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I 

ABSTRACT 
Land is vital to the survival of all life on Earth and it is important that we understand the various 
changes that take place on it. Environmental and anthropogenic drivers are constantly changing 
the face of the Earth and it is essential that we understand what these drivers are and the change 
they bring about to the Land use/Land cover. Land Use Land Cover (LULC) change analysis is 
very important for environmental management purposes as it helps the decision maker in 
planning for future changes that may occur in that area and it also helps the decision maker 
realize the effects of these changes on humans and their environment. Decision makers also have 
to identify, what are the factors that affect the LULC change (such as population, agricultural 
growth etc.). Therefore the quality of the LULC change map is essential for making more 
accurate decisions.  In this project, uncertainty modeling has been performed in Land use/cover 
change. Uncertainty modeling quantifies the variation in results obtained by a modeling process 
for decision-making. 
 
Remote Sensing and Geographical Information Systems apply different types of operations (e.g. 
classification, rescaling) on spatial datasets to produce maps or to extract spatial information from 
the dataset; there is always some uncertainty in these operations. Uncertainty considers aspects 
like error and incompleteness of the input data as well as the output data.  This project uses a 
CA-Markov hybridized approach to model LULC change in the Upper Ganaga Basin.  
 
LULC change is detected by using different time period images and various driver datasets (e.g. 
soil moisture, temperature, and slope). There is some amount of uncertainty in the available 
observation, spatial distribution and resolution of the datasets.  We have to model the 
redistribution and aggregation uncertainty for the driver data in order to come up with an 
outcome that has minimum error. Spatial aggregation is used in conversion of LULC datasets to 
thematic raster datasets. The spatial aggregation methods used for this project are Random role-
based and Major role-based 
 
The results show that major rule-based aggregations proved to be more accurate than random 
rule-based aggregations for the Upper Ganga basin. The highest percentage of change was 
observed in the classes; snow and ice and barren land. 
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1. INTRODUCTION 

Remote Sensing and Geographical Information Systems apply different types of operations (e.g. 
classification, rescaling, and interpolation) on spatial datasets to produce maps or to extract 
spatial information from the dataset; there is always some uncertainty in these operations[1]. 
Uncertainty considers aspects like error and incompleteness of the input data as well as the 
output data.  
 
Abbaspour et al. [2] mentions that uncertainty is divided into three levels as per the United States 
Spatial Data Transfer Standards. These three levels of uncertainty are source of uncertainty, form 
of uncertainty, and resulting uncertainty.  The source of uncertainty is the uncertainty that is 
found in the source data. Inherent, model, measurement, data usage, processing and 
transformation are examples of source uncertainty. The second level consists of positional, 
attribute, time, and logical consistency and completeness uncertainties. The third level is the 
uncertainty of the overall product (e.g. final map).  
 
In this project, uncertainty modeling has performed in Land use/cover change. Uncertainty 
modeling quantifies variation in results obtained by a modeling process for decision making. In 
Abbaspour et al. has a mention that error propagation takes place in a model from input data to 
output data and errors also occur due to GIS operations [2].  
 
Land Use Land Cover (LULC) change analysis is very important for environmental management 
purposes as it helps the decision maker in planning for future changes that may occur in that area 
and it also helps the decision maker realize the effects of these changes on humans and their 
environment[3]. Decision makers also have to identify, what are the factors that affect the LULC 
change (such as population, agricultural growth etc.). Therefore the quality of the LULC change 
map is essential for making more accurate decisions.    
      
 LULC change models are used in finding patterns and predicting LULC change. LULC changes 
are driven by various bio-physical (temperature, rainfall, slope, drainage etc.) and socio-economic 
drivers (the growth of population, industrialization, infrastructure and technological growth etc.). 
LULC changes occur due to driver effects, these changes can be identified by the spatial patterns 
that can be seen in the area of interest. For example industrial growth results in change in land 
use classes as there is a reduction in the agriculture and forest areas due to the growth of the 
industrial areas.  
 
The LULC model applies various geo-information techniques (e.g. Markov, Cellular Automata 
(CA)) in order to analyze various input drivers and Land use datasets.  LULC change is detected 
by using different time period images and various driver datasets (e.g. soil moisture, temperature, 
and slope). Driver datasets (such as population data) are not always correct as there is certain 
information that is always missing. There is some amount of uncertainty in the available 
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observation, spatial distribution, resolution of the datasets etc.[4]. We have to model the 
redistribution and aggregation uncertainty (e.g. RMSE, ME) for the driver data in order to come 
up with an outcome that has minimum error. Redistribution methods are basically spatial 
interpolation methods which are used to predict the value at a known location by observing an 
existing point. Redistribution and Spatial aggregation is used in conversion of LULC and driver 
vector datasets to thematic raster datasets.   
 
 In LULC change modeling, effective model is required to predict the later LULC classes as per 
the previous year LULC classes. In LULC modeling most prefer models are Markov Chain and 
Cellular Automata (CA). Markov chain model create the transition probability matrix from two 
time period LULC data (t1, t2) and give transition probability to predict time period t3. Stochastic 
Marko chain model has assumption that LULC change process should be stationary[5]. Markov 
chain model does not consider the driver data in future change prediction. Markov chain model 
only gives the temporal dynamics not spatial. As compare to Markov chain model, CA model 
have spatial component, future change predicted by certain rule from the neighbors cell. In CA 
the state of each cell depends on the spatial and temporal state of its neighbors. CA -Markov is a 
combination of two models, the Cellular Automata model and the Markov model. Temporal and 
spatial pattern of LULC change can be simulated in the CA-Markov model. CA-Markov 
improves the accuracy of LULC prediction because it considers the driver data [6].   

Most LULC Models are grid based. Driver datasets and LULC datasets should have the same 
spatial grid size. LULC datasets are available for different time periods with varying resolutions of 
satellite data (LISS dataset 1995, 2005 and 2010, Socio economic dataset of 2001 
etc.). These LULC datasets need to be correlated with the driver data but the driver data are of 
different time period than of LULC datasets (Socio economic dataset of 2001 etc.). It is vital that 
the spatial and temporal data is synchronized in order to predict the future spatial pattern of 
LULC changes in an area. LULC and Driver datasets are also of different scales. Re-sampling 
error occurs when the scale of one dataset is converted from one to another. Also, it is important 
that the driver and the LULC dataset are of the same time period and in order to see the changes. 

1.1. Research Objective 

The main objectives of this project find Uncertainty for Land use/cover change in Upper                     
Ganga Basin in the context of India. 

1.1.1. Sub-objectives 
1) Identifying the drivers which affect the Land use/cover change. 
2) Identifying spatial aggregation and distribution technique for LULC datasets. 
3) Model uncertainty for aggregation technique of LULC datasets 
4) Quantify uncertainty of LULC change with respect to reference LULC dataset.  
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1.2. Research Question  

To reach the above objective the following questions need to be answered. 
1) What are the major drivers of Land use/cover change in the study area and relationship 

between the drivers and the land use classes? 

2) Which spatial distribution and aggregation method gives minimum overall uncertainty in 
Land use/cover change?  

3) How much overall uncertainty occurs in the Land use/cover change from 1985 to 2005 
in the Upper Ganga Basin? 

1.3. Innovation aimed at  

Driver datasets are available at different scales and different time periods, and LULC data set also 
have different scale. For the land use change modeling both should have the same scale. For this 
study different aggregation approach applied on LULC data to make the data same scale and in 
order to identify which approach will give minimum error in a predicted LULC map.  
 

1.4. Thesis Strucure 

This structure of the thesis describes whole project and the content related to this research in 
chapters: 
Chapter 1: Introduction describes the background of the about project 
Chapter 2: Literature Review has done on three parts Land Use Change, Scale and Uncertainty 
Chapter 3: Study Area and Data Used, this chapter describe study area and data information 
Chapter 4: Methodology, describes methods description used in this project study 
Chapter 5: Results and Discussion, in this chapter result analysis has performed 
Chapter6: Conclusion and Recommendation, in this chapter research question has been answered 
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2. LITRATURE REVIEW   

2.1. Land Use Land Cover Change with CA Markov 

Lo and Yang [7] focuses on the land use/ land cover changes taking place in Atlanta, Georgia. 
Atlanta is a metropolitan city in America. The approach used to generate these land use/land 
cover maps was a zone based cellular approach. Drivers of land use/ land cover change were 
analyzed in this approach. Census data couples with Landsat images for years 1973, 1979, 1987, 
1993 and 1999 were used to extract land use/ land cover statistics. Thirteen counties in Atlanta 
showed a speedy increase in high and low-density urban use. This increase resulted in a decrease 
in the cropland and forestland of the area. This period also saw a rapid increase in population 
growth. 

In order to understand and analyze these changes it was necessary to comprehend demographic 
as well as socio-economic data. This data was gathered from censuses and was then integrated 
with LULC and location data. The results revealed that nearness to roads, highways and shopping 
malls has led to increase in urban development and this has encouraged suburbanization. This 
increase in suburbanization has negatively impacted the greenery of the area and has also led to 
fragmentation and degradation of environment. 

Cellular Automation (CA) model was used to generate a land use/ land cover change map from 
1999 to 2050. It is predicted that if metropolitan cities keep growing at the present rate then 
suburbanization will lead to complete loss of forest, around these cities. 

 
  Jokar Arsanjani et al. [8] are analyze the suburban development and expansion of metropolitan 
cities. The study area is the metropolitan city of Tehran, Iran. The basic logistic regression model 
was improved by using Markov Chain (MC), Cellular Automata (CA) in combination with each 
other. This hybrid model was used in this study to analyze the growing population and expansion 
of urban cities. Environmental and socio-economic variables that are related to urban 
development were integrated in order to create a probabilistic scenario of the years 2006, 2016 
and 2026. 

The model was validated using relative operating characteristic values for different sets of 
variables. The simulated map for 2006 was compared to the actual map of 2006. It was seen that 
they matched by 89%, validating the hybrid approach. The future land use/ land cover maps for 
2016 and 2026 were based on this hybrid approach. The probabilistic maps generated showed 
that the western border of Tehran would see an increase in development and expansion over the 
next few decades. 
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Pontius and  Malanson [9] has compared to models that study landscape ecology. The models 
compared are the Cellular Automata Markov (CA Markov) model and Geomod. Both of these 
models permit a specified prediction quantity and also allow for the specification of the position 
of land classes. CA-Markov can predict change in any number of classes while Geomod is able to 
predict change only from one class to another one. It was seen that the between predictive 
models and null models, the predictive one are much more accurate.  
 
Serra et al. [3] examines the drivers that are the main force behind the changing land use/ land 
cover (LULC) in the Mediterranean region. Various tools are used to see the difference between 
the LULC changes, the drivers behind those changes and the dynamics of the landscape. The 
LULC changes have been computed using remote sensing and GIS methods. The drivers have 
been analyzed using logistic regression integrated with anthropogenic and biophysical variables 
and the landscape dynamics have been comprehended via the use of various metrics. 

The results indicate that the in the future we shall see abandonment of vineyards, intensification 
of herbaceous crops and an increase in forest land in the mountains due to reforestation that is 
being carried out currently. 

 Ye and Bai [10] has done study on the Nanjing County in China went through a period of 
extreme land use and cover change from 1985 to 2000. Remote sensing and GIS methods were 
employed to detect temporal and spatial changes that took place over this period. It was seen that 
the forest cover fell from 49.46% to 39.01% and it was the one land use which showed the most 
amount of change the other major land use change was that there was an increase of more than 
10% in croplands. The CA-Markov model was used In order to estimate the changes in land use 
in 2015 and 2030. The estimated results show that there will be a rise in croplands by 2.53% from 
2000 to 2015 and another rise of 2.85% from 2000 to 2030.  
 
Land use and land cover change has affected China the most in the last few years and it is seen 
that rapid land degradation is resulting from climate change and anthropogenic pressures on the 
land. [10] Examine and predict the spatial and temporal land use in the Nenjiang County in 2015 
and 2030. They estimate this by using the CA-Markov model which is described in their paper. 
 
  
In this study, LULC change modeling CA-Markov used for predicting the 2005 year map.  
Biophysical and socio economical driver dataset also integrated with this model and for the driver 
relation with LULC classes logistic regression used d in this study.     
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2.2. Scale 

GIS techniques coupled with remote sensing data have made it possible to present and manage 
remotely sensed data in multiple scales. Quattrochi et al. [11] express the need of multiscale data 
in GIS. It is revealed that multi scale data is useful when carrying out ‘global change studies’. 
Multi scale data helps in define spatial properties at various scales and help in understanding 
spatial processes using information from these various scales. Quattrochi et al. [11 also 
recommended four implications of spatial scale; cartographic scale, geographic scale, operational 
scale and measurement scale.  

Cartographic scale is basically the relationship between the distance that is shown on a map and 
the distance on ground that it refers to. Geographic scale is the 3D space the study area occupies. 
Operational scale is the scale at which certain processes work. Measurement scale denotes the 
smallest discernible objects that are observable in spatial data. In paper Turner et al. [12] called 
measurement scale spatial resolution/ grain. Varying spatial resolutions have importance in 
various subjects. Forestry, ecology, hydrology and human geography use the same data at 
different scales.  

Data aggregation in remote sensing is used in global studies of landscape patterns. The 
aggregation of an image leads to a coarser resolution and the spatial characteristics of the data 
also change. 

The majority rule-based (MRB) technique has been defined well by Moody and Woodcock [13]. 
In their study they superimposed polygonal grids, which are the aggregation grids over classified, 
per pixel class maps of 30m. The most common class in the polygonal grid was allotted to all the 
cells of that grid. This sort of an aggregation is known as majority rule-based aggregation. This 
method was used to get maps with various coarse resolutions. The coarse resolution maps were 
then used to measure error in regards with the area of the 30m-class map. It was seen that at 90m 
resolution the error observed was the lowest in all classes. In order to compute the change in 
class proportion that resulted from change in spatial resolution it was suggested that a regression 
relationship should be developed. 

Aggregating spatial raster data using the Majority Rule-Based (MRB) method has been classically 
used in the study of landscape ecology by He et al.[14] . Earlier studies show that using MRB 
methods makes the dominant class increase, the minor class decreases and the spatial patterns 
also undergo a change. This paper studies an alternative method, which is the Random Rule-
based (RRB) aggregation method. Here a classified TM image of 30m resolution was used to 
carry out this aggregation on. Aggregation Index, Fractal Dimension, mean patch size ration and 
proportion of cover type were used to observe how the RRB approach is different from the MRB 
approach. 
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The study showed that aggregation done using the MRB process caused the cover type 
proportions to be inaccurate. The MRB tended to decrease or even erase out the minority class, 
which resulted in a clumped looking landscape. These sorts of maps are easy to interpret and 
prove to be useful for land managers. It helps them in studying the spatial patterns of a certain 
area. RRB on the other hand preserved the accuracy of the cover type proportions but resulted in 
some disaggregation. It was seen that the RRB was better for those studies where accuracy of 
spatial data is important. 

 
For the study in the project aggregation approaches RRB and MRB was used in land use images, 
and find out the effect of aggregation on final predicted map of year 2005.   

2.3. Uncertainty: 

Geoprocessing is a method that helps to create new spatial data from original input data. The 
process uses various algorithms to create new data and most of the algorithms used employ some 
sort of a prediction method to create new data with new spatial features. Tools used in 
geoprocessing like overlay, intersect, buffering by  Konstantin et al. [1] . Basically help the user to 
combine data from various places and then interpret it in one environment. The outcome is an 
integrated set of data which is different from the original data and has new spatial features too. 
For this reason the estimates for the new data are always uncertain. In order to make the results 
more efficient for decision-making uses it is necessary that the user should be able to calculate 
and compute the uncertainty that is present so that the impact of the uncertainty on the results 
may be assessed.  
 
Konstantin et al. [1] has discussed various approaches that help in measuring the uncertainty 
present in the new spatial data that is created in the geoprocessing environment. The paper 
describes general approaches like sensitivity analysis, geostatistical simulations, fuzzy logic and the 
Bayesian Belief Network approach. These help in understanding and assessing the uncertainty 
that results from geoprocessing operations. These approaches can be easily integrated with the 
GIS framework that is currently available as the geoprocessing environment is flexible and can 
contain various tools and uncertainty and sensitivity analysis in one environment. 
 
Geographic Information systems allow users to incorporate, examine and analyze data of 
different scales, different resolutions, different accuracies and different quality. It also allows the 
user to test the accuracy of and validate a certain set of data by Abbaspour et al. [2] . While the 
advantages of a GIS environment are many, there is also the question of what the effect of 
combining data from various sources is. Uncertainty comes into the picture as various levels of 
data are integrated. Uncertainty begins with the data that is a resultant of analysis done on remote 
sensing data and spatial queries carried out on that data. This uncertainty carries on to the output 
maps, which are then produced from the derived data. 
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This paper [2] provides an insight into the propagation of uncertainty and how it is to be assessed 
using overlay analysis. It also carries out a Monte Carlo simulation to address the problem of 
uncertainty. The results of both the methods are then analyzed.  

Schneider [15] has deals with the study of spatial data uncertainty and its management. It also 
talks about how one can decrease the data uncertainty and also raise the accuracy of classification. 
It also looks into raising the efficiency of the data and the output so that the value of decision 
support can be increased. The fuzzy measurement approach is used to identify uncertainties in 
classification and prevents them from being transmitted to further processing stages. In those 
cases where the concept is not clearly defines, features are not measured and the parameters are 
not estimated appropriately, then fuzzy logic is relevant in such a situation. Using overlay analysis. 
It also carries out a Monte Carlo simulation to address the problem of uncertainty. The results of 
both the methods are then analyzed.  

Pang [15] studies has showed  how visualization can be of use when accessing and understanding   
large volumes of geo-spatial data. The paper especially looks at some of the challenges faced in 
the visualization of uncertainty, which is related to spatial data. Uncertainty is represented in 
various ways and therefore requires various methods for presenting it with the underlying data. 
The paper looks at various approaches that can be used to present uncertainty values. 

Accuracy assessment of remotely sensed data is one of the most important steps of classification. 
Accuracy assessments help to create a quality assessment of the map produced which is useful to 
the end user by Congalton [17]. The accuracy of unsupervised and supervised classification is 
different from each other. Hasmadi et al. [18] focuses on carrying out both types of techniques 
and analyzing the differences in their accuracies. User accuracy, producer accuracy and overall 
accuracy were obtained for maps classified using supervised classification and unsupervised 
classification. Kappa statistics were also obtained for both types of methods. The result of the 
study showed that the supervised classification method is a more accurate technique of 
classification. 

 
For the study of the project uncertainty used to quantified the final out from the CA- Markov 
model. Accuracy assessments to find out the error in paper classified image is formed using 
supervised and unsupervised classification. Error quantified by kappa statistics.  
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3. STUDY AREA AND DATA USED 

3.1. Study Area 

 
India is one country that is made up of a diverse set of physical, geographical, climatic and socio-

economical classes. All of our population is highly dependent on the varied river systems that are 

present in this country. These river systems have been manipulated over the centuries to ensure 

the on-going success of humans. The Soil and Land Use Survey of India has classified the river 

systems into fourteen rivers basins. The Upper Ganga Basin is one of the fourteen and this 

project studies the land use land cover changes that have taken place in this area. 

 

The river Ganges is considered a goddess and is scared to a majority of people in India. It has 

been a structure on which India and its civilizations have grown and prospered. The river, being 

highly revered by the Hindus of India, plays a fundamental role in the culture as well as the 

cultural history of India. The Ganga River Basin covers an area of 981,371 km2. The river begins 

at the Gaumukh glacier with an elevation of 3,892m in Gangotri, a town in Uttarakhand, a 

northern state of India. The current study is based in the Upper Ganga Basin (UGB) which 

covers an area of 87,787 km2 and is one of the main branches of the river. The UGB covers and 

elevation of about 7400 m as it covers elevations of 100m in the plains and goes up to 7500m in 

the mountainous regions. The UGB also receives a decent amount of rainfall of about 550-

2500mm, most of it in the monsoons. 

 

A census that was carried out in 2001 indicates that the average population density in the Ganga 

basin is 520 persons per square km, which is remarkable when compared to the national average 

of 312 people per square km. This means that the Ganga River Basin is a densely populated area. 

India saw an increase of 32% in its urban population from 1991 to 2001. This movement is most 

likely to keep increasing which puts even more pressure on the already pressured rivers. The 

increasing usage of fresh water by the industry and the urban population has led to the 

degradation of both water and land in this area. This is why it is extremely important to study the 

changing trends in land use and land cover in this delicate area.  
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   Figure 3-1: Upper Ganga Basin 
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3.2. LULC and Drivers data information   

 
Land use/ land cover (LULC) change is basically a resultant of several driving factors, also 
known as drivers, acting in one area. These drivers may be biophysical or socio-economic factors. 
The following data for drivers was collected for the Upper Ganga Basin. The listed biophysical 
and socio-economic drivers were chosen for three time frames. 

Bio Physical drivers: Rainfall, Temperature, Elevation, Slope, Drainage Network, Soil Depth 

Socio- Economical drivers:  Road Network, Population Density, Agricultural Work force 

Biophysical drivers:  

Elevation: This is a significant parameter that is needed for the accurate generation of a 

land use/ land cover map. The elevation data was taken from the Shuttle Radar 

Topographic Mission (SRTM). The data had a resolution of 90m. The downloaded data 

was in Arc/Grid format and it was possible to use it in Arc GIS directly. The geographic 

projection used, was WGS 84. Also, because for this area and timespan, the elevation of 

the area does not change over the years, the same SRTM data was used for the three time 

periods (1985, 1995 and 2005). 

 
Slope: The percent slope was also extracted from SRTM data. The percent slope was 

generated in Arc MAP using the slope function.  

 
Rainfall: The Indian Meteorological Department provided rainfall data at 1°×1° grid. 

For each year the total rainfall was calculated by adding the rainfall from each day of the 

year. The average for 1985 was calculated by averaging the rainfall for 1984 and 1985. The 

same was done for 1995 and 2005.  

 
Temperature: The daily highs and lows of temperature were attained from the Indian 

Meteorological Department which is available at 0.5°×0.5° grid. The annual mean 

temperature was calculated for the year 1985, 1995 and 2005.  

 
Soil Depth: The soil map at 1:1 million scale made by the National Bureau of Soil Survey 

and Land Use Planning was used for this study. 
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Drainage Network: Extracting the drainage layer from the LULC maps that were 

prepared for this project in addition to DCW (Digital Chart of the World) drainage map, 

generated the drainage for this project. 

 
Socio-Economical Drivers: 

 
Population Density: The census data for the years 1981, 1991 and 2001 was acquired 

from the Directorate of Census.  In addition to the census the population growth rate by 

district was also obtained for the years 1981-1991 and 1991-2001. In areas where the 

growth rate was unobtainable it was estimated by looking at the pattern witnessed in areas 

around it. The following equation was used to estimate the population for the years 1985, 

1995 and 2005. 

Population of year Y= Population of year Y-1 (log e 
X)  

Where: 

                               Log e = 2.17828 

                               X       = Population growth rate  

Road Network: Roads are vital to the sociological as well as economic development of 

any area. The road network information was obtained from a Survey of India toposheet 

of the area. 

 

Agricultural Work Force: This work force is made of the people that work in the 

agricultural fields. A census showing the number of people working in the fields in each 

taluka was used to generate the agricultural work force. 
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Figure 3-2 Driver Data set 
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One portion of this study was to also obtain a land use/ land cover map for the UGB for years 

1985, 1995 and 2005. The LULC maps were obtained from the IGBP and therefore the 

classification was in accordance with the classification scheme of the ISRO Geosphere Biosphere 

Project (IGBP).Cloud free images of satellite data such as LANDSAT MSS (1985), LISS I (1995) 

and LISS III (2005) were used to generate these land use/land cover maps at a scale of 1:250,000. 

A total of fifteen land use/ land cover classes were interpreted from the images. The final classes 

were Built Up (BU) area, Barren Land (BL), Crop Land (CL), Mixed Forest (MF), Ever Green 

Dense Forest (EDF), Ever Green Needle Forest (ENF), Deciduous Broad Leaf Forest (DBF), 

Wet Land (WL), Scrub Land (SL), Water Body (WB), Snow and Ice (SI), Grassland (GL) and 

Permanent Wet Land.(PW). 

 
 

Figure 3-3  LULC Map of Year 1985 
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4. METHODOLOGY  
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Figure 4-1 Methodology  
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4.1. Description of  Methodology   
 

1) The methodology above shows that the LULC vector datasets of two time periods (1985 
and 1995) used for change detection. These datasets are available at 1:250000 scale.  
 

2)  The driver dataset is also available for different time periods and different scales (e.g. 
rainfall, population, temperature, slope, road network, canal network). Data scale at 500, 
1000 m.   

 
3) For the LULC change analysis, LULC and driver datasets need to have the same scale.  

Therefore in the project different aggregation approaches were used (e.g. Feature to 
raster, Random Rule based, Major Rule Based) in order to convert the LULC dataset to 
thematic raster datasets with a resolution of 500 and 1000 m.  In this case grid resolutions 
of 500 and 1000 m have been taken to preserve features (e.g. polygon, line) of the driver 
dataset because the driver datasets are not available at the fine resolution. In aggregation 
one has to aggregate to the coarsest resolution of the input data so that there is an 
aggregated set of data that has maximum information content and a minimum amount of 
introduced noise. This is because noise increases as the resolution gets finer due to larger 
amounts of detail. 

 
4)  The selection of the driver datasets which are important for LULC change was based on 

logistic regression analysis with LULC dataset (1985, 1995, and 2005).  The regression 
assessed the correlation between independent drivers with LULC classes. For the change 
analysis those drivers which have high significance with LULC classes were selected. 
 

5) A Markov Transition Area Matrix is created in order to identify how many classes change 
to other classes from 1985 to 1995.  

 
6) For the prediction of the year 2005, LULC map was used in IDRISI software, which 

consists of the CA-Markov model. CA-Markov is a powerful model for predicting the 
LULC change map in time and space. CA-Markov has considered LULC dataset of two 
years (1985 and 1995), driving factor of the LULC change and the Markov transition area 
matrix.   
 

7) For the validation of the predicted 2005 LULC change map, the study used the available 
2005 LULC vector dataset of the IGBP project. It then quantified the uncertainty in the 
final LULC change map. Uncertainty due to the different aggregation techniques is also 
calculated in final LULC change map. 
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8) The project modeled Overall uncertainty to be calculated for the final LULC change map. 
These procedures identified how much the uncertainty of driver and LULC datasets 
affects the overall accuracy of LULC change map. 

 

The purpose of this project is to study the drivers that bring about changes in land use/land 
cover. The project also focuses on the scale of the change that takes place in the long term in the 
study area and to display the resultant output of these changes. The result of these changes is an 
output map depicting those areas where change takes place.  It also looks at the various 
aggregation and modeling methods that are applied in order to predict this change. 

4.2. Land Cover Change Detection Analysis  
Change detection is a method by which the process of changes that occur in land cover, over a 
certain number of years, can be observed [19]. Class-level metrics like transition matrix were 
taken into account in order to carry out the change detection. These metrics are incorporated 
with patches of different classes. The number of patches of a certain class represent the extent of 
the class and they also display the fragmentation of that has occurred in that class. 

4.3. Stochastic Markov Model  

The Markov chain is the simplest Markov model. It simulates the condition of a system using a 
random variable. This random variable transforms over time. This type of model combines the 
process of Markov modeling with stochastic modeling[20] . This hybrid model allows for 
predictive modeling. The user must have knowledge about the trend of past land cover changes 
in the area. In this process the condition of a particular area at a certain (t+1) depends on the 
condition of that area at time t [21]. 

 
Markov Transition Probabilities:  
 

)  (1) 
 
Transition matrix (n×n) of the markov chain process  
 

                (2) 

 
Where P is the probability matrix of n states 

 is the transition probability of state i to j 
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The probability of future states of a cell can be calculated by equation (3) 
 

                              (3) 
By increasing the time steps of the Markov process, p(t) approaches to the constant probability 
vector which is known as the limiting distribution [22] .   
 

               (4) 

4.4. Cellular Automata Markov Model   
The CA-Markov is a stochastic model, which is used quite frequently in assessing change in a 
particular area or system. CA models are spatial models where the basis of the model is the cell. 
This cell is influenced by its neighboring cells and is able to adopt various states. An advantage of 
the CA is that it can be integrated with GIS software quite easily[26]. Markov on the other hand 
is used for assessing the impacts certain policies have on the land. It is useful in the projection of 
‘the equilibrium land use vector’ and can also help predict the land use changes that may take 
place in the future. The CA-Markov model is adaptable and realistic which is why it is extremely 
useful when looking are changes in land cover due to urbanization and is commonly used in such 
studies.  

This model is a hybrid of the cellular automata (CA) and the Markov chain. As defined by 
Wolfram [23] the CA is basically a model that uses mathematical processes to model physical 
structures. In these physical systems time and space are separate. 

The Cellular Automata comprises of the physical space characterized by cells and this is where 
the mechanism of CA occurs[24]. It also comprises of a cell in which the CA mechanism 
inhabits, the neighborhood that surrounds this cell, rules of transition that define the 
performance of the CA and the time-based space in which the entire mechanism exists [25]. 

 Mathematical Notation of CA 

)          (5) 
Where S = the set of all possible states of CA 
            N = neighborhood of all cells  
f = transition function that defines the change from t to t+1  
 

 

 

 



Uncertainty modeling for asynchronous time series data with incorporation of spatial variation for Land Use/Land Cover Change 
 
 

Page | 21  

 Simulation with Cellular Automata Markov Model (CA Markov) 

The CA Markov uses a contiguity filter, which is defined by the user. It integrates the suitability 
image of the classes and these are then input into the model. The Markov model uses the 
contiguity rule pixel and applies it to a certain land cover class, which will in most probability 
remain the same land cover class as before. This project has used a filter (mean contiguity 5 x 5) 
for modeling purposes. This filter was then applied on the suitability images for each LULC class. 
This process outlined the neighborhood. This 5 x 5 filtering window determines the suitability of 
a pixel.  The higher the number of pixels with the same class in the same neighborhood, the 
higher is the suitability value of that land cover class in that area. If the pixel is of another class it 
remains the same as it was before. Suitability maps help in defining those pixels, which will 
change depending on the highest suitability of each LULC class. Suitability of a pixel increases the 
likelihood of change in neighboring pixels into the same class as the original pixel.  

4.5. Categorical aggregation approach  
For the aggregation of the LULC map this study used Random Rule based and Major Rule based 
approach. The RRB is also one type of aggregation method, applied on images with a fine 
resolution in order to coarsen the resolution of the image. The RRB technique is basically a 
process that that randomly selects a class from the input grid. It then comes up with different 
understandings of the image. A class that is randomly selected is then allocated to the aggregated 
pixel. The MRB aggregation approach selects the majority class in the input grid and assigns this 
to the output grid.  For this current project a code for applying MRB and RRB has been 
developed in the software R. The first step is to load the classified image in R on which the work 
needs to be done R accepts this image in ASCII format and produces an output image at the 
desired level of aggregation in ASCII format t 
 
Random Rule Based Approach:  
 

2 2 4 3 

2 4 4 4 

4 2 4 3 

 
 
 
 
 
 

2 or 3 or 4  

Figure 4-2 Random Rule based Approach 



Uncertainty modeling for asynchronous time series data with incorporation of spatial variation for Land Use/Land Cover Change 
 

Page | 22  

 
 
 
 
Major Rule Based Approach:  
 
 

2 2 4 3 

   2 4 4 4 

 4 2 4 3 

 
 
 
 

4.6. Logistic Regression  

In order to find the relationship between the driver and the LULC classes, logistic regression is 
used.  In logistic regression, the dependent variable should be binary (0 or 1) and the independent 
variables can be categorical or continuous, for example soil depth varies with different classes and 
elevation  [26]. Studying spatial analysis found that the result occurs in the categorical form e.g. 
pass or fail.  Such results are in the form of logistic regression. In the logistic regression model fit 
analysis, has performed on the basis of AIC (Akaike’s information Criterion) value[28]. AIC is 
way to select the best statistical model. According to the AIC value driver selection was 
performed. Assumption of the model is probability of the dependent variable, which is the flow 
the curve between 0 and 1. Probability shows at below equation  
 

                  (6) 

Where   P is probability of dependent variable with value 1   
              X is dependent variable  
             B is estimated parameter  
To linearize eq. (6) of logistic regression model and to remove 1 and 0 from the dependent 
variable, following transformation model is used 
 

          (7) 

 

 4  

Figure 4-3  Major Rule based Approach:  
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The transformation known as the logit transformation assumes values between    to   .  
Logit transformation changes binary data to continuous data. The predicted probability is 
continuous within the range of 0-1 

     (8) 

Where  is logit transformation 
           x is dependent   variable  
          b is  estimated parameter (coefficient ) 
 

4.7. Uncertainty Measure  
 
Remotely sensed images can be classified in numerous ways. There are two types of classification 
techniques, which are mainly used, supervised classification and unsupervised classification. A 
vital part of classifying remotely sensed data is accuracy assessment.  For this study the accuracy 
assessment is performed for the predicted land use image of 2005.  The output map’s quality, 
which is what, makes the map useful for the end user. Land use is images predicted using MRB 
and RRB aggregation approach.  
 
The output maps are then assessed for accuracy. This assessment of accuracy helps to validate the 
results and is a warranty of the quality of the classification done[29]. An error matrix is generated 
in order to carry out accuracy assessment on the output maps. The error matrix displays 
information on the predicted, classified output map as well as the actual map of the same study 
area. The classified pixel is then compared to the actual map. The result of the accuracy 
assessment provides the user with an overall accuracy as well as the accuracy of each class. The 
formula defined below is the one that is used for assessing overall accuracy: 
 
 

             Total number of correct samples                                                      (9) 

 

Other than over all accuracy the classification accuracy of the various classes was also computed. 
Two methods for assessing accuracy were user’s and producer’s accuracy.  The producer’s 
accuracy taking the correct pixels of a class and then dividing them by the total pixels compute. 
This type of accuracy evaluates the quality of the classification that has been carried out. It also 
calculates the error of omission. Error of omission is basically those features on the surface of the 
study area that have not been classified. Taking those pixels that have been classified correctly in 

Total number of samples 
X 100 % Overall accuracy =    
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a certain class and dividing them by the total number of those pixels that were classified overall in 
that class define User’s accuracy. User’s accuracy also computes commission error, which is the 
probability of a pixel belonging to the class that it has been classified under.  
 
The formula below defines user’s and producer’s accuracy: 
 
Producer’s accuracy (%) = 100% - error of omission (%) 

User’s accuracy (%) = 100% - error of commission (%) 

Another measurement that has been used in this study is the Kappa coefficient (K).  The value of 
kappa varies between 0 and 1. Value 1 means that classes of two different data set are the same 
and it is classified 100% accurately and 0 means classes are not same, it has 0% classification 
accuracy. The Kappa statistic is calculated on confusion matrix, which represents the one land 
use map in i row and other land use map in j column.  Diagonal of the matrix show the both land 
use map have same classes.  Kappa statistic K is calculated by this formula (10):  

          (10) 

 ,                   (11) 

 
Where, 

= count of cell  
N   = total count in confusion matrix  

= marginal total of row i 
= marginal total of column i 
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5. RESULT AND DISCUSSION  

Land use Land cover change modeling was performed for the years 1995 to 2005. CA-Markov 
model was used to predict the land use cover change in the Upper Ganga Basin area. LULC 
modeling has been performed for two scales 500 and 1000 in MRB and RRB Approach.  To 
assess the amount of change in land use, the 9 drivers and the LULC map that was generated 
were integrated. 

Table 5-1 Land Use Change in year 1985 -1995 at 500 Scale MRB 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 Table 5-1 shows that crop land (CL), fallow land (FL), snow and ice (SI), water body (WB) and. 
mixed forest (MF), Ever Green Dense Forest (EDF), Ever Green Needle Forest (ENF) have 
decreased.  built up (BU), scrub land (SL), barren land (BL), grass land (GL), wet land (WL) and 
permanent wet land (PW), deciduous broad leaf forest (DBF) have increased. More change 
occurred in BL class and SI class. Small change occurred in forest area of the UGB.  

 

 
 
 
 
 
 
 
 
 

Class Name 1985 1995 Change 
BU 85075 141975 56900 
CL 13929600 13904650 -24950 
FL 562950 519025 -43925 
PL 178525 185675 7150 

ENF 1458550 1457925 -625 
EDF 32650 32550 -100 
DBF 883775 885025 1250 
MF 92900 91750 -1150 
SL 530975 629550 98575 
GL 89500 119425 29925 
PW 107850 116925 9075 
BL 190875 493725 302850 
WL 228550 246000 17450 
WB 419450 389025 -30425 
SI 1038375 616375 -422000 
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Table 5-2 Land Use Change in year 1995 -2005 at 500 Scale MRB 

 
Class Name 1995 2005 Change  

BU 141975 167025 25050 
CL 13904650 13904675 25 
FL 519025 484100 -34925 
PL 185675 185250 -425 

ENF 1457925 1455775 -2150 
EDF 32550 32475 -75 
DBF 885025 883700 -1325 
MF 91750 89925 -1825 
SL 629550 609025 -20525 
GL 119425 125450 6025 
PW 116925 124075 7150 
BL 493725 414100 -79625 
WL 246000 249500 3500 
WB 389025 363700 -25325 
SI 616375 737400 121025 

 
Table 5-2 shows that FL, PL, ENF, EDF, MF, WB and SL have decreased. BU, GL, WL, PW, 
WL, SI have increased in area from 1995 to 2005. CL has increased and more change occurred in 
SI and BL area. 
 

Table 5-3 Land Use Change in year 1985 -1995 at 500 Scale RRB 

Class Name 1985 1995 Change 
BU 86150 143450 57300 
CL 13831025 13791225 -39800 
FL 569850 530275 -39575 
PL 180350 190075 9725 

ENF 1439250 1435925 -3325 
EDF 32900 32575 -325 
DBF 873825 871100 -2725 
MF 95700 91850 -3850 
SL 539675 642725 103050 
GL 90250 119475 29225 
PW 113150 125250 12100 
BL 192650 495175 302525 
WL 238350 257650 19300 
WB 504275 478600 -25675 
SI 1031750 613800 -417950 
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  Table 5-3 shows that CL, FL, SI, WB have decreased, while BU, SL, BL, GL, WL, PW have 
increased. All forest area decreases in the duration of 1985-1995 

 
Table 5-4 Land Use Change in year 1995 -2005 at 500 Scale RRB 

Class Name 1995 2005 Change 
BU 143450 169800 26350 
CL 13791225 13788525 -2700 
FL 530275 493025 -37250 
PL 190075 187450 -2625 

ENF 1435925 1441375 5450 
EDF 32575 32275 -300 
DBF 871100 871475 375 
MF 91850 90925 -925 
SL 642725 619725 -23000 
GL 119475 125125 5650 
PW 125250 130200 4950 
BL 495175 414850 -80325 
WL 257650 259475 1825 
WB 478600 455225 -23375 
SI 613800 733425 119625 

Table 5-4 shows that CL, FL, PL, MF, WB, SL and BL have decreased, while BU, ENF, GL, WL, 
PW, WL and SI have increased. 
 

Table 5-5 Land Use Change in year 1985 -1995 at 1000 Scale MRB 

Class Name 1985 1995 Change 
BU 71400 130700 59300 
CL 14136000 14120200 -15800 
FL 514200 470100 -44100 
PL 168100 172100 4000 

ENF 1513600 1512700 -900 
EDF 33500 33300 -200 
DBF 904200 903700 -500 
MF 83600 82600 -1000 
SL 465500 558900 93400 
GL 85100 115400 30300 
PW 78800 84000 5200 
BL 185100 493200 308100 
WL 178400 194300 15900 
WB 331200 302400 -28800 
SI 1041900 617000 -424900 
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Table 5-5 shows that CL, FL, SI, WB have decreased between 1985 and 1995, while BU, SL, BL, 
GL, WL, PW have increased. All forest area has decreased.  
 

Table 5-6 Land Use Change in year 1995 -2005 at 1000 Scale MRB 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-6 shows that CL, FL, PL, ENF, MF, WB, SL and BL have decreased, while BU, GL, WL, 
PW, WL, SI have increase 

Table 5-7 Land Use Change in year 1985 1995 at 1000 Scale RRB 

Class Name 1985 1995 Change 
BU 88900 143400 54500 
CL 13788000 13765200 -22800 
FL 574200 528900 -45300 
PL 182000 186800 4800 

ENF 1436600 1438200 1600 
EDF 32400 32600 200 
DBF 872500 873000 500 
MF 91000 92200 1200 
SL 542400 637600 95200 
GL 88000 118100 30100 
PW 111100 127000 15900 
BL 193500 495400 301900 
WL 232400 255700 23300 
WB 508300 463900 -44400 
SI 1029100 612400 -416700 

 
Table 5-7 shows that CL, FL, SI and WB have decreased, other class in this approach showing 
increasing trend.  More area of BL has increased 

Class Name 1995 2005 Change 
BU 130700 153000 22300 
CL 14120200 14117600 -2600 
FL 470100 438300 -31800 
PL 172100 168800 -3300 

ENF 1512700 1506500 -6200 
EDF 33300 33300 0 
DBF 903700 884500 -19200 
MF 82600 80600 -2000 
SL 558900 538000 -20900 
GL 115400 119600 4200 
PW 84000 88000 4000 
BL 493200 403000 -90200 
WL 194300 198300 4000 
WB 302400 275700 -26700 
SI 617000 725100 108100 
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Table 5-8 Land Use Change in year 1995-2005 at 1000 Scale RRB 

Class Name 1995 2005 Change 
BU 143400 173100 29700 
CL 13765200 13745700 -19500 
FL 528900 497600 -31300 
PL 186800 188600 1800 

ENF 1438200 1439400 1200 
EDF 32600 31400 -1200 
DBF 873000 855900 -17100 
MF 92200 90200 -2000 
SL 637600 621100 -16500 
GL 118100 124000 5900 
PW 127000 129300 2300 
BL 495400 407400 -88000 
WL 255700 264900 9200 
WB 463900 455100 -8800 
SI 612400 720700 108300 

 
Table 5-8 shows that CL, FL, SL, DBF, BL, MF and WB have decreased, while BU, GL, WL, PW, 
WL, SI increased.   

5.1. User and Producer Accuracy at Different Scale 
Table 5-9 User and Producer Accuracy at Different Scale 

 500 MRB 500 RRB 1000 MRB 1000 RRB 
 

Classes 
User’s 

Accuracy (%) 
Producer’ 

Accuracy (%) 
User’s 

Accuracy (%) 
Producer’ 

Accuracy (%) 
User’s 

Accuracy (%) 
Producer’ 

Accuracy (%) 
User’s 

Accuracy (%) 
Producer’ 

Accuracy (%) 

BU 92.84 79.16 84.64 72.22 59.02 52.61 55.47 42.46 
CL 98.39 98.12 97.14 95.63 94.94 94.03 92.53 92.01 
FL 71.61 81.34 58.34 71.99 37.42 45.86 33.59 38.91 
PL 91.8 91.82 79.25 84.49 61.62 61.91 56.57 57.32 

ENF 96.55 96.32 91.13 90.89 79.06 78.89 74.61 75.85 
EDF 92.82 92.53 79.29 84.82 58.46 59.16 52.24 55.73 
DBF 97.47 97.29 93.34 93.34 83.89 85.35 79.94 81.9 
MF 89.22 91.33 77.93 76.88 39.88 39.83 36.05 38.25 
SL 72.39 74.64 59.86 63.62 29.72 30.82 29.3 28.95 
GL 79.2 74.65 69.37 65.87 49.16 46.32 45.72 39.6 
PW 82.8 78.78 61.61 68.59 27.72 26.93 25.12 25.14 
BL 54.16 38.9 49.81 35.51 47.7 35.26 46.21 31 
WL 84.07 82.03 66.9 69.27 28.64 27.28 29.03 27.9 
WB 64.34 72.86 49.97 61.04 38.62 47.73 28.1 31.49 
SI 74.25 81.17 70.53 77.83 71.77 79.64 68.81 78.24 
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Table 5-9 Shows the Producer’s and User’s Accuracy of the predicted map at 500, 1000 MRB, 
RRB scale. This accuracy calculated from the Transition Matrix, which generated from difference 
between predicted and reference map 

Table 5-10 Change between predicted LULC map and reference map of 2005 at scale 500 MRB 

Class Name Predicted 2005 Reference 2005 Change 
BU 142425 167025 24600 
CL 13866700 13904675 37975 
FL 549925 484100 -65825 
PL 185300 185250 -50 

ENF 1452300 1455775 3475 
EDF 32375 32475 100 
DBF 882025 883700 1675 
MF 92050 89925 -2125 
SL 627925 609025 -18900 
GL 118250 125450 7200 
PW 118050 124075 6025 
BL 297475 414100 116625 
WL 243450 249500 6050 
WB 411850 363700 -48150 
SI 806075 737400 -68675 

Table 5-10 shows a comparison between the LULC predicted map and the reference LULC map 
of 2005.   Negative change shows the predicted class cover large as compare to reference map. SI 
and BL class both are reverse when SI high then BL covers less area. From Table 5-9 producer 
and accuracy less as compare to other class that more error in prediction of BL class.  

 

Table 5-11 Change between predicted LULC map and reference map of 2005 at scale 500 RRB 

Class Name Predicted 2005 Reference 2005 Change 
BU 144875 169800 24925 
CL 13574250 13788525 214275 
FL 608375 493025 -115350 
PL 199850 187450 -12400 

ENF 1437600 1441375 3775 
EDF 34525 32275 -2250 
DBF 871425 871475 50 
MF 89700 90925 1225 
SL 658725 619725 -39000 
GL 118825 125125 6300 
PW 144950 130200 -14750 
BL 295775 414850 119075 
WL 268675 259475 -9200 
WB 556025 455225 -100800 
SI 809300 733425 -75875 
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Table 5-11show that FL ,WB,SL,SI have cover large area as compare to other classes it means 
these class have more error. Table 5- 9 RRB approach found that BL and WB both have less 
producer and user accuracy.  
 

5.2. Predcited Map of  Year 2005  

 
Predicted Map of LULC 2005 at scale of 500 with MRB and RRB approach 

  
Figure 5-1 Predicted Map of LULC 2005 at scale of 500 with MRB and RRB approach 

 

             Table 5-12 Kappa Values 

 
 
 
 

 
 
The maps above show the predicted map of year 2005 at scale of 500m by applying the MRB and 
RRB approach, Kappa coefficient value of predicted map mentioned in the Table 5-12. As per 
kappa value is high for the MRB approach.  
 

 

Scale MRB RRB 
500 0.8744 0.7991 
1000 0.6910 0.6259 
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Table 5-13  Change between predicted LULC map and reference map of 2005 at scale 1000 MRB 

Class Name Predicted 2005 Reference 2005 Change 
BU 136400 153000 16600 
CL 13981300 14117600 136300 
FL 537200 438300 -98900 
PL 169600 168800 -800 

ENF 1503300 1506500 3200 
EDF 33700 33300 -400 
DBF 899900 884500 -15400 
MF 80500 80600 100 
SL 557900 538000 -19900 
GL 112700 119600 6900 
PW 85500 88000 2500 
BL 297900 403000 105100 
WL 188900 198300 9400 
WB 340800 275700 -65100 
SI 804700 725100 -79600 

Table 5-13   show that change in area in predicted map. In which some classes cover more or less 
as compare are form other classes. FL, SI, WB predicted more and PW, BL, MF predicted less. 
From Table 5-9 PW and SL have the less accuracy.  

 

Table 5-14 Change between predicted LULC map and reference map of 2005 at scale 1000 RRB 

Class Name Predicted 2005 Reference 2005 Change 
BU 132500 173100 40600 
CL 13667400 13745700 78300 
FL 576300 497600 -78700 
PL 191100 188600 -2500 

ENF 1463300 1439400 -23900 
EDF 33500 31400 -2100 
DBF 876900 855900 -21000 
MF 95700 90200 -5500 
SL 613600 621100 7500 
GL 107400 124000 16600 
PW 129400 129300 -100 
BL 273300 407400 134100 
WL 254600 264900 10300 
WB 509900 455100 -54800 
SI 819500 720700 -98800 
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Table 5-14 shows that all forest has predicted more as per reference map.  WB, SI, FL also cover 
more area in prediction. Form Table 5-9 SL, WL, WB have less producer and user accuracy.  
 

 
Predicted Map of LULC 2005 at scale of 1000 with MRB and RRB approach 

Figure 5-2 Predicted Map of LULC 2005 at scale of 1000 with MRB and RRB approach 
 

 

Figure 5-2  maps show the predicted map of year 2005 at scale of 1000m by applying the MRB 
and RRB approach, Kappa coefficient value of predicted map mentioned in the a  Table 5-12  
kappa value for MRB approach is more than the RRB approach.   
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5.3. Error in Maps  

Overall Error in Predicted Map 

 
 
Figure 5-3, 5-4 shows match and unmatched of the class in prediction at scale 500m in MRB and 
RBB approach. It shows the overall where the classes are predicted wrong. As Form the map sees 
that more error in RRB approach. 
 
 
 
 

 

 

Figure 5-3 Unmatched at 500MRB 

Moran's 
Index: 

0.22 

z-score: 2016.47 

 

 

   

Figure 5-4  Unmatched at 500RRB 

Moran's 
Index: 0.19 

 

z-score: 1690.53 
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Figure 5-5 Unmatched at 1000 MRB 

 

Moran's 
Index: 0.14 

 

z-score: 347.4538 

 

 
Figure 5-6 Unmatched at 1000 RRB 

 

 

Moran's 
Index: 0.19 

 

z-score: 1690.53 

 
Figure 5-5, 5-6 shows match and unmatched of the class in prediction at scale 1000m in MRB 
and RBB approach. It shows the overall, where the classes are predicted wrong. As from the map 
see more error in RRB approaches. 
 
 
Corresponding table show the calculated Moran Index value to check autocorrelation in area.  As 
from the Figure 5-3 to 5-6 there is spatial pattern in matched and unmatched class. Hill part of 
UGB area have most unmatched area and Where class is SI and WB. In the Figure 5-3 to 5-6 red 
colour show the predicted class that are error. 
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Error in Predicted Map with LULC Classes: 
 
 

Error at Scale 500 MRB 

 

Error at Scale 500 RRB 

 

Error at Scale 1000 MRB 

 

Error at Scale 1000 RRB 

 

Figure 5-7 Class Error in Predicted image 
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5.4. Driver Relationship with LULC Classes   
 

    Table 5-15 Influenced Driver 

At scale 500 _MRB  
1985 ALD, Pop den ,Slope, Rain 
1995 ALD, DTD, Slope, SD, Rain 
At scale 500 _RRB  
1985 ALD, Pop den, Slope, SD, Rain 
1995 ALD, DTR , Slope, SD, Rain 
At scale 1000 MRB  
1985 ALD, Pop den , Slope, SD, Rain 
1995 ALD, DTR, Slope, SD, Rain 
At scale 1000 RRB  
1985 ALD , Pop den, Slope, SD, Rain 
1995 ALD, Pop den, Slope, SD, Rain 

 
The Table 5-15 above displays the influence of the driver in that particular year 1985 and 1995. It 
is found that in year 1995 and 1985 agriculture density (ALD), population density (Pop den), 
slope (Slope), rainfall (Rain), soil depth (SD) most influenced the land use classes.  As per logistic 
regression model fitting between driver and LULC class, only those drivers selected which have 
low AIC value, Driver selection performed for both scale MRB and RRB approach, to see 
relationship between driver and LULC classes  as per using different method. 
 
 As per Table 5-15 see not change in relation between driver and LULC as scale changes. Every 
year driver play different role, Such as bio physical driver temperature, rain fall. If rainfall high in 
the year that means increase in crop land, grass land. Slop is high then it affects the development 
of the builtup area, population density also reduces as elevation is increases. Soil depth affect 
cropland area, high soil depth has capability to storage the rainfall water, Soil depth is more 
agriculture will more. UGB has well stabilized drainage network so agricultural practices growing 
in this region.  As per classes driver selected show in Appendix, Table A17 for built up area soil 
depth, rainfall, slope, temperature, and elevation are selected as per the AIC value.  
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5.5. Suitablity Map 

 
Below image shows the suitability map of the classes, which shows the probability of each class is 
varies between 0 and 1.   
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    Figure 5-8 Suitability Map 

 

5.6. LULC Change   

 
The Table 5-1, 5-2 shows change in the LULC classes in the 1985-2005 years. Most of the change 
takes place in SI and BL class as compared to other classes, amount of snow change in between 
year in UGB area. Snow and ice decreased from the 1985-1995, and increased in year from 1995 
to 2005 in the Upper Ganga Basin. From all of the land use classes the most dominant class is 
crop land which covers 70% of the UGB. Overall classification accuracy is 80% of the land use 
map which is generated in IGBP project. From 1985 to 2005 it was observed that there is 
significant change in crop land, it decreased in year 1985-1995, and in year between 1995- 2005 
there was an increase in cropland.  Crop land increased due to increasing irrigation network in the 
upper Ganga basin. Built up has an increasing trend from 1995 to 2005. Fallow land, barren land, 
forest has decreased. CL is dominant class in the UGB so it affects prediction of other classes. 
Form the different year; see the change pattern in the classes.  In year 1985- 1995 as Appendix 
Table A1 CL class was change to in to BU, FL, WB, and SL class.  SI get decreases it change to 
the BL, SL class. For the Figure 5-3 to 5-6 see that spatial the relationship with BL and SI class. 
Form the year 1995-2005 clearly see pattern in barren land and snow and ice class.     
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5.7. Aggregation appraoch impact on prediction   

 
Two aggregation approaches have been used in this study of upper Ganga basin and the driver 
data set has also been rescaled at 500 and 1000 m. After running the model on a 500 scale, it was 
seen that the kappa value is high for major rule based approach (MRB) as compared to random 
rule based approach (RRB). The same method has been applied on the 1000 scale. Table 5-12 
shows Kappa coefficient value for the high at 500 scales from 1000m scale.  In the 500 m scale 
the relationship between LULC driver and classes is more defined and that has an effect on the 
suitability map creation of the LULC class. Suitability map shows the probability of the class in 
that particular cell. This Suitability map was created by logistic regression method which 
constructed suitability for land use class. 
 
Figure 5-1 shows the predicted LULC map of the year 2005 using MRB and RRB approach at 
scale of 500m. As per kappa value is that 87% of classes have been correctly predicted. Error of 
the prediction is 13%. For the MRB approach 79% of classed are correctly predicted there is a 
21% in error in prediction. For further analysis of the classes, Producer’s and User’s accuracy are 
calculated which are shown in Table 5-9. Producer’s accuracy of the BL is 38.9% and User’s 
accuracy is 54.16 %. This means that there is 62.1% error in the prediction of the BL classes.  FL, 
GL, WB, SI class have more error as compare to other classes.  For CL class Producer’s accuracy 
is 98.12% and User’s accuracy is 98.39%. CL class prediction is certain where there is less than 2 
% error in prediction in MRB approach.  As per error matrix Appendix, Table 5 predicted CL 
classes less changed to BU, FL SL, and WB so it shows high accuracy. BL predicted more area as 
compare to reference map. It covers the SL, SI area, it means it predicting in wrong area. 
Prediction for the classes based on the selection of aggregation method and error which come 
from the modeling approach of the CA-Markov model.  
 
Producer’s and User’s accuracy are calculated for the RRB approach which is shown in Table 5-9. 
Producer’s accuracy of the BL is 35.51% and User’s accuracy is 49.81%. This means that there is 
65.5% error in the prediction of the BL class, which 3.4 % more than the MRB approach.  FL, 
GL, WB, SI WL class also have error as compare to other classes.  For CL class Producer’s 
accuracy is 95.63% and User’s accuracy is 97.14%. CL class prediction is certain where there is 
less than 4 % error in prediction in RRB approach.  
 
 In Figure 5-2 shows predicted LULC map of the year 2005 using MRB and RRB approach at 
scale of 1000m. It was found that kappa value is larger for the MRB approach than for the RRB 
approach. Kappa value shows that 69.10% of classes are correctly predicted. Error of the 
prediction is 30.9 % For the RRB approach and 62.5% of the classes are correctly predicted. 
There is 38.4 % in error in prediction.   
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For further analysis of the classes, Producer’s and User’s accuracy are calculated. This is shown in 
Table 5-9. The Producer’s accuracy and User’s accuracy for the classes PW and WL, fall between 
25 -28 %.  MRB and RRB both show that PW, WL class predictions are more uncertain between 
72 to 75 % error.  For CL class Producer’s accuracy and User’s accuracy fall between 92 to 95% 
so CL class prediction is more certain where there is less than 8% error in prediction. In the MRB 
approach class wise prediction is correct than RRB approach.  
 
It has been found that the driver selection of the classes affects the prediction for the year 2005. 
After analysis was performed on the hill areas of the Ganga basins it was seen that this area has 
much area prediction error as compared to the plain area of the basin. Prediction error may have 
occurred because of the model and due to the selection of drivers in for SI, BL and SL classes. 
For these class slope, elevation, rain, soil depth driver not play role in prediction. As well in plain 
are WB class also show error, it means driver selected for WB rain, distance to road, slope, soil 
depth not play role in prediction of class. SI and WB have their different dynamics SI changed 
seasonally in winter snow cover more as compare to summer.  WB changed in rainy season also 
in between 1985-2005 change in found in border of the water body.  
 
Error in of predicted map is shown in Figure 5-3 to 5-6, The Moran test analysis found that class 
error in predicted map is clustered. For the Moran test analysis 5000m threshold distance was 
used to check the autocorrelation in the error. This shows that upper part of the Ganga basin has 
more error. The area that comes under and near the water body also has a larger amount of error. 
The selection of the driver on this area may affect the uncertainty in those classes. This means 
that selection of driver is not playing a part in the prediction in of these classes. Error increasing 
from RBB approach, as compare to the MRB approach.  
 
For analysis of the spatial auto correlation in error Moran test was performed, which shows that 
error clusters are formed in the images. In the first image of a scale of 500 MRB approach an 
error cluster was formed in the class SI, BL, WB as compared to CL,BU,FL classes, More error 
clusters were formed at the scale of 1000 RRB approach.  
 
In Figure 5-7 class wise error is showed in the maps in both MRB and RRB approach, clearly see 
that in class wise error SL, BL, WB showing more error. As mentioned before error occurred  
Is predicted map was depending on which method and which scale used. RRB approach more 
error see on the plain area of the UGB.  
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5.8. Driver Impact    

 
The drivers selected for the classes were those that have a significant relation with classes. The 
relation between drivers and LULC classes changes as per scale changes. The logistic regression 
analysis based on the AIC value of driver with class. Table A9 to A16 show that coefficient of the 
each driver and class overall AIC value. The analysis of coefficient has helped in identifying the 
drivers, which have influenced the LULC classes. In the table, the drivers that are marked in red 
represent those drivers that have had a significant influence on the classes in that year. According 
to the class coefficient, the drivers marked in green are those drivers which show a positive 
relation.  Negative coefficients also play an important role, an example is elevation. This shows 
the negative coefficient which means that the built-up area will decrease with increasing elevation. 
Selection of driver plays an important role in the prediction of classes. 
 
 The suitability map of each class is generated with the help of logistic regression. Suitability maps 
show the probability of the classes in the predicted map using the driver dataset. Probability of 
each class depends on the selection of drivers. Figure 5-8 shows those suitability maps that are 
generated from logistic regression, which show the probability of each class. Driver selection has 
been performed on the basis of the logistics AIC Value.  Less AIC value shows that the models 
are best fitted to that class so in this project the drivers for each class are selected based on the 
AIC value. 
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6. CONCLUSION AND RECOMMENDATION 

Conclusion 
 
In study of the LULC change main objective and sub objective are achieved, according to these 
objective following research question have answered : 
 

1) What are the major drivers of Land use/cover change in the study area and relationship between the 
drivers and the land use classes? 

In the upper Ganga basin area most driving factor for the LULC classes are agriculture 
density, population density, rainfall, slop. These drivers affect each class of UGB in the 
future change.  

2) Which spatial distribution and aggregation method gives minimum overall error in Land use/cover 
change?  

In the study two methods was used MRB and RRB approach. In scale of 500 and 1000 
M. it was found that more error occurs in RRB approach which based on random 
selection of the class in the aggregation, and MRB which based on the majority of the 
classes, so as per Figure 5-7 predicted maps spatial see more unmatched classes in the 
RBB as compare to MRB approach.  

3) How much overall Uncertainty occurs in the Land use/cover change in 2005 in the Upper Ganga 
Basin?  

Predicted 2005 map was generated from the map of the 1985 to 1995. With including the 
driver data set which used to identify suitability of land use classes. Using different 
aggregation method on LULC dataset, affect prediction of LULC map. So uncertainty is 
varied using these methods. As form Table 5-12 kappa value high for 500 as compare 
1000 scale. Overall kappa value 500 scale varied for 0.799(RRB) to 0.87(MRB) and for 
1000 scale varied form 0.6259(RRB) to 0.6910(MRB). Error in prediction occurs due to 
the scale changes also from the logistic regression model for predicting the suitability map 
and CA-Markov model. 

 
 Recommendations 

1) This study focused on different aggregation approach applied (MRB, RRB) on LULC 
data set. Further other different aggregation method also applied on this LULC data to 
make the data same scale for LULC change modeling.  

2) CA-Marko model used for the prediction of 2005, it can also use different model such as 
CLUE model, and quantified the uncertainty between two models.  
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APPENDIX    

 
Table A1 Transition Matrix between year 85-95 at scale 1000 (MRB) 

85/95 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 
BU 696 17 0 0 0 0 0 0 0 0 0 0 0 1 0 
CL 295 139543 677 104 48 2 55 5 141 8 70 0 86 326 0 
FL 202 555 3673 65 67 3 5 5 288 13 56 0 33 177 0 
PL 48 66 5 1541 0 0 2 0 10 0 0 0 3 6 0 

ENF 1 44 76 0 14925 0 0 10 48 4 0 24 2 1 1 
EDF 0 4 1 0 0 326 0 0 2 0 0 2 0 0 0 
DBF 0 53 4 4 1 0 8948 2 11 6 3 0 0 10 0 
MF 0 7 6 0 5 0 1 801 1 9 0 1 0 5 0 
SL 45 173 45 4 45 0 14 1 3848 15 54 91 53 240 27 
GL 1 54 2 0 3 0 4 1 2 717 1 10 1 50 5 
PW 1 83 14 1 0 0 1 0 33 0 644 0 2 9 0 
BL 0 0 1 0 11 2 0 0 187 61 0 1487 20 1 81 
WL 12 97 2 1 2 0 0 0 152 0 7 1 1508 2 0 
WB 6 503 191 1 0 0 7 0 341 60 5 1 2 2195 0 
SI 0 3 4 0 20 0 0 1 525 261 0 3315 233 1 6056 

 
 

Table A2 Transition Matrix between year 85-95 at scale 1000 (RRB) 
85/95 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 
BU 577 253 9 11 5 2 6 0 11 0 1 0 0 14 0 
CL 521 130045 1367 446 531 31 505 54 1137 80 573 6 1041 1543 0 
FL 192 1320 2608 69 655 24 58 60 380 18 63 6 54 235 0 
PL 51 403 14 1240 0 0 30 0 49 0 1 0 7 25 0 

ENF 6 488 684 0 12042 7 24 144 604 41 0 177 35 92 22 
EDF 0 19 12 0 17 212 0 10 28 0 0 19 0 7 0 
DBF 4 524 54 32 14 2 7662 20 114 54 16 0 4 225 0 
MF 0 61 50 0 153 10 17 557 31 14 3 2 0 12 0 
SL 50 1061 195 38 598 22 145 49 2659 34 58 109 67 307 32 
GL 0 124 22 0 34 1 37 13 36 487 5 25 7 76 13 
PW 1 512 7 1 0 0 7 0 38 2 508 0 19 16 0 
BL 1 11 2 0 130 9 0 4 185 73 0 1318 27 6 169 
WL 10 1017 18 9 17 0 0 0 134 6 27 7 1053 22 4 
WB 21 1813 243 22 86 4 239 7 462 91 15 15 21 2042 2 
SI 0 1 4 0 100 2 0 4 508 281 0 3270 222 17 5882 

 
 
 
 
 
 
 
 
 
 
 



 
 

Page | 47  

 

Table A3 Transition Matrix between year 85-95 at scale 500 (MRB) 
85/95 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 
BU 3141 210 9 4 7 2 8 0 9 0 0 0 2 11 0 
CL 1303 545725 3611 647 439 20 417 60 983 62 706 3 995 2213 0 
FL 782 2789 15169 337 573 14 47 51 1450 58 267 3 205 773 0 
PL 204 431 31 6345 0 0 25 0 54 0 0 0 9 42 0 

ENF 2 398 664 0 56274 3 15 149 544 41 0 170 26 49 7 
EDF 0 28 21 0 6 1211 0 6 18 0 0 13 0 3 0 
DBF 5 401 40 25 10 0 34486 12 135 26 7 0 4 200 0 
MF 0 40 47 1 157 9 23 3356 19 41 0 5 0 18 0 
SL 168 1168 275 28 521 25 146 18 16671 83 321 415 261 1030 109 
GL 4 250 15 0 37 1 33 4 40 2889 7 31 2 238 29 
PW 3 703 61 4 0 0 7 0 185 3 3278 0 17 53 0 
BL 0 6 3 0 122 7 0 2 841 257 0 5933 83 2 379 
WL 48 1004 20 5 18 0 1 0 686 7 62 12 7253 23 3 
WB 19 3031 769 31 54 6 193 11 1434 271 29 15 23 10889 3 
SI 0 2 26 0 99 4 0 1 2113 1039 0 13149 960 17 24125 

 
 

Table A4 Transition Matrix between year 85-95 at scale 500 (RRB) 
85/95 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 
BU 2823 508 22 15 12 3 11 1 17 0 1 0 2 31 0 
CL 1643 5E+05 4448 1224 1084 64 965 128 2606 157 1383 22 2306 4563 0 
FL 730 3871 13275 327 1345 37 107 99 1550 82 240 12 202 917 0 
PL 225 886 52 5814 0 0 68 0 76 0 2 0 16 75 0 

ENF 15 1015 1538 0 52369 8 32 343 1335 92 0 440 69 269 45 
EDF 1 59 36 0 23 1077 2 12 70 0 0 19 0 17 0 
DBF 23 994 114 59 29 1 32566 39 314 81 42 0 14 677 0 
MF 1 149 119 2 393 20 52 2924 61 56 2 13 1 35 0 
SL 175 2420 503 55 1352 44 308 64 14233 98 288 406 276 1252 113 
GL 2 326 31 0 87 3 81 12 95 2557 15 71 11 282 37 
PW 3 1256 67 7 0 0 22 2 161 7 2891 0 48 62 0 
BL 0 14 5 0 285 25 0 6 793 274 0 5699 93 20 492 
WL 51 2305 48 18 29 0 2 0 657 14 94 23 6219 65 9 
WB 46 5196 936 82 246 15 628 38 1662 322 52 35 68 10835 10 
SI 0 2 17 0 183 6 0 6 2079 1039 0 13067 981 44 23846 
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Table A5  Transition Matrix between year predicted 05- reference 05 at scale 500 (MRB) 

Pre 05/ 
Ref 05  BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 

BU 5289 313 27 30 5 1 5 0 7 1 1 1 2 14 1 

CL 970 545755 2115 441 335 19 405 32 1084 82 601 12 958 1859 0 

FL 256 2961 15751 52 766 16 42 54 1131 35 96 8 148 680 1 

PL 49 398 79 6804 0 0 27 0 29 0 0 0 1 25 0 

ENF 5 446 535 0 56087 8 16 169 509 52 0 150 25 48 42 

EDF 0 28 11 0 3 1202 0 9 18 1 0 16 0 4 3 

DBF 8 409 45 24 18 1 34389 10 148 46 13 0 8 162 0 

MF 0 73 48 1 142 9 20 3285 77 11 0 4 0 12 0 

SL 75 1164 278 19 578 25 137 21 18183 52 183 2645 209 906 642 

GL 0 116 21 0 40 1 40 4 69 3746 26 340 12 216 99 

PW 4 588 10 3 0 0 8 1 127 25 3910 0 39 7 0 

BL 0 4 1 0 110 10 0 0 616 14 0 6444 7 5 4688 

WL 1 1089 16 5 25 0 5 0 176 4 64 87 8187 6 73 

WB 24 2817 427 31 60 1 254 9 1661 481 69 26 10 10599 5 

SI 0 26 0 0 62 6 0 3 526 468 0 6831 374 5 23942 
 

Table A6 Transition Matrix between year predicted 05- reference 05 at scale 500 (RRB) 

Pre 05/ 
Ref 05 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 

BU 4905 721 35 26 14 3 19 0 31 0 0 0 5 34 2 
CL 1258 527441 2673 807 848 39 929 137 1912 128 1072 23 1925 3771 7 
FL 294 5139 14197 132 1781 38 87 125 1267 85 100 16 175 897 2 
PL 113 1245 71 6335 0 0 62 0 82 0 2 0 11 73 0 

ENF 22 1091 1299 0 52402 20 27 395 1331 103 0 392 69 226 127 
EDF 0 80 52 0 15 1095 0 19 41 0 0 61 0 17 1 
DBF 24 988 124 71 37 1 32536 37 328 107 42 0 15 547 0 
MF 0 131 107 1 311 14 48 2796 112 29 1 8 1 27 2 
SL 91 3320 514 52 1366 50 281 66 15772 102 200 1810 343 1126 1256 
GL 1 324 41 0 79 2 70 13 113 3297 33 331 29 259 161 
PW 5 1850 25 5 0 0 46 2 155 31 3572 0 66 41 0 
BL 0 9 9 0 299 2 0 4 687 33 0 5893 23 24 4848 
WL 20 2715 40 10 50 0 8 0 350 26 96 109 7190 43 90 
WB 59 6471 534 59 300 21 746 40 2120 548 90 55 76 11114 8 
SI 0 16 0 0 153 6 0 3 488 516 0 7896 451 10 22833 
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Table A7 Transition Matrix between year predicted 05- reference 05 at scale 1000 (MRB) 

Pre 05/ 
Ref 05 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 

BU 805 438 24 23 15 0 8 0 27 1 0 0 4 18 1 
CL 540 132742 778 482 515 28 675 59 1468 109 552 14 1088 763 0 
FL 54 1394 2010 11 1171 25 113 84 291 29 15 7 23 145 0 
PL 32 501 10 1045 0 0 43 0 38 0 1 0 12 14 0 

ENF 15 624 991 0 11885 23 76 227 799 38 0 246 30 12 67 
EDF 0 26 31 0 17 197 6 8 33 2 0 16 0 0 1 
DBF 24 918 77 49 9 0 7549 30 154 61 15 0 4 109 0 
MF 0 77 87 1 199 13 24 321 65 10 0 1 0 7 0 
SL 23 1460 242 36 785 26 186 56 1658 59 14 504 54 295 181 
GL 5 113 15 0 86 1 42 3 41 554 11 117 21 67 51 
PW 4 540 4 3 0 0 15 0 28 1 237 0 20 3 0 
BL 0 17 7 0 211 17 0 3 107 20 0 1421 32 0 1144 
WL 6 1070 8 11 53 0 5 1 61 14 22 59 541 7 31 
WB 22 1253 98 27 8 1 103 7 435 114 13 2 9 1316 0 
SI 0 3 1 0 111 2 0 7 175 184 0 1643 145 1 5775 

 
 

Table A8 Transition Matrix between year predicted 05- reference 05 at scale 1000 (RRB) 
Pre 05/ 
Ref 05 BU CL FL PL ENF EDF DBF MF SL GL PW BL WL WB SI 

BU 735 476 25 9 15 0 5 0 30 1 1 0 9 19 0 

CL 756 126468 1243 590 617 24 715 82 1809 148 817 19 1450 1935 1 

FL 73 1586 1936 28 1198 21 118 85 363 36 23 9 41 225 21 

PL 42 625 15 1081 0 0 52 0 37 0 0 0 17 42 0 

ENF 16 729 1095 0 10918 38 79 248 905 54 1 284 45 110 111 

EDF 1 31 36 0 19 175 4 10 37 0 0 18 0 4 0 

DBF 26 950 94 64 15 0 7010 38 201 66 28 0 7 269 1 

MF 1 111 84 1 240 11 35 345 77 21 1 5 0 21 4 

SL 30 1760 262 48 834 22 176 65 1798 72 22 436 69 378 164 

GL 1 114 15 0 85 0 50 3 35 491 13 121 22 57 67 

PW 3 846 7 4 0 0 23 1 39 3 325 0 27 16 0 

BL 1 11 6 0 136 13 0 1 105 10 0 1263 18 9 1160 

WL 9 1433 12 19 86 0 6 0 85 10 38 46 739 27 36 

WB 37 2316 146 42 101 8 286 14 511 132 24 11 35 1433 3 

SI 0 1 0 0 130 2 0 10 179 196 0 1862 170 6 5639 
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Table A9 LULC driver relation in year 85 at scale 500(MRB) 

 
 

Table A10 LULC driver relation in year 95 at scale 500(MRB) 

 
 
 
 
 
 
 

  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0083 -0.0001 -0.0011 0.0024 -0.0004 -0.0837 -0.0019 -0.0006 -0.0468 34100 
CL 0.0212 0.0001 0.0000 0.0002 -0.0017 -0.0634 0.0049 -0.0006 0.0129 466200 
FL 0.0050 0.0000 0.0001 0.0013 -0.0003 0.0716 -0.0030 0.0006 -0.1913 191200 
PL -0.0132 0.0001 -0.0002 0.0012 0.0000 -0.3282 0.0193 0.0010 -0.2028 73400 

ENF -0.0086 0.0002 0.0001 -0.0091 -0.0008 0.1135 0.0056 0.0004 -0.3589 193000 
EDF -0.0147 -0.0001 0.0000 -0.0033 -0.0005 0.0557 -0.0019 0.0025 -0.2058 13830 
DBF -0.0284 0.0002 0.0000 -0.0174 -0.0036 0.0150 0.0093 0.0023 -0.3839 102600 
MF 0.0162 0.0000 0.0001 -0.0025 -0.0005 0.0894 -0.0029 0.0013 -0.2376 40740 
SL 0.0045 -0.0001 0.0001 0.0003 -0.0004 0.0856 -0.0026 0.0005 -0.1236 184900 
GL -0.0039 -0.0002 0.0000 0.0004 -0.0001 0.0440 -0.0019 0.0002 -0.0952 43450 
PW 0.0027 0.0001 0.0001 -0.0004 -0.0103 0.1858 0.0044 -0.0005 0.0256 50560 
BL 0.0008 -0.0001 0.0000 0.0018 0.0006 0.0590 -0.0115 0.0001 -0.2167 52950 
WL 0.0060 0.0001 0.0000 0.0002 0.0007 0.1497 0.0060 -0.0016 1.2700 89510 
WB 0.0051 -0.0020 0.0001 -0.0080 -0.0018 -0.0954 -0.0116 0.0003 0.0216 70860 
SI 0.0488 0.0001 -0.0001 -0.0611 0.0025 0.0241 -0.0007 0.0007 0.1348 39230 

  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0050 -0.0001 -0.0010 0.0011 -0.0005 -0.1111 -0.0065 -0.0007 0.0083 56700 
CL 0.0210 0.0001 0.0000 0.0001 -0.0018 -0.0470 0.0051 -0.0004 0.0303 462700 
FL 0.0110 0.0000 0.0001 -0.0015 -0.0004 0.0681 -0.0021 0.0006 -0.1963 178700 
PL -0.0012 0.0000 -0.0001 -0.0004 0.0000 -0.2925 0.0195 0.0008 -0.2035 77800 

ENF -0.0213 0.0002 0.0000 -0.0091 -0.0008 0.1105 0.0053 0.0004 -0.3635 190600 
EDF -0.0196 -0.0001 0.0000 -0.0045 -0.0005 0.0558 -0.0015 0.0026 -0.2095 13600 
DBF -0.0560 0.0003 0.0000 -0.0138 -0.0037 0.0138 0.0096 0.0023 -0.3918 100100 
MF 0.0088 0.0000 0.0001 -0.0012 -0.0005 0.0946 -0.0029 0.0012 -0.2325 40680 
SL 0.0112 -0.0001 0.0001 -0.0019 -0.0003 0.0701 -0.0054 0.0004 -0.0820 209300 
GL 0.0129 -0.0002 -0.0001 -0.0027 0.0000 0.0622 -0.0056 0.0000 -0.0856 51830 
PW -0.0470 0.0002 0.0001 0.0025 -0.0026 -2.9160 0.0108 0.0004 0.0802 33880 
BL 0.0163 -0.0001 0.0000 -0.0049 0.0008 0.0383 -0.0100 -0.0001 -0.1748 87970 
WL 0.0050 0.0001 0.0001 0.0002 0.0008 0.0884 0.0009 -0.0014 0.7794 97410 
WB -0.0312 -0.0021 0.0001 0.0001 -0.0017 -0.1068 -0.0099 0.0003 0.0275 68070 
SI -0.4042 0.0001 -0.0001 0.0043 0.0023 0.0091 0.0027 0.0010 0.0545 39640 
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Table A11 LULC driver relation in year 85 at scale 500(RRB) 

 
Table A 12  LULC driver relation in year 95 at scale 500(RRB) 

 
 
 
 
 
 
 
 
 
 
 

ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0081 -0.0001 -0.0011 0.0023 -0.0003 -0.0882 -0.0018 -0.0006 -0.0380 34590 
CL 0.0201 0.0001 0.0000 0.0001 -0.0017 -0.0633 0.0046 -0.0006 0.0130 487800 
FL 0.0041 0.0000 0.0001 0.0012 -0.0003 0.0703 -0.0022 0.0006 -0.1771 194700 
PL -0.0129 0.0001 -0.0002 0.0012 0.0000 -0.3186 0.0203 0.0010 -0.1933 74360 

ENF -0.0073 0.0002 0.0001 -0.0078 -0.0007 0.1166 0.0063 0.0004 -0.3036 202400 
EDF -0.0121 -0.0001 0.0000 -0.0023 -0.0005 0.0601 -0.0013 0.0025 -0.2079 14180 
DBF -0.0272 0.0002 0.0000 -0.0126 -0.0030 0.0167 0.0106 0.0023 -0.2671 113400 
MF 0.0159 0.0000 0.0001 -0.0027 -0.0005 0.0862 -0.0018 0.0013 -0.2301 42020 
SL 0.0037 -0.0001 0.0001 0.0003 -0.0004 0.0826 -0.0023 0.0005 -0.1152 188200 
GL -0.0037 -0.0002 0.0000 0.0003 -0.0001 0.0446 -0.0020 0.0002 -0.0849 43800 
PW 0.0032 0.0001 0.0001 -0.0004 -0.0104 0.1778 0.0038 -0.0005 0.0412 52590 
BL 0.0009 -0.0001 0.0000 0.0017 0.0006 0.0576 -0.0112 0.0001 -0.2191 53620 
WL 0.0062 0.0001 0.0000 0.0001 0.0006 0.1503 0.0051 -0.0016 1.2410 92640 
WB 0.0020 -0.0013 0.0000 -0.0054 -0.0012 -0.0821 -0.0098 0.0004 0.0431 108700 
SI 0.0415 0.0001 -0.0001 -0.0611 0.0025 0.0241 -0.0007 0.0007 0.1348 39230 

  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0049 -0.0001 -0.0010 0.0010 -0.0005 -0.1201 -0.0062 -0.0007 0.0161 57300 
CL 0.0193 0.0001 0.0000 0.0001 -0.0017 -0.0481 0.0048 -0.0004 0.0259 487700 
FL 0.0101 0.0000 0.0001 -0.0015 -0.0004 0.0671 -0.0017 0.0005 -0.1807 182900 
PL -0.0010 0.0000 -0.0001 -0.0004 0.0000 -0.2877 0.0217 0.0007 -0.1967 79570 
ENF -0.0197 0.0002 0.0000 -0.0075 -0.0007 0.1136 0.0060 0.0004 -0.3062 199000 
EDF -0.0197 -0.0001 0.0000 -0.0032 -0.0005 0.0570 -0.0018 0.0026 -0.1999 13740 
DBF -0.0498 0.0002 0.0000 -0.0107 -0.0032 0.0161 0.0109 0.0023 -0.2783 110700 
MF 0.0085 0.0000 0.0001 -0.0012 -0.0005 0.0938 -0.0022 0.0012 -0.2281 40820 
SL 0.0098 0.0000 0.0000 -0.0018 -0.0003 0.0680 -0.0053 0.0004 -0.0706 213700 
GL 0.0118 -0.0001 -0.0001 -0.0026 0.0000 0.0599 -0.0053 -0.0001 -0.0794 52290 
PW -0.0373 0.0001 0.0001 0.0024 -0.0038 -2.3260 0.0110 0.0003 0.0863 41200 
BL 0.0151 -0.0001 0.0000 -0.0046 0.0008 0.0377 -0.0098 -0.0001 -0.1743 88700 
WL 0.0046 0.0001 0.0001 0.0002 0.0007 0.0858 0.0008 -0.0014 0.7559 101500 
WB -0.0222 -0.0013 0.0000 0.0001 -0.0012 -0.0773 -0.0086 0.0003 0.0448 106400 
SI -0.2722 0.0001 -0.0001 0.0033 0.0022 0.0070 0.0038 0.0009 0.0462 48010 
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Table A13 LULC driver relation in year 85 at scale 1000(MRB) 

 
 

Table A14 LULC driver relation in year 95 at scale 1000(MRB) 

  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0063 0.0000 -0.0010 0.0012 -0.0009 -0.1229 -0.0077 -0.0008 -0.0580 13250 
CL 0.0184 0.0001 0.0000 0.0003 -0.0018 -0.0686 0.0073 -0.0006 0.0995 108400 
FL 0.0107 0.0000 0.0001 -0.0016 -0.0006 0.0493 -0.0047 0.0004 -0.4913 39970 
PL 0.0021 0.0001 -0.0002 -0.0007 -0.0017 -0.3442 0.0128 0.0005 -0.6152 17150 

ENF -0.0046 0.0001 0.0001 -0.0058 -0.0008 0.1049 0.0044 0.0008 -0.8626 52820 
EDF -0.0155 0.0001 0.0000 -0.0001 -0.0008 0.0719 -0.0055 0.0032 -0.6925 3455 
DBF -0.0369 0.0001 0.0000 -0.0071 -0.0042 0.0082 0.0065 0.0023 -0.6972 29930 
MF 0.0087 0.0000 0.0001 -0.0011 -0.0009 0.0790 -0.0075 0.0014 -0.6763 8914 
SL 0.0072 0.0000 0.0000 -0.0018 -0.0003 0.0765 -0.0071 0.0004 -0.1277 47940 
GL 0.0110 -0.0001 -0.0001 -0.0025 -0.0001 0.0613 -0.0076 0.0000 -0.1972 12670 
PW -0.0282 0.0001 0.0001 0.0021 -0.0056 -1.2350 0.0086 -0.0003 -0.0025 8491 
BL 0.0136 0.0000 0.0000 -0.0040 0.0006 0.0440 -0.0110 0.0000 -0.5326 21820 
WL 0.0028 0.0000 0.0001 0.0002 0.0007 0.1136 0.0006 -0.0013 0.6931 20360 
WB -0.0259 -0.0010 0.0001 -0.0001 -0.0054 -0.0546 -0.0159 0.0001 -0.1585 17290 
SI -0.0237 0.0000 0.0000 0.0021 0.0026 0.0274 0.0086 0.0006 0.4463 12540 

 
 
 
 
 
 
 
 
 
 

  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0105 0.0000 -0.0011 0.0026 -0.0008 -0.0872 -0.0042 -0.0010 -0.1774 7155 
CL 0.0214 0.0001 0.0000 -0.0001 -0.0019 -0.0910 0.0067 -0.0008 0.0606 107800 
FL 0.0028 0.0000 0.0001 0.0013 -0.0005 0.0562 -0.0053 0.0005 -0.4425 43860 
PL -0.0110 0.0001 -0.0002 0.0012 -0.0019 -0.3795 0.0117 0.0007 -0.5892 16480 

ENF 0.0025 0.0001 0.0001 -0.0059 -0.0008 0.1048 0.0044 0.0008 -0.8784 53060 
EDF -0.0124 0.0001 0.0000 0.0002 -0.0008 0.0699 -0.0057 0.0032 -0.7195 3499 
DBF -0.0203 0.0001 0.0000 -0.0089 -0.0041 0.0142 0.0062 0.0023 -0.6716 30210 
MF 0.0158 0.0000 0.0001 -0.0029 -0.0009 0.0684 -0.0069 0.0014 -0.6437 8990 
SL 0.0011 0.0000 0.0001 0.0002 -0.0006 0.0866 -0.0041 0.0005 -0.2275 41960 
GL -0.0029 -0.0002 0.0000 -0.0001 -0.0002 0.0418 -0.0050 0.0001 -0.1795 10390 
PW 0.0044 0.0001 0.0001 -0.0005 -0.0111 0.3983 0.0033 -0.0008 -0.0962 9742 
BL -0.0070 -0.0001 0.0000 0.0039 0.0002 0.0481 -0.0126 0.0006 -1.2630 11800 
WL 0.0055 0.0000 0.0000 0.0001 0.0007 0.1794 0.0047 -0.0015 1.2220 18540 
WB -0.0060 -0.0010 0.0001 -0.0041 -0.0073 0.0086 -0.0169 0.0002 -0.2148 19070 
SI 0.0299 0.0001 0.0000 -0.0163 0.0033 0.0713 0.0030 -0.0001 1.1810 8934 
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Table A 15:  LULC driver relation in year 85 at scale 1000(RRB) 

 

 
Table A16  LULC driver relation in year 95 at scale 1000(RRB) 

 
  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 

BU -0.0050 0.0000 -0.0009 0.0010 -0.0007 -0.1605 -0.0077 -0.0007 -0.0599 14500 
CL 0.0158 0.0001 0.0000 0.0002 -0.0016 -0.0716 0.0063 -0.0005 0.0723 127400 
FL 0.0085 0.0000 0.0001 -0.0015 -0.0006 0.0484 -0.0039 0.0003 -0.4100 45010 
PL 0.0015 0.0001 -0.0001 -0.0007 -0.0017 -0.3199 0.0136 0.0003 -0.5583 18770 

ENF -0.0037 0.0001 0.0001 -0.0054 -0.0007 0.1021 0.0042 0.0008 -0.8500 52810 
EDF -0.0106 0.0001 0.0000 -0.0006 -0.0007 0.0697 -0.0026 0.0030 -0.6596 3512 
DBF -0.0343 0.0001 0.0000 -0.0065 -0.0041 0.0142 0.0061 0.0022 -0.6589 31240 
MF 0.0097 0.0000 0.0001 -0.0015 -0.0008 0.0580 -0.0066 0.0013 -0.6602 9963 
SL 0.0053 0.0000 0.0000 -0.0015 -0.0003 0.0745 -0.0066 0.0004 -0.0992 53570 
GL 0.0089 -0.0001 -0.0001 -0.0025 -0.0001 0.0621 -0.0067 -0.0001 -0.1590 13040 
PW -0.0220 0.0001 0.0000 0.0019 -0.0054 -1.7620 0.0100 0.0001 0.1073 13010 
BL 0.0116 0.0000 0.0000 -0.0036 0.0006 0.0415 -0.0102 0.0001 -0.5316 22100 
WL 0.0028 0.0000 0.0001 0.0003 0.0008 0.1172 0.0010 -0.0013 0.8208 25260 
WB -0.0177 -0.0004 0.0001 0.0001 -0.0017 -0.0596 -0.0120 0.0004 -0.0080 33700 
SI -0.0148 0.0000 0.0000 0.0007 0.0025 0.0339 0.0077 0.0006 0.4261 13180 

 
 
 
 
 
 

  ALD DTD DTR Popden Elev Slope SD Rain Temp AIC 
BU -0.0092 0.0000 -0.0010 0.0023 -0.0007 -0.1024 -0.0040 -0.0007 -0.1657 9007 
CL 0.0185 0.0001 0.0000 -0.0001 -0.0016 -0.0884 0.0059 -0.0008 0.0466 126200 
FL 0.0017 0.0000 0.0001 0.0012 -0.0005 0.0578 -0.0055 0.0004 -0.3737 48750 
PL -0.0101 0.0001 -0.0001 0.0011 -0.0018 -0.3420 0.0130 0.0005 -0.5419 18020 

ENF 0.0023 0.0001 0.0001 -0.0056 -0.0008 0.1010 0.0048 0.0008 -0.8696 52650 
EDF -0.0078 0.0000 0.0000 0.0002 -0.0007 0.0707 -0.0047 0.0033 -0.6902 3453 
DBF -0.0189 0.0001 0.0000 -0.0078 -0.0039 0.0220 0.0061 0.0022 -0.6248 31900 
MF 0.0166 0.0000 0.0001 -0.0032 -0.0008 0.0615 -0.0060 0.0014 -0.6479 9702 
SL 0.0017 0.0000 0.0001 -0.0003 -0.0006 0.0821 -0.0046 0.0005 -0.1900 47570 
GL -0.0044 -0.0002 0.0000 -0.0002 -0.0002 0.0387 -0.0038 -0.0002 -0.1568 10750 
PW 0.0038 0.0001 0.0001 -0.0007 -0.0112 0.3119 0.0020 -0.0007 -0.0049 12950 
BL -0.0073 -0.0001 0.0000 0.0037 0.0002 0.0493 -0.0115 0.0005 -1.2550 12350 
WL 0.0050 0.0000 0.0000 0.0003 0.0008 0.1761 0.0054 -0.0016 1.3430 22720 
WB -0.0058 -0.0004 0.0001 -0.0026 -0.0017 -0.0838 -0.0119 0.0003 -0.0380 36150 
SI 0.0252 0.0001 0.0000 -0.0139 0.0031 0.0709 0.0022 -0.0001 1.1460 9561 
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Table A17 AIC value as per Class with Driver  

 

Class Driver AIC Value 
BuiltUp SoilDepth 34108 

Temperature 34138 
Elevation 34153 

Slope 34166 
Rain 34186 

DistanceToDrainage 34273 
AgricultureLabourDensity 34412 

PopulationDensity 37426 
DistanceToRoad 39232 

CropLand PopulationDensity 466271 
DistanceToRoad 466409 

SoilDepth 466908 
Slope 467403 
Rain 468949 

DistanceToDrainage 470211 
Elevation 477233 

AgricultureLabourDensity 495082 

FallowLand SoilDepth 191356 
DistanceToDrainage 191498 

DistanceToRoad 191893 
AgricultureLabourDensity 192053 

Rain 192211 
Elevation 192243 

PopulationDensity 193094 
Slope 194180 

Temprature 195744 

Plantation Elevation 73395 
DistanceToDrainage 73523 

SoilDepth 73866 
PopulationDensity 74074 
DistanceToRoad 74078 

Rain 74129 
Slope 74354 

AgricultureLabourDensity 74965 
Temperature 75742 
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EverGreenNeedleForest AgricultureLabourDensity 193461 
DistanceToRoad 193581 

Rain 193655 
SoilDepth 193796 

PopulationDensity 198806 
DistanceToDrainage 201489 

Temperature 206478 
Slope 213477 

Elevation 216104 

EverGreenDenseForest DistanceToRoad 13831 
DistanceToDrainage 13847 
PopulationDensity 13851 

AgricultureLabourDensity 13857 
Slope 14076 

Temperature 14083 
Elevation 14163 

Rain 15137 

DecidiousBroadLeafForest Slope 102637 
SoilDepth 103269 

AgricultureLabourDensity 106023 
DistanceToDrainage 106327 

Rain 110302 
Temperature 110950 

PopulationDensity 111218 
Elevation 131494 

MixedForest DistanceToDrainage 40745 
SoilDepth 40766 

PopulationDensity 41004 
DistanceToRoad 41025 

Elevation 41364 
AgricultureLabourDensity 41407 

Rain 41722 
Slope 42017 

Temperature 42446 
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ScrubLand PopulationDensity 184939 
  SoilDepth 184950 
  AgricultureLabourDensity 185339 
  DistanceToRoad 185624 
  Rain 185673 
  DistanceToDrainage 185695 
  Temperature 186176 
  Elevation 186742 
  Slope 189116 
      
GrassLand DistanceToRoad 43453 
  SoilDepth 43454 
  Rain 43464 
  PopulationDensity 43467 
  Elevation 43495 
  AgricultureLabourDensity 43497 
  Temperature 43611 
  Slope 43724 
  DistanceToDrainage 44254 
      
PermanentWetland Temperature 50560 
  Slope 50563 
  SoilDepth 50573 
  PopulationDensity 50576 
  AgricultureLabourDensity 50582 
  DistanceToDrainage 50642 
  Rain 50655 
  DistanceToRoad 50672 
  Elevation 51081 
      
BarrenLand AgricultureLabourDensity 52950 
  Rain 52961 
  DistanceToRoad 53042 
  DistanceToDrainage 53196 
  PopulationDensity 53250 
  SoilDepth 54082 
  Temperature 54839 
  Slope 54921 
  Elevation 56812 
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WetLand SoilDepth 89600 
  DistanceToRoad 89628 
  Elevation 89769 
  AgricultureLabourDensity 89813 
  DistanceToDrainage 89827 
  Slope 90283 
  Rain 91385 
  Temperature 94471 
      
WaterBody Rain 70936 
  DistanceToRoad 71014 
  Slope 71104 
  AgricultureLabourDensity 71139 
  SoilDepth 71759 
  Elevation 73502 
  PopulationDensity 83391 
  DistanceToDrainage 98231 
      
      
SnowAndIce SoilDepth 35828 
  DistanceToDrainage 36034 
  DistanceToRoad 36050 
  Slope 36152 
  Temperature 36178 
  Rain 36321 
  AgricultureLabourDensity 37791 
  PopulationDensity 47982 
  Elevation 125909 

 
 
 
 
 


