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ABSTRACT 

 
Tropical forest cover is declining in many parts of the world. This process is of global concern, as it is 
considered to be one of the main drivers of climate change. Radar remote sensing is useful to monitor 
forest coverage since the presence of clouds often limits a continuous and periodic monitoring by optical 
sensors. The overall objective of this study was to assess the potential of very high (1m – 3m) and medium 
(8m – 30m) resolution synthetic aperture radar imagery for identifying forest degradation signs. This was 
done with a view as to contribute to the development of alternative monitoring strategies in support of the 
monitoring, reporting, and verification (MRV) framework of UN-REDD+. The study area was a 20x10 
km site in the tropical forest region of southern Congo-Brazzaville.  
 
The major approach adopted in this study was visual interpretation. Forest and non-forest could be clearly 
separated in VHR TerraSAR-X (SpotLight and StripMap) and on 8m RADARSAT Multi-Look Fine 
imagery, while not on ENVISAT ASAR Image Mode imagery. Logging roads were only visible on 1m 
TerraSAR-X SpotLight and 3m TerraSAR-X StripMap imagery. Both of these data sources and 
RADARSAT Multi-Look Fine images could detect clearcuts in dense to open canopy forest types. To 
assess whether the detection of such clearcuts can be automated, and thus applied more easily to larger 
regions, a simple automated approach was developed. The approach consisting of thresholding and 
subsequent majority filtering proved effective in separating most clearcuts in coarse canopied forest.  
 
This study concludes that the detection of logging roads by SAR requires spatial resolutions below 5m, 
while clearcuts are detectable with 10m resolution. It was found that the viewing geometry of the SAR 
data acquisitions has a strong effect on the possibility to visually detect forest degradation signs. For 
monitoring purposes, repeated monitoring using the same satellite sensor and viewing geometry is 
therefore recommended. Given the reasonably low-price and good coverage, TerraSAR StripMap 
acquisitions are recommended for further studies towards monitoring options in the framework of 
REDD+. 
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1. INTRODUCTION 
1.1. Background 
Forest degradation and deforestation are continuing at an alarmingly high rate (FAO, 2011b). Africa has 
the second highest rate of tropical forest loss in the world. FAO (2010) estimated that the tropical forests 
in this region declined at an annual rate of 3.4 million hectares between 2000 and 2010 through forest 
degradation and deforestation processes. These processes not only lower the ability of a forest to meet its 
ecological and production capacities (FAO, 2011a; Lambin, 1999), but also have an impact on carbon 
fluxes; and hence, contribute to global warming (Anderson et al., 2010; Gullison et al., 2007; Mykola et al., 
2009; World Bank, 2012). Forest degradation and deforestation both account for up to 20% of the total 
annual anthropogenic greenhouse gas (GHG) emissions worldwide and most of these emissions occur in 
tropical countries. As such, tackling tropical deforestation and forest degradation offers an opportunity for 
mitigating global warming. This in turn has led to an integral part of global climate change negotiations 
driven by the United Nations Framework Convention on Climate Change (UNFCCC).  
 
The Kyoto Protocol to the UNFCCC evolved in 1997 and is responsible for committing industrialized 
countries to ensuring a quantified reductions targets of GHG emissions (UNFCCC, 2012). These targets 
range from a reduction average estimates of 8% to an increase of 10% over the period of 2008-2012. If all 
these targets would have been met by all the parties, an overall reduction in GHG emissions levels from 
1990 to 2012 would have been about 5.2% (UNFCCC, 2012). In furtherance to this commitment, at the 
13th Conference of Parties (COP-13) of the UNFCCC in 2007, the Bali Action Plan highlighted the 
importance of policy approaches and positive incentives on Reducing Emissions from Deforestation and 
Forest Degradation (REDD) (UNFCCC, 2007). REDD is an international effort to create a financial value 
for the carbon stored in forests. It aims at offering incentives to developing countries to preserve their 
national and community forests with regards to climate change mitigation (UNFCCC, 2012). Developing 
countries would be paid by developed countries for the service of avoided deforestation and degradation 
under this mechanism (UN-REDD, 2009). In addition to international efforts to ensure that forest carbon 
stocks are preserved (i.e. the core-objective of REDD), a post-Kyoto Protocol climate change mechanism 
of REDD+ was further initiated in Copenhagen, Denmark in 2009 (COP-15) to address grey areas left 
out in REDD such as biodiversity conservation and the raising of livelihoods status of indigenous people. 
Therefore, REDD+ goes beyond reducing deforestation and forest degradation to include forest 
conservation and sustainable forest management (Herold & Skutsch, 2011). 
 
REDD+ is a new global partnership between developing and developed countries through which low-
carbon land use strategies are developed and adopted to minimize deforestation and forest degradation; 
and to promotes forest conservation and sustainable forest management (Herold & Skutsch, 2011). In the 
context of the REDD+ process, participating countries are required to report on their reductions in 
deforestation and forest degradation (amount carbon emissions) in order to obtain compensation. Hence, 
there is a need for them to develop systems for monitoring changes in their national forests within the 
framework of Monitoring, Reporting and Verification (MRV) of the UN-REDD+ framework.  
 
To measure and monitor deforestation and forest degradation, countries must agree on threshold values 
to distinguish forests from non-forest areas. According to the Marrakesh Accords, forest is defined as an 
area of land that has more than 0.5 hectares contain trees that are at least 2-5 meters high at maturity; and 
a canopy cover of more than 10 per cent (UNFCCC, 2001). In tropical zones, a 10-40% canopy cover is 
considered to be an open canopy forest, and 40-100% canopy cover is a closed canopy forest (FAO, 
2000). Anthropogenic activities such as selective logging, firewood collection and charcoal production can 
degrade forests, which imply that the canopy cover remains above the defined threshold for forest, but 
reduces as compared to its initial value. This is known as forest degradation. Literature asserts that there 
are numerous definitions of forest degradation. Each of the definitions implies a reduction of specific 
forest parameters such as: carbon stock, crown cover and environmental function. According to FAO 
(2011a), the Inter-governmental Panel on Climate Change (IPCC) defined forest degradation as: “a direct 
human-induced long-term loss (persisting for X years or more) of at least Y% of forest carbon stocks (and 
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forest values) since time T; and which must not be qualified as deforestation or an elected activity under 
Article 3.4 of the Kyoto Protocol”. No globally-agreed values for X, Y and T exist, but minimal thresholds 
could be set at 10 years, 10% and 3 years respectively (TFD, 2011). Within this definitional context, forest 
degradation is not necessary a precursor to deforestation, because degraded forests can remain forest for a 
large number of years without completely being deforested (Murdiyarso et al., 2008). Hence, a severely 
degraded forest is a secondary forest that has its canopy cover gradually reduced over time; for example, 
from 100% to 67% (note that the forest canopy cover must not decrease below the threshold set for 
forest, otherwise this is deforestation). In other words, forest degradation is a process which contributes 
to a loss of carbon stock within forests that remain forests (UNFCCC, 2008). According to Herold and 
Skutsch (2011), forest degradation is a human induced disturbance causing loss of forest carbon due to 
activities such as fire, clearing and selective extraction of wood that create canopy gaps, exposed soil and 
dead vegetation. Hence, to effectively track resultant changes from forest degradation activities, there is a 
need for monitoring, reporting and verification of forest degradation in line with the context of REDD+ 
at national levels 
 
Towards this end, a monitoring system that enables countries to credibly measure, report and verify 
carbon fluxes through a national operational forest management system are critical to be able to 
successfully implement REDD+ mechanism (DeFries R. et al., 2006). Data from remote sensing and from 
field measurements are both useful tools for monitoring national forest emissions (GOFC-GOLD, 2011). 
Remote sensing imagery can provide a much cheaper spatial overview of forest cover change for larger 
areas as compared to field inventory approaches alone. Frequent observation of an area by satellites can 
provide timely information on changes in forest cover, which could be linked (using field inventories) to 
forest carbon stocks and changes. Deforestation, i.e. areas of forest that change to another land use due to 
excessive logging or conversion to agriculture, can be assessed relatively easily from satellite data. 
Nonetheless, forest degradation, characterized by much finer changes (forest remains forest but reduces in 
carbon stock) is much more difficult to observe with satellite data. Also, there are no operational tools 
available that can easily incorporate the monitoring of forest degradation in the MRV systems. 

1.2. Optical remote sensing for forest degradation studies 
A number of national schemes currently exist to monitor forest cover changes on the basis of optical 
remote sensing data, both in the tropical rainforests of the Amazon and the Congo Basin of Africa (Table 
1). Highlighted below are a number of studies that perform change detection in forests with optical 
remote sensing: A first example of a study conducted in the southern Brazilian Amazon is Souza et al. 
(2005). This study applied the Normalized Difference Fraction Index (NDFI) to detect logging and fire 
scars. The NDFI combines the information of several component fractions of images defined by Spectral 
Mixture Analysis (SMA). The fractions include green vegetation, non-photosynthetic vegetation, soil, and 
shade, and are combined in the NDFI to enhance the detection of forest canopy damages. In this way, the 
impact of logging patterns, for example, can be detected using SMA. However, the SMA technique is 
limited because it does not provide information about the exact extent to which a forest has degraded by 
selective logging. To address this challenge in their study, Souza et al. (2005) applied a contextual 
classification algorithm (CCA) to enhance the interpretation of NDFI images. The CCA uses the location 
of log landings as contextual information and the NDFI as the spectrally-derived information sensitive to 
forest canopy gaps resulting from selective logging and burning. Although successful in highlighting 
mechanized logging activities, the approach did not detect non-mechanized logging activities. For non-
mechanized forest degradation processes in Congo-Brazzaville, the NDFI technique may therefore not be 
an effective method because of a high rate of non-mechanized (unpaved) logging roads.  
 
A second example is Asner et al. (2009), who developed and applied the Carnegie Landsat Analysis System 
(CLAS) to map forest degradation and deforestation. The approach was tested in Brazil and Peru and 
some parts of Africa. With CLAS, processing algorithms are integrated with post classification ones such 
as cloud and shadow masking, radiometric calibration and atmospheric correction of satellite imagery. 
This is aimed at producing a forest cover change images from a sub-pixel analysis model of an automated 
Monte Carlo Un-mixing (AutoMCU). AutoMCU gives information on the fractional cover of photo-
synthetic vegetation (PV) and Non-photosynthetic vegetation (NPV) with 0-100 percent range and it 
includes soil and shade fractions. CLAS is capable of accurately detecting forest changes due to 
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deforestation, secondary regrowth and areas of persistent forest disturbance (degradation); also from 
single-image AutoMCU algorithmic equations between large forest clearings and small forest clearings in 
terms of PV and NPV. The study showed a moderate accuracy of selective logging detection. The CLAS 
approach, i.e. the spectral unmixing, is very similar to NDFI. 
 
In the Congo Basin, the Central Africa Forestry Commission (COMIFAC) initiated projects to promote 
forest cover changes studies in the region (Baccini et al., 2008; Bwangoy et al., 2009; de Wasseige et al., 
2012; Gibbs et al., 2007; Mayaux et al., 2005). The studies are largely on forest cover mapping and 
deforestation. One of the studies initiated by the COMIFAC is a study by Duveiller et al. (2008), who 
assessed forest cover change in the Congo Basin. They obtained small Landsat tiles systematically sampled 
across the Basin, They obtained a high accuracy from their application and expressed the importance of 
combining object-based segmentation and unsupervised object classification methods in mapping 
deforestation and forest degradation. Here, they aggregated 10 classes legend into forest and non-forest 
land cover types. Afterwards, they further classified these classes into degraded forests, intact forest and 
non-forest classes through thresholding in object based segmentation approach. This approach produced 
better classification accuracy with a five class typology as against 10 class legend through the visual image 
interpretation method. However, the authors expressed that it was technically challenging to monitor 
forest change processes in the Congo Basin with optical remote sensing because of the persistent 
cloudiness of the region. To overcome this challenge, they suggested the use of Synthetic Aperture Radar 
(SAR), as an alternative approach to compensate for missing sampling data with optical imagery on the 
Congo Basin. For that reason, RAdio Detection and Ranging (RADAR) remote sensing could truly be an 
alternative technique because it is capable of penetrating clouds and hazes, and can acquire imagery both 
at night and day times. 
 
Table 1.1: Importance and limitations of previous optical remote sensing studies on forest cover change detection 

Method Study Sensor Spatial extent Objective Advantage Disadvantage 
Change detection 
using multi-date 
image 
segmentation and 
object-based 
unsupervised 
classification 
techniques 

(Duveiller 
et al., 
2008) 

Landsat Systematic 
sampling of 
571 sites in the 
Congo Basin 

Mapping 
deforestation and 
forest degradation  

Accurately 
detects cleared 
areas 

Requires 
combination of pair 
of images and does 
not separate burned 
forests from logged 
forests 

NDFI + CCA (Souza et 
al., 2005) 

Landsat  
ETM+ 

Tested in Sinop 
region, 
Southern 
Brazilian 
Amazon 

Mapping of  
forest canopy 
damage resulting 
from selective 
logging/burning 

Detected 
canopy cover 
damages from 
mechanized 
logging with 
high accuracy 

It has a limitation of  
detecting forest 
canopy damages 
due to non-
mechanized logging 

CLASlite+ 
AutoMCU 

(Asner et 
al., 2009) 

Landsat  
ETM+, 
ASTER,  
SPOT 

Brazilian 
Amazon/ 
Peruvian 
Amazon  

Automated 
mapping of 
tropical 
deforestation and 
forest degradation 

Highly 
automated 
approach for 
larger areas 

Moderate accuracy 
on selective logging 
detection/ not 
suitable for local 
application 

Visual 
interpretation 

(Stone & 
Lefebvre, 
1998) 

Landsat TM Tested in 
Paragominas, 
Para, Brazil 

Mapping of 
logged areas 

Easy image 
processing 
techniques 

Time consuming 
for large area 
application and 
prone to 
Interpreter-bias 

1.3. Radar remote sensing for forest degradation studies 
Radar is an active sensor, which means that it generates its own source of energy in a beam that is incident 
upon an imaging feature on the earth surface. From the imaging object on the earth surface, the radar 
sensor then receives and records the reflected energy, called backscatter, or return signal in sequence 
(University of California, 2012). Radar systems use wavelength ranging from about 1cm to 1m (Lillesand 
& Kiefer, 2010). 
The use of these wavelengths give radar systems two distinct advantages over the visible and infrared 
multispectral optical system: one is that they can penetrate cloud and haze; and the second is that they can 
image objects on the earth surface irrespective of whether it is day or night. This is because radar is an 
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active sensor and as such, it is independent of sunlight. The radar wavelength determines the extent to 
which it is weakened or scattered by atmospheric effects. Significant atmospheric effects on radar signals 
exhibit more effects on shorter radar wavelengths (< 4 cm). For example, rains and clouds can affect radar 
backscatter of radar wavelength that are ≤ 2cm (Campbell, 2002).  
 
SAR creates a synthetically long antenna, thus offering higher resolution along the azimuth direction, by 
repeatedly observing the same feature on the ground during many pulses. Through advanced signal 
processing, the high-resolution SAR image is then obtained. SAR sends a beam of waves in strips on the 
terrain in the look direction that is perpendicular to the azimuth direction (flight direction). The angle that 
is formed between the vertical axis and this beam direction is known as the incidence angle. Its incidence 
angle can be adjusted to the desired purpose of applications (Olander et al., 2008; Sugardiman, 2007; 
University of California, 2012). 
 
Speckle is granular noise in SAR images that is caused by random interference between multiple radar 
return signals from small objects present within a single resolution cell. Speckle gives SAR images a grainy 
appearance (salt-and-pepper effect) and makes effective image interpretation more difficult. That is, it 
results from the influence of returned waves from a convergence of independent scatterings. This 
phenomenon produces bright and dark spots in radar images; commonly known as ‘salt and pepper’ by 
radar experts. Speckle can be reduced during image pre-processing by filtering. 
 
The amount of energy backscattered from an object depends on its characteristics such as: moisture 
content, incidence angle and surface-roughness. Surface roughness is defined in relation to the 
wavelength: that is, something that was ‘rough’ for X-band; could be ‘smooth’ for L-band. Roughness of 
the terrain most strongly influences the amount of radar signals that will be returned (Lillesand & Kiefer, 
2010).  Also, differences in the local incidence angle result to a relative high returns from slope facing the 
SAR sensor; and a relative low returns occurs when the imaging feature slope is facing away from the 
sensor (University of California, 2012). In addition, radar signals can be operated in different polarization 
modes. 
 
Radar sensors can transmit beams horizontally (H) and receive backscatter horizontally (HH-Polarization), 
or can transmit horizontally and receive Vertically (HV polarization). As such, it is possible to generate 
four different band combinations of radar based on polarization: HH, VH, HV and VV(Atlantis Scientific 
Inc., 1997). The like-polarized bands are HH or VV, while cross-polarized band is obtained from HV or 
VH. For example, the SIR-C transmits in horizontal (H) and receives in vertical (V) polarizations. Thus, 
polarization in radar remote sensing is the orientation of the electromagnetic fields that constitutes the 
radar backscatter (waves) (Campbell, 2002). The polarization of the wave carries information about the 
presence of vegetation, as vegetation tends to depolarize the transmitted signal (causing higher cross-
polarized backscatter). 
 
Previous studies on forest cover change and radar remote sensing have indicated that Synthetic Aperture 
Radar (SAR) images with multiple wavelengths, polarizations and incident angles have the potential to 
extract information about tropical forest vegetation (Hoekman et al., 2010). This information types can be 
on distinction of forest from non-forest; height of trees in the forest; and the volume of forest canopy 
covers. It is therefore possible to apply a multi-polarimetric SAR data to map tropical forest cover change 
within the context of REDD+ (Herold & Skutsch, 2011; Hoekman et al., 2010). For example, Bijker 
(1997) and Sanden (1997) pioneered the application of radar remote sensing for forest monitoring and 
management in the Colombian Amazon. Other researchers, such as Mitchard et al. (2011), Hoekman et al. 
(2010), van der Sanden and Hoekman (1999), Sanden (1997); van der Sanden and Hoekman (1999), have 
all proved the potential of mapping tropical deforestation and forest degradation with SAR. 
 
Hoekman et al. (2010) applied the Phased Array type L-band Synthetic Aperture Radar (PALSAR) imagery 
of the Advanced Land Observing Satellite (ALOS) to map different land cover types for the island of 
Borneo (South East Asia). PALSAR is an L-band (~24cm wavelength) SAR sensor which penetrates more 
into the vegetation canopy than commonly-flown SAR systems with shorter wavelength. Also, the 
multiple polarization characteristics of PALSAR provide more information on forest structure. 
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Furthermore, a study on forest fragmentation by Saatchi et al. (2001) shows the relevance of frequent use 
of radar wavelengths (C-band and X-band) images. The Shuttle Imagery Radar-C (SIR-C) and the X-band 
Synthetic Aperture Radar (X-SAR) were both used to detect the degradation pattern of a primary forest in 
southern Brazil. The C-band partially penetrates into the forest canopy and is sensitive to leaves and small 
branches of the forest canopy. The radar images were classified with a maximum-likelihood classifier that 
showed a high accuracy in a clear separation of coastal forests from primary forest patches. Depending of 
forest types, X- and C-bands are capable of discriminating forests canopies into different textural (not 
backscatter) appearances because of canopy surface scattering (van der Sanden & Hoekman, 1999). 
Meanwhile this author further expressed that X-band was better for textural analysis of forest than C-
band. Although the authors expressed the high potential of radar remote sensing to monitoring and 
mapping degraded forests, they also suggested a further application of RADARSAT and ALOS in 
combination with optical imagery to enhance information at a large-scale forest mapping. Despite the 
research on forest mapping with SAR, few studies really addressed the potential for degradation 
monitoring; two examples are highlighted below. 
 
 Simard et al. (2002) used a combination of L- and C-band SAR imagery to map large area tropical coastal 
forest vegetation. The objective included the separation of closed canopy forest from open canopy 
(degraded) forests in west coast of Gabon. They performed the analysis using a decision tree classier 
algorithm. In particular, they observed that closed forest was separated from open forest at a low radar 
backscatter on the JERS-1 SAR image that was used. The threshold at which this discrimination was 
possible is 10, 11 and 12 terminal node. In general this approach was able to separate closed forest, open 
forests from other vegetation classes; at a low classification accuracy of 18%. To improve upon this 
classification accuracy, the study proposes an application of decision tree classier with multi-resolution 
SAR data. 
 
Earlier, Luckman et al. (1997)applied textural approach in airborne SAR data to determine a relationship 
between tropical forest and a status of forest regeneration in Tapajos region of central Brazilian amazon. 
Visual interpretation of the SAR data was performed based on backscatter levels and its texture. This way 
a comparison of results was made regarding the coefficient of clearcuts that were detected in the 
regeneration forest according to radar backscatter and roughness of the feature on radar images. The study 
shows that, like-polarized high resolution SAR imagery (example 1m HH TerraSAR-X or 3m VV of 
TerraSAR-X) could not discriminate clearcuts from virgin forest based on radar backscatter. They 
discovered that textural approach could clearly discriminated new clearcuts from all virgin forests. The 
clearcuts appeared smooth in structure while the forest canopy appeared coarse in structure. Thus, a visual 
interpretation of clearcuts in a degraded forest could be best possible on a basis of radar texture on high 
resolution SAR images. 

1.4. Research problem 
Despite the reported high relevance of the forest degradation process within the context of REDD+ in 
the Congo, no effective methods exist to map and monitor changes resulting from this degradation 
process. Hence, this raises the question of whether it is feasible to include forest degradation into the 
MRV agenda of REDD+. Non-inclusion of the forest degradation process in the MRV framework could 
limit the effective realization of the core-objective of REDD+; because focusing only on deforestation can 
lead to forest carbon leakages. That is, if a country strictly monitors and regulates deforestation, then 
timber companies may likely change their logging strategies towards forest degradation (Bucki et al., 2012). 
Therefore, there is a need to develop options to effectively monitor forest degradation over large areas: at 
country and regional scales. To achieve this, input from remote sensing data are required; however, 
available remote sensing techniques for degradation monitoring are limited. Existing methods are mostly 
reported to have been tested and applied in areas like Brazil, but not in the Congo Basin, where forest 
degradation processes may be more difficult to detect. This difficulty relates both to the fact that forest 
degradation occurs at finer scales, and the persistent cloud cover experienced in this region makes it more 
challenging to obtain frequent optical satellite images. To overcome the problem of persistent clouds, 
synthetic aperture radar may be a viable alternative. However, little evidence exists on whether forest 
degradation can be detected with SAR imagery. Although, there are alternative indirect modelling 
approaches for mapping forest degradation, this present study aims at providing options for the direct 
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detection of forest degradation signs, particularly logging roads and clearcuts, with SAR imagery. This is 
achieved through a comparison of a number of SAR data types against evidence of forest degradation 
obtained from very high resolution optical imagery for a small area in southern Congo-Brazzaville. 

1.5. Research objectives 
The overall objective of this study is to assess the potential of very high (1m – 3m) and medium (8m – 
30m) resolutions synthetic aperture radar imagery for identifying forest degradation for a small area in 
Southern Congo-Brazzaville. Such a comparative study could provide recommendations towards possible 
monitoring strategies for supporting the monitoring, reporting, and verification (MRV) requirements of 
UN-REDD+. To achieve this aim, the specific objectives of this study are: 

1. To gather spatial evidence of on-going forest degradation for a 20 x 10 km study site in South 
Congo-Brazzaville based on visual analysis of WorldView-2 (August 2011) and QuickBird (July 
2012) imagery through: 

a. mono-temporal analysis of forest gaps, logging roads and other signs of forest 
degradation from WorldView-2 

b. multi-temporal comparison of the changes observed from WorldView-2 with QuickBird 
2. To assess whether the before-identified signs of forest degradation can be detected from SAR 

imagery, including: 
a. very high resolution SAR (1m TerraSAR-X High-Resolution SpotLight and 3m 

TerraSAR-X StripMap imagery) 
b. medium-resolution multi-temporal SAR imagery (8m to 30m) including RADARSAT-2, 

and ENVISAT ASAR 
3. To develop a simple automated approach from the most-promising afore-mentioned SAR data 

sources to accurately map forest degradation.  
 
The data (both remote sensing and ground-truth) used in this research were acquired within the 
REDDiness project. REDDiness is an European-funded project and has the following partners: Faculty 
ITC of the University of Twente (UT; Netherlands), EUROSENSE (Belgium), Institute of Research for 
Development (IRD; France), The Satellite Observatory of Central African Forests (OSFAC; Democratic 
Republic of Congo), the National Center for Inventory and Planning of Forest and Wildlife Resources 
(CNIAF; Congo-Brazzaville), and the Ministry of Water and Forest (MEF; Gabon). Although the project 
has several objectives, its main research objective is closely linked to this thesis, i.e. assessing the potential 
for satellite monitoring of forest degradation under REDD+ for cloudy regions of the Congo Basin. The 
project started in February 2011 and ended in January 2013. 

1.6. Outline of the thesis 
This thesis contains six chapters. The first chapter describes the background, previous research on forest 
cover change detection with remote sensing, the problem statement and the aim and objectives of the 
research. Chapter two describes the study area with respect to forestry and forest cover change processes. 
Chapter three describes the data sources: ground truth and remote sensing data. Chapter four present the 
processing and analyses methods that investigates the potential of mapping degraded forest in Congo-
Brazzaville with radar remote sensing with respective to WorldView-2 and QuickBird imagery. Chapter 
five presents the results and discusses the outcomes and implications for mapping forest degradation with 
radar remote sensing data. Finally, chapter six provides the conclusions of this study, gives future research 
directions and makes recommendations on data potential for mapping degraded forests within the context 
of MRV for REDD+. 
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2. STUDY AREA 
2.1. Republic of Congo 
 
The Republic of Congo (in this thesis further referred to as Congo-Brazzaville) covers an area of 342,815 
km2. This area is in the equatorial climate zone. The country is bordered by the Atlantic Ocean and Gabon 
to the west, Cameroon and the Central African Republic (CAR) to the north, the Democratic Republic of 
Congo (DR Congo) to the east and south, and Angola to the south-west (Figure 2.2). The major land 
cover types in Congo-Brazzaville are forest and savannah grassland. The forests cover two-thirds of the 
country’s landmass while the other one-third is savannah (Republic of Congo, 2010).  
 

Congo-Brazzaville is a low-populated country and more than half of the population lives in its five major 
cities: Brazzaville, Quesso, Pointe-Noire, Delisie and Nkayi. The remainder of this population lives in the 
rural areas (Republic of Congo, 2010). For 2008 the country’s total population is estimated at 3.6 million 
inhabitants with an average density of 11 inhabitants/km2 and a yearly growth rate of 1.8% (FAO/ITTO, 
2011). The majority of the population depends on forests to meet its basic needs such as food, fuel and 
medicine (Republic of Congo, 2010). According to the Poverty Reduction Strategy Paper (IMF, 2010), 
after oil, forest resources are the second most important growth contributor to the Congolese economy.  
 

In 2010, timber accounted for about 5% of Congo’s Gross Domestic product (GDP) and for 5.85% of 
their export income (IMF, 2010). There are other basic roles (including direct jobs creation to the local 
people and poverty reduction) that the forestry sector plays towards enhancing the livelihoods status of 
the indigenous populations and for country’s national development growth (IMF, 2010).  
 

Congo-Brazzaville  experienced low levels of deforestation but increasing rates of forest degradation 
between 2000 and 2010 (FAO, 2010). The causes of forest degradation are shifting cultivation, selective 
logging, firewood collection and charcoal production (Republic of Congo, 2010).  
  
The Congolese forestry code law No. 16-2000 of year 2000 stipulates that the forests in Congo are mostly 
owned by the state. The state can grant other users, such as logging companies, communities and private 
individuals, certain forms of legal rights as logging concessions or customary user rights in order to have 
access and exploit the forest and its resources (Republic of Congo, 2010). The Permanent Forest Estate 
covers about 80% of the national forest area (approximately 185,000 km2) and it includes forests from the 
State’s private estate, forests of public owners and community forests. The Congolese forest domain is 
divided into forest management units (FMU) as the basic forest units for the implementation of 
management, conservation, reconstitution and exploitation of the forest domain. Currently, there are 
eighteen FMUs which all belong to the DFNP and are coordinated by the National Center for Inventory 
and Planning of Forest and Wildlife Resources (CNIAF) (de Wasseige et al., 2012; Republic of Congo, 
2010). The FMU gives concession rights of allocation to logging companies to operate within the unit 
managed by them (Figure 2.1).  
 

Concessions are created by granting a logging approval to private forestry investors to enable them  
harvest timbers from the FMUs in accordance to existing forestry regulations. This creates incentives to 
raise the environmental standards of the global forest industry, and favours large scale concessions that 
can cope with the stringent requirements embodied in legal certification and log tracking, sustainable 
forest management certification, social care for local populations, and significant fiscal contribution 
(Lescuyer et al., 2011). Despite this, there are wide areas of forest degradation, especially in the more 
densely populated southern part of the country (FAO, 2002). Degraded forests in Congo-Brazzaville can 
be traced to several decades of overharvesting of timber, shorter fallow periods in shifting cultivation, and 
deliberate burning. The state of conservation of Congo’s protected areas is quite worrying because the 
forestry service staff are poorly equipped, poorly-trained, too few in number and have limited logistical 
support to effectively monitor activities and enforce regulations in their areas (Republic of Congo, 2010). 
As such, not all harvesting companies can possibly comply with the forestry rules, because of this existing 
lack of institutional capacity to effectively monitor compliance. In addition, the southern part of Congo-
Brazzaville is in close proximity to Pointe-Noire, the only seaport of the country. Therefore forest cover is 
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denser in the north than in the south because numerous logging companies take advantage of the Port to 
easily export logs to Asian countries like China; translating to more timber harvesting in the South (Cerutti 
et al., 2011; Cerutti & Tacconi, 2006; de Wasseige et al., 2012; Lescuyer et al., 2011).  
 

 
Figure 2.1: Map showing active concessions sites across Congo-Brazzaville; modified from CARPE (2010) 

2.2. Congo-Brazzaville and REDD+ 
Congo-Brazzaville ratified the United Nations Framework Convention on Climate Change (UNFCCC) in 
1996 and acceded to the Kyoto Protocol in 2007 (UNFCCC, 2012). The National Center for Inventory 
and Planning of Forest and Wildlife Resources (CNIAF), through its Forest Management Units (FMU), is 
the responsible authority of REDD+ and acts as the national REDD+ focal point in Congo-Brazzaville. 
In the framework of REDD+, the CNIAF has four main mandates which include: one, the formation of 
the MRV committee to coordinate the national REDD+ process and strategies for the country; two, the 
determination of a reference emission level for REDD+ in Congo-Brazzaville; three, the building of 
capacities of government organizations to safeguard the social and environmental policies of the country; 
and four, the carrying out of consultations with relevant stakeholders to create awareness on REDD+ 
prospects in the country (World Bank, 2010). In January, 2012, the Congo-Brazzaville government signed 
the REDD+ grant agreement amounting to USD 3.4 million. This grant is jointly administered by the 
UN-REDD and the Forest Carbon Partnership Facility (FCPF) of the World Bank (World Bank, 2012c). 
FCPF assists developing countries in their efforts to implement REDD+ by providing value to standing 
forests (World Bank, 2012b). It is to this ends that REDDiness – a European Commission (EC) funded 
project –supported Congo-Brazzaville and Gabon to strengthen their institutional and manpower 
capacities to measure, monitor and report changes due to forest degradation using remote sensing 
techniques. 
 
Congo-Brazzaville has a low deforestation rate (FAO, 2010). Over the 2000 – 2010 period, estimated 
deforestation rates for Congo-Brazzaville were 0.08% (de Wasseige et al., 2012), 0.06% (FAO/ITTO, 
2011), and 0.02% (Duveiller et al., 2008). The disparity in these estimates is because of the different 
methods used by the authors. Despite low deforestation rates (compared to countries of the Amazon), 
forest degradation is expected to be an important process which reduces the carbon stock of forests in 
Congo-Brazzaville. The extent and spread of forest degradation, however, is largely unknown due to 
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limitations in quantifying it spatially. The many and varied causes of degradation in the country include 
shifting cultivation, logging, firewood collection and charcoal production (Republic of Congo, 2010). 

2.3. Study Site of Youbi, Kouilou, Congo-Brazzaville 
Youbi is the study site selected for the implementation of the EU REDDiness project by the project 
partners on mapping forest degradation in Congo and Gabon with satellite imagery (Vrieling et al., 2012). 
It is situated on 4°11′24″ S and 11°40′4.0″E with elevation of 39m (Chinci World Atlas, 2011; 
Enclopedia.com, 2007; GetaMap, 2012). It is situated 74km north-west of Pointe-Noire close to 
Brazzaville. Youbi encompasses the Sud Forest Management Unit in the district of Madingo-Kayes and 
has a very low human population density of 1.4 persons per km2. This Unit includes the Conkouati 
Reserve and the Nanga forest concession, attributed for production in 2004 to CITB. Generally, the 
average temperature at this location is about 25°C and rises up to 28°C at the end of the wet season and 
lowers from 25oto about 23°C midway into the dry season (GetaMap, 2012). Dry season is from May to 
October. The wet season starts from October until mid-May with an average monthly precipitation of 
<150mm. This information is useful because Wang et al. (2004) expressed the sensitivity of radar sensor to 
soil moisture. Water can have impact on the forest vegetation found in the study location (figure 2.2) 
which can also affect radar backscatter effects.  
 
The vegetation around Youbi region is mainly comprises of a semi-evergreen mixed forest, moist tropical 
forest, savannah, wetland forest and semi-arid shrubs. A more general vegetation types for Congo-
Brazzaville are summarized in Table 2.1. 
 
Table 2.1: Average biomass of vegetation types in study region; copied from (Baccini et al., 2008) 

Landcover type Mean biomass (Mg/ha 
Swamp forest 251.0 
Mosaic forest/savannah 77.4 
Closed evergreen lowland forest 216.3 
Deciduous woodland 35.2 
Open grassland with sparse shrubs 1.0 
Croplands (>50%) 5.3 
Sub-montane forest (900-1500m) 238.1 

 
This study focuses on a small area of 20km x 10km to evaluate the potential of SAR imagery to directly 
detect signs of forest degradation (Vrieling et al., 2012). This site was selected based on the following 
selection criteria that were set by the REDDiness project partners:  

 Youbi is an area with frequent cloud cover; 
 there are signs of forest degradation in the area due to selective logging by the logging companies 

and fire wood collections by the indigenous people; 
 the site is accessible since it is near the Youbi village and crossed by a national road; 
 part of the area is located in a forest concession and the other in a protected area; 
 the site is almost a flat terrain (slope); 
 at least one recent archives of very high resolution optical image was available. 
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Figure 2.2: Landcover map of Congo-Brazzaville showing study of Youbi; modified from (CARPE, 2010). 
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3. DATA  
3.1. Satellite Data 

3.1.1. Optical data 
Two very high resolution optical images were used in this study, namely WorldView-2 and QuickBird. 
Both were provided by DigitalGlobe, Incorporated (http://www.digitalglobe.com) and obtained for the 
REDDiness project through the GMES Data Access Portfolio. The Worldview-2 image consists of one 
panchromatic band at 0.5m resolution, and eight multi-spectral bands at 2.0m resolution. The image was 
taken on the 29th of August; 2011. This image was provided as a geometrically-corrected product, 
registered to the WGS 84 datum and the Universal Transverse Mercator (UTM) zone 32S projection. The 
QuickBird image (figure 3.1b) has one panchromatic band and four multispectral bands with a spatial 
resolution of 0.6m and 2.4 m at nadir respectively. The image was taken on the 27th July, 2012. Figure 3.1 
shows the optical images used in this study as well as the GPS points collected at the study site.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Field and optical data used in this study: a) WorlView-2 (August 2011), b) QuickBird (2012) and c) GPS Reference data 
(green pins) collected in Youbi in September 2012 

3.1.2. SAR Data 
Radar wavelengths are classified into six bands: K-band (1cm), X-band (3cm), C-band (5.6cm), S-band 
(10cm), L-band (23cm) and P-band (75cm) (University of California, 2012). Small wavelengths (X and K) 
have low penetration capability; as such they are majorly reflected by the branches of forest trees 
(Sugardiman, 2007). Available for this study, were Synthetic Aperture Radar (SAR) images (Figure 3.2) 
which were obtained from three different platforms, namely TerraSAR (3cm wavelength), RADARSAT-2 
(~6cm wavelength) and ENVISAT (~6cm wavelength). The images were acquired for the REDDiness 
project through the GMES Data Access Portfolio. The image data set includes archive data, whereas 
within REDDiness a number of new acquisitions were requested to create multi-temporal data-sets (Table 
3.1), and to have a high-resolution coverage of the study site.  
 
Two modes of TerraSAR acquisition (at X-band) were used. These include the SpotLight mode (HS300) 
at 1m resolution; and the StripMap mode at 3m resolution. To obtain an approximately full coverage of 
the study sites, five TerraSAR-X SpotLight images were acquired over the study site between 25 February 
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and 20 April 2012. The SpotLight mosaic has a pixel spacing of 0.5m. The two StripMap TerraSAR-X 
images were acquired on 9 June 2010 and 1 May 2012. All TerraSAR-X data are acquired in a Horizontal-
send, Horizontal-receive (HH) mode. For RADARSAT-2, Multi-look Fine imagery was used with two 
different incidence angles, named MF22F and MF6. MF22F has an incidence angle of 34.8° and was 
acquired during ascending orbits on 4 March 2012. MF6 has an incidence angle of 48.1° and was acquired 
during descending orbits on 1 April 2012. Both MF22F and MF6 have a spatial resolution of 8m and a 
pixel size of approximately 3m; and were acquired in a Horizontal-send, Horizontal-receive polarization. 
An image mode of ENVISAT with VV polarization was used in this study. The ENVISAT image was 
acquired on the 18 March, 2012 at an incidence angle of 23°. The image has a spatial resolution of 30m 
and a pixel size of 12.5m. 

 

 

3.2. Ground truth data 
Field data were collected within the scope of the REDDiness project, to which this thesis research is 
directly linked. The aim of the field data collection was not to supply a full statistical validation of project 
results, but as a field training experience for the local staff in Congo-Brazzaville, with the benefit of 
providing interpretation keys for the remote sensing analysis. The main objective was to collect ground 
observations showing forest degradation patterns and driving processes. To achieve this, project partners 
from OSFAC and CNIAF collected GPS points (geo-referenced data) and illustrative pictures within the 
period: 26 August – 4 September, 2012. These data were observed and collected in such a way that the 
various land use and land covers changes in the area were well represented. Before the field mission, a 
number of points were provided: they were partly derived from preliminary analysis of multi-temporal 
RADARSAT (MF22F) data. The pre-field analyses of reference points, was done by the faculty ITC. After 
the fieldwork, a total of thirty-eight geo-referenced points were collected for the study area of Youbi, 
Congo-Brazzaville (Figure 3.1c). These field data were further used in this study, to assist in the visual 
interpretation of both the optical and SAR satellite images.  
 

Figure 3.2: Overview of  SAR data that were available for REDDiness project,  a) TerraSAR-X SpotLight of February-April 2012
image, b) TerraSAR-X StripMap image of May 2012, c) RADARSAT Multi-Look Fine image of at 34.8o (MF22), d) RADARSAT
Multi-Look Fine (MF6) Image at 48.1o, e) ENVISAT ASAR VV image of 2012 and f) TerraSAR-X StripMap image of June 2010 
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4. METHODS 
4.1. Image pre-processing 

4.1.1. Pre-processing of the optical Worldview-2 and QuickBird imagery 
Forest cover change detection techniques rely on the quality of satellite imagery to detect forest cover 
changes. Geometric correction and image pan-sharpening were performed by EUROSENSE to improve 
the quality of the optical images for visual interpretation. These pre-processing steps are explained below. 
 
Geometric correction: Usually, remote sensing images suffer from geometric distortions due to 
numerous factors: radial symmetric distortion, earth curvature, atmospheric refraction and relief 
displacement in the sensor’s line of view. Accurate geometric correction is essential for a proper spatial 
correspondence of multi-date images. Random distortions can be reduced by measuring the shift of 
ground control points (GCP), distinctive geographical features of known location on the image, and 
resampling the original image to a new one accordingly. Digital Elevation Models (DEM) can be used to 
correct for such distortions. For this study, both the Worldview-2 (2011) and Quickbird (2012) imagery 
were originally ortho-rectified by their provider - DigitalGlobe, Inc. Because the fit between both ortho-
rectified images was not very good, a further geometric correction was performed to better match the 
QuickBird image to the WorldView-2 image. As such, a total of 30 GCP’s were selected and a 3rd degree 
polynomial model was applied. This approach reduced the shift that initially existed between each pair of 
images, from about 10m to approximately 3m. 
 
Image pan-sharpening: Image pan-sharpening is a pixel level fusion procedure that describes a process 
of changing a set of low (coarse) spatial resolution multispectral images to high (fine) spatial resolution 
colour images. This is achieved by fusing the multi-spectral data with a co-registered grey panchromatic 
high resolution image of the same location (Chen & Caapel, 2010; Y. Zhang, 2004). The panchromatic 
image is usually obtained from the same platform and taken at the same time or at short time duration 
with the multispectral image.  

4.1.2. Pre-processing of SAR imagery 
 
Pre-processing of SAR imagery is performed to remove both radiometric and geometric distortions from 
the images. The below-explained pre-processing steps are performed by Anton Vrieling (Faculty ITC of 
the University of Twente, Enschede, the Netherlands) and also described in Vrieling et al. (2012). In this 
section a short overview of these steps is provided in figure 4.1. 
 
Imaging radars transmit energy pulses and receive the backscattered energy under an angle with respect to 
its satellite (Cutler et al., 2012). As such, the backscatter returns more strongly from earth features that are 
closer to the sensor than those farther away. This delay in return time creates unevenness in the energy 
measurement by affecting the strength of the backscatter causing radiometric distortion (Small et al., 2011). 
This needs to be corrected. In this study, each SAR image was converted from the stored digital numbers 
to backscatter as expressed by sigma nought (σ0) in decibels (dB). Sigma nought gives the average radar 
reflectivity of a ground element, normalized to a unit area on the horizontal ground plane (Rosich & 
Meadows, 2004).  
 
After calibration, automatic co-registration was performed for multi-temporal sets of images that were 
obtained from the same sensor and had the same characteristics in terms of incidence angle and 
polarization. This provided a precise fit between SAR images of the same type. The processing of mono-
temporal images such as TerraSAR-X SpotLight was different because of its large size (4GB per image). 
Nevertheless, a manual shifted in the ENVI-header file ascertained a proper fit between both images. 
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The next pre-processing step was to reduce the salt-and-pepper effect of the multi-temporal SAR images. 
Radar signals usually produce a seemingly random pattern of bright and dark pixels in SAR that appears as 
speckle, which is due to constructive and destructive interference of radar signals (see also Section 1.3). 
The aim of speckle reduction is to reduce the salt-and-pepper effect, while maintaining a high resolution 
that allows (particularly in this forest degradation study) to observe small-sized features of interest. To 
reduce speckle in this study, a multi-temporal speckle filtering was applied as described by Quegan et al. 
(2000). The filter is implemented in the NEST software (Next ESA SAR Toolbox) of the European Space 
Agency (ESA). An 11 x 11 filter window was used to calculate the spatial average backscatter values for 
the SAR imagery. Visual comparison with other filter sizes and types indicated that the 11x11 multi-
temporal- filter provided best results. No speckle filter was applied to mono-temporal images. 
 
 Both mono-temporal and multi-temporal SAR images were reprojected. Reprojection of the ENVISAT 
ASAR and RADARSAT-2 data from their radar satellite flight line direction to the ground level, was 
carried out using an ellipsoid correction approach (Rosich & Meadows, 2004) which is supported in 
NEST. The TerraSAR StripMap imagery was reprojected in ENVI software because it of its large size. 
The TerraSAR SpotLight products were already reprojected by the image provider and had a reasonably 
good fit with the optical very high resolution imagery. Multi-temporal SAR images were stacked and all 
images were subsetted to the study area. In this way, all images that were from the same sensor, 
polarization and incidence angle were fixed into one image file. The last SAR pre-processing step 
employed was conversion of the images to decibel (dB) and scaling to 8-bit using band mathematical 
functions in ENVI. The images were converted to decibel for improved visual analysis. Because of the 
large sizes of the SAR images, the images were subsequently scaled to 8-bit to obtain values between 0 and 
255. This is to facilitate that the images open easily in ArcGIS. Areas in the image that are outside the 
boundary of the SAR data were set to 255 as a no-data value. More details of these pre-processing steps 
are found in the REDDiness report of Vrieling et al. (2012). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.1: A flowchart of pre-processing steps for SAR imagery copied from Vrieling et al. (2012) 
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4.2. Detection of forest degradation signs from very high resolution optical imagery 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Flowchart of methods for the visual analyses of WorldView-2 and QuickBird images 

       Union 

Areas of intercepts: 
Clearcuts 

 

Intersect 

Obj.1a 

Load optical images in 
ArcGIS 

Shapefile 
digitization 

Logging 
roads  

Clearcut  

Shapefile 
digitization 

Clearcut  
Logging 

roads  

Intersection 
and difference: 
WorldView and 

QuickBird 

Areas of difference: 
Clearcut 

Final map: Clearcuts 
(WorldView and 

QuickBird) 

Final map: logging roads    
(WorldView and 

QuickBird) 

Symmetrically 
difference 

Obj.1b 

Joined and 
related areas 

(WorldView and 
QuickBird 

Compare 

Join and 
relate tables 

to get coding 
class for 

Compare 

Output data 
 Process 

Compare 
Final map Logging roads and 

clearcuts 
Start 

Objective 

Visual 
interpretation 

Visual 
interpretatio

Legend: 

Pansharpened 
WorldView-2 image 

(2011) 
RGB=753 

Pansharpened 
QuickBird image 

(2012) 
RGB=452 

Input 
image 



 

18   

4.2.1. Band composite for visual image interpretation  
For optimal visual analysis, a suitable band combination was selected with a view to providing a good 
distinction between bare soil, and forest vegetation. Normally, green vegetation has a high reflectance in 
the infrared band and a low reflectance in the red band. As such forest cover classes are well-separated 
from other land cover types, such as bare soil (Chen & Caapel, 2010; Lillesand & Kiefer, 2010). Therefore, 
to provide a good visual distinction between forest canopy and the features of forest degradation, the pan-
sharpened WorldView-2 image was displayed in a false colour composite of band 7 in red, 5 in green and 
band 3 in blue. For the QuickBird image, bands: 4, 3, and 2; were displayed in red, green and blue 
respectively.  

4.2.2. Mono-temporal delineation of forest degradation signs in WorldView-2 image and QuickBird 
image 

First, the WorldView-2 image was visually interpreted. The forest vegetation appeared in red. Bright 
features opened up gaps into the forest canopies. These degradation features were separately digitized into 
polylines and polygons respectively, using the editor toolbox of ArcMap.  The digitized features were 
afterwards, saved as shapefiles. Digitization of logging road line feature was done in segments, because, it 
was not possible to observe a continuous logging road running through the study area. This segmentation 
of logging roads was facilitated by clouds and tree crown covers. Afterwards, specific attribute fields were 
added to the attribute tables of the digitized logging roads and clearcuts of each optical image. For logging 
road line shapefile: descriptions, length (m), width (m), XY mid-length coordinates (m) and angle of 
orientation (degrees); were added. Angle of orientation was added because; it is an important parameter 
for SAR data. This is because, radar backscatter is sensitive to an orientation of ground features, 
depending on the viewing direction of radar sensor (University of California, 2012). For clearcut polygon 
shapefiles, fields such as: description, area (m2), area (ha), and their XY coordinates at centroid; were 
added to their shapefiles in the attribute table. These attribute fields were used to calculate the length and 
width (logging road segment), area (clearcut) and actual geographical location in ArcGIS. A map of 
logging roads and clearcuts was produced from the WorldView-2 image.  
 
To detect changes between 2011 and 2012, the pan-sharpened QuickBird image (2012) was also displayed 
side by side with that of the WorldView-2 image. The shapefiles of the logging roads and clearcuts from 
the WorldView-2 image were then overlaid onto the Quickbird image, for a comparative visual analysis 
between them. Based on observation, new logging road and clearcut shapefiles were created on the 
QuickBird image. Their respective attribute fields (as expressed in the above preceding paragraph), were 
added to the line and polygon features digitized on the QuickBird. These attribute fields on QuickBird 
image were uniquely named so as to differentiate them from those of the WorldView-2 image. Logging 
road line feature and clearcut polygon feature maps were produced as outputs from this visual analysis on 
the QuickBird image.  

4.2.3. Multi-temporal comparison of forest degradation signs in WorldView-2 image and QuickBird 
image 

To produce a change map from the multi-temporal analyses of both the logging roads and clearcuts, it was 
important for each of the shapefiles to be coded relative to each specific degradation sign on WorldView-2 
and QuickBird images; as explained below.  
 

i. Change analysis of logging road line features 
Therefore, for the logging road line feature, coding class field was added to the shapefiles in the attributed 
tables of the WorldView-2 and QuickBird images. Unique identification codes were assigned to each of 
the road segments according to their identity numbers, on the Worldview-2. This, same procedure was 
repeated for the logging road line shapefiles of QuickBird image. The codes on the WorldView-2 table 
form the basis on which codes were assigned to the logging road line features on QuickBird image. This 
way, segments of the logging roads on the QuickBird image, having the same XY geometry, were linked to 
those of WorldView-2 image. This was to ensure that the separate segments do not overlap each other on 
the change map, at one geographical location. Afterwards, the two attribute tables (i.e. of the WorldView-2 
and QuickBird) were joined together; and any two logging road segments that corresponded to each other 
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based on a particular XY coordinate, were related to each other at that same geometric location by the 
help of the unique codes. From this, a synthesis of logging roads output showing the lengths (m) of each 
line feature at specific geometric location, for each image was produced. This output of digitized logging 
roads, was used to produce a Youbi change map for 2012.  
 
For a change classification, logging road segments that were under cloud cover in 2011, as expected, could 
not be detected. But on the QuickBird image, some logging roads were observed and digitized at such 
locations. In this sense, the logging roads observed in 2012 were not regarded as a change between 2011 
and 2012 because; their interpretation was limited by a weather condition on the WorldView-2 image. 
Also, some segments along an existing logging road (visible on both optical images) were only observed on 
the QuickBird image (2012). But on WorldView-2 image, that location was a tree crown. For clarity, such 
logging road segments were recorded as: ‘logging road was tree cover in 2011’, in the classification legend. Same 
way, logging roads that never existed on the 2011 image but were observed on the 2012, were classified as: 
‘new logging roads’ in the classification legend. 
 

ii. Change analysis of clearcut polygon features 
To produce a 2012 change map for clearcuts, coding class field was added to every polygon shapefile in 
the attribute tables of the WorldView-2 and QuickBird images. This was to ensure that clearcut polygons, 
having the same XY geometry, do not overlap each other, on the change map. But, after coding the 
clearcuts, instead of relating their attribute tables together, like those of the logging roads; area of clearcuts 
that overlapped each other were first of all, determined. i.e., if there were any two clearcut polygons 
overlapping each other at a particular geometrical location, it was important to first determine their 
specific sizes: one, the common area at the point of intercept; and two, the specific areas that belong to 
either overlapping polygons of both images. For the later, this portion corresponds to the amount of 
clearcut that was different at the point of intercepts. This was then determined using the symmetrical 
difference operation in ArcGIS. For the former, the portion where the polygons meet is uniquely different 
in size, from the remaining parts of either polygon. Such sizes were determined using the intercept 
operation in ArcGIS. The output table, resulting from symmetrical difference operation, was joined to the 
output table of the intercept operation for the clearcuts on WorldView-2 and QuickBird images. This was 
achieved using the union function in ArcGIS. Union function linked together, the two outputs of digitized 
clearcuts on both optical images, with respect to their geometrical locations corresponding to each 
digitized clearcuts. That is, the area of non-intercepted clearcut polygons were distinctly separated from 
the area of any clearcuts polygons that intercepted at the same XY coordinate between WorldView-2 
image and QuickBird image. From this, a synthesis of areas (clearcut polygons with intercepts and of non-
intercepts) at specific geometric location, for each image was produced. This digitized clearcut output was 
used to produce a change map for both the clearcuts for 2012. For a change classification, new areas of 
clearcuts at locations that were clouded in 2011 were never recorded as changes in 2012. It was simply a 
no data item on the classification legend.  

 

iii. General statistical analyses of logging road and clearcut features from optical images 
The statistics for the logging roads and clearcuts were derived from the 20km x 10km study area: total 
length (m) of logging roads and total areas (m2) of clearcut that were different in both years, were 
calculated for both the WorldView-2 and QuickBird images. Also, percentage differencing in total length 
(m) of logging roads and total area (m2) of clearcut between the two dates (2011 and 2012), were 
computed. Using these change values, a percentage change analyses table was prepared for logging roads 
and clearcuts. These delineated logging roads and clearcuts in the optical images provide evidence, on 
which the SAR imagery was compared in the next section. 

4.3. Detection of forest degradation signs from very high and medium resolution SAR imagery  
Since the SAR images used in this study were all of a single polarization, they were displayed in grey-scale. 
For example, the VV-polarized ENVISAT image was shown in: March 2012 in red, March 2012 in green 
and March 2012 in blue bands. In this grey colour appearance, forest cover types presented different 
texture and tones.  
 

To be able to assess the signs of forest degradation that were detected in the optical images, it was 
important that a visual analysis was carried out on the SAR images to ascertain whether they can 
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discriminate forests from non-forestland. As such, a 500m x 500m image subset was selected on 
QuickBird and delineated accordingly. The location represented an area where a clear boundary exists 
between forest vegetation and bareland. Afterwards, the SAR images were laid size by side with the 
QuickBird image. Their extents were drawn to the 500m x 500m location. The following SAR images were 
used for this analysis: 1m TerraSAR-X SpotLight image of March 2012, 3m TerraSAR StripMap image of 
May 2012, ENVISAT ASAR VV image of March 2012, and 8m RADARSAT Multi-Look image of March 
2012. The images were visually analysed to detect a possible distinction between forest and non-
forestland. The image that could not discriminate forest from non-forest was excluded from the 
subsequent visual interpretation of logging roads and clearcuts.  
 

4.3.1. Mono-temporal visual interpretation of logging roads and clearcuts on VHR (1-3m) TerraSAR and 
RADARSAT Multi-Look imagery 

i. Detection of logging roads on TerraSAR-X and RADARSAT data 
The main purpose of this visual analysis was to evaluate whether the logging roads that were observed on 
optical images could also be detected on the 1m TerraSAR SpotLight image, 3m TerraSAR StripMap and 
on the medium resolution 8m RADARSAT Multi-Look data. As such, these SAR images were laid side by 
side with the WorldView-2 image. WorldView-2 (2011) was used because; it shows more pattern of 
logging roads than QuickBird (2012). A pre-assessment had shown that more logging roads were shown 
on some SAR data which are like those on the WorldView-2 image. The visual interpretation of the SAR 
data was done in such a way that the textural characteristics of the forest canopies on SAR images were 
well represented.  
 

Thus, to visually assess logging roads in a closed canopy forest, a 1000 x 1000m area was selected on the 
WorldView-2 image and zoomed to extent. The TerraSAR and RADARSAT datasets were all drawn to 
the same extent of the 1000m x 1000m as was the WorldView-2 image. The polyline shapefiles of logging 
roads already digitized on the optical images were overlaid on the SAR images. These logging roads were 
then compared with TerraSAR RADARSAT datasets using the WorldView-2 image as a basis. 
Observations were made. For logging road detection on both the VHR TerraSAR data and the medium 
resolution RADARSAT data, if stripes of degradation feature were observed in the coarse forest canopies, 
it was classified as logging roads. Screen shots were taken at this point. Discussions were made to justify 
the outcome of the observations.  
 

This approach was repeated for another small area of 9-km2 (3 x3km) but in a smooth canopied forests 
part of the study area. The aim was to detect logging roads according to the different textural appearance 
of the forest canopy types. For example, a logging road that was not clearly visible in a ‘rough canopied 
forest’, on an X-HH band image; may be clearly detected by the same X-HH band in a ‘smooth canopied 
forest’. These TerraSAR and RADARSAT data were once more laid side by side with the WorldView-2 
image. 
 

For both sample areas, a number of new logging roads that were detected on the TerraSAR images but 
not on optical images were recorded and digitized at this subset. Attribute fields were added to the newly 
digitized polyline shapefiles on TerraSAR data (similarly to section 4.2.2). Screen shots were taken. What 
was observed as logging road was recorded. A logging road is recorded as detected, if a line features is 
observed in the forest canopy. This line feature must correspond to a logging road shapefile that was 
digitized on the optical images. For new logging roads to be classed as such on TerraSAR data, the 
hydrological shapefile of the study area was over laid. This was to ensure that, a logging road was not mis-
interpreted as a river. Explanations regarding the result of the visual interpretation of logging roads were 
given based on site specific characteristics of the image subsets. Conclusions were drawn from the 
discussions. 
 

ii. Detection of clearcuts on TerraSAR-X  and RADARSAT data 
Visual interpretation of clearcuts was done on the VHR TerraSAR data and on the medium resolution of 
8m RADARSAT Multi-Look data. This was aimed at testing the potential of these SAR images to detect 
clearcuts. As such, three small sample subsets were selected at different locations within the study area. 
This selection was done in such a way that the different forest types (coarse canopied forest and degraded 
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forest), were well-represented. At these image subsets, the 1m TerraSAR SpotLight image, 3m TerraSAR 
StripMap image and the two 8m RADARSAT images (MF22F and MF6); were all compared with the 
QuickBird image. Details of this analysis are illustrated below.  
 

At a coarse canopied forest, a clearcut having a size of 0.11ha was selected on the QuickBird image. An 
area of 1000 x 1000m image subset was then selected around this clearcut, and delineated. Both the 
TerraSAR data (StripMap and SpotLight) and those of the RADARSAT Multi-Look (MF22F and MF6); 
were laid side by side with the QuickBird image. The extents of these VHR and medium resolution SAR 
images were projected to the 1000 x1000m image subset as was the QuickBird image. The polygon 
shapefile of this sample-clearcut (which was already digitized on the optical images) was overlaid on the 
SAR data. Observations of any round-perforation into the forest canopies were recorded and screenshots 
were taken. This perforation must correspond to the polygons shapefile that was overlaid. Reasons were 
discussed based on the observations made and on the radar factors.  
 

 

The above approach was repeated for another small area, where one of the biggest clearcuts of 0.18ha was 
located. The aim here was to analyze whether the 8m RADARSAT Multi-Look could possibly detect this 
larger clearcut within a coarse canopied forest. In the same way as above, a small image subset of 1000m x 
1000m layout was delineated into a polygon shapefile. The extents of these VHR and medium resolution 
SAR images were drawn to the 1000m x1000m subset, including the extent of the QuickBird image. The 
polygon shapefile of the 0.18ha clearcut was overlaid on the SAR data. Sign of a hole into the forest 
canopy was looked out for and analyzed. Screenshots were taken and observations recorded.  
 
Furthermore, multi-temporal visual analyses were carried out to assess whether field data could also be 
observed using the SAR images. 

4.3.2. Multi-temporal visual interpretation of canopy gap from farmland 
Besides logging, another prevalent driver of forest canopy damage in Youbi is slash-and-burn agriculture 
(Republic of Congo, 2010). Therefore, it was important to see whether SAR data can detect forest canopy 
gap due to farmland expansion. As such, the field observations were overlaid on the QuickBird image and 
on the TerraSAR and RADARSAT datasets. These field observations were collected in the degraded part 
of the study area. The VHR TerraSAR images (dates: 7th March 2012 and 1 May 2012) and those of the 
RADARSAT Multi-Look images (4 March and 4 April 2012) were laid side by side with the QuickBird 
image (27 July 2012). Observations were recorded, screenshots taken and explanations were given 
afterwards. 

4.4. Automated detection of forest degradation features from SAR imagery  
 

A number of image processing techniques could potentially provide options to automatically detect forest 
degradation signs. These include object-oriented classification (Knuth et al., 2010), that can take also 
textural information as input; and forest classifier algorithm (Zhu et al., 2012). In object-oriented 
classification, rule-sets are applied to segment input SAR images so as to derive forest classes. In a random 
forest classifier approach, neighbouring features of an input image are clustered together in decision trees 
to produce different forest classes. The basic steps that result from these two automatic approaches are 
thresholding and majority filtering.  
 
In this study, a simple approach was applied that involved thresholding followed by majority filtering. This 
was aimed at assessing whether a simple automatic method can accurately identify logging roads and 
clearcuts observed on the 3m TerraSAR StripMap image. Here, the TerraSAR StripMap image of 2012 
was used for an automatic analysis of logging roads and clearcuts. Thresholding was first of all, applied to 
the entire 20 x 10km image in ENVI to determine whether both logging roads and clearcuts could be 
detected in this way. Observations were made and screenshot was taken.  
 
Based on the result of the thresholding, an image subset was selected in a coarse canopied forest, almost at 
the forest and non-forest border. The clearcut polygon shapefiles that were gathered from the optical 
images were overlaid on the image subset. Two clearcuts were afterwards identified within the coarse 
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canopy forest and a small hole was also observed as a part of the larger non-forest area. Therefore, a 
1300m2 subset was delineated to include all the two clearcut and the one hole that are mentioned above.  
 
Thresholding was applied to the image subset in the decision tree of ENVI. The decision tree has a child 
and a node in the classification operation. The nodes are defined by a set of rules. Afterwards, majority 
filter was applied to this output. Hence, a group minimum threshold was set to cluster neighbouring 
features into forest degradation classes; as final classification output. The output of the majority filter gave 
an insight into the minimum area of clearcut that were automatically separated in the image subset of 
0.13ha. These observations were record and screenshots were made. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.3: A flowchart of steps taken in the simple automatic approach of thresholding and majority filtering 

 

Thresholding 
(ENVI) 

SAR 
imagery 

suitable for 

Process Final

Legend: 

Map generated from 
semi-automated 

Sieving 
(ENVI) 

Input Objective 

Input from 
Obj.2 



THE POTENTIAL OF SYNTHETIC APERTURE RADAR FOR THE DETECTION OF FOREST DEGRADATION SIGNS IN CONGO-BRAZZAVILLE 

   23    

5. RESULTS AND DISCUSSION 
5.1. Detection of signs of forest degradation from very high resolution optical imagery  

5.1.1. Band composite for visual image interpretation 
The false-colour display of the pansharpened 
WorldView-2 image (2011) shows forest vegetation in 
red colour (Figure 5.1). Bare soils in linear and round 
forms are observed to have been clearly separated from 
the forest vegetation at band 7 on red, band 5 on green 
and band 3 on blue (Chen & Caapel, 2010; Lillesand & 
Kiefer, 2010). The small bare features in the figure are 
evidence of forest degradation processes in the study 
area. In Congo-Brazzaville, selective logging and small-
scale mining are among the important drivers of forest 
degradation (Republic of Congo, 2010). A 
communication with members of the CNIAF field 
team in December 2012 confirmed that the high 
number of logging roads in the study area relates to 
mineral prospecting activities. Thus, the logging 
roads and clearcuts form the basis upon which subsequent analyses in this present study were carried out.  

Figure 5.2 illustrates some examples of the digitization of logging roads and clearcuts. Based on 
this, both mono-temporal and multi-temporal analyses of logging roads and clearcuts were carried out on 
WorldView-2 (2011) and QuickBird (2012) images. 

Figure 5.2: Digitized degradation signs in a false-colour composite of theWorldView-2 image, showing: a) logging road line features 
(used to estimate length and for change analysis), b) logging road line features (for estimation of mean-width) and c) polygons 
surrounding clearcut areas 

5.1.2. Mono-temporal analysis of logging roads and clearcuts 
The visual analysis of the 2011 WorldView-2 image shows that logging roads caused more forest canopy 
damages in the entire study area of Youbi than clearcuts. A total number of 120 logging roads with a mean 
width of 8.51m were detected and digitized in the WorldView-2 image. For most roads, segments are 
present where tree crowns cover the road, thus making the road invisible even if contextual information 
reveals that a logging road continues underneath the crowns. The fact that tree crowns may obstruct what 
is happening underneath it, is an attribute that makes forest degradation, a more technically challenging 
process to map than deforestation using remotely sensed data (Herold et al., 2011; Souza & Roberts, 2005). 

Figure 5.1: Degradation signs in a false-colour composite 
(RGB=753) of the WorldView-2 image, showing: a) logging 
road and b) clearcut 
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For optical data, the presence of cloud cover is another factor that limits the visibility of logging roads or 
their segments. 
Figure 5.3 shows a subset of the WorldView-2 image (approximately 3.5km x 3.5 km) that contains 
27,698m of digitized logging road segments, i.e. 40% of the total logging road length observed in the 
20x10km study area. This high concentration of logging roads can be partially attributed to two factors. 
The first factor may be the close proximity that the forest has with the main (national) road (10m wide), 
which runs across the study site. This finding corresponds to studies that show that road proximity creates 
high accessibility into forests thus facilitating a forest canopy reductions through logging roads and 
clearcuts(Geist & Lambin, 2002; Laurance et al., 2009; Zhang et al., 2005; Zhang et al., 2006). The second 
factor bothers on mineral prospecting; where miners will scout for solid mineral within the area, as such, 
opening out new logging roads for easy accessibility to their soil-hidden natural resource. Communication 
in December 2012 with members of the CNIAF field team revealed that many of these logging roads are 
in fact created for mineral prospecting. Nonetheless in this thesis we refer to them as logging roads, as 
irrespective of their intended use, they increase accessibility for clearcuts for timber, firewood, and the 
opening of agricultural land. Hence, the logging pattern observed during this analysis infers that a 
systematic and probably mechanized logging operation took place in the period under study. 
 

 
Figure 5.3:Mono-temporal analysis of logging roads on WorldView-2 image, showing: a) observed logging on WorldView-2, 
b) digitized logging road line features (green) in WorldView-2, c) map of logging road line features (2011), and d) 
WorldView-2 overview image showing the location of 3.5km x 3.5km subset with the study area 

Figure 5.4: A mono-temporal analysis of clearcuts: a) digitized clearcut polygons (green) in 1.2km x 1km sample plot (cyan box), b) 
map of clearcuts in the sample plot and c) WorldView-2 image overview image showing the exact 3.5 x3.5 location in black box 
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A mono-temporal analysis of clearcuts indicates that a total of 56 clearcuts existed in 2011 from the 
WorldView-2. The size of these clearcuts ranges from 1100m2 to 1800m2. Figure 5.4 above, shows a 
subset of the WorldView-2 image (approximately 1.2km x 1.0km chosen within the 3.5km x 3.5 km 
sample area of Figure 5.3). That subset contains 6,658m2 of clearcut, i.e. about 2% of the total area of 
clearcuts in the 20x10km study area. Here, high concentration of logging roads may not be directly 
proportional to the amount of clearcuts that can be observed within the same location using remote 
sensing data. Though, it is possible that some clearcuts may be cloud-covered in the image subset.  
 
Furthermore, an assessment to detect clearcuts within a 100m proximity to logging roads was carried out 
to the preceding paragraph. Although logging road line features were not overlaid on Figure 5.4 (b), visual 
comparison can be made with Figure 5.4(a). The observation here was that clustering of logging roads 
does not linearly translate into a direct proportionality with the number of clearcuts that can be detected. 
Statistical analyses from the above mentioned subsets, shows that seven clearcuts (9,734m2) were detected 
in closeness to 15 logging roads (46,609m of length). This is about 12% of total clearcuts and 14% of total 
logging roads in the entire study area.  

5.1.3. Change analysis from very high resolution optical imagery 
To evaluate changes in forest degradation features, a couple of multi-temporal analyses were performed at 
various subsets on the WorldView-2 and QuickBird images. Figure 5.5 shows the change map (Youbi) of 
logging roads in 2012 for the entire study area. 
 

 
Figure 5.5: Detected features of forest degradation in study area (2011-2012): a) QuickBird image showing part of the 20km x 10km 
study area having a high concentration of logging roads and clearcuts, b) change map of logging roads, and c) QuickBird overview 
image, corresponding to the upper part of Youbi study site (black line) 
 
Statistical analyses of Figure 5.5 in ArcGIS indicate that, six new logging roads were observed in the 
QuickBird image at locations where cloud cover did not obstruct ground visibility on the WorldView-2 
image. Eight logging roads were detected from the QuickBird image at a location that was initially clouded 
in WorldView-2. One logging road was observed on the QuickBird image at a point where tree crown was 
recorded on the WorldView-2 image. There were twenty-eight logging roads on the WorldView-2 image 
which corresponds to the QuickBird. 2011. This means that 28 logging roads were observed on both 
images (WorldView-2 and QuickBird). As such, only fifteen logging roads were peculiar to QuickBird and 
77 were only visible on the WorldView-2 image only. From this analysis, the 120 number of logging roads 
that were original detected in 2011; was maintained. Therefore, about 52% of the total logging roads 
changed in 2012. The width was changed by 23%. The decrease in the width of logging roads in 2012 was 
likely due to the partial canopy regeneration that was observed on the QuickBird image (Figure 5.6).  
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Figure 5.6: Change detection of logging roads: 1a = 1b ) new logging road detected in a smooth canopied forest west of main road; 
2a=2b) large number of logging roads visible on WorldView-2 (2011); 3a=3b)  image subset corresponding to 2a that shows less visible 
logging roads due to forest canopy regeneration   
 
According to Peres et al. (2006), logging roads of less than 6m wide are difficult to detect by remote 
sensing data. Given this fast canopy regeneration, it can be deduced that forest degradation process is very 
dynamic and as such there is a need for frequent image acquisition in order to effectively monitor 
degradation features in the study area. Table 5.1 illustrates this change analyses on the WorldView-2 and 
QuickBird images for Youbi study area; and Figure 5.7 shows the change map (Youbi) of clearcut in 2012 
for the entire study area. 
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Table 5.1: Change of logging roads and clearcuts between 2011 and 2012 
 

 
Total 

 
WorldView-2 
t0=29 August 2011 

 
QuickBird 
t1 = 27 July 2012 

Logging roads 
(on both 
images) 

 
difference 
(t0 – t1) 

 
Percentage (%) change 
(t0 – t1) 

Logging road segments 1538 229 170 1309 74.08 
Logging roads 77 15 28 62 51.67 
Total length (m) 68,709 12,360 65 56,349 69.51 
Average width (m) 8.51 5.30 6.91 3.21 23.24 
number of clearcuts  56 44 20 12 12.00 
Total area (m2) of clearcut 330,191.52 55,004.85 42,681.27 274,941.09 81.90 

 
 

Figure 5.7: Change detection of clearcut in study area (2011-2012): a) QuickBird image showing two clearcuts, b) clearcut polygon 
shapefiles digitized on the two images of WorldView-2 and QuickBird; c) change map of clearcut for the entire study area; d) part of 
the QuickBird image corresponding to location of (b) in cyan box; and e) QuickBird overview image showing the location of the 
entire digitization in black box and of the two zoomed clearcuts in cyan box.  
 
The differences in the sizes of logging roads and clearcuts can be attributed to a gradual and progressing 
closure of forest canopy as an aftermath process following the prevalent activities of selective logging, 
small-scale mining, and slash-and-burn agriculture in the entire Congo (de Wasseige et al., 2012; Republic 
of Congo, 2010). Here, it can be argue that even, if selecting logging regulations are loosely enforced, 
restrictions of any other anthropogenic activities taking place in the area, could be minimized; thus, 
allowing regeneration of forest canopy cover.  
 
Therefore, this present study has shown that degradation features can be monitored with optical imagery; 
from which information such as those highlighted above, can be used by policy makers to formulate 
regulatory guidelines to curb excessive forest degradation in the region. Thus, it can be concluded that the 
database consisting of logging roads and clearcuts shapefiles generated under this section truly forms the 
ground truth data for further analyses on SAR imagery in the next section.  
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5.2. Detection of forest degradation features with SAR Imagery  

5.2.1. Distinguishing forest from non-forestland using SAR data 
Figure 5.8 shows an outcome of a forest been distinguished from a non-forest land at a small image subset 
(500m x 500m size). This subset is located west-of-the main forest road running through the study area. 
The analysis was done on TerraSAR-X SpotLight image of 7 March 2012, TerraSAR-X StripMap of 1 May 
2012 and the RADARSAT Multi-Look Fine image of 4 March 2012 and the ENVISAT ASAR of 18 
March 2012. Besides ENVISAT ASAR (Figure 5.8-d), all other SAR imagery clearly differentiated forest 
from non-forest land within this small image subset.  
 
In terms of radar tones, bare soil is darker in appearance than the surrounding forest vegetation. It is 
darkest on the 8m RADARSAT (Figure 5.8e) and brighter on the TerraSAR SpotLight image (Figure 
5.8c). For radar texture characteristics, forest vegetation is coarser in appearance than the bare land. Forest 
canopy appears less-coarser on the TerraSAR StripMap image (Figure 5.8b) than the canopy appearance 
of TerraSAR SpotLight (Figure 5.8c). But vegetation is almost smooth on the RADARSAT image within 
this subset. 
 
Studies have shown that radar bands of long wavelengths can penetrate deeper into forest canopies which 
in turns provide vegetation information that can be used to distinguish forest and non-forest types 
(Saatchi et al., 2001).  Instead, the short-wavelength X-band of TerraSAR reflects most from the forest 
canopy. This can demonstrate why there is no much difference in brightness between bare and forest 
vegetation in Figure 5.8(b and c) as compared to the sharp distinction between these classes in 
RADARSAT in Figure 5.8e (Kuntz et al.). For Figure 5.8b, the bare land on the X-band TerraSAR 
StripMap is rough, because radar wavelength is small (van der Sanden & Hoekman, 1999). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ENVISAT, which also has a C-band as RADARSAT, could not distinguish forest from non-forest class, 
probably because of its steep incidence angle of 23o. Radar incidence angle also affect radar backscatter 
(Imhoff, 1995). According to Haack and Bechdol (2000), it is usually difficult to differentiate forests and 
clearcuts on images that have incidence angles below 30o. This is because of specular reflection of 
wavelength away from the radar sensor. In conclusion therefore, radar wavelength and incidence angle of 
the SAR images could be responsible for the observations recorded in this visual analysis.  
 
Given the poor distinction of forest/non-forest of the ENVISAT ASAR imagery and its coarse resolution 
which does not allow for the detection of small-scale features either, ENVISAT was excluded from 
further analysis.  

Figure 5.8: Image subset that shows a distinction between forest and non-forestland: a) QuickBird image – 
July 2012, b) TerraSAR-X StripMap image – May 2012, c) TerraSAR-X SpotLight image, d) ENVISAT ASAR 
VV image mode (R=March 2012: G=March 2012: B=March 2012), e) RADARSAT Multi-Look Fine image – 
March 2012; and f) QuickBird overview image showing subset location in black box. 
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5.2.2. Mono-temporal analyses of logging roads  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9: Image subset that shows some logging roads (8.5m wide): a) WorldView-2 image, b) 3m TerraSAR-X StripMap Image - 1 
May 2012 with incidence angle of 37.8o, c) 1m mosaic TerraSAR-X SpotLight – 7 and 18 March 2012 both incident at 39o, d) 8m 
RADARSAT Multi-Look Fine image – 4 March 2012 at incidence angle of 34.8o, e) 8m RADARSAT Multi-Look Fine – 1 April 2012 
incident at 48.1o, and f) WorldView-2 showing 3km x 3km subset in black box. 
 
Figure 5.9 shows a small area of 3km x 3km sampled within a smooth canopied forest on the WorldView-
2 image. This subset is located east of the main road (10 wide) that runs through the study area. There are 
pockets of cloud covering some portion of the subset on the Worldview-2 image. The QuickBird image 
(not shown) has a less amount of cloud at this subset location. While there were large numbers of logging 
roads observed on the WorldView-2, only seven were seen for this small area on the QuickBird image (not 
shown). While on the 1m TerraSAR-X SpotLight image (Figure 5.9c), a total of 20 logging roads are 
visible within this subset, most of which (except for one) could also be observed from 3m TerraSAR-X 
StripMap (Figure 5.9b). The logging roads on the TerraSAR are faintly visible. They appear as small stripe 
features, corresponding to the logging road line shapefiles of the optical images that were overlaid on 
them. None of the logging roads could however be observed on RADARSAT Multi-Look Fine imagery 
(for both incidence angles). These RADARSAT data (Figure 5.9 d-e) have smoother forest canopy than 
on the two TerraSAR images.  
 
Inference 1: Those afore-mentioned observations suggest that logging roads are not easily recognized on 
the very high resolution TerraSAR images at a degraded forest subset. Also, the result infers that logging 
roads are not detected by the medium resolution RADARSAT data over a 9-km2 image subset.  
 
To confirm the above inference, with a view to drawing a conclusion on the possibility of using TerraSAR 
data to visually interpret logging roads; two more analysis was carried out in a coarse canopied forest. The 
aim was to assess the potential of the TerraSAR data only (since RADARSAT performed poorly above) to 
detect logging roads according to the different textural appearance of the forest canopy types. For 
example, a logging road that was not clearly visible in a ‘rough canopied forest’, on an X-HH band image; 
may be clearly detected by the same X-HH band in a ‘smooth canopied forest’. The result of the virtual 
analysis is as follows: 
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Figure 5.10 shows the results of virtual analyses on two image subsets measuring 1000 x 1000m each. 
These two image subsets are located to north on the WorldView-2 image; and situated at the west of the 
main road crossing the study area. Each image subset are less clouded but with lots of logging road 
features on the WorldView-2 image. These logging roads are almost invisible on the QuickBird image (not 
shown). Figure 5.10(a-c), correspond to the black box on the WorldView-2 overview image (Figure 5.10g). 
This location is cloud-free on the QuickBird image. The results of the other image subset (figure 5.10d-f) 
correspond to the location in the cyan box on Figure 5.10(g). It has lesser cloud on the QuickBird image.  

 
Figure 5.10: Detection of logging roads at a coarse canopy forest. Images tested at site one includes: a) WorldView-2 image, b) 
1m TerraSAR-X SpotLight of March 7 2012 and c) 3m TerraSAR-X StripMap image - 1 May 2012. Test site-2 results are shown 
in d-f: d) WorldView-2 image, e) 1m TerraSAR-X SpotLight and f) 3m TerraSAR-X StripMap image, and, g) WorldView-2 
overview image showing the two locations of 1000m x 1000m each in black and cyan boxes. 
 
For both subsets, TerraSAR StripMap (Figure 10c and f) show a brighter canopy appearance than those of 
the TerraSAR SpotLight image (b & e). There were no major radar shadows observed on the SAR images. 
Logging roads were faintly detected at both locations b and e which show lower backscatter effects: i.e., 
on the 1m TerraSAR SpotLight of 7 March 2012. The 1m TerraSAR-X SpotLight image has an incidence 
angle of 39o. Logging roads were not detected on the 3m TerraSAR StripMap of 1 May 2012. This 3m 
TerraSAR StripMap image has an incidence angle of 37.8o. Although in general, the forest canopy appear 
coarse on both the TerraSAR SpotLight and StripMap images but, that on the TerraSAR StripMap image 
is less-coarse than the other; at both locations.  
 
Inference 2: The above observations confirm that logging roads are not easily observed on 1m TerraSAR 
SpotLight image at a coarse forest subset. Also, the result infers that logging roads are better observed on 
the 3m TerraSAR StripMap at a smooth canopied forest than in a coarse canopied forest. 
 
Based on inferences 1 and 2 above, the poor detection of logging roads by TerraSAR SpotLight image 
may be due to low-backscatter effects from the rough surface of the forest canopies. Surface roughness is 
directly related to radar wavelength(Wang et al., 1995). TerraSAR SpotLight showed a low backscatter of 
forest canopy based on the observations made earlier. This can generate some radar shadow effects thus, 
hindering the visibility of logging roads.  
 
Another factor is the angle of orientation of the logging roads. It is possible that the angle of orientation 
of the logging road could the reason as to why logging roads could not be detected on the TerraSAR 
StripMap (in a coarse canopy forest) and by RADARSAT (at the degraded forest). Even though the 
TerraSAR StripMap and the RADARSAT generated more scattering from the surrounding forest canopies 
in the above analyses than TerraSAR SpotLight, their performances were relatively poor. On the 
TerraSAR StripMap, logging roads were faintly detected at a degraded forest while RADARSAT could 
neither detect logging roads in the coarse canopied forest nor in smooth canopied forest. The angle of 
orientation for the logging roads, as determined during the optical image analyses was about 90o. This 
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angle aligns the logging roads perpendicular to SAR flight-line. Thus, this explains why the logging roads 
were not observed on TerraSAR StripMap in the coarse canopied forest. For the RADARSAT Multi-Look 
images, this angle of orientation for the logging roads together with the spatial resolution (8m) may have 
jointly contributed to why it could not detect any of the logging roads.  
 
Hence, three deductions are hereby made based on the above analyses: one, not all logging roads can be 
easily detected by very high resolution TerraSAR data. Two, it was generally observed that the lower the 
resolution, the possibility of detecting logging roads on the SAR imagery becomes narrow: this justifies 
why the 1m TerraSAR SpotLight image performed better in this regard than the 3m TerraSAR StripMap. 
The 3m TerraSAR StripMap was able to detect many logging roads (of about 9m wide) but the lower 
resolution RADARSAT Multi-Look Fine image was not able to pick up these widths of logging roads.    
Therefore there is a need for use of higher resolution SAR data for the detection of logging roads. 
 

5.2.3. Mono- temporal analyses of clearcuts  
 

Figure 5.11 shows an image subset (1000 x 1000m) which is situated in a coarse canopied forest, north of 
the study area. The subset was laid out on the QuickBird image and it contains clearcut with a size of 
0.11ha. The location is cloud free on this QuickBird image. For this virtual analysis, the 1m TerraSAR 
SpotLight, 3m TerraSAR StripMap, 8m RADARSAT Multi-Look images (MF22F and MF6); were used.  
 
There was low backscatter from the forest canopy on the TerraSAR SpotLight image than on the 
TerraSAR StripMap image (Figure 5.11b and c). The vegetation on these images appears coarser as 
compared to the RADARSAT images. The RADARSAT MF6 has the highest radar scattering returns 
from the forest canopies in this virtual analysis. Radar shadows were observed on all the SAR images.  
 
The clearcut on the Figure 5.11(a) was observed on the TerraSAR images. It appears more observable on 
the 1m TerraSAR SpotLight than on the TerraSAR StripMap (b & c) probably due to lower backscatter 
observed on the SpotLight image. The clearcut is darker on TerraSAR SpotLight than the forest canopy 
because of more surface scattering of radar beam from the rough tree canopies surrounding the clearcut. 
As such, shadows were casted on the clearcut. On this particular StripMap image, there were lot of 
shadows casted by tall tree at lower canopy cover. None of the RADARSAT data could detect this 
clearcut. However there were some shadow effects on the canopies on these images. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.11: Image subset of study area to assess clearcuts: a) QuickBird image corresponding to 1km2, b) 1m 
mosaic TerraSAR-X SpotLight – 25 February, 2012 (incidence angle = 39o), c) 3m TerraSAR-X StripMap image - 
1 May 2012 (incidence angle= 37.8o , d) 8m RADARSAT Multi-Look Fine image – 4 March 2012 (incidence angle 
= 34.8o), e) 8m RADARSAT Multi-Look Fine – 1 April 2012 ( incidence = 48.1o), and f) WorldView-2 showing the 
1000 x 1000m subset in black box 
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Figure 5.12 was selected at another part of a coarse canopied forest but has a bigger size of clearcut than 
in Figure 5.11. The size here is 0.18ha. The size of the image subset is 1000m x 1000m and is situated west 
of the main forest road. This clearcut was located closed to old logging roads on the QuickBird images 
because most of these roads have been covered by regenerated forest canopies. 
 
Based on the observations highlighted above, it is probable that the wavelengths characteristics and the 
spatial resolutions of the TerraSAR and RADARSAT imagery could be responsible for the observations 
recorded in this virtual analysis. The observations for figure 5.12 remain the same as those that were 
highlighted for Figure 5.11. 
 

 
 
 
 
 

 
The two TerraSAR data (SpotLight and StripMap) have a lower wavelength of X (3cm) than the 
RADARSAT data (MF22F and MF6) which have C-band of (5.6cm). Thus, the textural characteristic of 
the forest canopies was used to distinguish among forest types (e.g. clearcut and forest vegetation); X-
bands are said to perform better than C-band (Hoekman et al., 2010; Sanden, 1997) on radar images. 
  
Another factor is the spatial resolutions of the SAR data. The very high resolution images (TerraSAR) 
were able to detect small bare areas within a coarse canopied forest than the coarse resolution 
RADARSAT images.  
 
Hence, the deduction here is that very high resolution TerraSAR images performed better in the detection 
of clearcuts than medium resolution RADARSAT. The specific band composition also influenced their 
capability to detect or not able to detect clearcut in a small subset within a coarse canopied forest. 
 
In conclusion, it was found that in open canopied forest, RADARSAT (at 34.8o) and TerraSAR-X images 
could both detect clearcuts. However, RADARSAT Multi-Look Fine incident at 48.1o was unable to 
detect a single clearcut 

5.2.4. Multi- temporal analyses of clearcuts 
 
Figure 5.13 shows a pineapple farm in a smooth canopied forest at the eastern side of the main road. The 
subset is situated to the north of the study area, close to the main road. On the TerraSAR SpotLight, two 
heavy shadows with some high backscatter from the surrounding forest canopy were observed (Figure 
5.13b). TerraSAR StripMap shows a darker shadow at the center of the subset. RADARSAT images (e 
and f) could not depict an object feature over the location. Rather bright pixels were observed. This 
pineapple farm is shown on the QuickBird image as a dark depression into a smooth canopied forest. 
From the above observations, TerraSAR StripMap presents the best detection of this pineapple farm as 
compared to the other SAR images. Possibly, resolution and viewing angle of radar sensor have influenced 
the detection of forest canopy gaps resulting from this cropland.  

Figure 5.12: a) QuickBird image corresponding to 1km2, b) 1m mosaic TerraSAR-X SpotLight – March 7 2012 (incidence 
angle = 39o), c) 3m TerraSAR-X StripMap Image - 1 May 2012 (incidence angle = 37.8o 3), d) 8m RADARSAT Multi-Look 
Fine image – 4 March 2012 (incidence angle = 34.8o), e) 8m RADARSAT Multi-Look Fine – 1 April 2012 ( incidence = 48.1o, 
and f) WorldView-2 showing the 1000m x 1000m subset in black box 
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The general conclusion for the visual interpretation in this section is that the VHR TerraSAR data have 
demonstrated the feasibility to detect logging roads and clearcuts. Thus, either the 1m TerraSAR 
SpotLight or the 3m TerraSAR StripMap can be used as an input data for a simple automatic algorithm 
method. This forms the basis for the next section.  

5.3. Automated detection of forest degradation features 
Visual interpretation of SAR imagery can allow for the detection of logging roads and clearcuts, but this 
method is time consuming. Therefore, a need would exist to develop methods for automated detection of 
logging roads and clearcuts from SAR imagery. Based on the overall result of section 5.2 above, 3m 
TerraSAR StripMap was used as an input image for the application of a simple automatic approach for the 
detection of logging roads and clearcut in this study. 
 
The result (not shown) of the thresholding followed by majority filtering, that was applied on the 3m 
TerraSAR StripMap image of the entire 20 x 10km study area indicated that only clearcuts could be 
detected using this semi-automatic approach. Besides the white tiny features that scattered all over the 
thresholding output; was a line feature corresponding to the main forest road that crosses the study area. 
There was no logging road observed.  
 
After overlaying the clearcut polygon shapefiles (digitized on the optical images) unto the TerraSAR 
StripMap image; a small image subset (Figure 5.14a) of size 1300m2 was selected. This subset contains a 
clearcut (0.18ha in size) that is located within a coarse canopied forest. The subset situated at the north on 
the 3m TerraSAR StripMap.  
 

Figure 5.13: Image subset showing a pineapple farm in the study area: a) QuickBird 
image, b)1m mosaic TerraSAR SpotLight, c) field photo showing cultivated pineapple, d) 
3m TerraSAR StripMap,  e) 8m RADARSAT MF22F, f) 8m RADARSAT MF6, and g) 
QuickBird overview image showing subset point in a black box 
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The first step taken in this simple automatic approach was to apply thresholding in the decision tree of 
ENVI. This was done to determine whether the clearcut in Figure 5.14 (a) can be detected in this way. 
The threshold rule was set at -22.4 decibels (dB). This was assigned based on a trial-and error 
demonstration.  The purpose of setting the threshold to -22 dB was to divide the image in two parts: 
pixels with a value above the threshold of -22.4 dB are considered not to be part of a clearcut area; the 
pixels below the threshold are candidate pixels that could be clearcuts. The output from applying 
thresholding is shown in Figure 5.14b. 
  

 

 
Figure (5.14b) shows that many candidate pixels exist that may identify clearcuts (in white). However, 
through application of a majority filter (sieving) small isolated pixels were removed, while maintaining only 
the larger contiguous features.  
 
For filtering, a minimum group threshold of 200 pixels was applied in ENVI (sieving operation). This 
approach will filter out any group of candidate pixels that has its size below 312.5m2 (which is generated 
from 200*1.252 with 1.25m being the pixel size of the StripMap image). The result of the sieving is shown 
in Figure 5.14(c); which is zoomed in (d).  
 
Thresholding and majority filtering have proven to be a good approach for detecting clearcuts in this 
example. Usually thresholding and majority filtering are used to cluster object-oriented features to produce 
forest cover classes. But in this study, they are applied to extract only clearcuts, which is one specific class 
of a forest classification method. The clearcuts are visible because their backscatter is below the threshold 
that was set in ENVI.  
 

Figure 5.14: Simple automatic method for clearcut detection: a) image subset selected from TerraSAR StripMap, b) result of 
applying thresholding, c) result from sieving of the thresholding output (in c), d) final clearcut output (zoomed); produced 
from the simple automated approach 
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At the preliminary analysis in which this method was applied on the whole TerraSAR image of the study 
area, it was gathered that logging roads, except the main road (10m wide), could not be detected. 
Therefore, scaling this simple automated approach to a larger area than the 20 x 10km in this study may be 
challenging, if the width of the logging roads are below 10m. However, this method may be adopted to 
extract clearcuts that have their sizes above 312.5m2.  But, for clearcuts in the more degraded forest the 
approach may be less efficient. 
 
This method may perform better if there is a fusion of SAR data with optical imagery (Cutler et al., 2012). 
Examples of optical images that can be fused with SAR data include: very resolutions of WorldView-2, 
QuickBird and Landsat Thematic Mapper imagery. It could enhance the possibility of detecting logging 
roads and more clearcuts with high classification accuracies. 
 
In conclusion, this approach has successfully demonstrated that clearcuts are automatically detected, 
especially within degraded forests. This of course is a very simple approach and may not be applicable for 
all cases; hence, further research is needed.  
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6. CONCLUSIONS AND RECOMMENDATIONS 
6.1. Concluding remarks 
This study showed that SAR imagery has a potential to detect signs of forest degradation, in particular 
logging roads and clearcuts. This requires high-resolution data (<10m resolution) at incidence angles of 
approximately 30° to 40°. TerraSAR imagery at 1m and 3m was most effective in detecting both logging 
roads and clearcuts. From RADARSAT imagery of 8m resolution logging roads could not be detected, but 
the imagery did show clearcuts in smooth canopied forest. Clearcuts in coarse canopied forest were less 
clear on the RADARSAT imagery. ENVISAT ASAR imagery at 30m resolution with steep (23°) incidence 
angles could not successfully separate forest from non-forest, hence is of little use for forest degradation 
studies. Given the much larger spatial coverage of TerraSAR StripMap in comparison to TerraSAR 
SpotLight for a single scene, it was concluded that TerraSAR StripMap has the strongest possibility for 
visual detection of logging roads and clearcuts. 

6.2. Limitations 
Despite that SAR images provide useful spatial and geometrical information on mapping of clearcuts and 
logging roads, there are still some limitations that are associated with radar data. Two main limitations are 
highlighted below. 

i. Terrain characteristic: Depending on terrain slope, radar creates layover effects and 
shadows on the SAR images. There can be no possible observation of logging roads and 
clearcuts at such spots on the image. This limitation is peculiar to mountainous or undulating 
areas, and was not a limitation in this study that looked at an area of flat terrain. Large trees 
also cast radar shadows on adjacent logged sites or on surrounding trees depending on 
viewing geometry of the radar sensor, which may complicate the attribution of observed radar 
shadows to degradation.   
 

 

ii. Inherent radar characteristics:  Visual interpretation of SAR imagery can be difficult if the 
interpreter lacks knowledge on some inherent characteristics of radar sensor like: look-angle 
effects of different radar polarization on forest vegetation, and interaction of radar pulses 
with the ground features. This also makes it impossible, or at the least very difficult, to 
effectively compare two moments in time to assess on-going degradation, if these images 
were not acquired with the same characteristics. For monitoring, this calls for systematic 
observation strategies of SAR data (as was the case for ALOS PALSAR). 

6.3. Recommendations 
The following recommendations are not exhaustive but are being proposed as a way forward to 
strengthen future research directions. These are grouped under two sub-headings: future directions and on 
data potential for mapping degraded forests within the context of MRV for REDD+.  

6.3.1. Future directions 
i. Spatial resolution of SAR imagery:  Given the importance of SAR spatial resolution to 

mapping logging roads and clearcuts which are usually small in sizes, it is therefore necessary 
to know the spatial size of important forest degradation features; before SAR images are 
acquired.  

 

ii. Knowledge on SAR data: A visual interpreter needs to understand the basic imaging 
principles of SAR sensor in order to adequately interpret radar images in relation to logging 
roads and clearcuts. As such, with regards to REDD+ and the requirement of countries to set 
up monitoring schemes, this implies that effective capacity building programmes are required 
if SAR is to be included in these schemes. 
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iii. Ground data: Remote sensing images provide more accurate information if these images are 
compared with ground truth. Satellite data can also be analysed to acquire information about 
inaccessible forest areas. Therefore, since this was a desktop study, there is a need for future 
studies to carryout fieldwork so as to verify the analyses done on computer. Such fieldwork is 
ideally carried out at the same moment as satellite acquisitions are being made, and when 
forest degradation processes are effectively taking place. 

 

iv. Frequent data acquisition: TerraSAR StripMap could not detect as high number of logging 
roads in a coarse canopied forest as compared to the optical images. The reason for this could 
be as a result of the rapid regeneration of vegetation that was observed between the 
WorldView-2 image (2011) and the QuickBird image (2012). As such there is a need for a 
yearly acquisition of very high-resolution TerraSAR StripMap images for an effective 
monitoring of forest degradation process. 

 
v. Enhancing detection of logging roads and clearcuts:  in this study, not all logging roads 

and clearcuts could be detected clearly from the SAR data. As such, strong conclusions 
cannot be drawn. But for the overall objective of REDD+ to be realized, there is a need for 
scaling-up of a study as this. Therefore, it is hereby recommended that future studies should 
consider the use of fused SAR and very high resolutions optical data. This could provide 
better visual detection of logging roads and clearcuts in a small area as that used in this 
present study. Furthermore, since fieldwork is prosed above, use of fused data can produce 
high classification accuracies from the mapping of forest degradation signs in tropical regions. 

 
vi. Lastly, this study successfully demonstrated the use of a simple automated method to detect 

clearcuts, especially within degraded forests. Because this is a simple technique, it may not be 
applicable for all cases. Therefore further research is recommended to improve upon this 
study.  
  

6.3.2.  Potential SAR data 
This study has demonstrated a possibility of using SAR images in mapping signs of forest degradation in 
Congo. But there is a need for further analyses of how best these SAR data could perform in detecting 
logging roads and clearcuts based on the inherent characteristics of SAR sensor. However, further forest 
degradation study with SAR images could be limited by the availability of SAR data. It was gathered that 
SAR data with spatial resolutions of less than 10m rarely exist for tropical Congo Basin. In economics, 
when a resource is scarce, the cost of the available commodity increases.  
 
However, within the context of REDD+, there is a need for national governments to ensure an effective 
monitoring reporting and verification of forest changes resulting from deforestation and forest 
degradation.  For mapping of forest degradation signs, data fusion is recommended in this study. But 
fusion of SAR data with optical imagery would lead to a double acquisition cost (in terms of time and 
money). These costs are further explained below. 

 Time of image processing: Vrieling et al. (2012) acknowledged that the processing of SAR 
images for this study is very difficult and that requires a lot of time. More time was spent on pre-
processing the SAR images by Anton Vrieling (faculty ITC, the Netherlands). In case where 
fused data (SAR + Optical images) are to be used for further analyses of logging roads and 
clearcuts,  much image pre-processing time will be required. 
 
This study confirms the findings by previous studies that mapping of forest degradation signs is 
time consuming (Stone & Lefebvre, 1998) and technically challenging in tropical regions(Herold 
& Skutsch, 2011). The major approach adopted in this study was visual interpretation of logging 
roads and clearcuts. A lot of time was spent to digitize logging road segments which were 
created. In case of use of fused data for forest degradation study, visual interpretation time will 
be increased.   
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 Money: this study has found out that there is a need for a frequent acquisition of very high to 
medium resolutions SAR images to yearly monitor signs of forest degradation signs in Congo 
region. This can cost lots of money.  For example, TerraSAR SpotLight image is said to be the 
very expensive SAR image per 1km2 for most tropical countries like Congo Basin(Vrieling et al., 
2012).  
 
Also, to increase the detection of logging roads and clearcuts with higher accuracies, this study 
proposes the fusion of SAR data with optical images. This is very necessary but it will create a 
double acquisition cost, since both SAR and optical images will be bought. According to Vrieling 
et al. (2012), QuickBird image, covering a size of  267, 667km2 at a single time,  was costing 
almost five million Euros. TerraSAR StripMap imagery was identified in this study as very 
promising and has a more modest data cost that could allow for national coverage, although 
storage, processing, and interpretation costs could be inhibitive. An alternative approach to move 
to national scales would be a systematic sampling of the territory. 
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