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ABSTRACT 

The purpose of this research is to classify damaged buildings on an earthquake affected site based on 
some of the damage classes defined in the damage catalogue. This process of damage assessment is 
important as it facilitates planning for disaster response organisations. Knowledge on the state of the 
earthquake affected site comes from study of the data captured, which is representative of the site.  Input 
for this research was in form of two point cloud datasets; an Aerial Laser Scanning and an Aerial Oblique 
Photography generated point cloud. 
 
To gain an understanding of the nature of the two datasets a data analysis process was carried out. The 
process involved determining noise levels thus quality of the datasets. Successively, features defining 
unique properties of target objects of interest (i.e. walls, roofs, rubble and urban tree crowns) were 
determined and documented to ease in the classification process. This would help formulate the process 
of extracting target objects of interest. 
 
The approach of classification here was a data driven, rule based classification process. This was informed 
by the ability of point cloud data to capture the true form of target objects individually, and status of the 
building environment collectively in an earthquake affected site. Subsequently a two step approach, 
involving classifying target objects of interest first before performing the overall building assessment to 
determine the damage class or type was followed. The method was developed on the premise that 
individual object properties cumulatively contribute to define the final damage status of any building. 
 
The results of the classification process were then evaluated for completeness, correctness and quality to 
determine the success rate of the damage assessment process. This involved determination of the 
completeness, correctness and quality of the results using the true positive, false negative and false positive 
to compute the statistical values. It was found that the wall and roof classification results were relatively 
good, scoring 70’s and 90’s for completeness and correctness respectively. The rubble results were 
relatively low scoring high 60’s in completeness and correctness respectively. 
 
To conclude it all, the idea of combining two similar datasets to provide full coverage of the study area 
proved very successful. This presented a unique and innovative approach to capturing and analysing both 
vertical view or roof objects and horizontal view or facades of buildings within the dataset site. The 
classification process highlighted the feasible nature of combining ALS and AOP point cloud data to 
facilitate full site coverage, a feat extendible to any other target object of interest that is not related to the 
building environment.  
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1. INTRODUCTION 

Classification of damaged buildings is necessary for the rapid requirements of emergency response 
logistics on sites ravaged by disasters such as earthquakes. Geospatial techniques such as Aerial 
Oblique Photography (AOP) and Aerial Laser Scanning (ALS) provide fast means to capture site 
data for analysis on the devastation and loss experienced. Methods that ensure quick processing of 
this data to bring out the true picture are therefore of utmost importance. 
 
Equally important is the extraction of entities that will help identify object classes of interest as 
roofs, walls and rubble that describe damaged buildings. Proper formulation of features, properties 
and processes that facilitate this is highly valuable. Hence the essences to identify and develop 
features that will help describe and extract the target object classes of interest within defined 
constraints, in this case being the threshold value of any feature that helps isolate any one target 
object of interest. 
 
Furthermore, there exist established damage classes relevant for building damage assessment. 
There is thus need to identify entity feature combinations that help describe these damage classes 
and equally assist in identifying locations with the specific damage classes within the site of interest. 
Data acquisition on sites affected by disasters such as earthquakes occurs within reasonable time 
after the occurrence of the disaster. Depending on the target profession and techniques employed, 
the prevailing scenario of damaged structures is usually captured for later analysis and disaster 
response initiatives formulation. The scenario targeted in this research was that of an earthquake 
affected building damage site. Hence the aim of this research is to perform a classification of 
damaged buildings by defining rules to help extract target objects and practically define damage 
classes, based on which the assessment is implemented. This building damage assessment is based 
on point cloud data sourced from aerial laser scanning and aerial oblique photography.  

1.1. Problem statement 
The main problem is to identify and appropriately classify damaged buildings on an earthquake 
ravaged site based on point cloud data. Emphasis is on identifying and extracting entities relevant 
for defining objects cognisant with damaged buildings on an earthquake ravaged site and finding 
their unique features. The main task is to formulate feature attribute combinations that define a 
damaged building based on identified classes relevant for post earthquake point cloud data. This is 
succeeded by determining how to relate and cluster extracted entities to each pre earthquake 
existent building in order to define its damage class. 

1.2. Motivation 
Existing building damage documenting options such as the European Macro seismic scale 
(Grünthal, 1998) and the damage catalogue(Schweier & Markus, 2006)  exposed the need to 
develop building damage ontology and classification that were relevant for geospatial approaches 
(Van Aardt et al., 2011) to building damage assessment. Further, due to site analysis capabilities 
based on point cloud data, the first motivation of this research is the need to formulate 
mechanisms to relate damage classes relevant to this data and formulate features that would enable 
defining of building damage based on the same data, limited to post earthquake information only. 
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Similarly, existing research had established knowledge on strengths exploitable to improve building 
damage assessment methods involving geospatial approaches. Emphasis on this involved 
combining the vertical advantage of aerial laser scanning with the lateral advantage of aerial oblique 
photography to capture the affected site, especially in bringing out the true form of the affected 
buildings on site. The second motivation for this research arises from the fact that the potential of 
point cloud data as input for extraction of entities that facilitate detection of buildings and related 
objects has been proven (Xu, Oude Elberink, & Vosselman, 2012) and was therefore worth 
exploiting to define damaged building parts and optimise research on effective building damage 
assessment. 
 
In the ever modernising world, there is increased need for development of simpler and faster 
methods that facilitate use of available data. This is achievable via development and exploration of 
several guiding rules or constraints that may offer some beneficial degree of success. Hence the 
third motivation for this research is in exploring constraints usable to practically define damage 
classes and further perform the building damage classification based on the same. 
 
Finally disasters keep on causing damage to property, both from time memorial through current 
times into the future. Their rising magnitudes as witnessed in the Haiti Earthquake of 12th January 
2010 and the tsunami of Indonesia 26th December 2004, means more vast regions will be affected. 
The final motivation arises from two facts, the vast region data capture ability of geospatial data 
capture techniques and that buildings form a majority of structures constructed on the earth’s 
surface hence any disaster, specifically earthquake hitting any part of the earth will actually affect 
them. This thus provides a push factor for research into methods that improve or develop and 
refine building damage assessment processes. 

1.3. Research Objectives and Questions 
The main objective of this research is to perform a classification of damaged buildings devastated 
by an earthquake. Focus was on analysing entities extracted from point clouds sourced from laser 
scan data and aerial oblique photographs. The research comprised of the following specific 
objectives and related research questions: 

1. To identify building damage levels relevant for point cloud data. 
 What is the relevance of point cloud data for building damage classification? 
 How will damaged buildings be defined based on point cloud data? 

2. To assess the effect of noise on point cloud data. 
 What is the level of noise in the input datasets? 
 How does noise influence the extraction of entities from point cloud data? 

3. To identify characteristics of extracted entities usable in defining damage to a building. 
 What features of extracted entities are relevant for damage assessment? 
 How will the features be combined to define building damage categories? 

4. To classify damaged buildings based on formulated damage levels. 
 How will the classification process be implemented? 
 What factors will affect the classification process? 

5. To evaluate the results of the classification process. 
 How will the accuracy of the classification results be assessed? 
 What factors will affect the accuracy of the results? 
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1.4. Innovation 
The innovative part of this research specifically entails use of combined input ALS and AOP point 
cloud data, and knowledge about damaged buildings on an earthquake affected site to perform 
building damage classification. Practically, it aims to take advantage of the complete coverage 
provided by the combined datasets to determine the overall damage classification process within 
defined constraints based on characteristics of extracted target objects. 

1.5. Thesis Structure 
This thesis consists of six chapters. Chapter 1 is the introduction and explains the problem 
statement, motivation, research questions and objectives, innovation and thesis structure. Chapter 
2 is the literature review, followed by materials in chapter3 that gives an over view of data and 
software used in this research. Chapter 4 is data analysis that helps define and understand the input 
datasets. Chapter 5 explains the methodology; specifically the approach used in the damage 
assessment /classification process, and is succeeded by results and discussion in chapter 6. The 
final part in conclusion and recommendations is in chapter 7.  
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2. LITERATURE REVIEW 

2.1. Introduction 
Damage classification falls within the global action of damage assessment and mitigation, and is a key 
element of disaster response organisations. Disaster stricken localities experience huge losses as evidenced 
in the Haiti earthquake of 12th January 2010 (DEC, 2012), the Indonesian tsunami of 26th December 2004 
(Hobart, 2012) and the Hurricane Katrina (NCDC, 2012). Damage assessment entails determining the 
losses experienced in any disaster ravaged region using varying methodology. It is executed based on data 
sourced from affected sites about damaged property due to the necessitated need for current damage 
assessment and future damage control.. The process has evolved over the years inclusive of its challenges 
and lessons (McEntire et al., 2012). From inaccurate data and information, through poor training and lack 
of preparedness to political and policy failures, the need for proper measures to facilitate appropriate 
response to disastrous aftermaths has developed and risen over time. The process ranges from data 
acquisition and processing, through target object extraction to the actual damage estimation or assessment 
and classification. The urge for more knowledge on damage assessment, associated data processing and 
mitigation measures has provided a push factor for more research into this area. 

2.2. Data Acquisition and Processing 
Accurate acquisition of information about any disaster ravaged site is of utmost importance. The prompt 
requirement of disaster response teams creates a need for quick data capture and processing mechanisms. 
Satellite imagery provides one option for quick capture of building data. However, given that even at 0.5m 
GSD per building damage assessment is still a challenge then Airborne data with higher resolution of 
about 17cm is then preferred (Gerke & Kerle, 2011). This can be sourced from Airborne LiDAR (Light 
Detection and Ranging) Scanning systems that facilitate quick provision of accurate geo-information for 
disaster management (Firchau & Wiechert, 2005). Further enhancement is by use of Aerial Oblique 
Photography to bridge the horizontal view not captured through the natural vertical view of Airborne 
LiDAR scanning systems. Aerial Laser Scanning and Aerial Oblique Photography provide fast means of 
data capture of any disaster ravaged site. 

2.2.1. Aerial Laser Scanning 
Aerial Laser Scanning entails application of LiDAR technology to capture 3D point data of the earth 
surface. The process includes varying scanning mechanisms, integration with GPS (Global Positioning 
Systems) and INS (Inertial Navigation Systems) systems, data processing and extraction of target objects 
as explained in (Vosselman & Maas, 2010). Key processes include Filtering (Sithole & Vosselman, 2005) 
that may involve use of filters that have varying capabilities (Sithole & Vosselman, 2004) to separate 
terrain from non terrain points, Segmentation (Sithole, 2004) and clustering that groups data based on 
identified criteria and classification that facilitates identification of target objects of interest (Vosselman, 
2009). Its ability to capture object positional information accurately and fast provides an impetus for its 
use in portrayal of any disaster ravaged site. 

2.2.2. Aerial Oblique Photography 
This involves capturing of the terrain surface using aerial digital cameras mounted on mobile platforms at 
non vertical positions (Karbø & Schroth, 2009). The technology is enhanced by the development of 
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modern couple charged devices (CCD) arrays, multi-lens cameras and multi-head cameras. Internal and 
external orientation (Grussenmeyer & Al Khalil, 2002) of acquired images facilitates model scene 
development from which dense image matching techniques as semi-global matching and Patch-based 
Multi-View Stereo (Furukawa & Ponce, 2010) are applied to generate point cloud data (Gerke, 2009). 
Given the complex nature of urban scenes, use of aerial oblique photography provides a means for 
detailed and quick all round data capture of such areas especially building facades, a scenario targeted by 
this research. 

2.3. Building Detection and Extraction 
Buildings form a majority of structures constructed and therefore are always affected by earthly calamities 
such as earthquakes. Building damage assessment operations require their accurate capture and extraction 
from relevant data. First building objects are separated from other objects depending on the data in use. 
The next step entails outlining of building foot prints that are useful especially for two dimensional (2D) 
representations of buildings. Finally reconstructive modelling may be applied using topology to build 
boundary representation or using volumetric primitives to obtain a representative building model. 
Buildings, especially intact buildings may be detected and extracted from aerial images (Sirmacek & 
Unsalan, 2008), laser scanning data (Morgan, 1999), fusion of airborne laser scanner data and multi-
spectral images (Rottensteiner et al., 2007), high resolution satellite imagery through object based 
determination of building foot prints (Vu, 2011), use of grey-value and gradient orientation (Sumer & 
Turker, 2005) and oblique airborne imagery based on robust façade detection (Xiao, Gerke, & Vosselman, 
2012). Given the need to identify realistic 3D representation of buildings, Aerial Oblique Photography and 
Aerial Laser Scanning are preferred due to their geometrical and positional strength to depict the external 
form (walls and roofs) of buildings. The building detection process is then succeeded by damage definition 
and identification to enable determination of the damage experienced. 

2.4. General Damage Classification 
Damage classification and assessment varies depending on the cause of the damage, methodology 
employed and input information to be used. Majorly, it’s implemented in relation to the key phenomena 
experienced in moments around the time a particular structure or building or target object was damaged. 
Practically, it’s usually linked to the main causal phenomena from flood damage assessment (Qi & 
Altinakar, 2011), through hurricane damage assessment (Pistrika & Jonkman, 2010), wind damage 
assessment (Nateghi-A, 1996), and earthquake damage assessment (Oliveira & Campos-Costa, 2006) 
amongst others. The main urge is usually to create and disseminate accurate and updated information to 
the responsible disaster management organisations and authorities. Damage classification and assessment 
processes usually target specific objects of interest both natural and manmade. For this study, buildings 
were the target object of interest for study as they form majority of structures affected on most earthquake 
affected built environments. 

2.5. Building Damage Classes  
Depending on the approach to building damage classification, there exist several Building Damage 
Classification classes and types. The focus is mainly on earthquake related building damage. Amongst 
some of these are the Damage catalogue (Schweier & Markus, 2006) and the European Macro-seismic 
Scale (EMS–98) (Grünthal, 1998).  
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2.5.1. Damage catalogue 
The damage catalogue defines building damage based on typical geometrical features of each damage type 
or class. Typical features used include total height difference to initial height, building volume reduction, 
surface structure, inclination change and debris size (Schweier & Markus, 2006). The main classes defined 
here are inclined layers inclusive of inclined plane, multi layer collapse and outspread multi layer collapse, 
pancake collapse inclusive of pancake collapse one storey and pancake collapse multi storey, debris heaps 
inclusive of heap of debris on uncollapsed storeys, heap of debris on vertical elements and heap of debris 
with plates, overturn collapse inclusive of overturn collapse separated, inclination and overturn collapse, 
and finally overhanging elements, all as illustrated in figure 2-1 below. 
 

 
Figure 2-1. Damage classes defined on the Damage catalogue Source: (Schweier & Markus, 2006). 

2.5.2. The European Macroseismic Scale (EMS-98) 
 The EMS–98 considers macro-seismic intensity in its classification of building damage. Buildings are 
classified by their key construction component as masonry, reinforced concrete, steel and wood from 
where specific grades relating to each class are defined based on level of destructive force and damage 
experienced. For masonry and reinforced concrete buildings the identified damage classes range from 
grade 1 to grade 5, respectively termed as negligible to slight damage, moderate damage, substantial to 
heavy damage, very heavy damage and destruction. 
 
Building damage classification varies depending on the approach and scale of the process. It may be 
carried on site manual building inspection for the civil engineering and architectural approach or via a 
mapping approach that entails application of geospatial data capture techniques especially for vast ravaged 
sites.  
The final approach, whether architectural, civil and structural engineering or geospatial approach to 
building damage assessment depends on the professional subject of interest. Architectural, Civil and 
Structural engineering approaches tend to encompass detailed individual onsite building damage 
assessment. They focus on close study of key building parts as walls, roofs and columns, mostly close on 
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building observations. Geospatial approaches tend to cover large scale site wide areas, using offsite 
assessment techniques and were proved successful during the Haiti earthquake disaster response activities 
(Van Aardt et al., 2011). The interest of this study was to perform a site wide general external building 
damage assessment; therefore the geospatial approach to earthquake affected building damage assessment 
approach was followed. 

2.6. Eartquake Building Damage Assessment. 
Earthquake building damage assessment using geospatial approaches has been researched upon and 
implemented using various input data and methodology. Geospatial approaches in this case referring to 
methodology for capture, processing and use of geo-data such as earth satellite imagery or point cloud 
data or earth’s aerial photographs to solve geo /earth related problems. One approach involved the use of 
aerial photographs to assess damaged buildings after the 1995 Kobe Earthquake (Ogawa & Yamazaki, 
1999). It involved manual human identification of damaged buildings via single photo or stereoscopic 
photo interpretation. More success was on wooden buildings and less on non wooden buildings that had 
less clear texture making it hard for human interpretation. The main problem was the variation in human 
interpreting ability that raised the need for automation. Furthermore geometry though visualized via 
stereoscopy was not exploited to enhance the true position of objects, specifically onsite buildings.  
 
Progressive improvement came with the use of digital aerial photographs during damage classification 
after the 2003 Bam city earthquake in Iran (Rezaeian & Gruen, 2007). This involved automatic creation of 
digital surface models based on stereoscopy using pre and post earthquake imagery. Pre and post 
earthquake data was then compared to define damage to buildings as total collapse, partial collapse and no 
collapse, categories that still needed improvement to endear their relevance to geospatial building damage 
assessment methods. Differing human interpretation ability was still a limiting factor here too, an indicator 
of the urge to develop an automated building damage classification process. 
 
Satellite imaging developments further improved building damage classification, as evidenced by 
incorporation of Landsat imagery for damage assessment after the 2001 Gujarati earthquake in India 
(Yusuf, Matsuoka, & Yamazaki, 2001). Optical remote sensing was applied in analysis of optical images 
with panchromatic bands sourced from Landsat-7 satellites. The basis was to check for significant changes 
in reflectance values after the earthquake. Differences in optical sensor values between pre and post 
earthquake satellite images were used to identify affected regions. Emphasis was on detecting affected 
areas and not actual variation of damage encountered on the identified sites. Dependency on pre 
earthquake information was also a key weakness. 
 
High Resolution Satellite Imagery (HRSI) was used in damage detection after the 2008 Wenchuan 
earthquake (Tong et al., 2012). Pre and post seismic IKONOS image stereo pairs were used to determine 
3D geometric changes by calculating difference between pre and post seismic digital elevation models 
(DEMS). Pre and post earthquake difference in building geometry was used to classify the damage as 
totally collapsed, partially collapsed and not collapsed. Though categorisation was done here, it was in a 
manner not fully relevant to building damage classification and geospatial sciences. 
Similarly, ADS 40 images were acquired and used in identifying collapsed buildings in Wenchuan (Guo et 
al., 2009). Grey scale morphology was used to detect areas having collapsed buildings. Difficulties were 
experienced here in differentiating concrete bridges, rolling rocks and gravel from collapsed buildings. 
Further the process did not categorise specific damage to identified damaged buildings. 
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The need for proper categorisation led to documentation of damage classes in form of a damage catalogue 
(Schweier & Markus, 2006). Different post earthquake damage types for whole buildings were composed. 
This involved compilation of typical damage types of collapsed buildings into one damage catalogue. It 
was implemented by looking into the characterisation of affected buildings based on their geometrical 
features. This process enlightened the need for categorisation of building damage, and exposed the urge 
for further development or selection of damage levels relevant for geospatial science, and in this case 
relevant for point cloud data. However, despite having some relevant building damage classes for 
geospatial data, specifically point cloud, successive damage classification processes have not employed the 
developed damage catalogue classes in the output of their results. 
 
Damage classification incorporating LiDAR (Light Detection and Ranging) was done as depicted in (Oude 
Elberink et al., 2011). This approach was aimed at detection of collapsed buildings and did not progress 
into categorising them. Rule based classification was applied using appropriate combination of identified 
attribute values to detect collapsed buildings. The process did not exploit the geometrical strength of 
LiDAR to depict building geometry. An extension into this would have enabled categorisation, especially 
involving the damage catalogue classes, a step that this research moved in to exploit. 
 
Further efforts used high resolution aerial oblique imagery to determine the structural seismic damage of 
buildings (Gerke & Kerle, 2011). Imagery from Pictometry inc. was used as input into this process. 
Despite incorporating oblique aerial imagery that possessed the ability to enable in-depth façade detection 
and analysis, formulated classes were limited to intact roof, damaged roof and facades. The detectable 
classes would have been improved on to conform to some of the achievable damage classes as defined in 
the damage catalogue. Further this process incorporated part of the European Macro Seismic Scale 
classification into its final assessment rules despite recognition of the fact that these classes were not 
entirely suitable for classification of individual damaged buildings based on geospatial techniques. 
 
Multi- imagery has also been employed for building damage classification via use of Multi-Mutual 
Information (MMI) to perform post earthquake building damage assessment (Tian-Lin & Ya-Qiu, 2012). 
It involved use of pre event optical images and post event SAR (Synthetic Aperture Radar) images to 
determine pre earthquake and post earthquake building status. Pre earthquake building geometry from the 
optical images is compared with modelled rectangular objects from post event SAR images in a similarity 
analysis to determine the damaged and non damaged buildings extended into collapsed, subsided and 
deformed status. This process still didn’t have well defined damage classes as defined in the damage 
catalogue and also required quite some input of pre earthquake data. A similar approach involved the use 
of pre event VHR (Very High Resolution) optical and post event detected VHR SAR imagery to obtain 
building footprints from which similarity analysis was done to determine damage status of a building 
(Brunner, Lemoine, & Bruzzone, 2010). High similarity was taken as a signature for being intact while low 
similarity indicated some damage. This approach still depended on pre earthquake information and did not 
categorise damage to more specific damage classes. 
 
Multi-sensor imagery approach was also used in building damage assessment and mapping (Lodhi, 2013). 
This approach involved input of Advanced Land Imager (ALI) imagery and Hyperion imagery to identify 
damaged buildings and spectral signatures of objects of interest respectively. The process involved manual 
identification of clusters of interest, manual delineation and digitizing of raster polygon areas of interest 
and classification of objects into damaged buildings, intact buildings and vegetation. This approach did 
not exploit usable classes based on the damage catalogue and still had vast dependency on manual 
intervention. This process was pixel based thus it could not bring out the building geometry status, a key 
component that solidifies use of point cloud data in defining building damage status. Further the process 
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was affected by spectral similarities of rubble and crumbled building, and barren land creating considerable 
spectral confusion which would easily be differentiated via the 3D capability of point cloud data. 
 
Simulation has also been employed to assist in building damage assessment. This involved creation of pre 
and post earthquake building models to facilitate change detection and subsequent building damage 
identification, assessment and classification (Schweier, Markus, & Steinle, 2004). This process though 
effective has high dependency on pre earthquake information and further formed models may not actually 
represent the true status of target buildings. Direct use of 3d form of point cloud data of an earthquake 
ravaged site tends to depict a better realistic state of buildings on an earthquake ravaged site. 
Automated assessment of post earthquake building damage has also been implemented based signature 
from geospatial data (Dong & Guo, 2011). This approach involved 3 Dimensional Triangulated Irregular 
Network (3D TIN) densification followed by 3D shape signature analysis. It limited its search to four 
target models which would not fit into the multiple natures of real world buildings. Further the process 
was equally dependant on pre earthquake data and damage was only detected but not classified into 
specific identifiable categories. 
 
Building damage assessment is evidently an area of great interest given the increased research output in 
relation to the same. Successive geospatial approaches have employed use varying data and methodology 
to achieve a specific objective in relation to building damage assessment. With increasing success, from 
multi-spectral images that were used to differentiate damaged and non damaged areas, through aerial 
photography that facilitated improved categorisation of the damage to laser technology that helped 
specifically identify target building parts, the urge for better recognised building damage classification has 
risen on. However, despite recognition of the viability of categorisation of building damage as exemplified 
in the damage catalogue, the same is not employed in the final output of most building damage assessment 
processes. Further, efforts to assess building damage on earthquake affected sites have majorly 
concentrated on damage detection, without extending organisation of their results into recognised damage 
classes. The results are mostly presented in user defined classes, majorly convenient for their output. This 
provided an impetus for this research to try and categorise the output of its classification process in line 
with definable damage classes based on the damage catalogue. 
 
 Further, building data capture and representation in 3D tends to capture most detail of any site of interest 
dominated by building structures. Data capture techniques that have the ability to capture this detail are 
therefore of utmost importance. Aerial Laser Scanning and Oblique Aerial Photography possess this 
ability of capturing building information in 3D.This ability presented in the vertical and lateral advantage 
of LiDAR and Aerial Oblique Photography generated point cloud data, enables capture and provision of 
complete building external form, a great feat targeted for exploitation by this research. Moreover buildings 
can be disintegrated into several recognisable parts majorly roofs and walls. This is encouraged by the fact 
that building construction is a result of assembly and erection of several minor structural parts. Such 
structures are easily captured in segment form based on point cloud data. The segmented parts are then 
exploitable for damage analysis as targeted by this research, based on which the final damage type or class 
is defined. This helps build up an inclusive all round picture of any particular earthquake damaged 
building.  
 
Given the form and structure of building parts can be stated within set constraints, walls being upright and 
roofs being above walls amongst others then the same can be extended during building damage 
assessment. Further, the same constraints are practically applicable in defining damaged building parts and 
the overall building damage status within the site of interest. Extending this approach formed the guiding 
factor in using the rule based approach to perform the damage classification within this research. 
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3. MATERIALS 

Material input for this research was in form of two point cloud datasets and software. The datasets were 
LiDAR generated point cloud and Aerial Oblique Photography generated point cloud. The software used 
were Point Cloud Mapper and Matlab. The use of point cloud data was preferred upon as it ensured 
adequate capture of the geometric form and structure of the buildings which were the main target objects 
of this research. For proper classification of the damaged buildings, it was necessary to be able to identify 
key components of building structures. This was in form of planar segments and clustered points that 
were generated due to the positional capability of the point cloud data. Further adequate processing and 
visualization of the input data was facilitated by the use of functioning software, in this case the PCM and 
Matlab. The software enabled the filtering, segmentation, clustering, visualization and cropping of the 
point cloud datasets, and basic implementation of the proposed classification. 

3.1. Datasets. 

3.1.1. LiDAR point cloud dataset (LiDAR pcl). 
This was acquired by Kucera International between January 21-27, 2010 using a Leica ALS50 LiDAR 
system. This was done as part of the damage assessment efforts during the evaluation of effects of the 
earthquake that hit Haiti on the 12th of January 2010. It has an average point density of about 3 points per 
square metre (3.4 pts/m2) (SDSC, 2012). This dataset contains intensity, specifically reflectance 
information which was acquired as a result of the LiDAR system in use that possessed the ability to record 
the return amplitude of the received echo. Specifically the dataset in use covers the north western part of 
the Port-au-Prince area. Figure below shows the dataset visualized using PCM software and potrayed by 
reflectance values.  

 

Figure 3-1. LiDAR point cloud visualized using reflectance. 

3.1.2. Aerial Oblique Photography point cloud dataset (AOP pcl). 
Aerial oblique imagery acquired by Pictometry inc. above the Port-au-Prince area after the Haiti 
earthquake of 12th January 2010 were used to generate point cloud data. The images were acquired at a 
height of 1000m above the ground using cameras that captured both forward, backward and side views, a 
feat that enabled capture of the facade of buildings.  The arerial oblique images were then processed for 
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camera calibration and orientation. Further, common areas on non damaged building areas were identified 
on both the images and the LiDAR point cloud, out of which the latter’s coordinate information, was 
extracted and used to geo-reference the aerial oblique images. Given most areas were covered by a 
minimum of two images, stereo overlaps were exploited for dense image matching. Patch-based Multi 
View Stereo (PMVS) dense image matching technique was then employed to derive point cloud data 
(Furukawa & Ponce, 2010). It involved identification of salient points on as many stereo pairs as possible. 
Epipolar constraint was applied to limit the search space and hasten the matching process. Initial 
identified 3D points were taken as patch candidates were triangulated upon to develop bigger patches. 
However, wrong matches were filtered by applying heuristic methods beyond which the remaining 
patches were optimized upon via the discrepancy minimization procedure. To densify the patches, the 
process was iteratively implemented during the patch expansion and filtering stage. The result was a 
collection of patches of points that contained additional building façade and colour information, the Aerial 
Oblique Photography generated point cloud dataset (AOP pcl). These dataset provided additional façade 
information and natural colour information. Figure 3-2 below shows the AOP pcl dataset visualized using 
PCM software and potrayed by colour information (RGB values).  

Figure 3-2. Aerial Oblique Photograph generated point cloud visualized using own colour. 

3.2. Software 
These were the tools used to gain an understanding of the datasets used and also process them as deemed. 
The software used were PCM1, Matlab2 and Quantum GIS. PCM was used for point cloud processing, 
specifically filtering, segmentation, visualization, cropping and conversion of format. Matlab was used 
mainly for the implementation of the proposed classification process in form of a basic algorithm. 
Quantum GIS was used to prepare the final maps of the classification result. 
  

                                                      
1 Developed by Prof. George Vosselman of The Earth Observation and Science department, Faculty of ITC, 
University of Twente. 
2 Matlab version 7.9.0.529 (R2009b) 
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4. DATA  ANALYSIS 

Data Analysis was performed to help in the understanding of the input datasets and characteristics of 
target objects (walls, roofs, rubble and vegetation).  Specifically it involved visualizing the dataset 
information, performing noise level analysis, determining target object characteristics, features analysis and 
entity extraction, and determining damage types definable based on the damage catalogue. The result was 
an understanding of the dataset, the scenario of the site of interest and identification of features defining 
target objects of interest. 

4.1. Dataset Visualization 
Dataset visualization was performed using PCM software in order to gain a visual appeal of the datasets 
(LiDAR point cloud and an Oblique image generated point cloud). They were visualised in reflectance, 
height colour and own colour using PCM software, as shown in figure 4-1. Reflectance and height colour 
was visualised based on the LiDAR dataset while the natural colour was visualised based on the AOP 
dataset. 

 
 
 The natural state of the datasets was captured and understood. Key observations noted here were; 

1. Both datasets by virtue of point cloud nature contained positional information (3D coordinates) 
depicting object geometry, that was useful for wall and roof objects identification. Visually, walls 
appeared vertical and roofs appeared in horizontal and non –horizontal positions that were 
further away from the vertical. 

2. The LiDAR datasets contained additional radiance information in form of characteristic object 
reflectance. This was found to appear more pronounced in areas that had partially or fully 
collapsed concrete building structures. 

3. The aerial oblique imagery generated point cloud contained additional colour information (RGB 
values) that formed a useful visual link to the natural object status, especially the green nature of 
urban tree crowns. 

This facilitated the ease of identifying target objects by visual appeal and identification all through 
reflectance, height colour and own natural colour. 

Figure 4-1Point cloud visualization using reflectance, height colour and natural colour. 
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4.2. Noise analysis 
Given ideal conditions, point cloud data would form an exact fit of target surfaces. However, naturally the 
acquired point cloud data tends to have deviations off the target object surfaces.  
Noise in this case was considered the amount by which point clouds deviate from an ideal fixed plane of 
the target object surface. Both LiDAR and AOP point cloud have varying causes of their noise levels. The 
automatic acquisition process of the LiDAR data during scanning with highly calibrated Laser Scan 
equipment gives it the added value of being more accurate hence less noisy. However, the AOP point 
cloud having been acquired via a combination of processes involving photograph orientation, through 
stereoscopy and dense image matching via patch-based multi view stereo carries within it cumulative 
errors from each stage. This leads the AOP point cloud to have higher noise levels as illustrated in figure 
4-2 below. However given that AOP point cloud captures the horizontal facade view of buildings is not 
captured by vertical nature of Aerial LiDAR scanners, AOP input is considered valuable to ensure 
complete and representative data capture of target objects hence the trade off with its noise levels. 
 
For this research, samples of same target objects from both datasets were extracted at various locations. 
Target objects of interest were walls and roofs, however due to the LiDAR data not capturing walls, the 
analysis was limited to roof plane surfaces. A plane fitting residual analysis in form of a Matlab code was 
implemented by applying the equation of the plane in 3D to determine the parameters of a fit plane 
defining each of the extracted roof plane segments. The implemented code incorporated Random 
Sampling Consensus (RANSAC) that ensured that the fitted planes were not influenced by outliers. This 
was due to RANSAC’s conceptual simplicity and resilience to gross outliers in the data. This was useful as 
noise presence in the datasets indicated the likeliness of having outliers too within the dataset. Taking the 
LiDAR fit surface as the correct one, point offsets and standard deviations off this surface for both 
datasets were computed. The equation of a plane in 3D space is expressed below. 

. 
Where;  are the x, y, z components of the normal unit vector. 

 is the perpendicular distance from the origin, 
 refer to the 3D coordinates of any arbitrary point within the dataset. 

 
The standard deviation of both datasets off the LiDAR fit surface was then calculated to determine the 
level of noise on each sample from the two datasets. This was done in by considering the LiDAR fit plane 
as being the true surface for both datasets. Further the mean offset of AOP datasets was computed off the 
LiDAR fit surface. The results in form of empirical standard deviation are as presented in tables 4-1. 
 

standard  deviation units (cm) 

  Roof1 Roof2 Roof3 Roof4 Roof5 Roof6 Roof7 Roof8 Roof9 Roof10 
LiDAR pcl 2.101 2.846 2.990 3.015 1.497 6.097 3.595 1.456 1.915 3.126 

AOP pcl 10.074 14.401 13.835 25.512 11.036 15.529 9.803 22.368 8.758 13.373 
Table 4-1. Standard deviations of samples of roof segments off the respective surface fit planes 

The resultant fit planes from LiDAR point cloud were plotted against both respective AOP and LiDAR 
point cloud data for corresponding surfaces and visualised as illustrated in figures 4-2 and 4-3 below. 
As observed, the LiDAR point cloud tended to be closer to the fit surface compared to the AOP point 
cloud. An indication of higher noise levels in the AOP point cloud compared to the LiDAR point cloud. 
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Figure 4-2. LiDAR point cloud fiited against LiDAR fit plane 

 
Figure 4-3. AOP point cloud fitted against LiDAR fit plane 

Plots of the Gaussian distribution of the offsets were visualised as illustrated in figure 4-4 below. A key 
observation here was the sharp rise and narrow shape of the LiDAR point’s offsets compared to the low 
and spread nature of the AOP point’s offsets. This indicated closeness of the LiDAR points offsets to 
their mean as compared to the AOP point cloud, a pointer to lower noise levels in the LiDAR data 
compared to the AOP data. 
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The LiDAR point cloud had smaller empirical standard deviation values compared to the aerial oblique 
imagery point cloud, an indication that noise was higher in the Oblique point cloud in relation to the 
LiDAR fit surface.  
Checks on parallelism of fitted planes from the same areas on both datasets involved comparing the 
inclination angles of flat roof samples as presented in table 4-2.  
 

difference 
in Roof6 Roof7 Roof9 Roof10 Roof11 Roof12 Roof13 Roof15 Roof16 Roof18 
i_angle (˚) 0.080 0.506 0.487 1.049 0.825 0.672 0.958 0.326 0.272 2.570 

Table 4-2. Inclination angle differences between pairs of flat roofs 

It was expected that the difference between inclination angles for the same area fit planes from the two 
datasets would be zero. However, there were slight variations considered to have resulted from the 
different acquisition dates of the two datasets, the earthquake aftershocks that hit the site area and changes 
to the post earthquake structural status of the buildings. Significant variations would have occurred on 
areas where the existing structure on site had been extensively modified on site. 

4.3. General dataset analysis 
A general dataset analysis was carried out by comparing the mean offsets across the samples from various 
locations. This was due to the urge to detect the presence of any specific systematic tilt or site wide shift 
between the two datasets. The site of interest was divided into four regions; North West, North East, 
South West and South East from which the departures values from each region were plotted together and 
compared.  As illustrated in figure 4-5 below, the offsets were found to have random variations with no 
tendency of being skewed in any direction. 
 
 
 

 

Figure 4-5. General Datasets offsets across the representative area. 
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4.4. Target object  analysis 
Target object analysis was implemented to facilitate identification of defining features for our target 
objects (walls, roofs, rubble and vegetation) based on manually extracted samples from both datasets. 
These objects were considered key to understanding the building environment in a typical built up site, 
hence key to defining the status of any earthquake affected building environment. Given the available 
information from the datasets was positional coordinates, colour and radiance (reflectance), defining 
characteristics were to be identified based on these.  

4.4.1. Walls 
By definition, these were vertical surfaces or near vertical surfaces that form the sides of buildings. Wall 
samples from the oblique image point cloud were analysed for unique characteristics. Using the plane 
fitting equation, the x, y and z components of the normal unit vector were computed. These were related 
by comparing them to the normal unit vector where the difference between the vertical and the vector in 
the direction of the plane is equated to the difference between the horizontal vector and the direction of 
the normal unit vector of the plane hence the adaptation of the equation as above. The inclination angle 
was then computed using an adopted formula indicated below and as illustrated in figure 4-6; 

  

Where   is the horizontal vector and, 
   is the normal unit vector of the plane. 

 
The z component of the normal vector, the inclination angles and the horizontal orientation for 17 wall 
samples were then computed. The results as illustrated in figure 4-7 below, are; 

1. The z component of the normal vector was found to have values less than 0.3,  
2. The inclination angles ( ) were computed and found to have values falling below 20 degrees, 
3. The horizontal orientation portrayed the horizontal directional set up of the buildings in two main 

bearings generalized as north of north east (NNE) and east of south east (ESE). 
Despite correlation existing between the z component of the plane normal vector and the inclination 
angle, both were included as each had its unique role. The z component was deemed useful for 
differentiation of wall segments from the rest, however given wall damage included wall tilt 

Figure 4-6. inclination angle based on normal unit vector 
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measurable by the inclination angle it was found necessary to have both. This is so as the research 
process not only aimed at detecting target objects but also determining their damage levels. 

 

4.4.2. Roofs 
These were taken as structures forming the upper covering of buildings, their positional and size 
information was studied. Similar to walls, the plane fitting equation was used to determine the 
components of the normal unit vector of the roof planes. Inclination angles and horizontal orientation too 
were computed and observations noted.  The observations as illustrated in figure 4-8 were; 

1. The z component of the normal vector had values greater than 0.7, 
2. The inclination angles were greater than 30˚, in the range of 55 to 90 degrees, 
3. The horizontal orientation varied widely from 15˚ to 293˚. 
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Figure 4-7. Wall samples plot of z component of normal vector, inclination angle and horizontal orientation. 
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They were equally found to have large segment sizes. Another key feature usable here was the inclination 
angle and orientation that was observed to be the similar for opposite pairs of gable roofs. The orientation 
was computed based on the x and y components of the normal unit vector. 

 

4.4.3. Rubble (Debris) 
Rubble was taken as broken pieces of collapsed walls and roofs, specifically of concrete structures. First 
the LiDAR point cloud was visualised using reflectance values, from where concrete rubble was noted to 
be more pronounced, and in natural colour the element of broken pieces was also seen as illustrated in 
figure 4-9. Several rubble samples were extracted and analysed for mean reflectance values and segmented 
size. Key observations noted as illustrated in figure 4-10 were; 

1. The mean segment sizes generally fell below 20 points, 
2. The mean reflectance values were mostly above 115. 

The observations help form the rubble identification and extraction strategy where segmentation was 
carried out on the LiDAR dataset from which segments of size 20 or less were extracted. These were then 
clustered using the connected components functionality of PCM into groups of similar points. This was 
because the form of the rubble groups was best represented in clusters and not plane segments. Further, 
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given the close nature of rubble pieces, it was found that rubble sites had broken pieces of slightly larger 
segment size falling around the bright reflectance clusters hence consideration was given to these pieces 
for those that had segment sizes less than or equal to 60 points. This defined the rubble of this research as 
it occurred mostly around collapsed walls or columns or slab roofs 

 

 
Figure 4-10. Plane segment sizes within rubble samples 
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Figure 4-9. Rubble locations; natural colour, reflectance and selected rubble segments 
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4.4.4. Urban tree crowns 
Urban tree crown understanding from the visualization of the oblique datasets, tree crowns had dominant 
green colourations and tended to grow more vertically than horizontally. Tree crowns were identified 
based on colour information and form.  
Tree crown samples were taken and analysed for green colour content based on mean green and excess 
green index, and crown base to height ratio using the crown segments standard deviations in x, y and z . 
The results as illustrated in figure 4-12 below, showed that; 

1. Mean green (  was greater than both mean red ( ) and mean blue ( ) i.e.  and 
 for the samples, 

2. The Excess Green (ExG) vegetation index normally used to identify vegetation based on RGB 
information especially from images that contain only visible light information (Ponti, 2013), for 
the tree crown samples had values greater than 0.18. It is computed as; 

   
Where; 
 ,   ,   , 

 mean Red value for the segment, 
 mean Green value for the segment and 
 mean Blue value for the segment. 

 
3. The tree crown to base ratio based on standard deviation in X, Y and Z values for each segment 

as illustrated in figure 4-13, for the samples had values greater than 0.17. It is computed as; 
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Figure 4-11. Plane segments mean reflectance within rubble samples 
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where ,  and  refered to standard deviation values in X,Y and Z for each segment. 
4. Crown size was considered in form of segment size which had to be greater than 60 to prevent 

capture of small ground objects satisfying the preceding three stages. 
These characteristics helped define the criteria for extraction of tree crown from the AOP point cloud. 
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Figure 4-12. Sample tree crown features 

Figure 4-13. Tree crown form 
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4.5. Entities and features for entity extraction   

4.5.1. Entities 
The entities identified for target object extractions were plane segments and connected component cluster 
segments. This was because the target objects of this research entailed both planar objects and non planar 
objects. Walls, roofs and collapsed planes were all considered planar objects while tree crown was 
considered non planar objects, and rubble was considered to have a mixture of planar and non-planar 
objects. Given the planar nature of walls and roofs versus the clustered appearance of rubble and urban 
tree crowns, planar segments were preferred upon for wall and roof extraction while connected 
component clusters were preferred for rubble and tree crown identification. 
Plane segments were created via plane segmentation and the clusters obtained by connected component. 

4.5.1.1. Planar segments 
The planar segments from the LiDAR point cloud were considered for roof segments while those from 
oblique point cloud were considered for wall segments. The plane surface nature of these target objects 
(roofs and walls) was the main consideration here. Given the vertical view captured by the LiDAR point 
cloud and its lower noise levels, it was considered the main input for detection of roof features. However 
given the absence of horizontal façade view from the LiDAR data, and the presence of the same in the 
oblique point cloud, the latter were considered as the main inputs for the wall object identification. 

4.5.1.2. Connected component clusters (Non planar segments). 
 The clusters from LiDAR and AOP data were considered for rubble and vegetation identification 
respectively. The rubble clusters had high reflectance due to high sand content present from collapsed 
walls and roofs while the dominant green colouration of the urban tree crowns and their non planar shape 
that made them identifiable from their respective target input data. The green content attributed to the 
chlorophyll content in plants combined with the fact that the data was captured during the green foliage 
period of the trees. 

4.5.2. Features for entity extraction 
 The features that were considered useful for identification of target objects were x,y,z component of the 
normal vector, inclination angle, segment size, mean X,Y,Z coordinates, mean reflectance,  mean RGB 
values, the standard deviation in x, y, z coordinates of extracted entities. More specifically; 

 The z components of the normal vector (computed for planar objects only) was found useful for 
differentiating walls from roofs i.e. wall had values < 0.3 while roofs had values > 0.7. 

 The x and y components of the normal vector were found useful in identifying parallel walls or 
roofs, which tended to have similar or greatly close values. These were seen useful in computing 
the horizontal orientation of walls and roofs in form of their bearing direction. 

 The inclination angle was found useful equally to separate walls from roofs (walls were inclined 
closer to the vertical while roofs tended to be further away), and it was equally used to 
differentiate tilted walls from the non tilted walls, and in identifying pairs of gable roofs. 

 Segment size was a great consideration in identifying fragmented and collapsed planes. 
 Mean X, Y and Z coordinates taken as mean segment position, i.e. defining the relative position. 
 Mean reflectance was used to identify areas of rubble presence in conjunction with segment size, 

these areas had high mean reflectance and presence of relatively small segments around them. 
 Colour content was used in identifying tree crowns, they had higher mean green than mean red 

and mean blue values, and in addition tree crown height to base ratio was equally used to identify 
tree crowns. 
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4.6. Definable Damage types. 
The output in the final classification was to be based on damage classes as defined in the damage 
catalogue (Schweier & Markus, 2006). Given that input data for this research was limited to post 
earthquake data, there was need to determine identifiable damage types based on this data. 
The requirements to facilitate determination of each damage type were reviewed against available data and 
the final status determined. The results were as presented in table 4-3 below. 

 
  
 
The multiple layer collapse required knowledge on pre earthquake roof and wall structure form status. 
Pancake collapse required knowledge on the pre earthquake building height. Overturn collapse required 

Table 4-3. Definable and non-definable damage types 

Damage Group Type Requirements Status given available 
data 

Inclined layers Inclined plane wall planes, 
Roof planes 

Determinable 

 Multi-Layer collapse Pre-collapse form, 
Wall planes, 
Roof planes. 

Not determinable 

 Outspread Multi-Layer 
collapse 

Collapsed planes, 
Positional state, 
Geometrical state. 

Determinable 

Pancake collapse Pancake collapse one storey Roof Planes, 
Wall planes, 
Pre-collapse form. 

Not determinable 

 Pancake collapse several /all 
storeys 

Roof planes, 
Wall planes, 
Pre-collapse form. 

Not determinable 

Debris heaps Heap of debris on 
uncollapsed stories 

Debris, 
Wall planes, 
Roof Planes. 

Determinable 

 Heap of debris with vertical 
elements 

Debris, 
Wall planes 

Determinable 

 Heap of Debris Debris Determinable 
 Heap of Debris with plates Debris, 

Collapsed planes 
Determinable 

Overturn collapse Overturn collapse separated Wall planes, 
Roof Planes, 
Pre-collapse form 

Not determinable 

 Inclination Wall planes, 
Roof planes. 

Determinable 

 Overturn collapse Wall planes, 
Roof planes, 
Pre-collapse form. 

Not determinable. 

Overhanging 
elements 

Overhanging elements Roof planes, 
Wall planes, 
Pre-collapse form. 

Not determinable 
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knowledge on the pre earthquake building foot print and construction plan and form. Overhanging 
elements required knowledge on pre earthquake building form. Given that this research had only post 
earthquake data in form of LiDAR and Aerial Oblique photography derived point cloud, the damage types 
definable based on post earthquake data were the ones to be considered. This meant that the damage 
types deemed to require pre-earthquake data were taken as non determinable damage types within the 
limits of this study. Illustrated and highlighted in red on figure 4-14 below are the graphical 
representations of the damage types identified as determinable.  
 

 

Figure 4-14. Definable damage types based on the damage catalogue(red boxes) (Schweier & Markus, 2006). 

4.7. Analysis summary 
From the analysis several key observations are noted; 
First it becomes clear that planar segments facilitate the ease of identifying building parts as walls and 
roofs based on point cloud. Further, the non planar areas, especially rubble are easily covered in the point 
cloud clusters form. It is equally seen that given the form of any point cloud segment representing any 
building part can be analysed for damage within. This is exemplified by checking for presence or absence 
of tilt on the planar segments. Hence the relevance of point cloud, as it helps in capturing the true form of 
a building and objects within its neighbourhood..   
Secondly, given the nature of input as post earthquake data only then its seen in section 4.6 which damage 
types are definable. Hence by linking the practical form of the true status of each building, the true picture 
of the overall damage status of each building is defined. 
Third, it was found that noise levels were higher in the oblique point cloud compared to the LiDAR point 
cloud. This was a useful observation as it influenced the setting of plane segmentation and connected 
component process parameters. The plane segmentation for LiDAR point cloud had limits of points off 
the plane being set more restrictive compared to that of the Oblique point cloud. 
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5. METHODOLOGY 

5.1. Introduction 
The proposed approach involved direct use of object properties, based on 3D capture ability of point 
cloud data, a feat preferred compared to model based classification as the classification is guided truly by 
existent object characteristics within the study site. The input point cloud data contains coordinate 
information, is post earthquake data and has additional reflectance and colour  information for the LiDAR 
pcl and AOP pcl, the damage types definable will be limited to these capabilities. Further, given the intent 
to assess damage based on the damage catalogue classes, the approach involved assessment of individual 
identified target objects to define the damage status of the building structure under consideration. 
 
To perform the classification, first the characteristics of the desired target objects are identified and 
defined, with application of constraints based on the same characteristics. The applied constraints help in 
better understanding of the definition of extracted objects based on input point cloud data.  
 
The input datasets were used preferentially based on their identified useful characteristics. The LiDAR 
point cloud given its vertical overview, better positional information and reflectance information was used 
for extraction of the roofs and rubble target objects and definition of planar building units. It was not used 
for walls and vegetation (urban tree) identification at it lacked the horizontal façade view and colour 
information The Oblique point cloud, given its horizontal facade view capability of containing building 
façade information and colour information within it was preferred for extraction of walls and urban trees. 
 
For this method, given the normal approach to construction of buildings from foundations, through walls 
to roofs the same criteria was applied in extraction of target objects. Walls come first then roofs, and 
rubble and vegetation were extracted separately. The method involved five phases; first was pre-
classification data processing, second was extraction of target objects, third was defining building unit, 
fourth was the practical definition of damage classes, fifth was the damage assessment cum classification 
and finally the evaluation process. The whole process is summarized in figure 5-2 below. 
  

Figure 5-1. classification work flow in general 
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The approach directly employs extracted and defined characteristics to group segments into target objects 
of interest. This approach involving use of point cloud data has greater advantage of revealing desired 
object form in 3D compared to satellite imagery.   

5.2. Pre-classification data processing 
 
Point cloud in its raw form contains both useful and non useful information depending on the project at 
hand. This research focussed on buildings and related objects within their environment. Input point cloud 
data had to be structured into desired forms, from which target objects would be extracted. The process 
involved segmentation and clustering of the point cloud datasets, extracting plane and cluster segment 
features, and computation of extracted segment features as illustrated in figure 5-2. Despite the process 
being the same for both datasets, different settings were applied for each dataset due to the varying 
densities and noise levels for the two input point cloud datasets. 

5.2.1. Segmentation 
Plane based segmentation was used to create desired plane entities. It was informed by the fact that walls 
and roofs are always planar in nature. The surface growing method was used, with the data structured to 
k-D tree (Samet, 1990). However the higher noise levels in the Oblique point cloud meant that settings for 
segmentation parameters were more moderate compared to those of the LiDAR point cloud. Maximum 
distance to surface was set at 0.1 and 0.3 for LiDAR and Oblique point cloud respectively. However, 
informed by the decision that roofs and walls always have relatively large sizes, the extraction of segments 
was limited to segment size 20 for LiDAR point cloud and 200 for the Oblique point cloud, differences 
based on the second fact that the Oblique point cloud appeared to have higher density than the LiDAR 
point cloud. The aim was to separate plane entities for roof and wall extraction from those targeted for 
rubble and tree crown objects. The remaining point cloud was then forwarded on for clustering. 

5.2.2. Clustering 
Clustering in this case involved use of the connected components functionality of PCM software to form 
clusters of the remaining point cloud after segmentation planes had been extracted. Clustering was used to 
capture rubble and tree crown forms, that have non planar shapes not suitably captured by plane based 

Figure 5-2. Pre-classification data processing 
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segmentation. The settings were different given the higher density in the Oblique than the LiDAR point 
cloud. In a scenario similar to zooming into the structure, the connected component maximum distance to 
point was set to 1.0 and 0.5 for LiDAR and Oblique point cloud respectively in order to ensure the 
smaller fragments and separations are captured. The higher density of Oblique compared to the LiDAR 
point cloud influenced this decision. The result was a collection of point cloud clusters suitable for input 
to extract target objects of interest, specifically the rubble and tree crowns respectively.  
The products of the processes segmentation and clustering are illustrated in figure 5-3 below. 
 

5.2.3. Computation of segment features 
Several segment features were computed to facilitate the basic automation of the classification algorithm 
using a Matlab code, several segment features were computed depending on the input data source. 
Common to both datasets were; 

 Mean of X, Y and Z, were the mean values for Easting, northing and Elevation coordinates of 
any point cloud segment or cluster. 

 Minimum and maximum Z, minimum and maximum elevation coordinates of any segment. 
 Standard deviation in X, Y and Z coordinate values. 
 Segment size, total number of points in a segment. 

 
Additionally for each segment based on the input data source; 

 Mean reflectance was computed for the LiDAR based segments, 
 Mean Red, Green and Blue was computed for the Oblique based segments. 

 
Further, for the plane segments a mathematical plane fit process was carried out. This involved using a 
plane fitting equation in form of a Matlab code to compute the components of the normal unit vector 
defining each fit plane, and the perpendicular distance from the origin. The resultant x, y and z 
components of the unit vector provided input for computation of features as the inclination angles and 
horizontal orientation. This step was useful in providing the mathematical base that defined the extracted 
plane segments. Its usefulness was depicted in; 

 Use of x and y components to define horizontal orientation (identify parallel objects). 
 Use of x, y and z components to compute inclination angle, which combined with horizontal 

orientation helped identify gable roofs. 
 

Figure 5-3. LiDAR point cloud segmentation and clustering 
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5.3. Extraction of target objects.  
The main target objects of interest were the walls, roofs, rubble and urban trees (vegetation). Based on 
their natural status, the characteristics of the objects of interest were defined and used for extraction of the 
objects of interest. For the walls being planar in nature, their defining characteristics came from the results 
of plane fitting residual analysis and related components. Extraction followed a similar bottom up 
approach first walls, then roofs as in the normal building structural construction process. Further, 
following the content and form of the respective segments; Walls and roofs were extracted from Oblique 
and LiDAR plane segments respectively, while vegetation was extracted from Oblique connected 
component cluster segments while rubble was extracted from both LiDAR connected component cluster 
segments. The process is illustrated in figure 5-4 below. 

 

5.3.1. Walls  
Based on their natural state of being in vertical or near vertical positions their characteristics were defined. 
These were taken as; 

 Large segment sizes taken to be greater than 80 points. 
 Having z component of normal vector not greater than (<0.3),  
 Had smaller inclination angles (<20˚) correlated with the smaller z components of the unit vector. 

5.3.2. Roofs 
Based on their status in nature of being above walls and inclined further from the vertical to the limit of 
having flat roofs, their characteristics were defined. These were taken as; 

 Having larger z component of the normal unit vector, greater than 0.7. 
 Had larger inclination angles greater 30˚but less than or equal to 90˚, 
 Their minimum height (min Z) had to be at least 2m above the minimum height of surrounding 

walls i.e.  or ( ), 
 Their minimum height had to be equal to or higher than the height of the neighbour roofs (For 

higher roofs that had no walls captured around them) 
 Had their minimum segment sizes greater than 30. 

5.3.3. Rubble 
These are usually taken as all manner of broken and collapsed material from buildings or parts of it 
collapsing. Given that having an overall single defining signature for rubble was not possible, 

Figure 5-4. Extraction of target objects. 
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consideration was given to rubble elements from collapsed concrete structures. This was so due to their 
defining signature of spectrally having high mean reflectance values and broken pieces thus relatively 
small. Segment sizes and mean reflectance were the key features in identifying rubble piles. Considering 
this, the rubble definition for this research was the resultant cluster segments obtained after; 

 LiDAR plane segments of size less than 20 and average reflectance greater than 115 that were, 
 Clustered using connected components and those with mean reflectance above 115. 
 Planes, those that were not taken as roofs or walls but lay within the neighbourhood of the rubble 

cluster identified using the first two characteristics, and having segment sizes greater than 20 but 
not exceeding 60. This was taken to incorporate broken building parts that lay around collapsed 
sand incorporated building parts. 

5.3.4. General extraction procedure 
Walls were extracted based on the characteristics enumerated in 5.3.1. Plane segments from the Oblique 
point cloud were analysed for those that satisfied the properties; 
. 
Roofs were then extracted based on the characteristics enumerated in 5.3.2. Plane segments from the 
LiDAR point cloud were analysed for those that satisfied the properties.  
Roofs were then identified and classified in two sets.  
 
The First set of roofs was extracted based on their minimum height above minimum height surrounding 
walls. They had to be at least 2m above minimum height of surrounding walls. Given the point cloud 
segments had a normal distribution then their standard deviation showed their spread typically covering 
about 70% of the points as shown in the Gaussian plot (section 4.3). This was used to define the search 
radius between walls and adjacent roofs. Combining the standard distance defined by the horizontal 
(planar) standard deviation of any particular roof and surrounding walls, a search radius was defined. This 
was a modification of the standard distance defined for spatial analysis as the total length obtained by the 
square root of the sum of squared standard deviation in X and Y directions for features or points around 
their statistical mean. Given the segments were composed of points, this helped in linking roofs to 
adjacent walls using their centres (point defined by mean X and mean Y of each segment) as illustrated in 
figure 5-5 below.   

 
 
The search radius, radius of identified wall object and target roof object are as defined below. 

Figure 5-5. Roof identification based on existing walls 
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where 

, 

 . 

 
The second set of roofs was those high above in places with no wall around them. They were defined 
based on segment size, inclination angle and height relative to height of first set of identified roofs. 
Specifically they had; 

 segment sizes greater than 30 , 
 inclination angles ranging from 30 to 90 , 
 their centres displacement from centres of one or more of the first set of classified roofs within 

1.5 times the search radius defined by; 

    

Where; 
 ,  and ,  refers to standard deviation of X and Y of 
first identified roofs and second target roof objects respectively. 

 Their minimum heights greater than or equal to the minimum height of first set of identified 
roofs i.e.  or . 

The relationship between roofs and walls is as illustrated in figure 5-6 below. 

5.4. Definition of the Building Unit 
The building unit used was defined using the roof edges polygon and the rubble cluster set.  
The first consideration using roof edges polygon was informed from the fact that the main output of most 
geospatial research works are presented in form of maps and plans, and in mapping science, building 
features as presented from the external vertical view appear in form of polygon shapes similar to the 
corresponding building roofs. Further, in many disaster response plans for earthquake affected areas as 
experienced during the Haiti earthquake key ground routes are usually destroyed limiting incoming 
assistance to be imported using airborne means. This means that the final damage assessment map, if it 
follows the roof shapes is easy to interpret and use by both local and foreign disaster response personnel 
familiar or not familiar with the local area. There the approach here involved projection of the roof plane 
on to the ground based on the X and Y coordinates of the edge points defining the polygon edge of any 
point cloud roof segment. The status of rubble, wall and roof segments within and on the edges of the 

Figure 5-6. Roof and wall positional relation 
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neighbourhood of this roof polygon would be analysed to give the final damage status. However,  
considering wall segments may have tilt and that their source data was the Oblique point cloud the roof 
polygons were always extended outward by 1.25m to capture surrounding walls and rubble. The extension 
involved use of matlab code extendPoly (Krispijn, 2009). The representative point for each wall, roof or 
rubble cluster was defined by the mean X and Y coordinate values. 
 
The second consideration of building units were rubble clusters. This was especially so in cases of 
collapsed roofs thus rubble clusters form on top of storey buildings with two or more floors. The main 
link was the search radius defined as the combined standard distance of the rubble cluster and 
surrounding walls. The process of defining building units is illustrated in figure 5-7 below. 
 

5.5. Damage Assessment 
Damage assessment was implemented in a procedural, rule based classification process. The first step was 
checking presence or absence of tilt on roof and wall segments. This was followed by grouping of all walls, 
roofs and rubble within and along the edges of the identified building unit into one set. The set contents 
were then analysed based on the practical definition of damage types to give the final damage status of the 
building unit. 

5.5.1. Determination of tilt. 
Tilt was considered the leaning of a wall or roof structure off its assumed normal situation. The normal 
situation for walls was taken to be vertical or within 5 degrees angular deviation from the vertical. For 
roofs, the normal was taken as being completely horizontal for flat roofs while for gable roofs it was 
having the upper and lower edges being completely horizontal.  
For walls, assumed to be vertical in nature, inclination angle from the vertical was used as a measure of tilt. 
Wall tilt was computed using formula for inclination angle (section 4.4.1). 
 Given the high noise level in the Oblique point cloud averaging approximately 30cm from the oblique 
point cloud standard deviation values  and taking walls to have a minimum of 
3m height then vertical walls were taken as those with inclination angle from the vertical being less than or 
equal to 5 degrees. This is based on . Further tilted walls were taken as those 
whose inclination angle was greater than 5 degrees but less than or equal to 30 degrees. 

Figure 5-7. Defining building units 
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 Tilt in walls is illustrated in figure 5-8 
below. 

For the gable roofs, the slope orientation was used to determine presence or absence of tilt. Roof edge 
coordinates were extracted and the slope between successive points computed. Roof edge coordinates 
were extracted by constructing planar convex hulls of roof segments and then identifying the X,Y and Z 
coordinate values for these points. This was informed by the fact that for flat roofs all points would have 
slope values equal to zero or very close to this. For gable roofs, the upper and lower edges would also 
have values closer to zero. Tilt in roofs is as illustrated in figure 5-6 above. Thus taking a minimum of 5m 
length for roofs and getting the average noise level of the LiDAR point cloud being at 4cm 

 then the slope limit was set at 0.008, given ( . Thus tilt was present in all 

roofs which had at least one edge with slope value greater than 0.008. Roof tilt was computed for two 
edge points with coordinates ( ) and ( ) using the formula; 

 , 

Where     and     . 

5.6. Definition of Damage Classes 
The identified damage classes sourced from the damage catalogue needed to be redefined practically based 
on the available post earthquake point cloud data. This meant giving consideration to the positional 
geometry of the identified target objects (walls, roofs and rubble). This decision was informed by the fact 
that geometrical features were the main factors considered during the development of the damage 
catalogue. There key considerations here were the segment size, inclination angles, general roof slope 
orientation and additional bright spectral nature of broken building concrete wall or roof features. 
Damage types considered here were inclined plane, outspread multilayer collapse, heap of debris and 
inclination. 

5.6.1. Inclined plane 
Inclined plane was considered in situations where all wall segments within the building unit had lacked any 
tilt and the roof had some presence of tilt as illustrated in figure 5-9. Features used for wall tilt were 
inclination angle from the vertical while for roof tilt was detected based on slope orientation of the roof 
edges. Parallel walls were detected based on their horizontal orientation with respect to the north. This 
was determined based on the bearing direction of the walls, using the x and y components of the normal 
unit vector. 

Figure 5-8. Tilt in walls and roofs 
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5.6.2. Outspread multilayer collapse 
Outspread multilayer collapse was defined based on segment orientation, inclination angle, difference in 
mean heights and displacement of the planimetric position of segment centre points from each other.  
The plane segments not identified as either roofs or walls were considered target input for this. The 
criteria was to identify segments whose centre points lied within two times the standard deviation of the 
respective neighbour segment, the difference in mean height was less than 1m, their horizontal orientation 
orientations and inclination angles did not differ by a significant margin (<25˚). However the seed 
segment must have rubble within its search radius. From this the we check for availability of small plane 
segments within its neighbourhood (centres of such plane segments must be within 2 times of the search 
radius) with mean height difference not exceeding 1m, and difference in inclination angle not exceeding 25 
degrees. Outspread multilayer collapse is illustrated in figure 5-10 below. 
 

5.6.3. Heap of debris 
Heap of debris was considered in areas where the initial heap of debris was identified (section 5.3.3), and 
further extended to plane segments of sizes between 20 and 100 that had not been classified as walls, 
roofs or used in the outspread multilayer collapse damage type. Those that were found to have their 

centres falling within the search radius ( ) of the rubble cluster and unclassified 

plane segments in consideration. Further, their difference in mean height was not to exceed1m to be 
considered for the class heap of debris with plates.  Figure 5-11 illustrates heap of debris damage type. 

Figure 5-11. Damage classes Heap of Debris and Heap of Debris with Plates 

Figure 5-9. Inclined Plane damage class 

Figure 5-10. Outspread Multilayer Collapse 
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5.6.4. Heap of debris on uncollapsed storeys 
Heap of debris on uncollapsed storeys was identified by comparing the difference between the mean 
height of identified rubble and the minimum height of surrounding walls. The average height of walls 
from buildings with at least first floor was taken to be 5m on the lower side. Consideration was then given 
to heap of rubbles found having their mean height being 5m or more higher than the minimum height of 

walls within 1.5 times its search radius ( ), as illustrated in figure 5-12. 

 

 

5.6.5. The inclination 
This was considered in cases where presence of tilt was detected in both roof segments within and wall 
segments within or on the edge of building unit. Cases where tilt was present in one set of parallel walls 
and the roof segment were also considered to belong to this class.  A set of parallel walls consisted of a 
group of walls with the same horizontal orientation. 

5.7. Overall Damage Classification 
The overall damage classification strategy was based on the above defined damage classes. Each building 
unit was analysed for presence of characteristics satisfying the defined damage classes as above.  
The classification was procedural, with characteristics of each damage class as defined in section 5.6 
providing the rules for determining the damage status of each building unit. 
The procedure entailed; 

 Identifying walls within each building unit. These were then grouped based on parallelism using 
their horizontal orientation or bearing. Walls within each parallel group were then scrutinised for 
presence or absence of tilt. Grouping of walls based on parallelism helped identify pattern of tilt.  

Figure 5-12. Heap of Debris on Uncollapsed Storeys 

Figure 5-13. Inclination damage class 
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 The second step involved identifying roof segments within the building set. These were then 
grouped based on inclination angle and horizontal orientation to check for pairs of gable roofs. 
The final step was examining if roofs with similar inclination angles had or had no tilt present. 

 The third step involved checking for rubble clusters, and if they had their mean height closer or 
further from the minimum height of surrounding walls. Further, for rubble clusters with 
additional broken plates around them were checked for the presence of the outspread multi layer 
damage class. 

 The fourth step involved comparing relative mean height of identified rubble and the minimum 
height of surrounding walls. The difference in height was checked to see if it exceeded 5m. For 
values greater than five metres, consideration was given to the damage class heap of debris on 
uncollapsed storeys. 

The result of the classification process was portrayed using colour information on the roof plane segment 
or rubble unit segment projected on to the zero elevation planes. That was then taken to be the damage 
status of the building unit under consideration. The results of the classification process were then taken 
for evaluation of the classification process. 
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6. RESULTS AND DISCUSSION 

Results and discussion includes the results of target object extraction and damage classification, the 
evaluation of the classification results and the discussion of the results at different levels. The results for 
this research were the output of identified target objects of interest (walls, roofs, rubble, and tree crowns) 
and the output of the damage assessment. The first main part illustrates extracted sample gable roofed 
building, flat roofed building and tree crowns, with brief description of their characteristic features. The 
succeeding part shows site wide classification results, followed by statistical evaluation of the classification 
results and finally the discussion of the classification results. 
 
Illustrated below in Figure 6-1 is part of the results of the extracted objects of interest. The objects are 
differentiated by colour and pattern for ease of identification. Roofs are blue lines, Walls are Red, Urban 
tree crowns are green and Rubble is in yellow. The scenario depicts what is repeated throughout the study 
site, where walls are generally located around the edges of roofs. Tree crowns are located in areas of 
limited space next to buildings. Rubble (bright broken concrete pieces) are located in areas around partly 
or fully collapsed building structures. 

6.1. Sample entity and features results 
The two main entities used to extract objects of interest were plane segments and cluster segments. They 
provided useful form for extraction of objects of interest. Further, several combination of features were 
used to obtain unique identifying combinations to facilitate extraction of objects of interest. Sample details 

Figure 6-1. Sample site classification results 
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on these are presented as flat roofed building, gable roofed building, urban tree crown and rubble site, and 
accompanying description. 

6.1.1. Flat roofed building 
This consists of a building whose rooftop is generally parallel to the horizontal surface as illustrated in 
figure 6-2. The plane segments were the useful entities considered here. Features used are the components 
of the normal unit vector, minimum and maximum height, segment size, and inclination angle as 
presented in table 6-1. 

 
 
FLAT x_unit y_unit z_unit minZ maxZ seg_size i_angle h_bearing 
roof 0.00129 0.00695 -0.999975 21.86 22.48 2502 89.59497 0.183528 
wall_a 0.95747 -0.209143 0.198773 14.15 24.35 391 11.42987 102.32775 
wall_b 0.234955 0.970294 -0.057672 14.68 22.94 1416 3.088968 13.520667 

Table 6-1. sample flat roofed building features 

 

6.1.2. Gable roofed building 
Gable roofed building usually consists of a pair of roofs inclined from the horizontal as illustrated in 
figure 6-3. Plane segments are the main input entities of consideration. Features found useful are the 
components of the normal unit vector, minimum and maximum height, segment size, inclination angle 
and horizontal orientation as presented in table 6-2. 
 
 

Figure 6-2. sample flat roofed building 
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GABLE x_unit y_unit z_unit minZ maxZ seg_size i_angle orientation 
roof a 0.05698 0.251743 0.966115 15.93 17.95 214 75.042 12.753528 
roof b 0.054858 0.254239 -0.965584 15.91 17.97 205 74.9302 12.187578 
wall a 0.976046 -0.21586 0.027198 3.84 15.04 580 1.548448 102.47913 
wall b 0.230302 0.972549 -0.0333 3.19 12.42 122 1.908293 13.322394 
wall c 0.282032 0.947359 -0.151557 12.61 18.15 169 8.717174 16.578427 
wall d 0.095933 0.99245 -0.076421 6.96 18.5 286 4.382849 5.521211 
wall e 0.175672 0.984447 -0.001689 3.2 14.56 614 0.155693 10.146961 

Table 6-2. sample gable roofed building features 

6.1.3. Urban tree crown 
Urban tree crown consist of non planar cluster of points dominated by the green colouration as illustrated 
in figure 6-4. The main features used in their detection are colour information (mean RGB), standard 
deviation in x, y and z, and segment size. Derived features based on these and found useful were the 
excess green index and the tree crown base to height ratio as presented in table 6-3. 

 

Figure 6-3. sample gable roofed building 

Figure 6-4. Sample Urban tree crowns 
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TREE 
CROWN meanX meanY meanZ minZ maxZ stdvX stdvY 
crown a 780227.5 2053271.749 11.266885 9.49 12.52 0.934292 1.123104 
crown b 780230.1 2053285.991 9.152795 7.55 10.95 1.470866 1.082038 
    
TREE 
CROWN stdvZ seg_size mean_R mean_G mean_B ExG crown_b_h 
crown a 0.70541 122 36.967213 51.663934 30.19672 0.309847 0.482856 
crown b 0.754392 229 45.689956 62.847162 29.41921 0.374265 0.413141 

Table 6-3. Sample urban tree crown features 

6.2. Site wide classification results 
This includes the results of site wide wall and roof classification, and the results of the damage assessment 
process in map form. This was aimed to visualize the picture of the final classification process. 

6.2.1. Wall classification results 
Wall objects extracted are presented in planar form on figure 6-5. The typical scenario is that of walls 
being vertically upright or close to this. The figure shows that consideration was on two classes of walls, 
tilted and non tilted walls. The non tilted walls being in blue while the tilted walls being in cyan colour. 
The key entity used here was the plane segment.  From the figure it is relatively clear that tilted walls form 
a slight majority over non tilted walls, sort of indicating the effect of the lateral force of the earthquake. 

Figure 6-5. Classified wall segments 
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6.2.2. Roofs classification Results 
Roof classification results are as presented in Figure 6-6 and 6-7. The typical scenario is that of roofs being 
above walls. The figure shows that consideration was given to two scenarios; 

 Sets of gable /inclined roofs and flat roofs.  
 Sets of tilted and non tilted roofs. 

The gable roofs and flat roofs are depicted in blue and pale red colours respectively. The key entity used 
here was the plane segment. From the figure it paints a picture of the area being dominated by flat roofed 
buildings.  
 

 

6.2.3. Damage Classification Results 
Damage classification was carried out on the basis of the damage classes identified usable from the 
damage catalogue (Section 4.6).  Damage classification in line with damage classes No tilt, Inclined and 
Inclination is as illustrated in figure 6-7. It can be seen that damage class no tilt forms a majority of the 
structures due to the fact that minor damages cannot be detected from laser data. 
 
Heap of Debris taken as rubble was identified as illustrated in figure 6-8. The key consideration was 
segment size and reflectance value, given the high presence of sand component on collapsed building 
material. From the figure it is quite clear that not all heap of debris was identified given the definition of 
rubble applied in this research (sections 4.3.3 and 5.3.3). 
 
 

Figure 6-6. Gable and Flat roof classification 
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Figure 6-7. No Tilt, Inclined and Inclination damage classes 

Figure 6-8. Rubble /Debris sites 
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Roofs were further classified into tilted and non tilted roofs as illustrated in figure 6-9. Consideration was 
given to presence or absence of horizontal slope along the main edges of flat roofs, and the upper and 
lower edges of gable roofs. From the figure it is quite evident that a few roofs are actually tilted, however 
the situation may vary on the ground. 
 

6.3. Evaluation of classification results 
Evaluation of the classification results involved determining the quality, completeness and correctness of 
the classification process. This entailed determining the number of target objects truly classified, those 
falsely classified and those existing on the site but not classified that was to enable determine the true 
positive (TP), false negative (FN) and false positive respectively (Rutzinger, Rottensteiner, & Pfeifer, 
2009). The area was divided into four regions and the statistical evaluation carried out. The four regions 
are illustrated in the figure 6-10. The definitions of completeness /detection rate /producer’s accuracy, 
correctness /user’s accuracy and quality are as indicated below. 
 

 

 

 

 

 

Figure 6-9. Roofs, Tilted and Non Tilted 
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6.3.1.1. Rubble evaluation 
Taking completeness, Correctness and Quality as defined above, the rubble results are as; 
 
Rubble TP FN FP Completeness Correctness Quality 
Zone 1 41 15 32 0.732143 0.561644 0.465909 
Zone 2 40 9 18 0.816327 0.689655 0.597015 
Zone 3 24 18 11 0.571429 0.685714 0.45283 
Zone 4 29 19 25 0.604167 0.537037 0.39726 
overall 134 61 86 0.687179 0.609091 0.476868 

Table 6-4. Rubble Evaluation Results 

From the results it becomes clear that the classification strategy adopted for rubble was not as good as 
expected. This may be attributed to the high number of small objects that equally had high reflectance 
values hence misclassified as rubble, and the presence of rubble in areas not related to collapsed concrete 
wall features. 

6.3.1.2. Roof Evaluation 
 
Roofs TP FN FP Completeness Correctness Quality 
Zone 1 70 27 4 0.721649 0.945946 0.693069 
Zone 2 51 11 6 0.822581 0.894737 0.75 
Zone 3 17 11 0 0.607143 1 0.607143 
Zone 4 81 24 1 0.771429 0.987805 0.764151 
overall 219 73 11 0.75 0.952174 0.722772 

Table 6-5. Roof Evaluation Results 

Figure 6-10. Evaluation zones 
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For the roof classification the results were fairly successful. This was attributed to the large nature of roof 
planes that were easily detectable, with false positives occurring in areas that had high rubble 
accumulations and large vehicle bodies that were parked next to buildings. False negatives were attributed 
to areas that no wall was detected hence, the roof above was not classified. 
 

6.3.1.3. Wall evaluation 
For walls, it was taken that the outer walls, facing the main roads had to be at least visible hence evaluation 
was limited to these group of walls. This was because; the walls behind narrow alleys and in most building 
backyards were not captured or partly captured in the input data. 
 
Wall TP FN FP Completeness Correctness Quality 
Zone 1 39 12 3 0.764706 0.928571 0.722222 
Zone 2 18 13 2 0.580645 0.9 0.545455 
Zone 3 17 6 2 0.73913 0.894737 0.68 
Zone 4 43 13 4 0.767857 0.914894 0.716667 
overall 117 44 11 0.726708 0.914063 0.680233 

Table 6-6. Wall evaluation results 

The results for wall classification were fairly successful with false positives occurring on areas that had 
large linear features spanning across roof tops. The false negatives were attributed mostly to areas that had 
no or inadequate point cloud data coverage which created lack of or presence of small segments that did 
not meet the threshold of minimum wall segment size.  

6.3.1.4. Urban tree crown evaluation 
For tree crowns, since there few, the analysis was taken for the four zones combined. 
 
Wall TP FN FP Completeness Correctness Quality 
Zone all 25 5 7 0.833333 0.78125 0.675676 

Table 6-7. Tree crown evaluation results 

From the results it becomes clear that the tree crown identification and classification process was relatively 
successful. The high completeness and correctness values being an indicator of this successful 
classification. 

6.4. Discussion on Classification Results 

6.4.1. Discussion on damage classes 
The damage classes identified were heaps of debris, inclination, inclined and no tilt. The process entailed 
analysing collection of wall and roof features falling within each building unit to gain the overall picture of 
the damage status. Based on figure 6-7, it is clear that the class no tilt has more units within it followed by 
inclination then lastly inclined. For the heap of debris or rubble as illustrated in figure 6-8 it was spread 
out wide throughout the site. This is an indication of quite a number of building parts having collapsed on 
broken off during the earthquake or as a result of follow up after shocks. However, given there was no 
ground truth sample data to verify the damage classification results, accuracy of this classification process 
is limited to accuracy of classification of the target objects. 
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6.4.2. Discussion on walls. 
The walls were identified based on the criteria outlined in 5.3.1. All the sample walls were identified 
because of their being captured by the AOP point cloud.  However, overlaying all walls identified onto the 
geoeye ortho image presented a realisation that not all walls were captured. This was attributed to two 
factors; the wall was not captured by the oblique point cloud or the wall segment size was small as it had 
been captured but not in its entirety. This equally revealed that segment size was a key feature in 
identification of wall segments. Setting a very low limit on segment size would capture small vertical 
segments that were not actual walls and equally raising the segment size limit would isolate walls captured 
but not in entirety during the formation of the AOP point cloud. Equally important was the realisation of 
the value of the x, y and z components of the normal unit vector. These were useful in computation of 
inclination angles, a key input in identifying tilted from non tilted walls. The relatively high values of 
completeness (0.727) and correctness (0.914) however showed success of the classification. 

6.4.3. Discussion on Roofs 
The roofs were identified based on the criteria outlined in 5.3.2. Not all sample roofs were identified. This 
was attributed to the weakness of the criteria where the main roofs were considered to at least have one 
wall under them. In areas where no wall was identified it consequently meant that roofs in that area would 
not be captured. However, features found useful in wall identification were the segment size, height 
information, inclination angle, horizontal and slope orientation. Segment size helped separate key input 
segment s from other unsuitable segments. Height information helped ensure identified roofs were above 
the minimum height of surrounding walls by 2m. This was in assuming that the lowest of roofs had their 
lowest point at least 2m above ground. Inclination angle was key in separating flat roofs from gable or 
inclined roofs. Flat roofs were taken as having inclination angles greater than 85˚, while inclined roofs had 
their inclination angles ranging from 30 to <85˚. Key to this was the components of the normal unit 
vector that were used to compute the inclination angles. Another key feature was the horizontal 
orientation or bearing of the roof segment. Horizontal orientation in combination with the inclination 
angle was helpful in identifying the pairs of gable roofs that had similar values for both horizontal 
orientation and inclination angle. Slope was also a key feature in identifying tilted from non tilted walls as 
illustrated in figure 5-6. Calculating the slope between points forming the outer edge of roofs deemed 
useful in identifying presence or absence of tilt on roof features. The main weakness was in cases where a 
previous gable roof had slipped into position making it lie flat hence identified as flat roof. Another 
weakness is the fact that segmentation planes may not actually resemble the true form of roofs as 
visualised on the Aerial Oblique Photographs, hence identified roof segments occupy the same 
representative position as on the image but may vary in  segment form or shape and appearance. 

6.4.4. Discussion on Rubble objects. 
Rubble or heaps of debris were identified in this study using the criteria outlined in 5.3.3. The results 
proved less successful than expected. This was because of the rubble identification criteria that considered 
high reflectance and small segment size, that was common to many other building parts that were not 
within the rubble areas. However, there were other heaps of debris that were not from broken concrete 
parts that were not identified as they did not satisfy the criteria applied here. Key features used here were 
segment size and mean reflectance values. Segment size was key in identifying key small objects 
considered for rubble identification and the high reflectance values helped distinguish those that were 
rubble features. Further use by association was of segment size, given that broken plates around these 
identified rubble sites were equally part of the debris too. The process borrowed the idea of plane 
segmentation that identifies seed points and expands on them to identify plane objects. 
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6.4.5. Discussion on Urban tree crowns. 
Urban tree crowns were identified based on the criteria outlined in section 4.4.4. The main features found 
useful here were the colour information, form and segment size. Colour was the key feature given the 
green nature of tree crown foliage within the study site. Mean green values and excess green index were 
computed and used to identify target candidate segments for tree crown identification. To further 
distinguish tree form, the crown nature was captured using the x, y and z standard deviation values of 
target tree crown segments as illustrated in figure 4-10. Tree crown height to base ratio computed using 
the x, y and z standard deviation values helped separate further tree crowns from target segments. Finally 
segment size was used to separate small objects that were not actually tree crowns. Tree crown were 
considered for this study on building damage, as a way of identifying possible locations of survivors and 
relief assistance sites. This is due to the common safety measure of advising people to avoid buildings 
especially in times around the occurrence of any earthquake until satisfied safe. 

6.5. Discussion on Methodology 
The approach methodology of using dataset characteristics to identify target objects of interest is found 
useful in successful object classification. However, the sequence of extraction of objects is a key weakness 
in the approach. This is exemplified by the case where if no wall is identified, it consequently means no 
roof will be identified even if existent. This is due to the consideration that the first set of roofs must 
occur above existing walls. The way to avoid or improve this is by ensuring the input dataset; in this case 
the AOP point cloud has no blind spots or areas with incomplete coverage.  
The damage assessment part proved fairly successful as all identified roofs and wall features are given a 
specific class on whose criteria they satisfy. However, the main weakness may arise from different 
interpretations of the damage classes especially for the practical algorithm formed to implement the 
process. Further, in cases of misidentified target objects then the classification is equally vulnerable as its 
input is fully dependant on the identified target objects as rubble, walls and roofs. 
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7. CONCLUSION AND RECOMMENDATION 

7.1. Findings on each research question 
For this research there were several findings in line with the objectives and research questions as 
enumerated below. 

 What is the relevance of point cloud data for building classification? 
 Given the ability of point cloud to depict geometrical form of any structure captured in 

the data then it helps in identifying the true status of each building part. The vertical view 
of LiDAR helps capture the roof features while the horizontal view of the Oblique point 
cloud helps capture the wall features. Further given the additional information contained 
in form of reflectance and colour helped in identification of rubble and vegetation 
respectively. Hence the relevance of point cloud data in helping capture and analyse the 
structure of target objects and buildings by extension. 

 How will damage buildings be defined based on point cloud data? 
 Damaged buildings are defined based on the damage classes defined in the damage 

catalogue. However, it is the unique ability of point cloud to depict true form (planar or 
cluster) status thus capturing status of buildings, rubble and associated features. And on 
analysing these characteristic features, the final status of damage to the particular building 
is then defined. 

 What is the level of noise in the input datasets? 
 The level of noise is as depicted by the plane fitting analysis in section 4.2 that shows 

higher noise levels in the oblique point cloud compared to the LiDAR point cloud. This 
is evidenced in the larger standard deviations of AOP datasets values >8cm compared to 
LiDAR datasets with values falling below 6cm. 

 How does noise influence the extraction of entities from point cloud data? 
 Noise is considered in setting up parameters for the plane segmentation and connected 

components analysis process. This is so as higher noise levels means less stringent 
settings for the extraction of plane features. Further, the search radius of connected 
component entities is set up in an appreciable manner. Maximum distance to surface for 
LiDAR was set to 0.1m while that of the AOP dataset was set to 0.4m. 

 Further, given the observation of low noise levels in the LiDAR dataset, then the noise 
level influences the selection of the true surface. In this case the LiDAR fit surfaces were 
considered to be the true representative surfaces except for areas that require facade view 
as on building walls. 

 What features of extracted entities are relevant for damaged buildings?  
 Given the need to define damage based on the damage catalogue classes then features 

that help define the geometry and form of buildings and rubble are of utmost 
importance. These include the components of the normal unit vector of fitted planes; the 
segment size, reflectance values, inclination angles and orientation. Segment size helps 
identify rubble zones in conjunction with mean reflectance, inclination angles helps 
identify tilt in walls, orientation helps identify tilt in roofs and also pairs of gable roofs. 

 How will features be combined to define damaged buildings? 
 Given that in mapping science roof features of identified buildings form the basis for 

spatial planar representation of buildings they were used to define building units. The 
polygon defined by the convex hull based on roof edge coordinates was projected onto 
the zero planes. Next, all walls, roofs and rubble within and around 1.25m of its edge 
were clustered and their properties analysed to give the overall damage status for the 
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building in question. This worked for roofed buildings, however in situations lacking 
roofs then rubble was used to define the second set of building units. This was informed 
by the reasoning that collapsed buildings have no roofs on top hence the convex hull of 
rubble units projected on 2D plane was used to cluster any walls within 2 times its 
standard distance, based on which the overall damage status was defined. 

 How will the classification process be implemented? 
 This involved clustering identified roofs, walls or rubble as defined in section 5.4 and 

analysing the combination of properties in line with the practical definition of the damage 
classes in section 5.6. 

 What factors will affect the classification process? 
 The classification process is affected first by availability of total coverage especially of 

available data given walls identified first then roofs thus missing data on walls means 
missing capturing the roofs and related features. Further, given the variation in 
acquisition dates of the datasets what is existent in one datasets in a particular form may 
be varied on the other dataset. Features for entity extraction (section 4.5) also affect the 
classification process as poorly defined features may lead to improper target object 
extraction consequently leading to inappropriate overall damage classification. 

 How will accuracy of the classification process be implemented? 
 Accuracy is implemented based on identified versus non identified target objects. Sample 

target objects are compared with the classification target object results to see if all are 
found in the correct form and position. However, no ground truth data existed for the 
defined damage classes hence the process was analysed visually by overlaying the 
classification results onto the supplied geo-eye ortho image. 

 
 

7.2. Conclusions 
The conclusions for this research are as summarised below. 

1. Damage assessment can be greatly improved by use of recognised damage classification 
catalogues. The advantage being that any party that requires the outcome of such a process will 
easily incorporate it because of the ease of understanding the damage categories used, in this case 
employed based on the damage catalogue. 

2. Point cloud data coverage and noise levels influence the extraction of target building objects. In 
cases of no coverage or higher noise levels, the chances of erroneous extraction and classification 
of objects of interest automatically affects the final damage assessment results. A key pointer 
being in the complete coverage of target objects or buildings within the site of interest as a result 
of both roof and façade is captured in the combined use of ALS and AOP point cloud data. 

3. Based on the results, the feasibility of automating earthquake building damage assessment 
procedures involving combined ALS and AOP data input has been proven. This is exemplified by 
basic implementation of the classification process in form of a coded algorithm with constraints 
based on unique separating features sourced from the results of defining features peculiarly 
captured by the respective input point cloud data.  This shows the ability to provide quick 
assessment of earthquake affected sites and assist responsive disaster management teams can be 
easily effected. 

4. Based on the approach of analysing the target objects directly in relation to the site of interest, the 
research shows that individual characteristics of target objects can be analysed based on which 
dataset provides satisfactory entity for its identification and classification. Evidence on this is by 
considering the two entities employed in this classification process where plane segments were 
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preferred for wall and roof features while connected component clusters were preferred for 
rubble and vegetation identification and extraction This is further exemplified by features 
identified and used in this study to classify target objects of interest. An example in case is the use 
of mean reflectance selectively from ALS point cloud to identify rubble zones and in a similar 
manner colour information provided key input in identifying urban tree crowns. 

5. Rubble identification and extraction still places a considerable challenge to the classification 
process, as building construction materials vary thus more effort should be done to define rubble 
based on non concrete related structures. 

6. Setting of threshold limits during segmentation and clustering process reveals the need to always 
analyse the nature of any site of interest, especially point cloud density before defining the distinct 
features. 

 

7.3. Recommendations 
Several recommendations were thought of as mentioned below. 
 

1. There is need to always ensure complete coverage of availed data to ensure future classification 
processes cover the area of interest and identify target objects of interest  their full entirety. 
 

2. The threshold and constraints set in identifying roof and wall objects should be further analysed 
and more clues on how to improve their set up determined. 

 
3. The use of the standard distance to link roof and wall segment features should be further 

researched on. This is so as it enables quick determination of relative positions of roof and wall 
objects without undergoing the rigorous topological relations exercise. 
 

4. More research on damage assessment methods involving post earthquake data only should be 
encouraged to facilitate the quick requirement of damage response organisations that may be 
delayed by waiting for acquisition of pre-earthquake data. This is to avoid effects of confusion 
that bedevils all areas affected by earthquakes, especially in the period immediately after its 
occurrence. 
 

5. Efforts should be made to encourage development of oblique  positioned laser scanning and data 
acquisition devices that can fly closer to the surface, and have small sizes in form of unmanned 
aerial vehicles to help in automatic acquisition of facade view point cloud data. 
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