0) # node after integrator 2

22 d = m.add_analog_state('d' , 4, init=-1) # node after DAC

23

24 m.set_this_cycle(xs, 0.65*v_of*x + v_of) # scale input

25 m.set_this_cycle(e, xs*in_gain-d*fb_gain) # summation node 1

26 m.set_tf(e, a, G) # integrator 1

27 m.set_this_cycle(e2 , a*in_gain2-d*fb_gain2) # summation node 2

28 m.set_tf(e2, a2, G2) # integrator 2

29 m.set_next_cycle(y, a2>v_of, ce=fs) # quantiser

30 m.set_next_cycle(d, (y*3.3)) # DAC

31 return m

32

33 def main():

34 print('Running model generator...')

35

36 # parse command line arguments

37 parser = ArgumentParser()

38 parser.add_argument('-o', '--output', type=str,

default='build/o2b1/models/default/main')ãÑ

39 parser.add_argument('--dt', type=float, default=50e-6)

40 args = parser.parse_args()

41

42 # create the model

43 m = makeModel(args)

44

45 # determine the output filename

46 filename = Path(args.output).resolve() / f'{m.module_name}.sv'

47 print(f'Model will be written to: {filename}')

48

49 # generate the model

78 APPENDIX C. CODE LISTINGS

50 m.compile_to_file(VerilogGenerator(), filename)

51

52 if __name__ == '__main__':

53 main()

C.3 Extension of msdsl

Listing C.9: Function for coefficient sweeping
Python

1 def make_coef_sweep(self, name='param', ctrl='input', form='lin',

range:tuple=[0, 1], numel=512, **kwargs):ãÑ

2 """

3 :param name: Name of sweeping signal

4 :param ctrl: Name of control signal or handle to AnalogInput

5 :param form: Sweep form. Can be 'lin', 'log10', or ...

6 :param range: Range of the sweep

7 :param numel: Number of values in the sweep. Must be power of 2!

8 :return: Handle to signal whose value can be swept

9 """

10 # handle control input

11 if isinstance(ctrl,str):

12 input = self.add_analog_input(ctrl)

13 elif isinstance(ctrl, AnalogInput):

14 input = ctrl

15 else:

16 raise Exception(f'Invalid control input.')

17 # handle form

18 if form == 'lin':

19 func = lambda input: input # func is a function of input, that

returns input. f(x) = xãÑ

20 domain = range

21 elif form == 'log10':

22 func = lambda input: np.log10(input) # func is a function of

input that returns log10(input). f(x) = log10(x);ãÑ

23 domain = range

24 else:

25 raise Exception(f'Invalid sweep form given: {form}')

26 # make sweep signal and return

27 f = self.make_function(name=name, func=func, domain=domain,

numel=numel, order= 0 **kwargs)ãÑ

28 param = self.set_from_sync_func(signal=name, func=f, in_=input)

29

30 return param

	1 Introduction
	1.1 Conventional Verification
	1.2 AMS Verification
	1.3 The Case for Emulation
	1.3.1 Beyond Emulation

	1.4 Research Goals
	1.5 Contributions
	1.6 Outline

	2 Emulation Methods
	2.1 Oversampled Methods
	2.1.1 Tools

	2.2 Variable-Timestep Methods
	2.2.1 Time Resolution and Area Trade-off
	2.2.2 Piecewise Linear
	2.2.3 Other Features
	2.2.4 Tools

	2.3 Abstraction Levels
	2.3.1 Component Level
	2.3.2 Circuit Level
	2.3.3 Macromodels

	2.4 Summary

	3 The Tools: svreal, msdsl and anasymod
	3.1 Number Formats using svreal
	3.1.1 Fixed-Point

	3.2 Models and Abstractions
	3.2.1 State-Update Equation
	3.2.2 Differential Equation
	3.2.3 Transfer Function
	3.2.4 Netlist
	3.2.5 Non-linear models
	3.2.5.A Switches
	3.2.5.B Piecewise Approximations
	3.2.5.C Other modelling methods

	3.3 anasymod
	3.3.1 Simulation and Emulation
	3.3.2 Control Infrastructure

	3.4 Comparison of Models
	3.4.1 HDL and Synthesis

	4 Design Space Exploration
	4.1 Coefficient Calculation
	4.1.1 Runtime calculation
	4.1.2 Pre-computation

	4.2 Lookup Tables in msdsl
	4.3 Implementation

	5 Sigma-Delta Models
	5.1 Sigma Delta ADC
	5.1.1 Modulator
	5.1.2 Decimation

	5.2 Modulator Models
	5.2.1 First-Order Model
	5.2.2 Second-Order Model
	5.2.2.A Parameter Sweeping

	6 Model and Emulation Verification
	6.1 Verification Setup
	6.1.1 HDL Simulation
	6.1.2 Emulation

	6.2 Synthesis Results
	6.2.1 Timing Violations

	6.3 First-Order Model
	6.4 Second-Order Model
	6.5 Discussion

	7 Demo
	7.1 Decimation
	7.2 CODEC
	7.3 XADC
	7.4 Synthesis
	7.5 Verification
	7.6 Measurements
	7.7 Results
	7.8 Discussion

	8 Conclusions and Recommendations
	8.1 Conclusions
	8.2 Discussion
	8.3 Recommendations
	8.3.1 Emulation Infrastructure
	8.3.2 Model Verification
	8.3.3 Modelling

	Bibliography
	A Post-Synthesis Simulation with anasymod
	A.1 Infrastructure
	A.2 Implementation
	A.3 Listings

	B anasymod Control Infrastructure
	B.1 Modules
	B.2 Signals
	B.3 Extensions
	B.3.1 Write Signals to File
	B.3.2 Physical Ports

	C Code Listings
	C.1 Generated SystemVerilog Descriptions
	C.2 Python msdsl Models
	C.3 Extension of msdsl

