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ABSTRACT

World health organization (WHO) reported that outdoor air pollution caused 1.3 million death
world wild (WHO, 2011) so it is a must to control the air quality and keep the pollution level
under the thresholds defined by health organizations. It is also important that public be aware
of near real time air quality situation where they live so they can make proper decision for their
outdoor activity.

Air quality maps are one way to inform governments and public about different pollutants
concentration. Daily recorded particular matter with a diameter of 10 micrometers or less (PM10)
is the pollutant considered for modeling and mapping in this study. For automatic near real time
modeling PM10, we used kriging with external drift (KED) using LOTOS-EUROS model output
as a covariate and to make this map available for the users in real time, we used web processing
services (WPS)and web map services (WMS).

The WPS used in this study is WPS4R produced by 52North which is capable of creating
processes via R scripts. It enabled us to use R environment which is a very strong language for
statistical data analysis.

Two maps are produced for each request from users, PM10 concentration and uncertainty
maps. To improve the usability of the automatic air pollution mapping system, two groups of
users are considered who those are familiar with geostatistical concepts and, the other group, who
are not. First group are allowed for selecting different automatic interpolation methods which are
ordinary kriging, universal kriging and kriging with external drift so they can compare different
methods’ result. For second group PM10 maps are produced using KED method as it was evident,
in most of the days we analyzed, it gave better result in term of RMSE, ME and MSDR.
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Chapter 1

Introduction

1.1 MOTIVATION AND PROBLEM STATEMENT

Air pollution is one of the major concerns in most countries in the world. A report by the Com-
mittee on the Medical Effects of Air Pollutants (COMEAP) indicates that in a western European
population, a modest 10 μgm−3 increase in the ambient annual average level of particular matter
(PM) is associated with a 6% increase in the death rate(COMEAP, 2009). It is government respon-
sibility to control the air quality and keep pollutants lowers than defined thresholds by health
providers. Requirements for this control are the knowledge about pollutants concentration in
every location, every time as well as the uncertainty associated with predicted pollutant concen-
tration. There are several stations installed all over the world recording amount of different air
pollutants. For instance in Europe there is more that 4000 stations recording air pollution con-
centration. These numbers of stations do not satisfy the need of information on every location
because they cannot cover the whole area. To overcome this problem there are different inter-
polation methods that model air pollution throughout area base on the values monitored by the
stations to retrieve air pollution values in unmonitored locations.

Base on the Tobler first law of geography values of points more closer to each other have
more similarity than those in more distance (Tobler, 1970). This is a fact that is used in spatial
interpolation methods. The correlation between recorded values by the stations is used to reduce
the prediction uncertainty of unmonitored points.

Because the interpolated values are retrieved from models and are not true values, they con-
tain uncertainties. Between different spatial interpolation methods, geostatistical methods such
as kriging are capable of calculating uncertainty of prediction in every predicted point. The result
can be shown in a map which is called "Uncertainty map". It is valuable knowledge as it aids gov-
ernments to decide on the placement of monitoring sites and it also can be used as information in
risk assessment (Denby et al., 2007). In locations that prediction uncertainty is high, it is possi-
ble that pollutant concentrations exceed the limits but predicted amounts do not show exceeding
(Senaratne et al., 2012).

Decision makers need air pollution behavior everyday if any event associated with air pollu-
tion (pollutant exceedance) took place in their region. Base on this reason that the near real time
results (air pollution map and uncertainty map) are needed, automating the process is obligatory.
Dubois and Galmarini (2005) defined proper geostatistical method for automation is the one that
generate results:

1. In a minimum amount of time.

2. Without any human intervention, in the sense that only request for a map from the client
is allowed.

3. That is "reasonable", which means low uncertainty of predictions. For example the Root
Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) has to be kept as low as
possible.

1
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4. That can handle outliers of input data (air pollution peak). Users that are considered to
use the air pollution map and uncertainty map are governments, health providers, decision
makers.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The main objective of this research is to automate the process of modeling and mapping PM10
considering results (PM10 concentration map and associated uncertainty) should be generated in
near real time. The following are objectives (RO) and question (RQ) that have been answered
during the research.

• RO1 Find and apply the proper interpolation method for automatic PM10 modeling .

– RQ1.1 What are the suitable covariates to model PM10 concentration?

– RQ1.2 Which geostatistical interpolation method is more suitable to automate PM10
modeling?

• RO2 Automate the PM10 concentration modeling and mapping and associated uncertainty
by use of existing web services.

– RQ2.1 What are the rules for automatic modeling?

– RQ2.2 What are the steps to put the selected model on the Web?

• RO3 Mapping of PM concentration and associated uncertainty by use of existing web ser-
vices.

– RQ3.1 What are the steps to visualize the interpolated PM10 values and associated
uncertainty by use of existing Web services?

– RQ3.2 What should be the resolution of the output map?

1.3 INNOVATION AIMED AT

The novelty of this research is the development of automatic modeling and mapping of air quality
by applying the method that is fitted with automation.

1.4 THESIS STRUCTURE

This thesis has 8 chapters. Chapter 1 describes motivation and problem statement as well as re-
search objectives and questions. Chapter 2 mentions related work that has been done in geostatis-
tical modeling of air pollution, existing automatic interpolation services and visualizing methods
for air quality and interpolation errors. Chapter 3 informs study area and data used in this re-
search. Chapter 4 describes the adopted methodology for modeling air pollution and chapter
5 is about the prototype design and implementation . Chapter 6 shows the result, chapter 7 is
discussion about the achieved result and chapter 8 is concludes and recommends.

2
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Chapter 2

Related work

2.1 GEOSTATISTICS AND MODELING OF ENVIRONMENTAL VARIABLE

“Geostatistics is the area of spatial statistics that addresses prediction of unknown values at speci-
fied locations or aggregations of locations” (Holland et al., 2003). The advantage of geostatistical
methods is modeling large scale variability (mean) with function of coordinates or external corre-
lated variable and also modeling small scale variability, residuals, with spatial covariance function.
Considering spatial correlation of variables results in decreasing prediction uncertainty (Holland
et al., 2003). These methods generally refer to kriging and widely used by different scientist as spa-
tial interpolation technique for modeling environmental data (e.g. soil moisture, air pollutants)
for different purposes such as predicting the efficacy of emission control programs or designing
of monitoring networks (EPA, 2004).

Hudson and Wackernagel (1994) applied kriging with external drift for mapping temperature
in Scotland. They used elevation data as covariate (auxiliary variable). Kebaili Bargaoui and
Chebbi (2009) compared ordinary kriging and kriging with external drift to model rainfall. They
suggest 3-D estimation of the variogram rather than classical 2-D. In case of 3-D variogram kriging
with external drift gave better result than ordinary kriging. They employed elevation to model
the drift. In very admirable job by Zimmerman et al. (1999), they compared ordinary kriging,
universal kriging and inverse distance weighting by use of synthetic data. They conclude that
planar surface results in less uncertainty and also they mention that for some type of surfaces it is
better to ignore the modeling of trend than to model it inappropriately . Lee et al. (2011) formed
a linear mixed model between daily PM2.5 and calibrated AOT data which allows day-to-day
variability in relationship between AOT and PM2.5. They used normal 10 km by 10 km grid for
prediction over the study area. Kloog et al. (2011) extended and improved Lee et al. (2011) work by
incorporating land use regression model and meteorological variables such as temperature, wind
speed and elevation. Denby et al. (2010) applied log normal residual kriging with multiple linear
regression to produce annual ozone and SO2 maps.

There are three ways for air quality mapping. One way is using accurate measurements of
pollutants and apply some interpolation methods. The limitation is that in this method, no infor-
mation about physical and chemical processes is considered . An alternative way is to use chemical
transport model in which by use of physical laws and empirical relationship they describe chemi-
cal and transport process (Kassteele, 2006). Example of these models are LOTOS-EUROS, oper-
ational priority substances (OPS). LOTOS-EUROS model is a chemical transport model (CTM),
also called simulator, that predict pollutants concentration, however, it severely underestimates
the measured concentration, as with many other models (Denby et al., 2008). Although the out-
puts of these models are not accurate, they can provide important spatial information. Third way
is to combine these two methods to do prediction on unmeasured points. It has been evident that
combining theses two methods resulted in more accurate predictions (Kassteele, 2006).

Denby et al. (2008) and Denby et al. (2010) use LOTOS-EUROS model output and combined
them with in-situ measurements to improve the predictions of PM10, ozone and SO2. What they

3
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implemented is ordinary kriging on residuals after regression modeling of daily model concentra-
tions and in situ measurements. Konovalov et al. (2009) and Honoré et al. (2008) use determin-
istic and statistical model for forecasting PM10 for one day ahead. They use statistical model in
prediction correction made by a deterministic model known as model output statistics (MOS).
They significantly improved the CTM output accuracy. Wackernagel et al. (2004) used kriging
with external drift employing CTM outputs as covariate in modeling ozone concentration for
risk management purposes. Wong et al. (2004) applied 4 different spatial interpolation on PM10
including spatial averaging, nearest neighbor, inverse distance weighting, ordinary kriging on a
same study area. All the methods gave almost the same result (RMSE and MAE).

2.2 AUTOMATIC SPATIAL INTERPOLATION

When it comes to automatic modeling and mapping, not every interpolation methods can be use-
ful. Lots of environmental monitoring networks collects data in real time but only few of them
generates map automatically. This existing gap from recording data to displaying them on a map
in away that is useful for users, indicates the difficulties in automatic modeling and mapping of en-
vironmental data (Brenning & Dubois, 2008). Webster and Oliver (2001) suggest that variogram
modeling should be examined visually. Researchers, in order to benefit from strength of kriging
methods in automatic modeling, have tried to solve the problem of automatic modeling of spatial
correlation. Modeling of spatial correlation requires estimation of the so-called “ variogram” pa-
rameters. In this subject INTAMAP took a step and provided a generic framework for automatic
modeling of the spatial correlation. Papers by Skoien et al. (2008), Pebesma et al. (2011), De Jesus
et al. (2008) describe the way that they took to tackle the problem of variogram modeling and also
the improvement that has been made in this area.

“INTAMAP1 is an interoperable framework for real time automatic mapping of critical en-
vironmental variables like air pollution by extending spatial statistical methods and employing
open, web-based, data exchange and visualization” (Pebesma et al., 2011).The aim of the IN-
TAMAP project is to provide interpolation without requiring any specified skills (Pebesma et
al., 2011). In this project different generic spatial interpolation methods are defined which are or-
dinary kriging, copulas and trans-Gaussian kriging. These methods are suppose to work for any
environmental variable so they can not support specific conditions such as including auxiliary
data to model spatial variability. The INTAMAP system supports R statistical environment as an
environment that supports user defined interpolation methods.

Some example of studies in automatic spatial interpolation are research by Abraham and Com-
rie (2004) in real time ozone mapping. What they implemented is regression interpolation hybrid
approach in a way that they first subtracted mean from observed values and then ordinary krig-
ing on the residuals. For modeling the spatial correlation, an empirically uniformed (i.e.,default)
variogram model is used. Another example of attempt in automatic spatial interpolation is a large
exercise which had dealt with mapping of radioactivity.The result and summary of this exercise is
gathered in a document by Dubois and Galmarini (2005). Geostatistical modeling methods were
successful in this exercise, however, they were not the best. The best result belongs to support
vector machine algorithm.

For real time automatic mapping, other than automatic modeling, it is necessary that client
can get maps on his/her platform so interopability is a main characteristics that real time auto-
matic mapping system should have. Using web services e.g. web map services(WMS) and web pro-
cessing services(WPS), that follows open geospatial consortium (OGC) standards assures this char-
acteristic of a automatic mapping system. INTAMAP project uses WPS developed by 52North.

1http:/www.intamap.org
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Figure 2.1: Contouring method. Pollutant concentration data is presented in the background and uncertainty in
the data is represented through contours in the foreground taken from (Senaratne et al., 2012).

It also uses UncertML (a markup language to encode uncertain data) to encoding probability
distribution of interpolation errors and web mapping services for visualization of interpolated
values. The web client that INTAMAP provides for air quality data accepts data in form of XML(
extensible markup language) and it returns interpolated values in form of XML.

2.3 VISUALIZATION

There are number of uncertainty visualization methods offered by different researcher. In general
Senaratne and Gerharz (2011) categorized most spatio-temporal uncertainty visualization meth-
ods according to the parameters which are data type (continuous or categorical), data format
(raster or vector), uncertainty type (positional uncertainty, temporal uncertainty or attribute
uncertainty) and interaction type (static, dynamic, interactive). In this research, air pollution
mapping, the uncertainty type that is considered is attribute uncertainty ,data type in continu-
ous and data format is raster. For these parameters they offer different methods for visualization.
For air quality, Senaratne et al. (2012) used two approaches (contouring method and adjustment
map method) to visualize uncertainty. In contouring method 2.1, contours show uncertainty of
predicted values of one pollutant throughout the region. The thickness of the lines indicates the
uncertainty range . In adjustment map method 2.2, uncertainty of predicted values of one pol-
lutant is presented using color sequences technique. In this method two side by side raster maps
are used to visualize the value and the associated uncertainty side by side. Based on the result of
a survey published by Senaratne et al. (2012), it was evident that contouring method and adjacent
method had been better interpreted by participants.

5
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Figure 2.2: Adjacent Maps method. Pollutant concentration data (left) and uncertainty (standard deviation) of the
pollutant data (right) over Europe are represented on two side by side maps taken from (Senaratne et al., 2012).
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Chapter 3

Study area and data description

3.1 STUDY AREA

Study area of this research is the western part of the Europe including Germany, The Nether-
lands,Belgium and Luxembourg as is illustrated in figure 3.1. The area is extended from 2◦E to
15◦E and 47◦N to 55◦N.

3.2 DATA DESCRIPTION

There are three sources of data provided for this research:

• daily PM10 in situ measurements at various monitoring points;

• LOTOS-EUROS model output above monitoring points;

• station information including latitude, longitude, elevation, station code, country name,
type of area i.e. rural, urban and suburban;

• LOTOS-EUROS model output for whole Europe with spatial resolution of 0.5◦ south to
north and 0.25◦ west to east.

The daily in situ measurements are provided from AirBase database. PM10 concentration are
recorded hourly but then are aggregated to give daily values. AirBase is the air quality database
system of the European Economic Area (EEA). It contains air quality monitoring data and infor-
mation submitted by the participating countries throughout Europe. Number of stations differs
from one year to another. The reason is that some stations started recording during these three
years and some stopped recording. In totally there are 967 stations in these four countries moni-
toring different pollutant concentration. However, only 292 of them recorded PM10 during 2010.
Between these three years the year 2010 is selected because during this year more stations recorded
PM10 in comparison with 2008 and 2009 and also the model output for the whole study area is
available (see 3.1). The LOTOS-EUROS is a regional chemical transport model (CTM) designed
for the assessment of gaseous and particulate air pollutants. The model is used for a wide range
of scientific and regulatory supporting applications. LOTOS-EUROS 1 is built, maintained, im-
proved by developers and researchers.

LOTOS-EUROS:

• simulates air quality over regional and sub-regional scale;

• covers an various number of pollutants (ozone, NO2, inorganic and organic PM2.5/PM10
, etc);

1http:/www.lotos-euros.nl/
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Figure 3.1: Study area and PM10 monitoring stations
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Table 3.1: Summary of dataset used in the research

Country name Number of stations
recording PM10

Number of Stations in
Rural Areas

Number of Stations in Ur-
ban and Suburban Areas

Belgium 40 14 26
Germany 225 61 164
The Netherlands 27 17 10
Luxembourg 0 0 0

Table 3.2: Number of stations recorded PM10 during different years

Year Number of stations
recorded PM10

2008 162
2009 274
2010 292

• includes data-assimilation (satellite data and ground measurements) (Schaap et al., 2008) .

It can be seen that there is no monitoring station in Luxembourg. Although there is no station,
it is important to have knowledge about its air quality condition. This is done by modeling PM10
throughout the study area in which includes Luxembourg as well.In modeling PM10 all stations
contribute not only those in rural areas. The reason is that the numbers of stations in rural areas
are low, especially in Belgium and The Netherlands. Lots of information related to urban and
suburban areas would be missed if only rural areas are considered.

In modeling PM10 all stations contribute not only those in rural areas. The reason is that the
numbers of stations in rural areas are low, especially in Belgium and The Netherlands. Lots of in-
formation related to urban and suburban areas would be missed if only rural areas are considered.
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Chapter 4

Methodology

4.1 DATA PREPROCESSING

4.1.1 Importing data

The provided datasets are in NetCDF (Network Common Data Form) format. The NetCDF
data is a platform-independent, binary file which includes metadata exploring the contents and
format of the data in the file. R has a package called "netcdf" which allows reading from, writ-
ing to, and creation of NetCDF files. “Panoply”software is used for reading, going through and
understanding the data. In this research by use of "netcdf" package, data imported in to R, re-
quired data extracted and new tables created in order to be used in following analyses. The data
extracted from the original file, are station latitude, station longitude, station elevation, country
code, LOTOS-EUROS model output and daily PM10 value for a year 2010. Four tables are cre-
ated, daily average PM10 in situ measurements, daily average LOTOS-EUROS model output in
location of stations, daily average LOTOS-EUROS model output for whole study area and station
information. Merging tables is done as needed during the interpolation process.

In this research, the datasets that are used are already stored in the local directory, and they
are called via R scripts in the first step of the interpolation procedure. However, datasets can be
imported from external servers using “sos4R” package. “sos4R” is a client for Sensor Observa-
tion Services (SOS) as specified by the Open Geospatial Consortium (OGC). It allows users to
interactively create requests for near real-time observation data based on the available sensors and
observations.

4.1.2 Data projection

In the original datasets station coordinates are in latitude and longitude. This coordinates sys-
tem accounts for the curvature of the earth’s surface. However, statistical spatial interpolation
techniques consider the linear distance between two points in space in order to define spatial cor-
relation structure (EPA, 2004). These coordinates are transformed to European conventional.
Terrestrial Reference System Lambert Azimuth Equal Area 1989 (ETRS LAEA 1989) projection
reference system is selected as it is recommended to be used in Europe when statistical mapping
at all scales and where true area representation is required (Annoni et al., 2001). Advantages of
ETRS LAEA 1989 are:

• suitability for the whole Europe (25◦W-45◦E, 32◦N-72◦N);

• equal area representation of a given cell (pixel) throughout the raster (image/map);

• tolerable distortion of shape (Strobl et al., 2007).
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4.1.3 Data cleaning

During the process, stations that recorded no value and stations with duplicate values are removed
from the data in order to have proper data for modeling PM10. The reason is that the kriging
interpolation can not be applied when duplicates are exist.

4.1.4 Exploratory data analysis

In this research histograms, Q-Q and bubble plots are used to summarize the main characteris-
tics of the datasets in better understanding of the data. Last days of year 2010 from December
21 to December 31 (day 355 to 365) are selected and all the analysis applied for these days. By
histograms and Q-Q plots we check if the data are normally distributed due to sensitivity of var-
iogram calculation to highly skewed data distributions (Krige & Magri, 1982). If raw data do not
follow a normal distribution, logarithm transformation should be applied to data and in the end,
back transformation of the interpolated values and associated variance. Back transformation for-
mulas are mentioned in Denby et al. (2008). To automate the process of logarithm transformation
when is required , we used Shapiro-Wilk test. The Shapiro-Wilk test tests the null hypothesis that
a sample came from a normally distributed population. The null hypothesis is that the sample is
normally distributed. If the p-value is small (<0.01) the null hypothesis will be rejected in favor
of the alternative.The Shapiro-Wilk test can be questionable due to not considering spatial corre-
lation between observations (van de Kassteele et al., 2009). This test can be done in R. The code
are mentioned in Appendix list.

In addition, average of PM10 concentration is calculated for each day to understand its vari-
ation for the whole year. In case that an unusual behavior, such as existing of extreme recorded
values, is observed the corresponding day would be analyzed as well. For better understanding
of the data and also to check if that was a correct decision to take both rural and urban areas in
kriging procedure, the average of PM10 amount for rural and urban( urban and suburban) areas
calculated separately.

4.2 DEFINE USERS TYPES AND USER’S REQUIREMENTS

It is important to know the users and their requirements from the automatic air pollution mod-
eling and mapping system in order to design a system. In other words, it is essential to find out
who are the potential users of the system before designing it to improve its usability (Senaratne
et al., 2012) .

The potential users of the PM10 map and processing system are policy makers, health parti-
tioner and public. In this research potential users are categorized in two groups. First are those
who are familiar with geostatistics, modeling methods and the second groups are those who have
little or no specific knowledge about these concepts. We call them advanced and normal users
respectively. In addition , for user requirements, two possible scenarios are considered. First is
when users upload their own air pollution data in Europe and ask for the associated map. We call
this scenario as “general case”. Second scenario is when user asks for a map in a same area of the
research which is called “specific case ”. In specific case, user either requests for PM10 map or may
upload data for other pollutants such as SO2 in the same area of the study.

12
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4.3 GEOSTATISTICAL MODELING OF PM10

4.3.1 Geostatistical modeling

In this part of the research, the objective is to apply different geostatistical interpolation methods
to find out the appropriate and possible ones.

Deterministic models such as inverse distance weighting, nearest neighbor, have this limitation
that they consider spatial variation among data as random variation. It means that they consider
all the spatial variation has a predefined simple structure . However, stochastic models, behave
with spatial variation differently in the way that they describe quantitatively how one variable
value differs spatially. The general model is:

Z(u) = μ(u) + S(u) + e (4.1)

Where u denotes dependence on location, μ(u) is the deterministic trend, S(u) is spatially
correlated error and e is the spatially uncorrelated error. μ(u) is not dependent to location u if a
constant mean can be assumed.

E[Z(u)] = μ (4.2)

What stochastic models apply is modeling the spatial correlation. Modeling of the spatial
correlation is represented by variogram. Variogram values are retrieved by calculating half the
expected squared difference:

γ(h) = 1
2E[Z(u) − Z(u + h)]2 (4.3)

Where h is a distance, so-called ’lag’, between each pair of random variables. Retrieved values
from this equation results in cloud variogram. To generate an empirical variogram, partitioning
the data on the distance between pairs of random variables (PM10) is necessary. Cressie (1993)
suggests that number of bins should be large enough that spatial resolution retainment would be
possible and yet low enough that the empirical variogram estimation be stable. Journel (1978)
suggest that it should be at least 30 pairs in each bin. Another point that is considered in this
research is isotropy assumption. In an isotropic field, the variation is the same in every direction.
The covariance function only depends on the length of the distance vector, not on its direction. In
contrast, in an anisotropic field the variation depends on both the length and on the direction of
the distance vector. To check the isotropy assumption directional variogram is made in R software
using ”Gstat” package.

Empirical variograms do not provide all of the separation distances (h) and the corresponding
semivariances needed by the kriging system. Hence, it is necessary to have a model that enables
computing a variogram value for any possible separation distance.

After modeling of spatial variability, prediction on unrecorded locations is applied. Among
different methods, geostatistical methods, kriging, are chosen because of their ability to produce
uncertainty of predictions. The basic idea behind a kriging interpolation is to use the variogram
to compute weights γ(h), which minimize the variance in the estimated value. Kriging is the best
linear unbiased estimator (Lark et al., 2005) because of its ability to minimize estimates of variance
and mean absolute error. Following describes the different methods adopted for modeling PM10
throughout the study area.

• Ordinary kriging

13
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Figure 4.1: Example of empirical variogram and model variogram

In practice, Ordinary Kriging (OK) is the most widely-used interpolation method for envi-
ronmental data (Webster & Oliver, 2007). In case of ordinary kriging, mean is assumed to be
constant over study area so the general model in Equation (4.1) transform to:

Z(u) = μ + S(u) + e (4.4)

Where μ is not dependent on location u. The parameters that should be estimated are mean
(μ) which is considered to be constant and variogram model parameters, which are nugget, sill
and range. The ordinary kriging predictor is calculated:

T̂0 = μ̂ + cT
0 C−1(y − μ̂1) (4.5)

Where: y is the vector of observations of length n, c0 is a vector of length n giving the covariance
between all observations and the unsampled location, C is the n × n covariance matrix and 1 is a
vector of 1’ of length n. Ordinary kriging variance is retrieved from.

σ̂2(T̂ − T ) = C(0) − cT
0 C−1 c0 + (1 − cT

0 C−11)T (1T C−11)−1 (1 − cT
0 C−11) (4.6)

First term in equation (4.6) indicates the covariance in lag zero. Second term reduces uncertainty
in prediction points by use of correlation with neighboring points, and the third term increases
the uncertainty because of the uncertainty in estimating the mean.

• Hybrid Kriging

Universal kriging and kriging with external drift (KED) are also called “hybrid”; non station-
ary( of the mean) geostatistical approaches (McBratney et al., 2000).

UK and KED are special case of kriging in which the drift defined through some auxiliary
variables (covariate). They can be considered as a bivariate regression taking into account the
spatial autocorrelation of the dependent variable. Hybrid kriging may be considered when there
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is a former knowledge that a large-scale relationship exists in the target area (EPA, 2004). In UK,
coordinates are auxiliary variable, so mean (large-scale variability) is modeled as a function of
coordinates, and in KED, is modeled externally through some auxiliary variable (Hengl et al.,
2003). The mean term in equation 4.1 is modeled by covariates so:

Z(u) = Xβ + S(u) + e (4.7)

Where:
X is covariates’ value and β is regression coefficients. The parameters to be estimated are trend

coefficients and variogram parameters.
Regression analysis is done to find out the suitable auxiliary data which can be used in kriging

procedure. In provided datasets, LOTOS-EUROS model output and coordinates are the data that
are considered as covariates. The LOTOS-EUROS model has a spatial resolution of 35 km by 25
km. The selected grid size for mapping is 5 km by 5 km. The covariates values are required for
every prediction points in order to apply KED, so we resampled LOTOS-EUROS model output
into 5km by 5 km grids.

4.3.2 Automatic variogram modeling

Automation of the fitting variogram model to empirical variogram was the main obstacle for
researchers to reach to the automatic modeling and mapping of environmental data. As mentioned
earlier, user possible requirements categorized to general and specific case.

• Specific case

For a specific case, because the study area is fixed and spatial distribution and location of the
stations that are recording PM10 are almost the same, the defined variogram modeling provided
by "Gstat" package in R is used. By use of "Gstat" package, calculating empirical variogram
and fitting a model to it can be applied automatically. Different cuts- off are examined to find
out which one results in better variogram in the sense that it reaches to clear sill and also the
minimum number of pairs in be more than 30 in each lag as Journel (1978) suggests. For fitting
a model to empirical variogram, initial values for model parameters (nugget, sill, and range) are
required. The procedure of variogram modeling in “Gstat” is done by iterative reweighted least
squares so called Gauss-Newton fitting (Cressie, 1993). In this method For fitting a model to
empirical variogram, initial values for model parameters (nugget, sill, and range) are required.
Eleven days of data are analyzed, and empirical variograms are formed to find out the possible
initial values for modeling. After fitting a model to each day’s empirical variogram, initial values
are selected and these values are considered for all remaining days of the year 2010. In addition,
three common models; Spherical, exponential and Gaussian are applied . After analyzing the
empirical variogram and fitted model the one with the minimum error sum of squares for 10 days
is chosen. Choosing “Gstat package” gives us the ability to include auxiliary variable into the
prediction process.

• General case

For the general case, in which users import their own data, the “automap” package, which apply
automatic interpolation, is used. This package forms empirical variogram, fits a model to it and
makes prediction in a automatic way. The method that “automap” uses for prediction is ordinary
kriging, how ever it can enlist auxiliary variables for applying kriging with external drift and
universal kriging. The reason behind selecting “automap” is the limitations that come with the
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Figure 4.2: Decision tree for variogram modeling and interpolation methods choices that take place in R

uploaded data. Different data from various stations definitely have significantly different spatial
characteristics so the suitable model variogram for them differs. Based on the spatial distribution
and variogram values, “automap” fits a model to empirical variogram. For Automatic, omnidirec-
tional variogram model fitting “automap” makes following choices:

• Cut off : %35 maximum distance

initial values for the fit :

• Sill: mean of the maximum and median value of the variogram values

• Nugget: minimum value of the variogram values

• Range: cutoff/3.5

• Model : Exponential, Spherical, Gaussian , the one with the minimum error sum of squares
is selected

4.3.3 Spatial aggregation

Air pollution stations’ measurements are considered as point data. The spatial representativeness
of each station is different from another due to their locations. Stations located in rural areas are
representative of larger area than those are in urban or suburban areas. The spatial support of each
station depends on a emission sources surrounding it (Spangl et al., 2007). Users, such as decision
makers, may need to know pollutants’ (e.g.PM10) concentration for large areas. Changing scale
from point to a area , from finer resolution to coarser resolution, is called upscaling (Van Bodegom
et al., 2002). Block kriging is method to do this upscaling (Stein et al., 2001) to retrieve values from
a point to a block. Block kriging is a specific case of kriging which make prediction on larger
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areas by averaging. Besides the ability of this method to predict on blocks, it has been proven
that in many environmental applications, block kriging usually exhibits smaller prediction errors
than punctual kriging (Bivand et al., 2008). Block kriging can be easily applied by defining the
block size in prediction command of “Gstat” package. What should be a block size is another
issue. Apart from user requirements, selected grid size should not be computationally demanding
(Hengl, 2006). Based on a report by Kuhlbusch et al. (2006), the resolution of air quality map
should not be less than 5 km by 5 km as it may be needed for further health analyses. However,
they suggest the resolution of 1 km by 1 km but grid size of 1 km by 1km in this study is time
consuming. The prediction time in case of ordinary kriging is about 5 minutes. Hence, the grid
resolution or block size considered in this study is 5 km by 5 km.

4.3.4 Accuracy assessment

Validating the models is required to check its quality. Cross validation is a technique that is ap-
plied in this study for accuracy assessment, as it can easily be applied automatically by use of
“Gstat” package in R. Through cross-validation, a value for an observed point, based on all other
data except that point, is predicted and then the predicted value is compared to the measured
value. This procedure is applied for all the monitored points. The result of cross validation In
R is a “spatial point data frame” in which stations coordinate, associated residual, prediction on
monitored points and associated uncertainty are stored. Root mean square error(RMSE), Mean
Error(ME) and Mean Square Deviation Ratio(MSDR) of the residuals to the prediction errors,
can be calculated from the cross validation’s result from following formulas:

RMSE =

√√√√ 1
N

N∑
i=1

(Z∗(ui) − Z(ui))2; (4.8)

ME = 1
N

N∑
i=1

Z∗(ui) − Z(ui); (4.9)

and

MSDR =

√√√√ 1
N

N∑
i=1

(Z∗(ui) − Z(ui))2

ˆσ2(ui)
(4.10)

Where:
σ2(ui) is kriging variance. These are the diagnostic measures for models evaluation. MSDR

ideally should be 1 because the residuals from cross-validation should equal to prediction errors
at each point that was cross out. ME should be ideally equal to 0 because kriging is the best linear
unbiased predictor,however, ME is a weak diagnostic as it is not sensitive to choice of variogram
modeling (Webster & Oliver, 2007).
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Chapter 5

Prototype design and implementation

5.1 TECHNICAL SET-UP

One of the objectives for automatic modeling and mapping is to make these maps available for
those who needs them but they have no specific knowledge about the procedures that results in
map such as variogram modeling and kriging techniques (Pebesma et al., 2011). One of the other
requirements is that, as mentioned earlier, users should be able to retrieve an air pollution map
in real time, so they can make decisions on time. The Internet is an efficient way to enable users
to access the information they need at their fingertips (Sheng et al., 2008). It is required for a
web-based automatic interpolation service to be applicable in every platform so users do not need
to have any specific software installed on their systems. This characteristic of a system is called
interoperability.

If a system follows a service oriented architecture(SOA), it guaranteed its interoperability. A
SOA is a collection of services that allows a web client to access and run a service and receive
results from it (Izza et al., 2008). Therefore, geostatistical modeling can be considered client-
service interaction that a client requests a map and the request goes through interpolation service
located on a server and the result in the form of a map will appear on the client interface (De Jesus
et al., 2008).

This study has three main stages including modeling PM10 which is done in R, automation
of mapping procedure and automatic visualization of output. Geostatistical modeling and pro-
ducing output take place in R environment. The output can be exported in raster(GeoTIFF) or
vector(lines or GML) format.

The whole process of automatic mapping PM10 is displayed in figure 5.1 . This process starts
with a request of PM10 map on a web-client user interface, and it ends with a map displaying
on the client interface. Users select the date, desirable output format, e.g. GML, tiff, jpeg, etc.,
the specific location in which they want to know PM10 concentration and also the interpolation
method that he/she desires such as ordinary kriging, universal kriging or kriging with external
drift.

R codes should be placed in a server in order to produce interpolated values and associated un-
certainty in a moment that user send a request. Web processing services (WPS) make this connec-
tion between user request and the algorithms. WPS is a web service for standardized processing
of geodata which allows a client to benefit from preprogrammed calculations and computation
models that operate on spatially referenced data over a net. The WPS used in this research is
an open-source WPS provided by 52North1. The implementation of it is based on the current
OpenGIS specification defined by the Open Geospatial Consortium (OGC)2.

52North prepared a module so called “WPS4R” which allows WPS process creation via the
R-scripts. The connection between R and WPS is made by “Rserve”. Rserve is an independent
Transmission Control Protocol/Internet Protocol (TCP / IP) Server, available as an R package. R

1http:/52north.org/
2http:/www.opengeospatial.org
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Figure 5.1: Technical set-up of the automatic interpolation service

scripts contain annotations including supplies process description, input and output information.
The process description ,input and output format are coded like comments in R environment.
The example of annotated R script is mentioned in Appendix. After the R scripts annotated
properly, they should be uploaded to WPS (see figure 5.2).

We can get interpolated values directly from WPS in different formats such as geography
markup language (GML) or GeoTIFF (see figure 5.4). Output in GML format maybe under-
standable for some users but not for all (see figure 5.3). GML output includes 2 bands of data;
interpolated values and uncertainty of predictions. To visualize the output in a proper way, the
GeoTIFF file produced through WPS is served to web map service (WMS). WMS, another web
service used in this research, is a standard protocol for serving georeferenced map images over
the Internet . These maps are generated by a map server. The specification was developed and
published by the OGC . The WMS is used in this study is MapServer3 which is an Open Source
platform for publishing spatial data and interactive mapping applications to the web. By use of
MapServer the GeoTIFF file including PM10 interpolated values and associated uncertainty are
classified to different classes and styled.

5.2 DESIGN OF USER INTERFACE

The objective of the research is providing PM10 map in real time for a user through a web- client
interface while the modeling and mapping procedure happens in back-end. The user interface
should have the ability to serve the two groups described in this study(advance and normal group).
To do so, two interface are designed one for general group and one for specific group. In figure
5.5 the possible user interface for advanced group is displayed. For general users the facilities of
interface are limited to date, mapping variable and insert location. The design of user interface is
done by HTML and Java script coding.

3http:/mapserver.org/
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Figure 5.2: Deploying a WPS4R process

Figure 5.3: Output of WPS in GML format for advanced users.
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Figure 5.4: Adjacent maps map method to show the uncertainty
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Figure 5.5: User Interface for advanced group

23



AUTOMATIC MODELING AND MAPPING OF PARTICULAR MATTER (PM10)

Table 5.1: Boundaries Between Index Points for PM10 taken from united kingdom department of environment
and rural affairs website 5

Index 1 2 3 4 5 6 7 8 9 10
Band Low Low Low Moderate Moderate Moderate High High High Very high

μm−3 0-16 17-33 34-49 50-58 59-66 67-74 75-83 84-91 92-99 100 or more

Table 5.2: Health advice to accompany the Daily Air Quality Index taken from united kingdom department of
environment and rural affairs website ( http://uk-air.defra.gov.uk/)

Air pollution banding Index Health message for At-risk individuals Health message for general Population

Low 1-3 Enjoy your usual outdoor activities. Enjoy your usual outdoor activities.

Moderate 4-6 Adults and children with lung problems,
and adults with heart problems, who ex-
perience symptoms, should consider reduc-
ing strenuous physical activity, particularly
outdoors.

Enjoy your usual outdoor activities.

High 7-9 Adults and children with lung problems,
and adults with heart problems, should re-
duce strenuous physical exertion, particu-
larly outdoors, and particularly if they ex-
perience symptoms. People with asthma
may find they need to use their reliever in-
haler more often. Older people should also
reduce physical exertion.

Anyone experiencing discomfort such as
sore eyes, cough or sore throat should
consider reducing activity, particularly out-
doors.

Very high 10 Adults and children with lung problems,
adults with heart problems, and older peo-
ple, should avoid strenuous physical activ-
ity. People with asthma may find they need
to use their reliever inhaler more often.

Reduce physical exertion, particularly out-
doors, especially if you experience symp-
toms such as cough or sore throat.

5.3 VISUALIZATION

We use colors to display different PM10 concentration values when only PM10 map is required
by the client. Colors are defined in a same way as suggested by (COMEAP, 2009). This index
has ten points categorized to 4 levels which are low, moderate, high and very high. For each of
the levels there is one advice for at-risk groups and one advice for the general population. At risk
individuals are adults and children with heart or lung problems( see tables 5.1and 5.2).

When user asks for PM10 map and associated uncertainty, We use adjacent maps to visualize
uncertainties as suggested by Senaratne et al. (2012). In the uncertainty map (right), uncertainty is
represented through shades of blue. Darker blue represents higher uncertainties and lighter blue
represents lower uncertainties( see figure 5.4).
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Chapter 6

Result

In this chapter the result from the adopted method are displayed.

6.1 EXPLORATORY DATA RESULT

In this section the result of quantitative and descriptive data analysis are illustrated. The figure 6.1
displays the average of PM10 amount recorded by all the stations over the study area. It is obvious
that day 1, 1/1/2010, has unusual behavior in comparison with other days. The bubble plots in
figure 6.2 (a) also indicate this. There are some stations in this day that the recorded PM10 value is
more than 200 and in one case even 300. Figures 6.2(b) and 6.3(a , b) demonstrate the variation of
PM10 throughout the study area for day 355, 356 and 357. Corresponding histograms and normal
Q-Q plots are displayed in figures 6.4 and 6.5. Since the data are skewed, the logarithmic trans-
formation is applied to the raw data. The histograms and Q-Q plots of logarithm-transformed
data are represented in figures 6.4 and 6.5.

Table 6.1 shows the minimum, maximum and mean of PM10 concentration in rural and non
rural( urban and suburban) areas. It is inferred from this table that the difference between PM10
values in rural and urban areas are low in December day 355 ,356 and 357 and but it is high in day
1. Figure 6.6 displays the histograms of rural and urban (urban and suburban) areas separately and
for all stations in 1/1/2010. It is also displays the Q-Q plot for raw and logarithm transformed
PM10 concentration.

6.2 GEOSTATISTICAL MODELING

6.2.1 General case

In general case, where users upload their own data, automatic variogram modeling is applied by
use of “automap” package. Figure 6.7 is the illustration of the produced empirical and model
variograms for the four days of the data. Table 6.2 represents the model variogram parameters
estimation by “automap” and the cross validation result for each day (day1,355,356 and 357 of
2010).

Table 6.1: Variation of PM10 recorded values in rural and urban areas

Day Rural Min Rural Mean Rural Max Urban Min Urban Mean Urban Max
Day 1 2 67 229 19 102 301
Day 354 7 27 63 13 32 76
Day 355 1 16 36 8 19 47
Day 356 1 18 60 5 19 44
Day 357 2 17 36 6 19 41
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Figure 6.1: Scatter plot showing the average of the all stations’ recorded PM10 for each day of the year 2010.

Figure 6.2: PM10 variation over the study area a) 1 January ( day1) and b) 21 December (day355)
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Figure 6.3: PM10 variation over the study area a) 22 December (day356)and b) 23 December (day357)

Table 6.2: Summary Of “automap” automatic variogram modeling. Psill and MinNP stand for Partial sill and
minimum number of pairs among different lags respectively.

year 2010 SSErr RMSE ME MinNP Nugget Psill Range Model
Day 1 0.004 0.434 -0.008 46 0.0416 1.52 7840 Exponential
Day 355 0.00077 0.352 -0.001 50 0.202 0.202 121 Exponential
Day 356 0.00037 0.398 -0.003 49 0.044 0.7 536 Exponential
Day 357 0.0015 0.386 -0.001 52 0.019 0.274 200 Exponential
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Figure 6.4: Histogram of Raw and Logarithm transformed PM10 for day 355,356 and 357
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Figure 6.5: Q-Q plots of Raw and Logarithm transformed PM10 for day 355,356 aaadn 357
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Figure 6.6: Histogram of PM10 concentration in a)Rural areas ,b)urban areas c)for all the stations Raw
data,d)logarithm transformed of all the stations recorded PM10 value.e) is Q-Q plots of(c) and f) is Q-Q plots
of(d).
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Figure 6.7: Automap ’s empirical variograms and fitted models
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Figure 6.8: Empirical and Spherical(Sph) model variograms for different cut-offs

6.2.2 Specific case

In specific case, user requests for a PM10 map or any other pollutants in the predefined area
(Germany, Belgium, The Netherlands and Luxembourg). Different cuts off (200 km, 400 km, 500
km and 800 km) are examined to find the one which reaches to clear sill and also the minimum
number of pairs is checked to be more than 30. Spherical model is selected to be fitted to empirical
variograms. Figure 6.8 shows the variograms of different cut offs for day 356 and table 6.3
is representation of the impact of this selection in value of RMSE, ME and MSDR and model
parameters. The result for finding proper cut off in case of universal kriging and kriging with
external drift are presented in Appendix.

What can be concluded from table 6.3 and figure 6.8 is that the cutoff equal to 500 km is the
better choice as the fitted model reaches to clear sill and the minimum number of pairs is 168. In
both cases, when cut off is 200 km and 400 km, model variogram do not reach to the clear sill and
when cut off is 800 km the minimum number of pairs is less than 30. The RMSE resulted from
various cut offs, are not significantly different, however, it is less in case of 500 km.

6.2.3 Choice of variogram model and initial values

The common models (spherical, exponential and Gaussian) are selected and fitted to empirical
variogram to determine which one has less SSErr and MSDR. The table 6.4 shows the result for
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Table 6.3: Summary for the impact of different cut-off selection

22 December (day 356) SSErr MSDR RMSE ME MinNP Nugget sill Range
cut-off=200/ width=20 0.0001 1.155 0.398 -0.002 160 0.07 0.834 451
cut-off=400/ width=20 0.0002 1.148 0.397 -0.002 160 0.05 0.629 310
cut-off=500/ width=20 0.0003 1.146 0.397 0.0008 168 0.050 0.147 226
cut-off=800/ width=20 0.0008 0.396 0.396 -0.002 26 0.061 0.478 201

Table 6.4: Summary for the SSErr retrieved from different models

Model SSErr/ 21 December SSErr/ 22 December SSErr/ 23 December
Exponential 0.0002 0.0003 0.0007
Spherical 0.0003 0.0002 0.0009
Gaussian 0.0009 0.002 0.002

day 355, 356 and 357, and figure 6.9 illustrates the empirical variograms and fitted models.
Shape of empirical variograms does not suggest the Gaussian model as well as the result in

tables 6.4, 6.5 and figure 6.9. From table 6.5, it can be concluded that Exponential model is a
better choice due to less MSDR, RMSE and ME, hence, exponential model is chosen for variogram
modeling.

Initial values are required to fit a non linear model to the empirical variogram. Usually these
values are selected base on the shape of the empirical variogram. As long as the initial guess does
not differ enormously from the true values the procedure of variogram modeling can be applied
(the model variogram does not get singular). It means that selecting different initial values results
in almost the same model variogram since the initial guesses are logical. To check this, the initial
values used for 22/12/2010 also used for 1/1/2010 and the last 10 days of 2010 and the model could
be fitted to each empirical variogram. Note that in 1/1/2010 the PM10 concentrations recorded
by the stations are significantly different from other days, hence we conclude that initial values
selected for day 356 can be used for all other days. The selected initial values for day 356 are :

• Nugget: 0.4

• Range: 250 km

• Partial sill :0.2

The estimated model parameters, based on the mentioned initial values, for day 1, 355 and 357
are presented in table 6.6.

6.2.4 Prediction on unmonitored locations

Three geostatistical interpolation methods are used to predict at unsampled locations; OK, UK
and KED. Using hybrid approaches can be beneficiary if the target variable( PM10) and the aux-

Table 6.5: Summary for the MSDR retrieved from different models

Model MSDR/ 21 December MSDR/ 22 December MSDR/ 23 December
Exponential 1.344 1.146 1.244
Spherical 1.393 1.168 1.248
Gaussian 1.538 1.441 1.350
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Figure 6.9: Fitted Exponential, Spherical and Gaussian model to the empirical variogram

Table 6.6: Model parameters’ estimates

Day Nugget Partial sill Range
Day 1 0.15 0.43 340
Day 355 0.02 0.16 396
Day 356 0.04 0.16 101
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Table 6.7: Summary of regression analysis for PM10 and model output

Model output P-value R square F statistic
Day1 «0.001 0.06 17
Day355 «0.001 0.10 32
Day356 «0.001 0.20 68
Day357 «0.001 0.31 130

Table 6.8: Summary of regression analysis for PM10 and coordinates

Coordinates P-value R square F statistic
Day1 0.1 0.01 2.308
Day355 0.0001 0.061 8.86
Day356 «0.001 0.109 16.53
Day357 «0.001 0.442 110.2

iliary variable are correlated. Regression analyses result indicates if the correlation between vari-
ables is significance so they can be used as auxiliary variable in modeling . Every test of significance
begins with a null hypothesis. We test if the regression coefficients are significantly different from
zero. The test of significance is based on the t statistic. If this is a model that can be fitted to scatter
plot of 2 variables:

Y = β0 + β1X

It is tested if β1 is significantly different from zero.

• H0 : β1 is zero

• H1 : β1 is not zero

If p-value is small (<0.01) so the null hypothesis is rejected in favor of the alternative. It
means that the correlation between two variables are significant. In this research model output
and coordinates are checked if they can be used as covariates. Apart from p-value, the R square
and F also show the correlation.

From Tables 6.7 , it can be implied that the significant correlation between PM10, model
output exists everyday that we analyzed. Table 6.8 shows that PM10 and coordinates are not
correlated everyday. For instance, the significance correlation exists between coordinates and
PM10 for day 356 but not for day 1.

The cross validation result for different kriging methods for day 1, 355, 356 and 357 are pre-
sented in tables 6.9, 6.10, 6.11 and 6.12. In general, KED gave better result.

This is also evident by uncertainty maps presented in figure 6.11. it is obvious that the kriging
standard deviation is lower in case of KED in comparison with UK and OK in whole study area.
Figure 6.10 shows the produced PM10 concentration maps from different methods.

6.3 DESIGN OF USER INTERFACE

The designed user interface is illustrated in figure 6.12. The defined user interface in chapter 5 can
not be applied due to lack of time. This is a very simple interface that is made by use of HTML
and Java script and open layers . The PM10 concentration map is displayed over base world map.
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Table 6.9: UK, KED and OK method validation result for day (1)

1 January (day 1) KED UK OK
RMSE 0.483 0.485 0.485
ME -0.003 -0.004 -0.0005
MSDR 1.093 1.106 1.112

Table 6.10: UK, KED and OK method validation result for day (355)

21 December (day 355) KED UK OK
RMSE 0.343 0.346 0.346
ME -0.003 -0.0002 -0.0002
MSDR 1.331 1.353 1.344

Table 6.11: UK, KED and OK method validation result for day (356)

22 December (day 356) KED UK OK
RMSE 0.396 0.398 0.397
ME -0.0002 -0.002 -0.002
MSDR 1.184 1.152 1.146

Table 6.12: UK, KED and OK method validation result for day (357)

23 December (day 357) KED UK OK
RMSE 0.379 0.391 0.382
ME -0.0003 -0.006 -0.002
MSDR 1.197 1.207 1.244

Figure 6.10: Retrieved PM10 concentration from different models (OK, UK, KED) for day (357)
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Figure 6.11: Uncertainty maps (standard deviation) from different models (OK, UK, KED) for day (357)

The PM10 concentration values are calculated in WPS and classified and visualized through WMS
in the map file. The HTML and Java script codes the map file are presented in Appendix.

In concludes, all considered methods of interpolation the cut off 500 is the best choice and
exponential model selected to fit to empirical variogram. Between different methods KED is
most suitable one for automatic modeling and mapping because LOTOS-EUROS model out put
in most of the days has a significant correlation with PM10 which consequently results in less
prediction error.
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Figure 6.12: user interface. Base map and overlayed PM10 concentration map.
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Chapter 7

Discussion

In this chapter the result archived and displayed in chapter6 are discussed.

7.1 EXPLORATORY DATA RESULTS

From the exploratory data results displayed in figures 6.2 and 6.3 , it can be concluded that
the spatial distribution of PM10 varies day by day. However, the most extreme case is happened
during the 2010 in day1 ,January first, because of the fireworks in new years Eve. In this day
almost every stations shows that PM10 concentration exceeded the limit (50μgm−3). We include
this day into the analysis to check our model functionality to see if that works in the most extreme
situation. From the histograms and Q-Q plots it can be inferred that data of some days like day
355 and 356 need to be logarithm transformed but not day 357. The result of Shapiro-Wilk test
also demonstrate this( see appendix).

7.2 GEOSTATISTICAL MODELING

Two scenarios are considered in this study. First when users request for map in the same region
of the study area and second scenario when users upload their data, not in the same region. The
prior knowledge about the study area and spatial distribution of stations can be beneficial in the
selection of cut off for empirical variogram calculation. The result shows that when proper cut
off(the one which reaches to clear sill) is selected, it resulted in less kriging variance (see MSDR
results in table 6.3). The model variograms by “automap” in figure 6.7 show that non of them
reaches to the clear sill because cut off is one third of maximum distance by default.

As it is mentioned earlier, for specific case user can upload their data in the same region of the
study area. These data can be other pollutants concentration that recorded by the same stations
like ozone or SO2 but not PM2.5. The reason is that number of stations recorded PM2.5 are less
than stations that are recording other pollutants. Hence, the selected initial values to fit a model
to empirical variogram for PM10 can not be used for PM2.5. We can not consider in this case that
there is prior knowledge about the spatial distribution of the monitoring points.

Three methods, OK, UK and KED selected for modeling PM10. From tables 6.7 - 6.12 it can
be concluded that using auxiliary variable improve the result(RMSE and MSDR) when they are
correlated with the target variable (PM10). In tables 6.7 and 6.8, It is displayed that in all days
we analyzed the correlations between PM10-model output and PM10-coordinates are significant.
It is evident from the global statistics and also generated uncertainty maps for day 357 that KED
resulted in lower uncertainty in comparison with two other methods .

Another reason for selecting KED over OK is that using auxiliary variables can be helpful to
describe some part of the spatial variation of the correlated observation (Kassteele, 2006). There
are some days that there are lots of stations do not record PM10. In such cases using covariates
which have a full coverage over the region can reduce the uncertainty of predictions. This is also
concluded by (Kassteele, 2006) in a case study in The Netherlands.
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One limitation of the LOTOS-EUROS is its spatial resolution (35 km by 25 km) in compare
with the required resolution of PM10 (5 km by 5 km) concentration map. Using models with
finer resolution can decrease the uncertainty in the predictions.

7.3 PROTOTYPE DESIGN AND IMPLEMENTATION

In figure 6.12 the simple designed interface is presented. This can be improved in many ways by
careful consideration to find out what is suitable for users, or better to say what is ”user friendly”
and also to find out who are the potential users.

PM10 interpolated values and uncertainty are produced in R back-end ,are restored in WMS
directory and then recalled for being displayed in HTML file. There should be a system to delete
produced GeoTIFF files in WMS directory time to time to prevent storage problem.
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Chapter 8

Conclusion and Recommendations

8.1 CONCLUSION

In this research the objective was to automate the process of modeling and mapping of PM10 and
associated uncertainty. To reach this objective several questions addressed in chapter one, section”
research objective and questions”, are answered.

RQ1.1 What are the suitable covariates to model PM10 concentration?
Based on the regression analysis done in the research and also available data model output and

coordinates considered as suitable covariates. However, this should be noted because we automate
the daily data, we cannot conclude that model output or coordinates are always correlated with
target variable as it is displayed in table 6.7. But in case of model output most of the days, it
was highly correlated with the PM10 concentration. Another point is that model output is a
physical model which lot of meteorological data contains in its calculation so indirectly we include
meteorological data in our modeling by using it as an auxiliary variable.

RQ1.2Which geostatistical interpolation method is more suitable for automating air
pollution?

KED is more suitable for automating air pollution modeling.The reasons are First it can be
applied with no human intervention, second; it can calculate the uncertainty in prediction points
and third reason is that model out put and PM10 concentration demonstrate to have correlation
in most of the days which results in less prediction uncertainty. In addition LOTOS-UEROS
model has a full coverage over the European continent with spatial resolution of 25 km by 35 km.
For those areas that the number of recording stations are low using covariate is beneficial.

RQ2.1 What are the rules for automatic modeling?
Automatic modeling in this research equals to automatic variogram modeling procedure. For

two defined scenarios in this research two groups of rules are used. General case, where users
import the data in a region other than the defined study area. The automation rules in “automap”
are used which are:

• Cut off : %35 maximum distance

initial values for the fit :

• Sill: mean of the maximum and median value of the variogram values

• Nugget: minimum value of the variogram values

• Range: cutoff/3.5

• Model : Exponential, Spherical, Gaussian , the one with the minimum error sum of squares
is selected

and for specific case, where users require air pollution map in a defined study area, we improve
the variogram model by selecting the proper cut off and number of bins. The selected cut off is
equal to 500 km and initial variogram parameters are:
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• Nugget: 0.4

• Range: 250 km

• Partial sill :0.2

RQ2.2 What are the steps to put the selected model on the Web?
By use of WPS which follows SOA the model can be used over the net. To model PM10, we

used R which is very powerful environment for any statistical computing. We benefited from
WPS4R, a module provided by 52North, which allows WPS process creation via the R-scripts.
The requirements is that the annotated R-scripts and also “Rserve” which connects WPS to R.

RQ3.1 What are the steps to visualize the interpolated PM10 values and associated un-
certainty by use of existing Web services?

WMS is a standard protocol for serving georeferenced map files over the Internet. The Geo-
TIFF files including PM10 interpolated values and associated uncertainty produced in modeling
step, are classified and styled trough WMS. OGC defined the standard ways of visualization such
as specifying colors associated to each class. The adjacent maps are used to visualize uncertainties.
The WMS used is in this study is “Mapserver”. The GML format of predictions and uncertainties
are produced for those users who select GML as an output format. The GML file is an output of
WPS which directly displays in user interface.

RQ3.2 What should be the resolution of the output map?
The selected resolution of output map is 5km by 5km as it is suggested by Kuhlbusch et

al. (2006). This is also a grid size that is not computationally demanding so it is suitable for
automation.

8.2 RECOMMENDATIONS

This study was one step forward to real time automatic air pollution modelling and mapping.
There are some limitations in every work such as time limit.

In this thesis, we used daily PM10 data, and we restored the data in the local directory and
recalled it in to interpolation process via R- scripts. I suggest using "sos4r" package in order to
equip the interpolation system with retrieving near real time monitoring data.

We made some assumption for modeling PM10. One of them was an isotropy assumption.
"INTAMAP" already deal with anisotropy automatically. If the system finds out that data are
anisotropy significance, it corrects for it. We can use this "INTAMAP" capability to develop our
system.

We chose KED for automatic modeling although it was not always beneficial. In some days
that correlation between LOTOS-EUROS model out put and PM10 were not significant, OK
gave better result in terms of RMSE and MSDR. One further work would be to check the cor-
relation between the target variable and covariate automatically by use of the result of regression
analysis (P-value). If the correlation is significant, the interpolation system applies KED otherwise
ordinary kriging.

We selected some visualization techniques to display PM10 map concentration and associated
uncertainty. It is useful to create an interface that the user can choose different visualization tools
in order to get what is best for him/her application.

We could not consider "user friendly" term in designing of the user interface due to lack of
time. More work need to be done to understand user requirements and design an interface which
fits to users’ needs.
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Appendix A

Code

A.1 MAPSERVER, MAP FILE

MAP
NAME airpollution
IMAGECOLOR 255 255 255
IMAGETYPE PNG24 ## use AGG to for anti-aliassing
OUTPUTFORMAT
NAME ’AGG’
DRIVER AGG/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
END # outputformat

PROJECTION
"init=epsg:3035" #latlon on etrs 1989 laea

END
EXTENT 3700000 2600000 4700000 3600000 # meters extents of study area

WEB
IMAGEPATH "c:/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
METADATA

"ows_enable_request" "*"
"map" "c:/ms4w/Apache/htdocs/airpollution1/config.map"
"ows_schemas_location" "http://schemas.opengeospatial.net"
"ows_title" "Sample WMS"

"ows_enable_request" "*"
"ows_onlineresource" "http://localhost:7070/
cgi-bin/mapserv.exe?map=C:/ms4w/apps/airpollution1/config.map&"
"ows_srs" "EPSG:3035 " #meter
"wms_feature_info_mime_type" "text/plain"
"wms_feature_info_mime_type" "text/html"
"wms_server_version" "1.1.1"
"wms_formatlist" "image/png,image/gif,image/jpeg, image/geotiff"
"wms_format" "image/png"

END #metadata
END #web

LAYER
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NAME "pm10"
DATA "pm10_357.tif"
TYPE RASTER
STATUS ON
METADATA

"ows_title" "pollution"
END #metadata
PROJECTION

"init=epsg:3035"
END #projection

CLASSITEM "[pixel]"
# class using simple string comparison, equivelent to ([pixel] = 0)

# class using an EXPRESSION using only [pixel].
CLASS
EXPRESSION ([pixel] >-100 AND [pixel] < 17)
STYLE

COLOR 150 255 150
END
END
CLASS
EXPRESSION ([pixel] >= 17 AND [pixel] < 34)
STYLE

COLOR 50 255 0
END
END
CLASS
EXPRESSION ([pixel] >= 34 AND [pixel] < 50)
STYLE

COLOR 50 200 0
END
END
CLASS
EXPRESSION ([pixel] >= 50 AND [pixel] < 59)
STYLE

COLOR 255 255 0
END
END
CLASS
EXPRESSION ([pixel] >= 59 AND [pixel] < 67)
STYLE

COLOR 255 200 0
END
END
CLASS
EXPRESSION ([pixel] >= 67AND [pixel] < 75)
STYLE

COLOR 255 150 0
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END
END
CLASS
EXPRESSION ([pixel] >= 75AND [pixel] < 84)
STYLE

COLOR 255 100 100
END
END
CLASS
EXPRESSION ([pixel] >= 84AND [pixel] < 92)
STYLE

COLOR 255 0 0
END
END
CLASS
EXPRESSION ([pixel] >= 92AND [pixel] < 100)
STYLE

COLOR 150 0 0
END
END
CLASS
EXPRESSION ([pixel] >= 100)
STYLE
COLOR 200 50 255

END#style
END#class

END #layer pm10
LAYER
NAME "countrybouderies"
TYPE POLYGON
STATUS ON
DATA data/Belenux_ger_etrs
METADATA

"ows_title" "Belenux_ger_etrs"
END #metadata
PROJECTION

"init=epsg:3035"
END
CLASS
NAME "Belenux_ger_etrs"
STYLE
OUTLINECOLOR 127 127 127
WIDTH 2
END # style
END #class countries
END #layer countries
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END #map

A.2 HTML FILE

<html>
<head>
<title > PM10 </title>

<!-- OpenLayers core js -->
<script type="text/javascript"
src="http://www.openlayers.org/dev/OpenLayers.js">
</script>
<!-- OpenStreetMap base layer js -->
<script type="text/javascript"
src="http://www.openstreetmap.org/openlayers/OpenStreetMap.js">
</script>

<script type="text/javascript">
var myMap, myWMSBaseLayer, pm10,bounderies ;
var myCenter = new OpenLayers.LonLat(
10,51
);
function init() {
myMap = new OpenLayers.Map("mapDiv");

myWMSBaseLayer = new OpenLayers.Layer.WMS(
"world WMS",
"http://geoserver.itc.nl/cgi-bin/mapserv.exe?map=
D:/Inetpub/geoserver/mapserver/config_world.map&",
{layers: "world"}
);

pm10 = new OpenLayers.Layer.WMS
("PM10", "http://localhost:7070/cgi-bin/mapserv.exe?map=
C:/ms4w/apps/airpollution1/config.map",

{layers: "pm10",transparent: "true", format: "image/png"}
);

bounderies= new OpenLayers.Layer.WMS
("Countries Boundery", "http://localhost:7070/cgi-bin/mapserv.exe?map=
C:/ms4w/apps/airpollution1/config.map",

{layers: "countrybouderies",transparent: "true", format: "image/png"}
);

myMap.addLayers([myWMSBaseLayer, pm10, bounderies]);
myMap.addControl(new OpenLayers.Control.MousePosition());

myMap.addControl(new OpenLayers.Control.ScaleLine());
myMap.addControl(new OpenLayers.Control.Navigation());
myMap.addControl(new OpenLayers.Control.PanZoom());
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myMap.addControl(new OpenLayers.Control.LayerSwitcher());
myMap.setCenter(myCenter,6);

request = OpenLayers.Request.POST({
url: "http://localhost:8080/wps/WebProcessingService?Request=Execute&Service=WPS&
Version=1.0.0&Identifier=org.n52.wps.server.r.OK6",
data: OpenLayers.Util.getParameterString(),
headers: {
"Content-Type": "application/x-www-form-urlencoded"
},
callback: handler
})
}

</script>
</head>
<body onload="init()" bgcolor="#ffffff">

<center><h1> Automatic PM10 Mapping</h1></center>
<hr>

<!-- div containers for map, lat/long coordinate
output and transaction messages -->
<div >

<div id="mapDiv" style="bottom:100px;width:100;
height:400px; border:2px solid red;">

<!-- <div id="coordinates" style="z-index:999"></div>-->
</div>

</div>
<hr>
<img border="0" src="Legend.JPG" alt="Pulpit rock" width="600" height="120">
<a href="http://localhost:8080/wps/WebProcessingService?Request=
Execute&Service=WPS&Version=1.0.0&Identifier=org.n52.wps.server.r.OK6">Interpolate</a>

</body>
</html>

A.3 R- SCRIPTS ANNOTATION

#wps.des: title = Ordinary kriging in R, ( description of the process)
#abstract = predicting PM10 on unmonitored points;
#wps.in: day, type = integer, abstract = Points for OK; (defining input data)
#wps.out: output ,type =integer, abstract =RMSE,ME and MSDR; (defining output data)
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A.4 R- SCRIPTS FOR AUTOMATING THE PROCESS OF LOGARITHM TRANSFORMATION

b<- shapiro.test(data$PM10)
if(b$p.value< 0.01) {

data$PM10<- log(data$PM10)
}

A.5 DIFFERENT CUT-OFFS FOR KED AND UK

Figure A.1: Diffrent cut offs in case of KED
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Figure A.2: Different cut offs in case of universal kriging

A.6 RESULT OF SHAPIRO-WILK TEST

Table A.1: Result of shapiro-wilk test

year 2010 p-value
day1 «0.001
day355 «0.001
day356 «0.001
day357 0.05
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