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Abstract

Many computer aided innovation (CAI) tools exist but all either rely on a creative input of the
designer or make use of some sort of database of working principles. This research proposes
a CAI-tool that generates artifacts, without introducing any working principles. The artifacts
generated are solutions to a mechanical engineering problem.
A framework for the new CAI-tool is developed that disengages the problem description from the
actual artifact generation and optimization. For the problem description, the functional basis
for engineering design by Hirtz et al. [1] is used to describe a mechanical engineering problem as
a mechanical engineering function which converts a certain input flow to an output flow. This
function determines the objective function for the computational optimization. Artifacts are de-
signed to consist of basic elements that have behavior and characteristics but no functionality of
their own. A computational optimization algorithm is used to create and optimize new versions
of the artifacts. Better artifacts are selected based on their fitness determined by the objective
function. Because no working principle is introduced to the CAI-tool, it is hypothesized that
these working principles will be generated by the tool itself.

A proof of concept was made for the proposed CAI-tool based on Evosoro [2]. This software
uses compositional pattern-producing networks (CPPN) that produce three-dimensional multi-
material artifacts made up of voxels which are optimized using neuro-evolution of augmenting
topologies (NEAT). These voxels are the basic elements of which the artifacts consist, in this
proof of concept. A different population selection method, passing multiple objects and new
fitness calculations are among the newly introduced or changed features to the software.
As a proof of concept, a simple mechanical problem was tested: solutions for the function ‘rota-
tional transmission’ were tried to be generated. Analysis of solutions was done using a modified
version of the contact and channel model to identify the difference in working principles. Mul-
tiple times, in single runs without a change of parameters, more than one working principle
was identified among the generated solutions. This proves that no single working principle was
predetermined and proves the ability of the proposed CAI-tool to fulfill a mechanical engineering
function without prior knowledge of working principles.
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Definitions

Age in the context of the genetic algorithm: the age of an individual is increased every generation
and starts with age 0 at its (random) generation.

Artifact Physical object or (digital) representation thereof.

CPPN compositional pattern producing network, see Section 2.3.1.

Channel and Support Structures (CSS) Used in the C&CM method: forms the internal struc-
ture of a part, by connecting two inner ports of WSs, can store energy.

Computer aided innovation (CAI) All-encompassing term for all software that plays any role in
the innovative part of new product design.

Conceiving concepts In this thesis it is useful to have a distinction between actions that are done
by computers or by humans. Using conceiving implies that concepts are produced by an engineer
or designer.

Conceptual level The function solution is determined but some parameters are not necessarily
exactly established for a final product.

Connector Used in the C&CM method: integrates the system into its environment. A connector
describes anything that links to a WS at the system boundary [3].

Contact and Channel Method (C&CM) is used to describe design problems and artifacts
in a “systematized but free and dynamic way of modelling”, in order to provide an abstract
representation of the artifact [4]. Used in this research to describe the way an artifact fulfills its
function.

Design method (DM) Structured design processes.

Discursive thinking is a conscious process that can be communicated, influenced and where facts
and relationships are analyzed, varied, combined, checked all in a conscious way [5].

Discursive thinking A conscious process that can be communicated and influenced, where facts
and relationships are analyzed, varied, combined, checked all in a conscious way [5].

EMS (energy, material, signals) model Model to describe a mechanical engineering function
using an input and output flow of energy, material or signal on which the function acts. See
Appendix A.3 for a list of functions and flows.

Flow Used either in the EMS model or the C&CM to describe an energy, material or signal. In the
EMS model, a function acts on the input flow to some output flow. In the C&CM, a flow is
conveyed through WSs or CSS. See Appendix A.3 with Table A.3 for a list of flows and Table
A.4 and A.5 for the energy flows in detail.
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Function
Mechanical engineering „ A description of an operation to be performed by a device or
artifact [6]. In this research, the EMS model is used to describe a function.
Mathematical „ the relation that associates each input element to an output element.

Generating concepts In this thesis it is useful to have a distinction between actions that are done
by computers or by humans. Using generating implies that concepts are produced by a computer.

Genotype In genetic algorithms: the lowest-level of encoding used in the algorithm [7]

Individual Single possible solution within a population of a genetic algorithm optimization.

Innovation From Hüsig [8]: “An iterative, interactive, context-specific, multi-activity, uncertain,
path-dependent process and the result of a new combination of ends and means from a certain
perspective. From this perspective, someone must perceive a difference concerning the qualitative
newness of an object compared to a prior status in a given context. This new combination must
be realized and introduced into a specific context which is the point of reference of the prior
status.”

Intuitive thinking takes place unconsciously with insights happening suddenly by association or
some trigger [5].

Inventing To design or create something that has not existed before within the reference frame-
work: the creation of function solutions with different working principles from existing function
solutions.

Mechanical engineering problem A problem which can be solved by mechanical engineering
functions.
Basic „ A problem which can be solved by a mechanical engineering function.

NEAT NeuroEvolution of Augmenting Topologies, see Section 2.3.1.

Non-predefined solution The solution to the mechanical engineering problem is not defined to
have one particular working principle. Also no expert knowledge of existing solutions is used to
create a new solution.

Phenotype In genetic algorithms: any higher-level expression of the genotype can be defined as the
phenotype.

Physical properties and functionalities Properties and functionalities that are governed by the
laws of physics, e.g. elasticity of a material, movement under influence of a force.

Population A set of individuals within a genetic algorithm optimization that are in one generation.

Solution
Function „ artifact that fulfills the goal of that mechanical engineering function.
Optimization „ output of an optimization that has a positive result for the objective function.

TRIZ Acronym for the theory of inventive problem solving. This is a Russian problem solving
method that was started by analysis of existing patents and has led to the “science of creativity
that relies on the study of the patterns of problems and solutions, not on the spontaneous and
intuitive creativity of individuals or groups” [9].

Working Surface Pairs (WSP) Used in the C&CM method: the connection between the outer
ports of two WS. This is where two objects interact with one or multiple flows

Working principle The interactions of an object with its surroundings that lead to its functionality.
Differences between working principles are deducted by using the C&CM in this research.

Working surface (WS) Used in the C&CM method: interacts with its environment via input or
output flows
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1
Introduction

The use of computers in product design and production is widespread and many products would
not have existed without computer technology. The computer is used to increase efficiency in
design teams, to model concepts, perform simulations, to control machines and processes of
production and in many more facets of the entire product design process.

However, there are opportunities to make the next step in the unexplored field of digitization in
the creative part of concept generation. Now, this is still done by engineers depending on the
knowledge, creativity, and ingenuity they possess at that particular moment.
Of course, there is more than one way to move forward from this situation. One is to improve the
functioning of the engineer to contrive concepts by using various methods to get the best out of an
engineer. Another possibility would be to include computers in the process of concept generation.
Software could be developed that relies on expert knowledge: existing design knowledge [10] or
input of a user.
However, the path that this research will investigate is the generation of function solutions on a
conceptual level without any foreknowledge implemented in the software.

To start with, the foundation and the basics of several elements of this research will be introduced
to lead to the main goal and research question.

9



Chapter 1. Introduction

1.1 Foundation

The basics of the elements that lead to an adequate research question for this thesis comprise a
broad spectrum. The basics lie in the use of computers in innovation, computational optimiza-
tion methods and algorithms, functional modeling, inventing and design methods. These are
covered in the three following elements:

• Design methods, i.e. structured design processes. Using knowledge about principles of
inventing and methods to analyze functionality provides the higher contextual level that
enables to clearly categorize and analyze mechanical engineering problems and possible
function solutions unambiguously.

• Computer aided innovation (CAI) is the all-encompassing term for all software that plays
any role in the innovative part of new product design. To determine the placement of this
research and relevant areas, an overview of CAI will be given.

• Computational optimization is used to find a global optimum within a solution space
with the support of a computer. Many computational optimization methods exist for
different optimization problems. It is important to determine which one suits the needs of
a particular optimization problem.

Incremental innovation is easy for humans to do by combining existing knowledge and creating
the next logical step: an improved version of a product with the same working principle. Radical
innovation that is very different from the status quo on a functional level is harder to achieve.
Most patents only show incremental innovation [11] but the Kano model shows that consumer
satisfaction can be improved with a more innovative product [12]. One way of reaching the blue
ocean (i.e. the level of innovation where no comparable products exist) is by radical innovations
[13].
Design methods often lead to incremental innovation because the creative part is not supported
in a systematic way or because they are supported by brainstorming type of techniques. These
are mostly based on creative imagination or combined group knowledge.
Some design methods have a computerized version which makes those CAI-tools. For the creative
part, often the input of a human designer is used. To be able to reach that blue ocean it would be
beneficial to also reach outside the grasp of human imagination or knowledge. For this, a design
method needs to be developed that works without this limitation. One apparent solution is to
consider a very wide range of solutions and select the ones that work well or one that works best,
which makes this method very suitable to carry out as a computerized tool if it were possible,
because human evaluation of a very wide range of solutions is impractical.
Exploring a wide range of solutions systematically calls for the quantification of the innovation
goal. Computational optimization can then be used to find candidates for an innovative design
solution: optimums within the solution space.

1.1.1 Invention, design methods, and functional analysis

Humans have always made inventions, artifacts that had never been made before which func-
tioned by a different working principle than anything else ever made before. Early inventions,
like the rocket, were accidentally discovered [14] or evolved empirically like fins on an arrow [15].
But with the start of the scientific revolution, knowledge of the laws of physics led to inventions
by people who understood scientific principles [16] such as Maxwell, who mentioned the working
principle of a dynamo [17] in his investigation into electromagnetic phenomena. In more recent
years various methods to structure the process of invention and new product design (NPD) have
emerged.
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1.1. Foundation

Design methods

A new design method will be created in this research to generate solutions without using any ex-
isting design methods that rely on human creativity or databases. Computational optimization
is the basis for the proposed method which itself can, of course, be seen as a design tool for some
incremental innovation methods. Nonetheless, other design methods will be used to understand
and analyze designs and design processes.
Design methods (DM) can be characterized along four underlying principles [18]: hierarchical
decomposition, systematic variation, satisficing, and discursiveness. The first separates a design
problem in distinct and independent parts that are easier to find concepts for. The second relies
on searching and recombining solutions for design sub-problems. The third, satisficing, allows
settling for a non-optimal solution and alternatives. And the fourth, discursiveness, divides a
design problem into separate steps and transitions that are described beforehand so conscious
decisions can be made and iterations can be done within them. Several of these four principles
are often seen in a single method or tool.

For example, a well-known design tool is the use of a morphological chart, which combines de-
composition and variation. The design problem is deconstructed into sub-problems and for every
one of them, many solutions (variations) are contrived.
Another example which has a more complex method of solving problems is TRIZ [9] (the acronym
for the theory of inventive problem solving). This is a Russian method that was started by anal-
ysis of existing patents and has led to the “science of creativity that relies on the study of the
patterns of problems and solutions, not on the spontaneous and intuitive creativity of individuals
or groups”. The aspect of such a technique that relates to this research is the analytic way in
which creativity is approached.
TRIZ mainly uses abstract and generalized descriptions of problems and solutions that encom-
pass many physical occurrences (e.g. the inventive principle “partial or excessive actions”) and
often in relation to other existing artifacts or solutions. However, this research has the need for
descriptive methods that provide unambiguous ways to segregate these physical occurrences and
analyze the working principle of function solutions without relying on their possible similarities
to existing artifacts or principles. Those methods perform a functional analysis. There is not one
standard to perform a functional analysis (FA) but methods to describe and analyze engineering
design, abstract definitions encompassing all possible design solutions do exist. Most work by
combining a flow, describing an energy and a function that operates on the flow. Exploring these
methods and deciding which method is best for use in this research, is done in the literature study
in Section 2.2.2.
Besides describing artifacts on a functional level, an analysis of the degree of newness or in-
ventiveness is required. This will help in interpreting differences between eventually generated
solutions and explore possibilities in a systematic fashion. TRIZ could provide such a method
as it specifies five levels of invention varying from parametric changes to the discovery of a new
phenomenon. This will also be dealt with in Sections 2.2.1 and 2.2.2.

1.1.2 Computer aided innovation

While computer-aided design (CAD) and computer aided manufacturing (CAM) usage is widespread
in new product development (NPD), computer-aided innovation (CAI) is not.
The definition of CAI is one with fuzzy boundaries but distinct areas within it exist. These
will be explained later on in this section. The unclear definition of CAI leads directly from the
unclear terminology and categorization of innovation [8]. It is also important to keep in mind
that innovativeness is relative and dependent on the context, as becomes clear in the following
definition used by Hüsig [8] for innovation:

“Innovation is an iterative, interactive, context-specific, multi-activity, uncertain, path-dependent
process and the result of a new combination of ends and means from a certain perspective. From
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Chapter 1. Introduction

this perspective, someone must perceive a difference concerning the qualitative newness of an
object compared to a prior status in a given context. This new combination must be realized and
introduced into a specific context which is the point of reference of the prior status.”
This definition only takes into account processes that involve designers and inherently excludes
innovation processes solely executed by computers.The key element in this definition lies in the
reference to the specific context of the prior status of the innovated element. This statement is
very relevant to this research as the specific context will be defined in relation to the limited
“knowledge” of the simulation. This will be explained later, in Section 2.2.1.

Categorizing CAI

According to Kohn and Hüsig [19] applications in CAI can be divided into three main categories
when based on application field and four when looking at potential benefits.
The three application fields are strategy, idea and patent management. Within the field of idea
management, two elements are placed that are related closely to this research, i.e. idea gener-
ation and analysis. Looking at categories of potential benefits, it seems that this research has
links with the categories of creativity and competence enhancing.
Examples of software in these categories are computerized versions of design methods for idea
generation like TRIZ (Goldfire) and bio-mimicry (AskNature). Competence enhancing methods
to improve designs include generative design or structural optimization software that uses various
algorithms to improve an existing design.

Usually, the competence and creativity that is mentioned within CAI is of the designers them-
selves and not seen as something that can be emulated by software, but rather something that
is enhanced by software. Even though the proposed tool in this research is not consistent with
those properties of CAI, it is still seen as a CAI-tool since it has the ability to provide aid in
innovation.
A more extended overview of specific CAI categories can be found in Appendix A.1.
Still, this research is placed in those categories since one could argue that any improvement, also
a complete takeover of a process, leads to a better result presented by a designer and thus to the
enhancement of the designers’ abilities.

1.1.3 Computational optimization

As mentioned before, computational optimization is used to find a global optimum or multiple
optimums with the support of a computer. This optimum is determined by means of the evalu-
ation of one or multiple objective function(s) and changing input parameters and iterating this
so a better result is achieved. An objective function describes the desirable properties that need
to be maximized or minimized within an optimization. Besides an objective function, boundary
conditions that limit the values of certain parameters can be introduced.
Optimization is used for many engineering problems. With the increase of computing power
and better algorithms, designs influenced by simulations and optimizations differ more and more
from previous human-made designs. A couple of examples are shown below.

Using sequential quadratic programming (SQP) optimization algorithm, the x and y position
of the upper right-hand corner and thickness of four beams (six parameters in total) of a truss
structure are optimized so the structure is as light as possible without breaking when weight
is applied. The same problem was solved using a topology optimization script [20] and shows
a much more “organic” structure which could be 3D-printed but also more difficult to produce
conventionally.

Topological optimization has the ability to reach any shape within the design space as every
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1.1. Foundation

pixel can be given a weight from zero to one and works by concentrating and moving mass to
areas that provide a better result at every iteration. To get results that can be used, filters can
be added like the middle result in Figure 1.1 as opposed to the right output which has small
elements.

Figure 1.1. Optimization of a truss with 6 parameters (left) and using topological optimization
(middle, right) [21].

An important lesson in optimization can already be learned from this: every optimization needs
the right algorithm to lead to a good and workable result.
Another example shows topological optimization applied in a different field: fluid engineering.
Lin et al. [22] apply topological optimization in fluid engineering to optimize a fluid diode. This
structure maximizes the flow resistance to one end while it minimizes the flow resistance in the
other direction. The result can be seen in Figure 1.2. In combination with a piezo-element, this
can be used as a pump with the benefit that it has no moving parts.

Figure 1.2. Topological optimization applied in fluid engineering for a fluid diode [22].

The next example shows the application of topologically optimized structures in 3D (see Figure
1.3) and a shape that would have been impossible to design manually.

Figure 1.3. An example of topological optimization as published by Galjaard, Hofman, and Ren[23].

13



Chapter 1. Introduction

This way of optimizing structures is already implemented in some CAD programs like Autodesk
and SolidWorks and is used for various applications. Often this is called generative design
which can include other optimization techniques as well. Using the generative design module of
Autodesk a clamp was optimized which can be seen in Figure 1.4, achieving a weight reduction
of 60% while other properties still fulfill user demands [24].

Figure 1.4. A 3D-printed clamp, topologically optimized in Autodesk [24].

Multi-objective optimization is used to find an optimum for a multitude of objectives. For
example, in the design of an airplane, both the bending moment and the drag of a wing needs
to be minimized. Trying to minimize one, will increase the other. A combination needs to be
found where both values are satisfactory and one value cannot be increased without diminishing
the other. Such a point is called a pareto efficient solution. An example of these points for the
wing design can be seen in in Figure 1.5. A genetic optimization algorithm was used in this
optimization.

Figure 1.5. Pareto front for an optimization of the design of winglets [25].

Aforementioned examples could not have been designed by an engineer to this extent without
the help of computational optimization. However, they still rely on an engineer to provide input
on how to achieve the functionality that is intended by defining the working principle. Imagine
the level of freedom that is displayed in the examples, not within the solution space of one object
with a prescribed working principle but on a higher conceptual and functional level. This idea
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1.1. Foundation

is an essential part of this research.
When multiple working principles are included in one optimization, it implies that sharp transi-
tions within the solution space exist. When a solution space is highly non-linear it becomes very
hard with previously mentioned optimization techniques to obtain a result that is not just a local
optimum. Changing parameters slightly at that point does not lead to better results and so it
becomes stuck in that location within the solution space without ever reaching a different point
with a potentially better result. Restarting with different parameters and starting searching from
that point is one way to temporarily solve this problem. A method that is generally suitable for
highly non-linear problems is a genetic optimization algorithm [26].

Genetic optimization algorithms

Genetic algorithms (GA) are optimization algorithms based on creating, evaluating, recombining
and altering genomes that describe individual instances. In Algorithm 1, pseudo-code for a
genetic algorithm is presented [27] which is described below.

Generate population (Pop) with n individuals;
Evaluate fitness of each individual in Pop;
while (stopping criterion not satisfied) do

while (Popnew ă n) do
select random individuals Pop(Pa, Pb);
Popnew Ð crossover(Pa, Pb);

end
for (i=1 to |Popnew|) do

if random ą probm then
Pop Ð Pi;

else
Pop Ð mutate(Pi);

end
end
Evaluate fitness of each new individual in Pop sort Pop according to fitness values;
for (i=n+1 to |Pop|) do

delete Pop(Pi);
end

end

Algorithm 1: Pseudo-code for a GA. With Pop: population, n: number of individuals,
Popnew: new population, Pi: individual i in population Pop

A starting population of many individuals (possible solutions) is generated. These individuals
are tested, compared with data, evaluated using simulations or evaluated in any other way. Every
successful evaluation gives a fitness value as output for each individual. When all individuals
are evaluated, the next step is to compare all the individuals and sort them according to their
fitness. It is also possible to combine more than one parameter as a fitness function or to add a
second sorting for a different variable in case multiple individuals reach the same fitness.
Now the individuals are selected which are to populate the next generation through breeding
and/or mutation. Two individuals are bred by crossing over their genomes and merging those
for one new individual. Mutation is done by randomly altering properties of an individual.
The selecting of individuals for these procedures could be done by simply choosing the best ac-
cording to fitness, or by including certain numbers of lower scoring individuals. This leads to a
more diverse population as it allows individuals to evolve through several generations before they
reach their optimum. Individuals that function well are not necessarily the ones that functioned
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well, or at all, in preceding generations.
The new generation is populated by the individuals from the previous generation(s), newly gen-
erated individuals, the mutated individuals, and bred individuals. When the new population is
formed the evaluation step is performed again. These steps are repeated until the desired result
or specified number of generations is reached.

One of the advantages of GA compared to single solution optimization algorithms is that it finds
multiple solutions, works well with optimization problems with parameters and a highly non-
linear objective function. Examples include: shape optimization of a vertical-axis wind turbine
using a numerical simulation [28], designing of electrical circuits [29] , determining the optimal
fabrication direction for layered manufacturing to minimize post-machining [30] and the gener-
ation of multiple solutions for the inverse kinematics of a serial robotic manipulator [31].

Simulation

A simulation environment is necessary to compute the fitness of each individual by performing an
evaluation (for GA, or evaluating the objective function every iteration for other computational
optimizations). A simulation will mimic the functioning of an object (i.e. an individual) in
real-life. The properties of the simulation algorithm will influence the solution space in this case.
The level of detail, possible material properties, which laws of physics and external influences
can be simulated, all determine what the solution space will look like. The particular simulation
environment for this research will be discussed in Section 3.3.2.

1.2 Relating inventing, design methods and CAI

Components exist that can be placed in more than one of the previously mentioned elements
(Inventing, DM and FA, CAI and computational optimization).
It is important to notice the difference between most related CAI-tools and computational opti-
mization used as a CAI-tool. Computational optimization is used in many fields and is able to
solve specific (design) problems. It requires exact objective function, design variables and con-
straints and, in the case of multiple design goals, is based on the trade-off of the different goals
as prioritized by the designer. However, most CAI-tools that are related to idea generation and
analysis only aid in these processes by combining existing knowledge and not creating unique
solutions without reference.

For the rest of this section, functional analysis (FA) will be disregarded since this is not used as
a tool to create artifacts on its own, just like CAI, because it is merely a descriptive term for
underlying methods and the elements of invention and design methods (DM) will be separated
because they do not completely overlap.
Of course, there are also design methods or computational optimizations that do not lead to
inventions and inventions that are done without any structured design method or computational
optimization.
A graphic interpretation of these relations can be seen in Figure 1.6. A: Many design methods
exist that do not need any computational optimization but can still lead to inventions, such as
brainstorming. B: Optimization methods that can lead to inventions while relying on predefined
design methods or databases. Examples of this are automatic shape and topology variations
[32], generative design which includes interaction with its user [33] or product design using a
colony of virtual ants [34]. Theoretically, computational optimization could result in inventions
(C) but as of now, no examples or proof of concepts thereof exist. Methods are only placed
in C when designing is done in a methodical way and thus only possible with some sort of
database with design knowledge. D: Where this research is placed, inventions are reached through
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computational optimization without predefined design methods or databases. Within itself, this
could again be considered as a design method and section D would cease to exist by combining
it into C. However, to keep this partition, inventions done through methodical designing and
exploring the entire solution space with an algorithm are strictly separated.

Invention

Design methods

Computational
optimization

A

D

B

C

Figure 1.6. Venn-diagram which shows the relation between areas of interest for this research.

The possibilities of using computational optimization to create inventions (D) will be explored
in this research. It is avoided to apply any existing design methods, reuse existing solutions (e.g.
databases) or creativity (C). This would result in limiting the availability of reachable solutions
within the solution space. This is because it would only allow a discrete amount of options to be
explored in some fixed method of exploration and not providing total freedom of exploration of
the solution space. It must be noted that the essence of the principle in itself of (systematically)
considering a large variety of solutions without initial rejection, can be seen in design methods
(e.g. TRIZ, brainstorming) and also shows an overlap of these design methods with how genetic
optimization works.
An impressive step taken towards invention using computational optimization was done by Ch-
eney et al. [2] who presented Evosoro. Using voxels that resemble bone, expanding or contracting
muscles and soft tissue, genetic optimization is used to generate objects that fulfill the objective
function. More about their work will be discussed in Section 2.3.1. In Figure 1.7, the results
were obtained by defining moving forward as the objective function. The diversity of results
shows that it not only has an application in the field of computational biology or soft robots but
potentially also in a wider array of fields.

Figure 1.7. Two soft robots that move forward in different ways (walking and rolling) generated
by Kriegman et al.[35]
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Chapter 1. Introduction

To be more specific: these optimizations, done by Cheney et al.[2], all result in a single object
that has no effect on other objects but itself. Using the definition of a mechanical engineering
problem that is used in this research, the object generated has to impose a function on another
object or entity. This was no goal in itself for Cheney et al. but adding this to the goal of this
research will widen the spectrum of possible applications from soft robots to many mechanical
engineering problems.

1.3 Research goal

The research goal will be:

Proving that it is possible to use computational optimization to generate artifacts that are
function solutions for basic mechanical engineering problems on a conceptual level without in-
troducing the working principle as input for said optimization.

1.4 Research question

The main research question will be:

A computer aided innovation tool: how can artifacts that fulfill a mechanical en-
gineering function be generated using computational optimization without prior
knowledge of working principles?

To answer this question several sub-questions are formulated in order to split the problem into
multiple parts.

• What should the structure, components and main working method of such a
CAI-tool be?

– Which components are needed besides the computational optimization al-
gorithm?

– How can an engineering problem be converted to an input for such a CAI-
tool?

– How can be detected to what extent a mechanical engineering function is
fulfilled by a solution?

– How can be ensured that no knowledge of working principles is introduced?

• How can a proof of concept be made to test such a CAI-tool based on a genetic
algorithm?

– Which genetic algorithm based software is suitable to be adapted for a
proof of concept for such a CAI-tool?

– What adaptions should be made to that software?

– How can (generated) artifacts be distinguished as function solutions?

– What demands need to be met for the proof of concept to be successful?

1.5 Plan of action

Each of the sub-questions will need a different approach to arrive at a satisfactory answer.
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1.5. Plan of action

• What should the structure and components of such a CAI-tool be? This requires
knowledge on design methods, computational optimization and an overview of existing
CAI-tools.

– Which components are needed besides the computational optimization al-
gorithm? It needs to be clear which components are necessary to adapt the problem
to be suitable as input for some computational optimization algorithm.

– How can an engineering problem be converted to an input for such a CAI-
tool? The answer to this question might be found in fundamental research on design
and engineering. Even though different views may be found in literature, abstract
functions should fit this particular topic. The abstract functions need to be reduce to
their most basic level at which they function.

– How can be detected to what extent a mechanical engineering function is
fulfilled by a solution? A quantification of functionality is necessary to be able to
answer this question.

– How can be ensured that no knowledge of working principles is introduced?
For this, knowledge of working principles needs to be established and a method needs
to be determined that is able to distinguish different working principles. Some method
must be found that presents the problem to a CAI-tool without the implication of
any working principle, just as the tool itself should not have any working principles
included.

• How can a proof of concept be made to test such a CAI-tool based on a genetic
algorithm? Taking into account the answers to the previous sub-questions, it is clear that
a match needs to be found between the prerequisites that are implied by those answers
and the possible adjustable properties of a genetic algorithm. Also clear demands for a
successful proof of concept need to be set.

– Which genetic algorithm based software is suitable to be adapted for a
proof of concept for such a CAI-tool? To answer this question, knowledge about
genetic algorithms and implications of choices in object representation, evaluation,
and selection methods needs to be gathered. Software that can be adapted to serve
as a proof of concept without many changes is preferable.

– What adaptions should be made to that software? Demands of the CAI-tool
and its proof of concept need to be compared to the chosen genetic algorithm software.

– How can (generated) artifacts be distinguished as function solutions? The
quantification method for functionality must be implemented in the proof of concept
for this.

– What demands need to be met for the proof of concept to be successful?
An example problem must be found which, when solved, proves the working of the
CAI-tool for all comparable problems.
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2
Literature review

The objective of this literature review is to acquire an overview of related work, determining the
state of the art and prove the novelty of this research. This will be done in the areas of research
that were introduced before.
An overview of concept generation methods within existing design methods and CAI-tools will
determine the state of the art and highlight gaps in current research.
Functional analysis and description methods of working principles will provide a background
from a new product design point of view as well as determining demands for proof of concept of
the CAI-tool presented in this research.
Finally, a deeper look into GA, neural networks and topological representation will provide the
knowledge to create a proof of concept and execute runs.

2.1 Design methods and CAI in conceptual design

In this section, design methods will be classified and CAI-tools for each class will be searched for.
The usage of this classification will identify opportunities for a new CAI-tool using creativity.

2.1.1 Design methods

The new product design (NPD) process can be divided into six sub-processes [36] which can be
seen in Figure 2.1. The sub-process that is relevant for this research is the one where function
solutions are generated: concept development.

Figure 2.1. Timeline for a generic new product development process [36]

The phase in a DM where concepts are generated is also known as the ideation phase. Whereas

21



Chapter 2. Literature review

DMs can be classified into four principles, just two principles classify the methods used in the
ideation phase itself [5]: intuitive thinking or discursive thinking.
Intuitive thinking takes place unconsciously with insights happening suddenly by association
or some trigger. It is impossible to determine the time frame in which a solution is produced
but ways exist in which triggers can be induced such as sketching. Discursive thinking, on the
contrary, is a conscious process that can be communicated, influenced and, where facts and
relationships are analyzed, varied, combined, checked all in a conscious way.
Examples of intuitive methods include brainstorming, method 6-3-5 and the gallery method.
Some examples of discursive methods are TRIZ, SIT (systematic inventive thinking), and the
use of design catalogs. These methods are shown at the top in Table 2.1 on page 25.

2.1.2 CAI-tools in concept generation and invention software

Generating concepts for mechanical engineering problems requires knowledge about the prob-
lem: specifications, requirements, available production processes, but also general knowledge on
relevant physical phenomena and so on. These are the input for every DM, and it is important
to establish how this can be achieved for a CAI-tool. A look at an example of a computational
intelligence-based process model for conceptual design proposed by Huang, Bo, and Chen [37]
(presented in Figure 2.2) shows that their method of mapping requirement to function domain
is the use of human-machine interaction. After that, a combination of systems adds up to a
DM where the concept generation itself is done by the usage of a genetic algorithm to make
combinations from a morphology matrix.

Figure 2.2. Process model for conceptual design based on computational intelligence [37].

This CAI-tool uses a morphology matrix, which is a known non-CAI DM. Just like for many
of the other aforementioned DMs in the previous section, some sort of computerized version or
CAI-tool exists that uses a comparable method. Every CAI-tool based on intuitive methods still
relies on the user providing the solution itself and merely facilitates performing the DM on a
computer. Looking at potential benefits [19], these CAI-tools have the potential of enhancing
efficiency, effectiveness and/or competence. Creativity enhancing potential is only found in CAI-
tools based on discursive methods because only with those CAI-tools solutions for concepts are
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generated by the CAI-tool itself.

Examples of these CAI-tools, which are also referred to in Table 2.1 on page 25, include:

• Systematical study of physical processes: Žavbi, Fain, and Rihtaršič [38] use knowl-
edge twisting, the manipulation of physics, structure and design, to achieve functions. By
chaining physical laws and complementary basic schemata, elementary concepts are gen-
erated. Another CAI-tool, SOPHY [39], uses a database of physical phenomena as well to
create chains of these phenomena but also includes the possibility for the user to couple
structural elements to these chains.

• Design catalogues were used very early to create CAI-tools [40] but also a more recent
work by Brockmöller [41] describes a CAI-tool that creates detailed concepts for a specific
manufacturing technology. Han and Lee [42] reuse previous design concepts in conceptual
synthesis of mechanisms by representing them in a graph structure and synthesizing chains
of these to create solutions. Kurtoglu et al. [43] make a database of dissected artifacts
based on their functions which could be applied in different types of CAI-tools that benefit
from the link between functional description and corresponding components.

• Biomimicry is the basis of the AskNature [44] database. It does not generate concepts
but its website is a well known search-engine for biomimetric design solutions. Similar work
is done by Chakrabarti et al. [45] by creating a functional representation for biomimetric
design, allowing users to search a database for solutions. Goel et al. [46] developed DANE,
short for Design by Analogy to Nature Engine. This tool helps users find relevant biological
systems and aiding them in understanding their functioning. Integration of biologically
inspired design with established function-based design methods is published by Nagel and
Stone [47].

• TRIZ is used in various CAI-tools such as open CAI 2.0 [48] which allows users to collab-
orate on solutions but not generating solutions on its own, Goldfire [49] is a software pack-
age using unspecified artificial intelligence to process data from previous projects within a
company to create a database which now includes 8000 physical, chemical and geometrical
effects. Innovation Workbench [50] also provides a digitized version of the TRIZ method
but software output is limited to generalized analogous solutions.

• SIT based software is mentioned by Yoo [51] and a framework for a CAI-tool named DSIT
explorer (design-oriented systematic inventive thinking) is also published [52]

Other noteworthy CAI-tools that are not based on structured DMs do exist as well. In 1986,
Dyer, Flowers, and Hodges [53] published about the EDISON project that intended to model
processes of invention, analogy and naive mechanical device representation. No topological rep-
resentations were used but merely linguistic representations of topology, connections, motion,
and constraints thereof. The underlying reason for EDISON however, is to get insight in naive
physical reasoning and invention of people. More recently, an algorithm that generates function
solutions based on linguistic representations for functional elements was made [54], but evalua-
tion of solutions is done by matching output and input of solutions to the functional requirement.
Besides that, the linguistic representation method requires a database-like structure.
“Creative” synthesis of mechanisms which is based on matrix representation [55] [56] is possible
by using knowledge that describes only mechanical systems. Although this is not necessarily
a database of solutions or a systematical study of physical processes, it can only function with
foreknowledge and for a specific range of problems in mechanisms. Another similar method, for
functional synthesis of solutions in mechanical conceptual design, uses an abstract representation
of design problems and functional elements. Subsequently rules for combination and transfor-
mation of input, output, and orientation are used to create solutions [57].
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Usually, no evaluation of concepts is done in CAI using equations of physical laws but merely
by using schematic representations of components. The amount of possibilities in the case of
detailed shape representation and simulation of physical laws is enormous and could lead to
problems in terms of computational power because of the risk of a combinatorial explosion. No
proof of this exists however [58], and using smart shape representation [59] (see Section 2.3.1) or
search methods such as GA [28] (see Section 2.3) can result in feasible CAI-tools.

Lipson [60] uses GA to find solutions for kinematic mechanisms that need to follow a straight line.
Even though this has a narrow application and the foreknowledge of the method itself could be
seen as an elementary design catalog, their conclusion is that is fair to compare the algorithms’
performance with early engineers that had knowledge about basic linkage mechanisms.

To determine the potential of CAI-tools, the next section will compare these to previously men-
tioned DMs. This will help in clarifying unexplored areas of research.

2.1.3 Comparing DMs and CAI

To compare DMs and CAI-tools, a classification for DMs by Kulkarni et al. [61] is used. They
identified the set of components that are used within DMs for concept generation that help
designers overcome or tackle specific metal blocks, which can be seen in the Appendix in Table
A.1. For various DMs as well as the DM belonging to the CAI-tool proposed by this research, the
usage of these tackles is indicated in Table 2.1. For CAI-tools, the solution source is indicated:
the user could be the source of ideas and the tool either taking another role to aid in this process
or using a database or some other form of foreknowledge about constructing a solution. It is also
indicated whether CAI-tools in that category are capable of generating an artifact as a solution.
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Table 2.1. Overview of DM indicating the blocks that are explicitly tackled by the various DM
(‚), based on Shah, Kulkarni, and Vargas-Hernandez [71] and Kulkarni et al. [61]. References
to literature mentioning corresponding CAI-tools are shown at the bottom for each DM with
indication of the solution source (�).

Comparing these components to their counterpart within CAI shows the potential of CAI in
overcoming or avoiding these blocks in general but it can be seen as well that for intuitive
methods, the user still is the sole provider for a solution. For discursive methods, apart from
CAI-tools where the user provides a solution, it can be seen that a database is used or some
foreknowledge about solutions is necessary to generate a solution. It may be that some specific
method is used to search this knowledge (e.g. a GA) but the usage of foreknowledge or a database
in itself is inextricably linked to discursive CAI-tools.
The proposal in this research to work without a database nor user provided solutions is not used
in other research. The method itself seems to coincide with both intuitive and discursive methods
as opposed to other CAI-tools, in which a solution is generated by the program itself which are
all within the discursive category. This leads to the fundamental question about creativity: to
what extent software is capable of being creative.

2.1.4 Creativity

Creativity is defined by the Oxford dictionary as “The use of imagination or original ideas to
create something”. One important aspect is omitted here however: not only does an idea need
to be new, but for engineering it also needs to be useful to be creative [72]. Generally, it is seen
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that computers cannot be “creative” but with the emergence of evolutionary algorithms (of which
genetic algorithms are a part) this statement is started to be disputed [73].
On first sight, creative thinking appears to be non-continuous but in reality, this is caused by
the intermediate steps in the continuous process that are hidden within the inexplicit mind
[74]. While these intermediate steps are now impossible to define, still more can be said about
processes in creativity that can be executed by computers. These processes are defined by
Gero and Maher [75] as combination, transformation/mutation, analogy, emergence and first
principles. Graphical examples of these processes can be seen in Figure 2.3, and all of these have
been applied in CAI-tools [76].

Figure 2.3. Processes in creativity [75] [76].

Whereas the first four processes are based on existing knowledge or a database, the use of first
principles does not incorporate any shallow knowledge but deep knowledge: only propositions or
assumptions that cannot be deduced from other propositions or assumptions are first principles
(e.g. physical laws). However, compiled knowledge can be created from first principles [77]. The
difference in these is that shallow knowledge is not based on underlying laws of behavior. This
can only result in solving problems that are within the knowledge-base that was programmed,
but deep knowledge has the ability to solve problems that are different from pre-defined solutions
[78] as opposed to methods such as TRIZ which only lead to incremental innovation [79].

Using computerized evolutionary processes in creatively generating new things shows great po-
tential [80]. Genetic algorithms can be used to extract useful design information by looking at
different trade-off options when there are multiple conflicting objectives [81]. But even human-
competitive results are produced in various situations: by genetic programming [82], when finding
topology is part of the problem, when a highly non-linear solution space has to be evaluated, in
the case that an approximate solution is sufficient and where there is a clear objective but it is
hard for humans to create a solution.

New artifacts created with (computational) creativity can be put in two distinguished groups,
P-creativity (psychological) and H-creativity (historical) [83]. Artifacts that are novel for the
individual, or for the computer that produced it, are P-creative, and H-creative artifacts are
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historically novel. The solution space where any of these artifacts exist is described by Maher
and Fisher [84] as “not bounded before the process for producing the potentially creative artifact
begins and can include an initially fixed state space representation, personal knowledge, historical
knowledge, or the knowledge available to a network of humans and computers”. This means that
this solution space should not be bounded to exclude solutions or explicitly only including some
solutions before starting the process.
For example Hiller and Lipson [85] see the limitation of topological optimization (mentioned in
Section 1.1.3), or to be more specific: iterative homogenization techniques in optimization [86] to
meet what they call “high-level functional goals” and explore the possibility of using evolutionary
algorithms.

A framework for creative evolution is presented by Bentley and Corne [87] which contains five
elements: an evolutionary algorithm, a genetic representation, an embryogeny using components,
a phenotype representation and fitness function(s) and/or user input. Renner and Ekart [88]
argue that the origin of creativity for computers could lay in the non-traditional application
of evolutionary techniques and narrow down the earlier presented solution space for creative
artifacts even more: no possible solutions are presented to the system, only tools for constructing
the solution. This supports the foundation for this research in using evolutionary techniques in
creating non-predefined solutions. Relating that to existing CAI-tools: it is seen that they all rely
on user input (for intuitive methods) or some sort of foreknowledge or database (for discursive
methods).
This section can be concluded by stating that using evolutionary techniques to search a solution
space without foreknowledge is s kind of creativity which is not yet used in a CAI-tool and can
be further explored in this research. This is based on the observation that, when dividing DMs
into discursive and intuitive methods and linking these with corresponding CAI-tools, CAI-tools
linked to intuitive methods do not generate solutions yet but rely on the user for that task.
Creativity in computers can be seen by using evolutionary techniques and this could be applied
to make new CAI-tools.

2.2 Analysis of novelty, working principles, and mechanical functions

Solutions that are created by CAI-tools need to be analyzed and suitable problems need to be
set up to be able to evaluate the CAI-tool in this research. The newness or novelty of solutions,
relative to some specific frame of reference should be capable of being analyzed, which in turn
demands descriptions of working principles and functions. The final goal is to be able to validate
the proof of concept of the CAI-tool in this research.

2.2.1 Measuring novelty and variety for CAI-tools

Analyzing new products, in general, is often done in relation to previous work. Because for
instance TRIZ is based on analysis of patents it has a clear method to categorize innovations
which will be taken as example. Five innovation levels are distinguished [89].

1. Only quantitative change of parameters. This is possible to do using most optimization
algorithms.

2. Qualitative changes and improvements of components or configuration based on the existing
function. This is possible in some cases, e.g. using topological optimization.

3. Extending a known function-principle combination to a new market, e.g. function to dis-
place is achieved on basis of thermal expansion and can be used for exact positioning of a
table in a microscope and a magnetic head in a tape recorder [90]. This is not yet possible
using any CAI-tool without using a database.
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4. Radically new function-principle combination. For instance: the first application of elec-
tromagnetic waves in a radio transmitter.

5. New principle. E.g. the discovery of X-rays.

These levels are usually only used for rating within the context of historical novelty such as
patents and are not applicable to measure the effectiveness of CAI-tools. This is because for a
new artifact to be an innovation, it needs to be introduced into the specific context which was
the point of reference to the prior status [8]. Still, even without quantifying abilities, these levels
could be used to describe a general level of innovativeness that can be reached by a CAI-tool by
changing the frame of reference. This means that the definition of new will need to be different
in this research because the previously stated innovation levels relate to already existing patents
and solutions. The fact that the proposed CAI-tool will work without any database of existing
solutions implies any functioning solution to be new. However, certain laws of physics will be
an input in order to be able to simulate artifacts, which immediately rules out the possibility of
reaching the innovation level 5 described above.

A method to measure the ability of CAI-tools to expand design space and their effectiveness in de-
sign space exploration using two criteria is proposed by Shah, Smith, and Vargas-Hernandez [91].
Quantity, variety, novelty, and quality metrics are used for this, as can be seen in the overview
in Figure 2.4 Only a small portion of creative characteristics is quantifiable when ordering ideas
in a tree structure.

Figure 2.4. Overview of ideation effectiveness metrics [92]

Another rating, created to measure variety between a number of concepts in relation to each other
instead of historically existing solutions, is proposed by Shah, Kulkarni, and Vargas-Hernandez
[71], from highest variety to lowest:

• Ideas use different physical principle.

• Same physical principle, different working principle.

• Same working principle, different embodiment.

• Same embodiment, different detail.
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As an example, the concept for a motor could be solved with the physical principle electromag-
netism and use “coils for attracting and repelling permanent magnets” as working principle while
the description of the location of the coils and permanent magnets is done at the embodiment
level and finally the details in the technical drawing, manufacturing, and assembly are described
at the detail level [92].

2.2.2 Functional analysis

A mechanical engineering function describes the teleology of the object, the intent [93]: what
operation should a device or artifact do or what effect should it have on its environment [94] [6].
Especially some discursive DMs benefit from a clear abstract description of functions and their
design solutions. The National Institute of Standards and Technology (NIST) has developed a
formal functional representation based on previous research [1]. Three levels of flows and func-
tions specification are defined; from a class to a tertiary level.
At the class level the EMS (energy, material, signals) model is used in representing flows, based
on Pahl et al. [5], just as their classification for functions is used. Full tables for these flows and
functions can be found in Appendix A.3, in Table A.3 and Table A.2, respectively. In Section
3.1, more about the EMS model will be discussed as well.

As an example: gears transmit a rotational velocity from one axle to the other. This would be
placed in the class channel (moving a flow from one location to another), on the second level
in transfer (shifting or conveying flow from one place to another) and as a third level transmit
(moving energy from one place to another).

These descriptions, however, do not provide any insight into how the function is fulfilled. Cheng
and Ma [95] propose to define a function as the combination of design intent, EMS flow and
behaviour. They also introduce functional feature modeling, integrating function, and structure.
These, however, are intended to integrate functional design with procedural feature operations
in CAD and are not applicable to analyzing existing artifacts. Therefore it is necessary to find
methods to describe working principles and behavior of artifacts from another perspective.

2.2.3 Behaviour and working principles

Behaviour is defined as “the way in which a machine (or natural phenomenon) works or func-
tions” by the Oxford dictionary. Describing behavior will bring more detail to the way a function
is fulfilled by an artifact. This level of detail is represented better by defining behavior as se-
quential changes of states of a physical structure or element of a system, over time, in reaction
to its surroundings. The underlying causes of behaviors are changes in the different modes of a
physical system or entity called states [96]. For example, the behavior of a fan depends on the
torque generated by the vacuum motor, rotation itself is a physical phenomenon that depends
on the state transition of torque.
Having a more direct look at the physical meaning of behavior in relation to working principles
gives the opportunity to have a more analytical description of functionality.

Integration of function and form is done in the Contact and Channel Method (C&CM) which
considers the function dependent on the form [97] and is used to describe design problems and
artifacts in a “systematized but free and dynamic way of modelling”, in order to provide an
abstract representation of the artifact[4]. In this case, form is describing geometry as well as
other properties that are relevant in fulfilling its function. Describing geometry is done using
these elements:
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• Working Surface: interacting with its environment via input or output flows. It can
interface with a WS on other parts of the system with its outer port and connects to an
adjacent CSS within the same part via an inner port.

• Working Surface Pairs (WSP): the connection between the outer ports of two WS.
This is where two objects interact with one or multiple flows.

• Channel and Support Structures (CSS): forms the internal structure of a part, by
connecting two inner ports of WSs and can store energy (e.g. kinetic or potential energy).

• Connector: integrates the system into its environment. A connector describes everything
that links to a WS at the system boundary [3].

• Module: a subdivision which contains more modules or parts.

• Part: performs functions by interacting with other system elements through WSs and/or
CSSs. This is the lowest subdivision that is possible in the C&CM approach.

A graphical representation of these can be seen in Figure 2.5.

Working Surface Pair Channel & Support StructureWorking Surface

Inner portOuter port

Figure 2.5. Graphical representations of elements used in the C&CM approach. [97]

The flows described in Section 2.2.2 (e.g. mechanical, thermal, electrical) are used to describe
the particular interaction of subsystems or parts by associating them with each WSP [98]. It
must be noted that some special cases such as gravity and magnetic fields, which would need
working volumes, are excluded in this method for now but have been in development [99]. Three
rules hypothesized by Matthiesen and Ruckpaul [100] are used to ensure consistent application:

1. Every technical system fulfills its function by interaction with adjacent systems. This is
only the case when two WSs are in contact with each other so a WSP exists.

2. Functions are represented by at least two WSPs, a CSS which connects those two and at
least two connectors to the environment.

3. Every (sub)system can be described by using WSP, CSS, and connectors, on different levels
of abstraction and detail.

By using this description, a particular solution for a function can be analyzed in a concrete way.
As an example, the analysis of the functioning of a ballpoint pen on two different levels of detail
is shown in Figure 2.6. The functioning of the pen can only be fulfilled if WSP0.1 (between pen
and paper), WSP0.2 (between hand and pen) and CSS0.1{0.2 (the body of the pen) exist [4].
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Figure 2.6. C&CM description of a ballpoint pen (right image is more detailed) [4].

In addition to interfaces (similar to WSPs and CSSs), Aifaoui, Deneux, and Soenen [101] also
use constraints in space or mobility to describe their “technological model”. This even allows for
a further specific description of an artifact. Relating this to the example in Figure 2.6: WSP1.4,
describing the connection (within the pen) between the ball and its holder, can be extended by
a description of the constraints holding the ball in place.

Other models of describing artifacts on an even more analytical level include: parameter, field,
space, shape and topology description of artifacts [102]. An example of another descriptive
method, tailored for mechanical structures can be found in Appendix A.4.
However, these descriptions are not based on a generalized functional description for working
principles so a direct comparison of two solutions using such a description is not possible and
thus will not be used. For example: assessing the difference in working principle of a ballpoint
pen to a fountain pen is not possible by solely comparing widths, diameters, shapes, positions
or other parameters used in defining the designs.

In this section, a method to rate variety between concepts was presented. Also, in addition to
functional analysis, the analysis of working principles of artifacts have been discussed as a way
of analyzing and subsequently distinguishing solutions.

2.3 Genetic algorithms for soft robots and neural networks

In Section 1.1.3 and 2.1.2, already some examples of GA usage in optimization, design and CAI-
tools were included. Instead of using GA to search within combinations of database elements
or higher level function representation, this section introduces pattern producing networks as a
means of shape representation for GA. This is used, among other things, to generate soft robots.
This method will also be used for the proof of concept of the CAI-tool proposed in this research.

2.3.1 Shape representation for GA

The way in which individuals are represented is important in evolutionary computation, espe-
cially when the solution space could be large, since this influences which solutions are possible,
the way that individuals are changed and the memory size occupied by an individual. Rep-
resentation, in this case, is the mapping of the genotype to the phenotype. The genotype is
the lowest-level of encoding used in the algorithm, the phenotype does not have such a clear
definition: any higher-level expression of the genotype can be defined as the phenotype [7]. The
simplest genotype is bit-string representation: after discretization of the shape, every discrete
element is represented in the genotype. Kane and Schoenauer [103] conclude however, that using
algorithmic geometry in GA instead of bitstring representation leads to promising results.

Some representations were already treated in Section 2.1.2 but none of these used a representation
without foreknowledge about the problem.
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Other similarities can be found in research by Chen and Xie [54] where optimization is used
to generate concepts. Or the work by Chen et al. [68], which has a design catalogue model
to represent mechanisms. However, the solution space is then also made up of a database of
partial solutions and linguistic representations of mechanical objects. This restricts the solution
space drastically. Any foreknowledge or other restrictions that are used to generate results will
bring the optimization back a step towards existing solutions and diminish potentially creative
solutions as discussed in Section 2.1.4. An essential element to prevent this is to also allow shapes
to be generated that are not known as solutions to that mechanical engineering problem.
Using basic shapes, that fulfill no function on their own, to represent solutions avoids the intro-
duction of foreknowledge in a CAI-tool. Using super shapes, for instance, is done by Preen and
Bull [104] who use a genetic algorithm known as the Gielis superformula to optimize topological
representations of vertical-axis wind turbines. This is still specified only for the wind turbine
problem, a more general approach needs to be found. Gero [105] presented an early computational
model of evolution-based creative design mentioning shape grammars that express artifacts, but
no concrete implementation is presented. More recent work, with an implementation, is done by
Ebner [106]: the proposed method includes the usage of scene graphs, which are also applied in
computer graphics. Scene graphs consist of various nodes (for e.g. shape, transformation, and
property) to store an object or entire scene. No knowledge about the functioning of the object is
introduced by scene graphs. However, more complex shapes can be represented without defining
every detail (points, vertices, faces etcetera) of the shape. An example of a scene graph and the
object it represents can be seen in Figure 2.7.

Figure 2.7. One object represented by a VRML scene graph [106].

Even though the scene graph approach has a limited set of basic shapes, it still relies on only
this set to represent shapes. This leads to a very specific niche of shapes that are created when
this method is used in optimization. Using pattern producing networks, however, will allow the
creation of entire shapes without relying on any basic shapes. These will be introduced further
on in this section.

Artificial neural networks

Before reviewing CPPNs (compositional pattern producing networks) and NEAT (neuroevolution
of augmenting topologies), a basic understanding of NNs (neural networks) or ANNs (artificial
neural networks) is needed. An ANN is a network of artificial “neurons” that takes one or mul-
tiple real-value or binary input signal and transforms this to an output between fixed minimum
and maximum limits, usually zero and one [107]. Neurons are connected by “edges” to form a
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connection between the main input and output nodes via hidden layers of these neurons. Every
connection can have a weighting factor that scales the signal. In Figure 2.8, an example of an
ANN with two input nodes, a single hidden layer, and one output node is shown.

Figure 2.8. An ANN consisting of two input nodes, a hidden layer of four nodes and a single output
node [108]. (Weights are indicated with a w.)

ANNs have many applications in processing complex data. To achieve a desirable result, a sample
data-set is used to train an ANN: weightings are optimized so the output presents desired results
and it can be applied to real data [107]. Examples include analyzing radiographic images to
determine patient treatment [109] and speech recognition [110].

NEAT

Instead, NEAT (NeuroEvolution of Augmenting Topologies) optimizes networks by using a GA
[111]. Not only weighting parameters are optimized but the topology of the network is changed
as well. A small network is started with, which is then complexified by adding more nodes and
connections to it. Figure 2.9 depicts the encoding for the genotype that is used in NEAT: node
and connection genes with corresponding properties are used as a basis. An “innovation number”
is added to each gene to show the moment of its creation, so corresponding genes of two future
individuals can be easily matched for mating when creating a new individual. The creation of
offspring is done by combining the genotypes of the two parent individuals, this can be seen in
Figure 2.10. Genes from both parents are used in the new individual when they occur exactly
the same in both parents or in just one. In the case that two different genes are encountered at
the same location, the gene of the individual with the highest fitness is adapted.

Figure 2.9. The genotype that is used in NEAT [111].
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Figure 2.10. Creation of new offspring from two individuals in NEAT [111].

Figure 2.11 shows the two possibilities for mutation within NEAT. Either a connection with a
random weight is added or a new node is added with input weight 1 and an output weight of the
old connection.
Through these specific elements, NEAT is able to optimize and complexify solutions at the same
time. This allows for complex solutions to emerge. The next step is to apply NEAT in the
creation of artifacts.
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Figure 2.11. Two options for mutation of the genotype for NEAT [111].

Representing shapes in GA can be done using direct encoding where every gene represents a single
entity in a shape or, in the case of NEATs, where the output nodes of a NN represent a single
entity in a shape. This, however, results in a large genotype which is harder to compute. Hiller
and Lipson [112] mention some of the problems of direct encoding or representing every voxel in
the genotype as is done by [113] for example that it results in many adjustable parameters and
the great likelihood of destroying solutions at mutation or crossover.

CPPN-NEAT

A more adequate shape representation method for this research than the ones mentioned in
Section 2.3.1, is the use of compositional pattern producing networks (CPPNs). These can be
used to generate structures in 2D or 3D using networks that are very similar to ANNs [114]. As
opposed to ANNs, where only sigmoid or only Gaussian functions are used, the functions in the
nodes can include many types of functions in one CPPN, e.g. linear, sigmoid and also Gaussian
functions. A graphical representation can be seen in figure 2.12.
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Figure 2.12. Example of a CPPN for a 2-dimensional output image [114].

Besides this difference in usage of functions, CPPNs are different from ANNs because the full
range of possible inputs is swept to create the output structure in 2D or 3D instead of the
mapping of a specific data-set from input to output.
It is possible to use NEAT to evolve CPPNs: to evolve complex topologies that are described by
a neural network that evolves using GA. These CPPNs are used in different applications such
as Picbreeder [115]. Users assign fitness to individuals by selecting images that are the most
appealing. This fitness is used in evolving the networks to the point that they generate the
desired output. An example of images generated by Picbreeder can be seen in figure 2.13.

Figure 2.13. Using CPPN-NEAT, Picbreeder allows users to select images and evolve them to
recognizable shapes [115].

Using CPPN-NEAT, not only 2D pictures can be evolved, but 3D shapes as well. One applica-
tion of CPPN-NEAT in evolving 3D shapes is the creation of soft robots: soft (virtual) creatures
that fulfill a simple task. Soft robots are made of low-stiffness materials that resemble biological
tissue, therefore being able to adapt shape and locomotion to the situation: the environment,
obstacles or tasks [116].

Groundbreaking work on virtual creatures was done by Sims [117] who showed that it is possible
to evolve topologies and neural systems that represent rigid creatures in a virtual environment.
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Based on this, as already mentioned in the introduction, Cheney et al. [2] created soft creatures
with complex shapes made up from voxels, rather than creatures made up from a combination
of rigid shapes. Movement is induced by the varying temperature of surroundings which results
in thermal expansion or contraction of different materials. The CPPN-NEAT algorithm is used
to optimize these soft robots. Each individual is represented by a CPPN, this is converted to
a voxel structure by evaluating the CPPN on each discrete possible voxel location (the total
size is determined by the user) to determine presence and material properties of voxels. This
voxel structure is now evaluated in the multi-material voxel simulation software Voxelyze [118]
to determine fitness parameters that are fed back into the CPPN-NEAT algorithm.

This method resulted in virtual creatures capable of different tasks such as walking or growing
towards a light that are possible to 3D-print. It turns out that soft robots are ideal objects to
evolve using genetic algorithms because their topology is easy to represent and simulate. More
recent work was done on the influence of the environmental transition from land to water on
evolving soft robots [119]

Using the hypothesis for a technical system from Section 2.2.3, it can be seen that soft robots,
as they are generated by Cheney et al., do not satisfy the rule that the function is fulfilled by
interacting with adjacent systems: just one connector can be defined for the soft robots that are
produced, the input of a changing temperature. This is closely related to the difference to the
definition of a mechanical engineering function (see Section 2.2.2) that an artifact performing a
mechanical engineering function performs an action on its environment. This is not done by the
soft robots either.
Another difference with this research is that the goal or objective function for these robots is
already fulfilled in the first generation of the simulation in a lot of individuals. This in contrast
with artifacts that need to fulfill more complex tasks that have a hard threshold in their functional
fulfillment such as a continuous transmission. These two differences lead to the conclusion that
there is a sufficient reason to explore further possibilities based on the research of Cheney et al.

2.3.2 Promoting diversity

One of the problems in optimization is convergence: ultimately, the population of a GA will
converge to a single solution [120] but it is necessary to ensure that no premature convergence
to some local optimum happens. This is avoided by promoting a diverse population, which is
also preferable in concept generation: to find a variety of solutions.

Niching methods

One group of methods to preserve diversity are so-called niching methods. By keeping individuals
far away from each other in the solution space, diversity is preserved. Various methods of niching
exist such as crowding, sharing, and sequential niching.[121].

• Crowding prevents the existence of a highly similar individual. A simple method replaces
old individuals of a random subset of the population whose size is defined as the crowding
factor (CF) that have the highest similarity in genotype to the new individual [122]. Re-
stricted tournament selection is another crowding type method in which two individuals
are selected for recombination after which a random sample of CF individuals is taken
where the just created individual competes with the closest individual. This procedure is
repeated N{2 times (where N is the number of individuals) [123].

• Fitness sharing lowers the reward for individuals that are very similar. It influences the
search space for crowded areas in terms of either phenotype or genotype. It seems that
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using phenotype comparison leads to more diverse results and costs fewer computation-time
[124].

• Sequential niching is done by lowering the reward in areas where a local optimum is found
so the search expands into other areas of the solution space [125][88].

• Population-based simulated annealing is based on simulated annealing which is taken from
the process of slowly cooling metals: a starting solution is calculated and a virtual temper-
ature determines the chance of moving to a newly generated solution. High temperatures
enable moving easily while a low temperature disables large jumps. Population-based sim-
ulated annealing [126] uses multiple solutions at the same time to minimize the influence
of the starting position or jumps to unfavorable solutions.

Novelty search

Instead of only using a fitness function that is related to the performance of an individual,
promoting novelty as well as incorporating local competition allows more difficult morphologies
to evolve [73]. Novelty search can lead to solutions with a high fitness value that otherwise would
have gone undiscovered because their ancestors had low fitness values. This can be achieved by
looking for novel solutions instead of high fitness. To quantify novelty, difference in properties
(e.g. behavior) or in individuals are described [127] [128].

This section can be concluded by stating that using a GA has potential in creating technical
systems with different multiple working principles for a mechanical engineering function when a
suitable representation is chosen. By evolving a neural network that is capable of expressing a
3D-shape, a low dependency between representation and function is observed. CPPN-NEAT is
suitable for this purpose and has been used in the generation of soft robots which show relevant
results but do not comply with the demands for a technical system.

2.4 Conclusion

When CAI-tools are linked to corresponding DMs it becomes clear that no intuitive CAI-tools
exist that do not rely on user-generated solutions. CAI-tools that do generate solutions, use
introduced knowledge about working principles such as a database or a function specific rep-
resentation. Using evolutionary techniques, however, creativity can be observed in computers.
Measuring the output produced by a creative CAI-tool is important to validate the proposed
method. In addition to functional analysis, methods to describe working principles and variety
between concepts were presented. To avoid the introduction of knowledge on working principles
into the CAI-tool, CPPN-NEAT can be used. A GA is used to evolve NNs that produce 3D
shapes. Even though the work of Cheney et al. [2] is in the direction of the result that is sought
after in this research, the approach and perspective are different. While their focus lies on soft
robots and has foundations in the biological field, the approach in this research is from an en-
gineering design viewpoint that results in mechanical engineering functions, performing actions
on its environment possibly with multiple parts involved. Another difference is the threshold
in functionality which is seen in most mechanical engineering solutions. This leads to different
requirements for the outcomes that were generated by CPPNs evolved earlier with the NEAT
algorithm.
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A method for the CAI-tool and its proof of concept (PoC) and also a method for validation
will be introduced which is based on quantifying the variety of different concepts based on their
working principles.

3.1 Quantifying variety in working principles

Shah, Kulkarni, and Vargas-Hernandez’ method [71] to rate variety between concepts is extended
using C&CM. Their scoring is follows:

Score Description of idea
10 Ideas use different physical principle.
7 Same physical principle, different working principle.
4 Same working principle, different embodiment.
1 Same embodiment, different detail.

Just the classification of this rating is used to make the distinction between different artifacts
and their variety.
The physical principle used by a solution to fulfill a mechanical engineering function can be
determined unambiguously (using Table 3.1 or A.3). However, distinguishing different working
principles without a method leaves room for personal interpretation. Therefore it is proposed to
use the C&CM to identify differences in working principle between two solutions. Across WSs,
energy transfers are described in terms of flows as done by Albers and Schyr [129], of which
examples can be seen in Table 3.1. In addition to these descriptions of energy transfers, a graph
is made to show parts, connectors, WSPs, CSSs and connections between those. Flow is used as
a collective term for any energy, material or signal related term that crosses WSs such as an effort
or momentum. Not to be confused with some specific flows (e.g. linear velocity) as mentioned
in Table 3.1. A flow as is meant in the C&CM model, unless stated otherwise, can represent
any expression of the domain it represents (effort, flow, momentum, etc.). The C&CM does
not describe time-dependent properties well, therefore a dashed line is introduced to indicate
non-continuous flows (see Figure 3.2). Connections that have a negative impact on the total flow
are indicated with an arrow that points from the input WS to the output WS of another CSS.
To identify differences in working principle, the energy transfers and the associated graph are
compared. A different working principle is indicated by one or more of the following differences:
the number of parts, graph structure, graph elements, or difference in corresponding WSs or
CSSs in domain, displacement, effort or flow aspect. When two C&CM graphs show a different
number of replicates of a WSP, this is regarded as a difference in embodiment between the two
artifacts the graphs describe. Remaining differences, in the case that physical principle, working
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Power conjugate complements2nd class 3rd class Effort analogy Unit Flow analogy Unit Displacement Unit Momentum/
Carrier Unit

Electrical Electromotive force V Current A Charge C Flux linkage λ

Hydraulic Pressure Pa Volumetric flow m3{s Volume m3 Fluid momentum Γ

Magnetic Magnetomotive force A Magnetic flux rate V {s Magnetic flux V - -
Mechanical Rotational Torque N ¨m Angular velocity rad{s Rotation rad Angular momentum η

Mechanical Translational Force N Linear velocity m{s Displacement m Linear momentum p

Thermal Temperature difference K Entropy flow rate S{s Entropy S - -

Table 3.1. Some of the flow domains with associated effort, flow, displacement and carrier quantities
as used in the EMS as well as the C&CM method [1] [129].

principle, and embodiment are the same, are defined as details. These details could still lead to
a difference in the performance of an artifact.
For clarification, an example will be analyzed. Take the mechanical engineering problem which
should solve the function transmitting for the physical principle rotational, mechanical, energy
from location A to B, in opposite direction. Solutions for this problem include for instance a
gear transmission, but also a crossed belt transmission. These are shown in Figure 3.1.

Connector (in)

Connector (out)

WS1

WS4

WS2

CSS1

CSS2
WS3

WSP1

Connector (in)

WS1

CSS1
WS2
WS3

WS9

WS10

Connector (out)
WS6

CSS2

WS8

WS7
WS5
WS4

CSS3

CSS4

Figure 3.1. Two solutions for the function transmitting for the physical principle rotational, me-
chanical, energy with different working principles: gear transmission (left) and a crossed belt
transmission (right).

Figures 3.3 and 3.4 with complementary Tables 3.2 and 3.3 show the working principles as
analyzed using the C&CM for both solutions. Figure 3.2 provides a legend of the used symbols.

Continuous flow

Non-continuous flow

Connector: in/output of flow to the system

Working surface

Figure 3.2. Legend for the C&CM graphs in this research.
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CSS1

Connector
WSP1 CSS2

Connector

x 15

WSP2

WS1 WS4

WS2 WS3

Gear 1 Gear 2

...

etc.

Figure 3.3. C&CM graph of the gears in Figure 3.1.

Working Surface Flow domain Displacement Effort Carrier
WS1,4 Rotational 1D Angle Torque Angular momentum
WS2,3 Translational 1D Position Normal force Linear momentum

Table 3.2. Description of WSs for the gear solution seen in Figure 3.3.

WSP1 WSP2

CSS1

WS1 WS2 WS3 WS4 WS5 WS6

WS9 WS8

Wheel 1 Wheel 2Belt

WS7
WS10

CSS2

ConnectorConnector
CSS3 CSS4

Figure 3.4. C&CM graph of the crossed belt transmission in Figure 3.1.

Working Surface Flow domain Displacement Effort Carrier
WS1,6 Rotational 1D Angle Torque Angular momentum
WS2´5,7´10 Translational 1D Position Friction force Linear momentum

Table 3.3. Description of WSs for the crossed belt solution seen in Figure 3.4

From the combination of the scheme and table, it can be seen that these two solutions have a
different graph: the number of parts and working surfaces connect different flows. This leads to
the conclusion that there is a difference in working principle.

The presented method will be used to manually identify the variety of concepts, generated by
the CAI-tool as validation of the proof of concept.
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3.2 CAI-tool

The proposed CAI-tool will be able to generate multiple solutions for a mechanical engineering
problem without foreknowledge of working principles. An overview of this method for a CAI-tool
is presented which will be validated by the proof of concept in Section 3.3.

The CAI-tool is based on the optimization of 3D-artifacts of which the fitness is determined by
an external simulation. User input related to functionality is restricted to these elements: the
function, the input flow, the output flow (all according to Hirtz et al. [1]) and for both input
and output flow, specific physical properties that are necessary to define the flow for the specific
problem (e.g. defined as effort or flow, location, orientation). See Figure 3.5 for a schematic
view. The addition of physical properties to flows, used in the functional basis by Hirtz et al.
[1], is necessary to describe the problem specific properties such as the location where a trans-
lation is applied, the input area through which some fluid enters or a direction on an applied
force. These user input elements are not directly used as input for the optimization but placed
in the simulation environment so that the creation of solutions by the optimization algorithm is
not influenced by knowledge about the problem. The relation between input and output of the
mechanical engineering problem is described by the function. The objective function describes
how well a solution is able to convert input to output flow according to the prescribed function.
In the simulation, the in- and output flow are measured by performing a simulation on each
solution. This measurement is provided to the optimization algorithm that records the fitness
for that particular individual.
The simulation can calculate the objective function by simulating the performance of each indi-
vidual. This is done by using only deep knowledge such as physical laws (see Section 2.1.4): no
knowledge on working principles is provided in any way, only laws of physics related to flows in
the mechanical engineering problem and available materials along with a shape representation.

Input flow
(Material, Signal or Energy)

+
Physical properties of flow

Mechanical
engineering
function

User input: mechanical engineering problem

Laws of physics

Shape representation
+

Materials

Simulation

Optimizer

Mechanical engineering solutions

Objective

Output flow
(Material, Signal or Energy)

+
Physical properties of flow

Artifact(s)

Fitness value(s)

Function, input and output flow are
defined by the user as input
of the CAI-tool.

The mechanical engineering function is
converted to an objective function
that quantifies how well the input flow is
conveyed to the output flow.

By simulating artifacts, their fitness
is determined according to
the objective function

The laws of physics included in
the simulation determine the solution space
in terms of engineering disciplines.

Artifacts are optimized by altering
their shape and attributed materials
in attempts to increase their fitness.

After stop conditions are met,
multiple mechanical engineering solutions
with different working principles are
presented by the proposed CAI-tool.

Figure 3.5. Schematic view of the proposed CAI-tool. The blue box indicates the user input,
based on the functional basis by Hirtz et al. [1], other elements are part of the CAI-tool where grey
elements represent software.
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By detaching user input from the optimization no working principles or foreknowledge about
simulation outcome are introduced. Instead, user input on flows and physical properties thereof
are included in the simulation. The objective function links the user input function to the
optimization by giving feedback on fulfillment of the function in the form of a fitness value.

For clarification, the mechanical engineering problem transmitting mechanical rotational energy
is entered in the scheme for the CAI-tool (see Figure 3.6). For example, the two solutions seen
in Figure 3.1 are possible solutions to this problem.

Input flow
(Mechanical rotational energy)

+
Magnitude, location and orientation

Function:
Transmitting

User input: mechanical engineering problem, rotational energy transmission

Simulation

Output flow
(Mechanical rotational energy)

+
Location and orientation

Objective:
How much of input flow

is transmitted to
output flow

Figure 3.6. Example of the mechanical engineering problem transmitting mechanical rotational
energy in the schematic view of the proposed CAI-tool.

To prove that this method for a CAI-tool leads to multiple working principles, it is proposed to
develop a software implementation of this CAI-tool as a proof of concept.

3.3 Software development for a proof of concept

A proof of concept will be made based on Evosoro, software made by Cheney et al. [2]. Instead
of generating soft robots, the software will be adapted to be the implementation of the afore-
mentioned method for a CAI-tool. This will be used to solve a mechanical engineering problem
of which the output will be manually analyzed using the previously described method presented
in Section 3.1.

3.3.1 Demands for a successful proof of concept

To determine whether the PoC is successful and the desired goal is reached, the following demands
are determined that have to be met:

• The mechanical engineering problem will need to be described by one function and an
input- and output flow, as is prescribed by the CAI-tool (Figure 3.5).

• Any basic element used to build artifacts in the proof of concept should, in itself, not fulfill
a function that is sought in the mechanical engineering problem that is to be solved.
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• The proof of concept will be successful when at least two solutions for the entered mechan-
ical engineering problem, that have different working principles, are produced in one run.
When just one working principle is found, this could just be because that one is by far
the best performing working principle and the software works well. However, it cannot be
eliminated in that situation that it is because user input or software parameters already
implicated this working principle for this problem resulted in a predetermined solution.
Therefore an outcome with multiple working principles is required for this proof.

3.3.2 Evosoro

The version of Evosoro that was used by Cheney et al. [2] is used as a basis in this proof of
concept. Soft robots consisting of voxels of four different materials (hard, soft, contracting, and
expanding) are optimized using an objective function that refers to the displacement of the robot,
in combination with an objective of low age and a low number of voxels. The age of an individual
starts with zero at its initial generation and is increased for every generation it survives. Figure
3.7 shows some of the soft robots that are generated by this version of Evosoro.

Figure 3.7. Time series of various walking soft robots that were generated using Evosoro [2].
Red: expanding then contracting voxels, green: contracting then expanding voxels, light blue: low
stiffness voxels, dark blue: high stiffness voxels.

This version is used as a basis to make the software for the proof of concept for this research, by
adding or changing the elements of Evosoro, as shown in Table 3.4.
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Evosoro Change in parameter values Addition to/change in code
Boundary conditions Changing temperature Allowed DOFs, applied moments -

Selection methods Pareto, pareto tournament -
Pareto diversifying
ancestry, pareto reset,
simulated annealing

Simulation sensor Voxel movement - Voxel rotation

Materials Expanding, contracting, soft, hard Soft, hard,
rotation measurement label -

Valid individuals
Minimum percentage expanding or
contracting voxels, minimum
number of voxels

Minimum number of voxels -

Environmental temperature Changing with time Constant -
Simulation settings - see experiments -
Objective functions - see experiments see experiments
Population properties - see experiments -
Number of objects in
one individual Reduced to one - Multiple objects allowed

Table 3.4. Changes and additions to Evosoro code

Other parts of Evosoro will remain unchanged for this proof of concept. For clarity, an overview
and relevant elements of the program will be summarized here, including the aforementioned
additions and changes.

Overview of the code

For every run, Evosoro will execute the following steps to generate solutions. References are
made to the elements of the proposed CAI-tool (see Figure 3.5 on page 42) in italics:

1. At the start of the optimization, an initial population is generated through the random
generation of a single CPPN per individual. This is done in the optimizer seen in Figure
3.5, where the CPPN is the shape representation. Materials are determined by the CPPN
as well.

2. Every individual, converted to voxels, (now an artifact) is simulated in Voxelyze, the
simulation. Doing this, the objective functions are evaluated to determine the fitness values,
which are then saved in an output file. When individuals have already been previously
simulated, cached values are retrieved. Crashing simulations are restarted but given up on
after a predetermined amount of time.

3. The population is sorted according to fitness (in the optimizer).

4. A selection is made (in the optimizer) to populate the next generation. Also, statistics of
the old population are saved at this moment. If a new optimum is found, a copy of this
individual is saved in a separate folder.

5. Age is increased by one for every individual and the population is doubled by adding a
mutated copy of each individual.

6. A number of new randomly generated individuals are added to the population with age
zero. Now, the steps 2-6 above are repeated until stop conditions are reached.

The individuals that perform best (presented as mechanical engineering solutions) are visually
inspected during, or after the run using VoxCAD. VoxCAD is the graphical user interface (GUI)
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used with Voxelyze, see 3.3.2.

Generate population (Pop) with n random individuals;
while (stopping criterion not satisfied) do

evaluate fitness of each new individual in Pop;
sort Pop according to fitness values;
while (|Pop|< n) do

add Pi to Popnew using some selection method;
end
replace Pop with Popnew;
increase age of every Pi;
duplicate population Pop to Popclone;
for (i in Popclone) do

mutate(Pi);
end
add m random individuals to Pop;
add Popclone to Pop;

end

Algorithm 2: Pseudo-code for a Evosoro. With Pop: population, n: number of indi-
viduals, m: number of random individuals, Popnew: new population, Pi: individual i in
population Pop.

Representation of individuals

An individual has a genotype: the CPPN, which represents the artifact made from voxels as
described in Section 2.3.1. The input nodes for each CPPN are the x, y and z location as well
as the distance to the center d. The output nodes define the existence of voxels and the type
of material they are made of. This is done by enabling dependency between output nodes, e.g.
the node that determines the material type is dependent on the node that determines voxel
existence. The function in a node can be either one of these functions: p`{´q|x|, p`{´q?x,
p`{´qa|x|, Sinpxq. An individual is initialized with each input attached to each output after
which a mutation is performed.
Filters can be applied or changes can be made to the phenotypes themselves as well. In the
original Evosoro script, only the largest continuous object is kept. This function is disabled
in the software so that multiple objects can exist. Voxels can be placed in set positions for
each individual as well. All filters or changes after genotype expression are not incorporated or
converted back into the genotype however and have to be applied to every individual.

Simulation environment

Voxelyze [130] is used to simulate the behaviour of artifacts to determine the fitness and other
properties of each individual. Voxelyze is able to model statics, dynamics and non-linear defor-
mation of heterogeneous (soft)bodies in a computing time-efficient way. A VXA-file (VoxCAD
Analysis) is used as input for Voxelyze, after which a txt-file is produced as output with relevant
data such as the obtained fitness value. Material parameters that can be adjusted in Voxelyze
are the following:

• Name
• Color
• Stiffness
• Poisson’s ratio, set at 0.35 [2]
• Density
• Coefficient of thermal expansion, set at 0 so no thermal expansion can occur.
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• Static friction coefficient, set at 1 [2]
• Dynamic friction coefficient, set at 0.5 [2]

Other relevant parameters that can be adjusted in Voxelyze are:
• Material stiffness model (linear, with failure or from a data set. Linear is used.)
• Initiation time after which measurements start.
• Stopping condition for a simulation (e.g. number of time steps, equilibrium or simulated

time)
• Voxel edge size. This is set at 10 mm [2].
• Collision horizon. This determines the distance between voxels where collisions are de-

tected, which is set at 2 [2].
• Existence of a floor, this prohibits voxels to move beyond z ă 0.
• Bond damping, set at 1 [2].
• Collision damping, which is set at 0.8 [2].
• Ground damping, always set at 0.1 [2].

Boundary conditions (force, moment or displacement) can be added as well on specific locations
or volumes. The size of the time step for the simulation is determined automatically by the
highest occurring eigenfrequency in the object(s).
Measuring displacement of a voxel, or an average of all voxels of the same material, is done by
recording the position at the initiation time and at the end of the simulation. Measuring relative
rotation (to the environment) is done in the same manner but absolute, or total, rotation is
measured by adding the number of total rotations during the simulation. These are recorded
separately during the simulation by monitoring the angle for a change from 0 to 2{π or vice
versa, at which moment an additional rotation is recorded.

Selection methods

Selecting individuals for populating the next generation is done by using the following techniques:

• Pareto selection: this is determined for each individual by how many other individuals
they dominate (perform equal or better for all objectives and better for at least one ob-
jective). Similar scoring individuals are grouped in pareto levels. Within a pareto level,
the individuals are sorted according to the objective functions, starting with the one with
lowest importance and ending with the objective that determines fitness. First, it is tried
to fit a complete level in the new population, starting with the highest level. When limited
places are available, individuals with higher fitness have a larger chance of entering the
new population.

• Pareto tournament selection: two random individuals are picked and the dominating indi-
vidual enters the new population.

Newly added selection methods:

• Population-based simulated annealing, as described in Section 2.3.2: based on regular sim-
ulated annealing, a virtual temperature is decreased from the start of the first generation,
to be at its lowest point at the final generation. The temperature (see Equation 3.2) in-
fluences the chance better individuals have to make it to the next generation, when the
temperature is low, individuals with a high fitness have a high chance to survive. Individu-
als are copied to the new generation randomly using a beta-distribution (see Equation 3.1)
until the population size is reached.

nindividual “ Bpα, βq ¨ Popbuffer´size (3.1)

Equation beta-distribution B. α “ 1 see Equation 3.2 for β.
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β “ Tannealing “ a ¨Gen
Genmax

` b (3.2)

Equation for annealing temperature. Gen: generation number, Genmax: final gener-
ation number, a: total decrease of annealing temperature, and b: onset temperature,
equal beta-distribution for b “ 1.

• Diversifying ancestry: a newly introduced method, individuals are selected starting with
the highest fitness but their similarity to individuals in the new population is checked. If
an individual has an overlap of more than a certain amount of ancestors with more than a
certain amount of individuals in the new population, it is rejected. This selection method
promotes diversity.

• Pareto selection with reset: introduced in this research as well: at the moment that fitness
improvement stagnates (i.e. does not improve more than a set value) after a set number of
generation (see Equation 3.3), a reset is performed. The reset consists of the removal of the
individual with the highest fitness along with individuals that have an overlap of ancestry
to a certain degree with that individual. The deleted individuals are replaced by newly
generated individuals. This technique has a similar goal as the sequential niche technique
as described in Section 2.3.2: getting out of a local optimum.

gen
ÿ

gen´h

fgen ´ fgen´1
fgen´1

ă a (3.3)

Equation for reset condition a. f : fitness of best individual gen: current generation,
h: amount of generations to wait for reset.

Mutation

Mutation in NEAT is described in Section 2.3.1. One of the following actions is performed on
the CPPN as a mutation:

• Random node additions(10) and removals(0).
• Random link additions(10) and removals(5).
• Random functions to change (100).
• Random weight changes (100).

The value in brackets indicates the number of times this action is performed in the mutation
directly after the creation of a new individual. After each mutation, the phenotype is evaluated.
When the phenotype has not changed or an individual is produced that does not meet demands
to be valid, another mutation attempt is made. The maximum mutation attempts for one
individual is set at 1500. These demands for individuals can only be made about properties that
are derived from the phenotype without simulation, e.g. “allow no empty individuals” or “the
occurrence of material x needs to be above threshold y”.

Problem parameters

Parameters for general settings for the problem that determine the properties of the individuals,
population and the simulation:

• Individual size in voxels (x, y, z)
• Population size
• Random individuals to insert for each generation
• Maximum number of generations.
• The amount of time waiting for a simulation result before restarting it.
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• The maximum time for all the simulations in one generation to be finished, average per
individual.

• Maximum running time for the program.
• The seed that is used to generate numbers (using the same seed will result in exactly the

same run)

3.3.3 Problem selection

The function “Transmission of rotational mechanical energy acting on vertical line A, to parallel
positioned line B” will be taken as the mechanical engineering problem used in the proof of
concept. The problem is selected so that it meets the following demands: no trivial solution
can be reached in starting conditions of the software and at least two working principles can be
simulated by the used software (Voxelyze).
Converting this problem to an objective function will be done by using the method for conversions
of mechanical engineering problems to the input of a CAI-tool (see Section 3.2). This will be
executed in Section 4.1.

3.3.4 Method for analyzing results

To determine whether the proof of concept has met the requirements set in Section 3.3.1, solutions
in the ’best so far’ that perform the function well (with a fitness above a certain threshold) are
imported in VoxCAD and analyzed manually using the variety rating combined with the C&CM
as described in Section 3.1.
For voxel surfaces it is determined whether it can be seen as a WS and which WSP it is part
of. CSSs are described similarly but by groups of voxels that take part in connecting the same
flows. The voxels are colored to indicate to which connect and channel structure they belong.
This means that even voxels that are attached to one another can be analyzed as different parts.

The quality of a solution is determined by its fitness value. A distinction can be made between
non-working solutions resulting in a very low fitness value (fitness « 0) working solutions, with
a fitness value that reaches a set value after some time (fitness “ x) and finally continuously
working solutions, of which the fitness value keeps increasing over time (fitness “ x ¨ t).

3.3.5 Determining experimental runs

The experiments, i.e. each run of Evosoro, performed as part of the proof of concept are designed
heuristically. First, optimization parameter values are determined empirically, after which more
experiments are performed using these values.

Determining optimization parameter values

Comparative runs are done to determine values for parameters that influence simulation and
overall program computing time, solution variety (visual inspection) and solution quality (see
the method in the previous section). After determining parameters that influence program
computing time, these parameters are chosen so that faster runs can be done to explore the
influence of other parameters on the variety and quality of solutions.

Performing runs

Runs to determine optimization parameters that result in working solutions are explored further.
When more than one working principle is seen upon visual inspection of working solutions or
high fitness values are seen, the working principle is verified by using the method for determining
solution variety. The optimization parameters, as well as the optimization parameters that result
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in runs with a higher than average number of working solutions, are used to perform more runs.
In the runs with initially promising results, parameter values that result in more computer time-
consuming runs are used or more identical runs are performed using a different seed for random
values.

This iterative process is continued until satisfactory results are obtained: at least two solutions
within one run must solve the problem, where each makes use of a different working principle.
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Proof of concept

The proof of concept is split into three parts: the conversion of the mechanical engineering
problem to the set-up needed in Evosoro using the method for CAI-tools presented in Section
3.2, the different runs that were performed and, for each run, determining variety of the solutions
with the highest fitness, using the method from Section 3.1. The code as used in this research
can be found on https://github.com/DanielLinsc/evosoro.

The simulations in Voxelyze (C++) were performed in parallel on a cluster with four nodes, each
consisting of a Dell PowerEdge R610 with two 6-core 2.66 GHz Intel Xeon X5650 processors. The
optimization script (Python) itself, that generates the files which are then simulated in Voxelyze,
is run on another, additional, node with the same processors but this script does not make use
of multithreading.

4.1 Converting the problem to input values

The function Transmission from A to B of rotational mechanical energy from line A to rotational
mechanical energy at parallel positioned line B is taken as the mechanical engineering problem.
It is converted to the input elements of the CAI-tool:

• The orientation of input flow A is parallel to the orientation of output flow B but they do
not coincide.

• Input domain is rotational mechanical energy. This is provided by an effort: imposing a
moment as a boundary condition on A.

• The function is to channel-transfer transmit the flow from A to B.
• Output domain is also rotational mechanical energy, this is measured as the flow: average

angular velocity at B.
Measuring how well the function is performed is done by measuring how much flow at A (ro-
tational mechanical energy) is transmitted to B. Please note that remaining energy can stay in
the system in the form of kinetic or potential energy and the rest is dissipated through friction
or damping. The following parameters do not result in a change of problem definition but do
influence experiments. Values are varied between experiments.

• Location A is positioned around p0.5, 0.33q, always indicated with orange voxels.
• Location B is positioned around p0.5, 0.66q, indicated by yellow voxels.
• The moment imposed at A has different values for the experiments.
• The shape of A and B are not the same for each experiment.
• The density and elastic modulus of the soft light blue and hard dark blue voxels is

varied.
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Figure 4.1. Example of simulation environment, top view. A and B are marked by voxels on which
a moment is imposed and of which the rotation is measured, respectively.

4.2 Performed runs

The runs that produced relevant results are presented in this section, as well as some undesirable
results. More simple runs that require less computation time are shown first, after which param-
eters are changed that result in more time-consuming runs. As the objective, the rotation of A
and B in the similar or opposite direction is used. The main objective is always for B to turn
counterclockwise but the direction of the moment is switched in some runs. Additionally, two
minimizing objectives are added for the age of the individual as well as the number of voxels of
an individual. These were used in the original Evosoro as well. Minimizing age promotes novel
solutions over old ones and minimizing voxels avoids trivial large structures over smaller ones
[2]. Pareto selection (see Section 3.3.2) is used in most runs and includes these other objectives
to be able to sort the population in pareto levels.
As described in Section 3.3.5, parameters and settings for the runs are determined empirically.
Before elaborating on each run, an overview is given of the important discriminating elements
for each run:

Run A: a small run is performed, resulting in a single working principle.
Run B: large deformation is detected in simulation that is resolved in the next run.
Run C: the objective function is changed from measuring angle to total rotation.
Run D: a larger individual size is used and the moment at A is applied in the opposite

direction to the desired rotation at B. This run results in one continuous working
principle.

Run E: a second, softer, material is added. The moment is reversed, no continuous work-
ing principles are found.

Run F: simulated annealing is tried as a selection method.
Run G: same as run F, more random individuals inserted.
Run H: ancestor reset is tested as a selection method, the moment is applied in opposite

direction.
Run I: pareto reset selection method is used and three continuously working solutions

with different working principles are found.
Run J: individual size as well as population size are reduced and the run is performed ten

times with a different seed. Just one working principle for a continuously working
solution is found.

Run K: gravity is introduced laterally. One working principle for a continuously working
solution is found.

Run L: two input nodes that refer to the distance of A and B are used in the CPPN. Two
continuously working principles are found with a different working principle.

Run M: same as run L but a larger individual size is used.

The exact parameter values and settings used in each run are found in the corresponding section,
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but an overview can also be seen in Appendix A.5 in Table A.6 and A.7.

4.2.1 Run A

The first run is performed with just one material, a small population size (10) and a small
individual size (10,5,1). All parameter values can be seen in Table 4.1. A and B are each
applied to a set of three voxels which are present in each individual, as is shown in Figure 4.2.
The objective function that determines fitness in this experiment measures rotation of B voxels
relative to their environment, at the end of each simulation. This run was allowed to run for 5
minutes.

Figure 4.2. A and B are marked by voxels on which a moment is imposed and of which the rotation
is measured, respectively. The box indicates the maximum size of an individual.

Experiment A
Size (x,y,z) (10,5,1)
Population size 10
Random individuals 10
Number of generations 26
Initiation time 0.1 s
Simulation time 2 s
Hard material EpMPaq, ρp kg

m3 q 500, 1 ¨ 106

Soft material EpMPaq, ρp kg
m3 q -

A material EpMPaq, ρp kg
m3 q 500, 1 ¨ 106

B material EpMPaq, ρp kg
m3 q 5, 1 ¨ 106

Location of A (0.72,0.45,0)
Location of B (0.32,0.45,0)
Moment at A -100 Nm 	 	

Selection method Pareto
Computing time (h:m) 0:5

Table 4.1. Parameter values used in run A.

After five minutes this run was stopped. At this point 26 generations had been evaluated.
Individuals that showed a significant increase in fitness were evaluated manually. Not only the
objective function (angle of B) but also rotation and rotation velocity are included in Table 4.2.
Neither rotation nor rotation velocity was used as feedback for this run. Measurement of rotation
was implemented later but calculated for this run for the sake of completeness.
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Individual A1 A2 A3 A4
Generation 0 1 4 26
Fitness (Angle) 0 2.94 3.41 5.2
Rotation 0 2.94 3.41 17.75
Rotation velocity 0 -6.52 45.24 288.5
Age 0 1 0 17
No. voxels 50 13 27 11

Table 4.2. Four solutions generated in run A.

Figure 4.3. Phenotype output for individuals A1 to A4 (left to right).

Figure 4.4. Simulations for individuals A1 to A4 (left to right).

Analysis run A

Unrealistic behaviour of voxels in the simulation is seen: large deformations and voxels moving
through each other where collisions should have occurred. This will be solved in later runs. It
seems that the number of voxels is not correct but this can be blamed on the fact that this
measurement takes place before the introduction of the voxels indicating location A and B. This
introduction overwrites voxels belonging to the evolved individual that might be present in the
same spot.
Still, C&CM is used to analyze the two solutions with the highest fitness (highest angle): A3
and A4. The voxels are colored to indicate to which connect and support structure they belong.
Figure 4.5 shows two situations that define the working principle for solution A3.

Figure 4.5. Coloring used in the analysis of A3. Left: coupling of rotation can be seen. Right: the
red part makes contact with the green part, which has a negative impact on the function (i.e. flow
in the opposite direction).

The analysis is shown in Figure 4.6 with specifications for the flows that cross the WSs in Table
4.3. Angular momentum and torque is converted to linear momentum, angular momentum, force
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and torque, while a non-continuous negative effect can be seen as collisions take place between
WS8 and WS9.

WS1
WS2 WS5 WS6

CSS
Connector

Connector

CSS

WS9 W10
CSS

WS7

CSS

WS3

CSS

WS4

WS8

Figure 4.6. Graph analysis using the C&CM for solution A3. Colors represent the voxels seen in
Figure 4.5

WS Flow domain Displacement Effort Carrier
WS1,6 Rotational 1D Angle Torque Angular momentum

WS2´5,7´10 Mechanical 3D Position,
Angle Internal force, Torque Linear &

angular momentum (3D)

Table 4.3. Description of WS flows in Figure 4.6.

The analysis for solution A4 is shown in Figure 4.8. Specifications for the flows that cross the
WSs and are stored in the CSSs can be seen in Table 4.4 and 4.5. Torque is converted to linear
and angular velocity which is again stored as potential energy. The potential energy is stored
and released in CSSd, as can be seen in Figure 4.7. CSSa also stores a high amount of potential
energy, but since no work is performed in relation to the storage, this is not shown in the graph.
Both CSSb and CSSe store kinetic energy.

This C&CM analysis leads to the conclusion that many differences exist between the working
principles of solution A3 and A4.

Figure 4.7. Solution A4 with colors used in the analysis (left). Potential energy shown (right):
blue-red equals low-high values.
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WS1
WS2 WS3

WS9 WS10

a d
b

Connector
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WS4 WS5
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CSS
Connector
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Figure 4.8. Graph analysis using the C&CM for solution A4. Colors represent the voxels seen in
Figure 4.7.

WS Flow domain Displacement Effort Carrier
WS1´3,6,9´12 Rotational 1D Angle Torque Angular momentum

WS4,5,7,8 Mechanical 3D Position, Angle Internal force,
Torque Linear & angular momentum (3D)

Table 4.4. Description of WS flows in Figure 4.8.

CSS Flow domain Energy storage
CSSb,c Mechanical 3D Kinetic energy
CSSc Mechanical 3D Potential energy

Table 4.5. Description of CSSs in Figure 4.8.

4.2.2 Run B

Even though just a single working principle was seen, run A showed an increase of fitness over
the course of the generations. This run is repeated but with a larger population and for more
generations.
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Experiment B
Size (x,y,z) (10,5,1)
Population size 200
Random individuals 2
Number of generations 1000
Initiation time 0.1 s
Simulation time 2 s
Hard material EpMPaq, ρp kg

m3 q 500, 1 ¨ 106

Soft material EpMPaq, ρp kg
m3 q -

A material EpMPaq, ρp kg
m3 q 500, 1 ¨ 106

B material EpMPaq, ρp kg
m3 q 5, 1 ¨ 106

Location of A (0.72,0.45,0)
Location of B (0.32,0.45,0)
Moment at A -100 Nm 	 	

Selection method Pareto
Computing time (h:m) 4:24

Table 4.6. Parameter values used in run B.

Figure 4.9. Phenotype output for individuals B1 to B4 (left to right).

Individual B1 B2 B3 B4
Generation 0 3 433 679
Fitness (Angle) 0.09 9.94 11.96 11.99
Rotation 0.09 35.08 -3.11 -151.4
Rotation velocity 0 0 0 -131.0
Age 0 3 276 220
No. voxels 18 8 10 11

Table 4.7. Four solutions generated in run B.

Analysis run B

Even without a C&CM analysis, visual inspection of solutions B3 and B4 shows that even though
a high fitness was allocated to these individuals, rotation at output flow location (yellow voxels)
is clockwise. Even though a positive counter-clockwise rotation is used to determine fitness, the
opposite seems to be achieved while the fitness value does not reveal this.
A closer look shows that at the moment the stop condition (simulation time = 2s) is reached,
a nearly complete rotation is reached. Further inspection of Voxelyze code reveals that instead
of 2 ¨ π as maximum absolute rotation, rotation is measured from ´2 ¨ π to 2 ¨ π which is equal
to two complete rotations. This explains why fitness values approach this value as generations
progress and after individual B4, no fitter individual is found: the objective function measures
the angle relative to the origin which can not exceed two rotations: 4 ¨ π.
Just as in run A, unrealistic behaviour of voxels in the simulation is seen: large deformations
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and voxels moving through each other. Both of these problems are addressed in later runs.

4.2.3 Run C

It is hypothesized that by replacing the previously used angle measurement by a measurement
of rotation as objective function, the problem of a maximum measurable angle, encountered in
run B, is avoided.
Other values for the combination of material parameters and applied moment are determined
empirically. This is done so that very large deformations do not occur in the simulations. A
lower moment is applied at A and all materials are adjusted to have the same (lower) density and
(higher) elasticity. This combination causes the voxels to move faster which allows the simulation
time to be diminished.
Instead of three voxels, only one central voxel is used on location A and B to apply the moment
and measure rotation, respectively. Figure 4.1 shows a top view of the shape of these voxels for
every following run. This leaves more room for evolvable voxels.

Experiment C
Size (x,y,z) (10,5,1)
Population size 50
Random individuals 2
Number of generations 140
Initiation time 0.01 s
Simulation time 0.2 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 105

Soft material EpMPaq, ρp kg
m3 q -

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.72,0.45,0)
Location of B (0.32,0.45,0)
Moment at A -5 Nm 	 	

Selection method Pareto
Computing time (h:m) 0:20

Table 4.8. Parameter values used in run C

Figure 4.10. Phenotype output for individuals C1 to C4 (left to right).

Individual C1 C2 C3 C4
Generation 4 5 85 97
Fitness (Rotation) 0.22 1.37 2.50 3.00
Rotation velocity 0 0 0 288
Age 4 5 2 14
No. voxels 12 18 28 25

Table 4.9. Four solutions generated in run C.
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Figure 4.11. Simulations for individuals C1 to C4 (left to right).

Analysis run C

No continuous working solution was found. All working principles of individuals are the same,
see the C&CM analysis in Figure 4.12 and Table 4.10.
In solution C4 some voxels appear that are not connected to any moving part. Re-running
solution C4 without these seemingly non-functional voxels results in a fitness value (rotation) of
3.03 which is very close to the original value of 3.00. This indicates that even though these voxels
form a part that does not increase functionality, its existence is compatible with the complete
solution C4, quite similar to vestigial features seen in nature.

WS Flow domain Displacement Effort Carrier
WS1,6 Rotational 1D Angle Torque Angular momentum

WS3´5 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.10. Description of WS flows in Figure 4.12.

WS1
WS2 WS5 WS6

CSS
Connector

Connector

CSS

WS3

CSS

WS4

Figure 4.12. Graph analysis using the C&CM for solution C1-4. Colors represent the voxels seen
in Figure 4.11.

4.2.4 Run D

To allow more intricate solutions to form, the allowable individual size is increased in this run.
The direction of the moment is also reversed and locations of A and B are adapted to the location
of the centre of the voxels. This will be done in the following runs as well.
The error in rotation conversion discovered in run B is corrected so that 2¨π resembles a complete
rotation instead of 4 ¨ π.
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Experiment D
Size (x,y,z) (20,11,1)
Population size 250
Random individuals 20
Number of generations 3000
Initiation time 0.01 s
Simulation time 1 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q -

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.47,0)
Location of B (0.31,0.47,0)
Moment at A 0.5 Nm 	 �

Selection method Pareto
Computing time (h:m) 224:03

Table 4.11. Parameter values used in run D

Figure 4.13. Phenotype output for individuals D1 to D5 (left to right).

Individual D1 D2 D3 D4 D5
Generation 0 828 964 2789 1970
Fitness (Rotation) 0.01 4.79 6.08 6.77 2.65
Rotation velocity 0 15.67 0 45.82 24.89
Age 0 309 445 2270 1142
No. voxels 47 31 29 24 94

Table 4.12. Five solutions generated in run D.

Figure 4.14. Simulations for individuals D1 to D5 (left to right).
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Figure 4.15. Fitness and age for the best individual over the course of generations for run D.

Analysis run D

Multiple working principles are seen in the solutions. Solution D1 to D4 are selected because
they represented a large increase in fitness. Solution D5 however, was selected randomly from
the working solutions (with fitness ą 0) and shows a different working principle from the other
solutions.
First solution D1 is analyzed, as seen in Table 4.13 and Figure 4.16.

WS Flow domain Displacement Effort Carrier
WS1,6 Rotational 1D Angle Torque Angular momentum

WS3´5 Mechanical 3D Angle, position Internal Force,
Torque Linear & angular momentum (3D)

Table 4.13. Description of WS flows in Figure 4.16.

WS1
WS2 WS5 WS6

CSS
Connector

Connector

CSS

WS3

CSS

WS4

Figure 4.16. Graph analysis using the C&CM for solution D1. Colors represent the voxels seen in
Figure 4.14.

Solution D2 is analyzed (see Table 4.14, Figure 4.17 and 4.18) and shows a different working
principle than solution D1. WS4 andWS5 are duplicated because they are connected at different
moments and different locations but still convey the same flow (mechanical 3D) and use the same
CSS. Grey voxels are non-functional and not taken into account in the C&CM analysis.

WS Flow domain Displacement Effort Carrier
WS1,14 Rotational 1D Angle Torque Angular momentum

WS4´8,4B,5B Mechanical 3D Angle, position Force, Torque Linear &
angular momentum (3D)

WS2,3,9´13 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.14. Description of WS flows in Figure 4.18 for solution D2.
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Figure 4.17. Solution D2, voxel coloring as it is used in Figure 4.18 to indicate parts. Grey voxels
are not functional.
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WS4B WS5B

Figure 4.18. Graph analysis using the C&CM for solution D2. Colors represent the voxels as seen
in Figure 4.17. Black boxes separate the parts that are connected to flow input A and flow output
B.

Solution D3 and D4 are analyzed as well (see Table 4.15, Figure 4.19, 4.20 and 4.21) which
results in a highly similar graph resembling solution D2 (Figure 4.18) with only a duplication of
WS4 and WS5 left out. This duplication makes solution D2 a different embodiment of the same
working principle as solutions D3 and D4, that have the same working principle and embodiment
with only different details.

WS Flow domain Displacement Effort Carrier
WS1,14 Rotational 1D Angle Torque Angular momentum
WS4´8 Mechanical 3D Angle, position Force Linear momentum (3D)

WS2,3,9´13 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.15. Description of WS flows in Figure 4.21 for solutions D3 and D4.
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Figure 4.19. Solution D3, voxel coloring as it is used in Figure 4.21 to indicate parts. Grey voxels
are not functional.

Figure 4.20. Solution D4, voxel coloring as it is used in Figure 4.21 to indicate parts. Grey voxels
are not functional.
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Figure 4.21. Graph analysis using the C&CM for solution D3 and D4. Colors represent the voxels
as seen in Figure 4.19 and 4.20. Black boxes separate the parts that are connected to flow input
A and flow output B.

Solution D5 is analyzed as well (see Table 4.16, Figure 4.22 and 4.23) which shows that it
is a different working principle from the other solutions: an extra part is in place and other
connections are present in the graph. Note the connection of WS6 to WS10 that indicates a
counter productive flow, this is caused by the collision of the red and blue parts while moving in
opposite direction.
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WS Flow domain Displacement Effort Carrier
WS1,14 Rotational 1D Angle Torque Angular momentum
WS4´10 Mechanical 3D Angle, position Force Linear momentum (3D)

WS2,3,10B´13 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.16. Description of WS flows in Figure 4.23 for solution D5.

Figure 4.22. Solution D5, voxel coloring as it is used in Figure 4.23 to indicate parts.
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Figure 4.23. Graph analysis using the C&CM for solution D5. Colors represent the voxels as seen
in Figure 4.22. Black boxes separate the parts that are connected to flow input A and flow output
B.

Even though a large number of generations is evaluated, no new working principle is found
after D2, just a different embodiment (D2, D3 and D4) and different details within the same
working principle (D3 and D4). Figure 4.15 shows that the increase of fitness gets lower over
time. Considering the fact that D5 has a different working principle but has no high fitness, it is
hypothesized that the current approach leads to local optima. The increasing age is an indication
as well that no new solutions are evolved into new best solutions.
This possibly means that solutions with new working principles but a lower-than-best fitness are
discarded from the population without allowing them to evolve to a better fitness. In later runs,
other selection methods will be evaluated to get out of these local optima.
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4.2.5 Run E

An extra material is added in this run, that has a lower stiffness than the other, previously
used one, see Table 4.17. This should allow further bending of voxels to be able to make other
movements that were not possible in previous runs. The solution size is increased twofold but
to accommodate for extra simulation time, the population size is reduced. The direction of the
moment is reversed again, similar to run A, B and C.
The results for this run can be seen in Figure 4.24 where progressing fitness and age of the best
individual in the population is shown and Figure 4.25 and 4.26 where a selection of individuals
are seen.

Experiment E
Size (x,y,z) (20,11,2)
Population size 30
Random individuals 6
Number of generations 4500
Initiation time 0.01 s
Simulation time 1 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q 5, 1 ¨ 103

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.47,0)
Location of B (0.31,0.47,0)
Moment at A -0.5 Nm 	 	

Selection method Pareto
Computing time (h:m) 378:19

Table 4.17. Parameter values used in run E.

Individual E1 E2 E3 E4 E5
Generation 191 834 2810 3737 3955
Fitness (Rotation) 1.161 1.364 1.737 1.652 2.39
Age 58 771 2156 1267 55
No. voxels 114 54 65 67 67

Table 4.18. Five solutions generated in run E.
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Figure 4.24. Fitness and age of the best individual over the course of generations for run E.

Figure 4.25. Individuals E1 to E5 (left to right).

Figure 4.26. Simulations for individuals E1 to E5 (left to right).

Analysis run E

No continuous working principle is found after 5000 generations. However, three different working
principles can be distinguished as can be seen below: E1, E2 and E3, E4, E5 each have a different
working principle.
The first one is a direct connection from input to output.

WS1
WS2 WS5 WS6

Connector WS3

CSS

WS4

CSS
Connector

CSS

Figure 4.27. Graph analysis using the C&CM for solution E1. Colors represent the voxels as seen
in Figure 4.26 .
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WS Flow domain Displacement Effort Carrier
WS1,6 Rotational 1D Angle Torque Angular momentum

WS3´5 Mechanical 3D Angle, position Internal force, Torque Linear &
angular momentum (3D)

Table 4.19. Description of WS flows in Figure 4.27.

Solution E2 has a part that pushes against a, separate, second part that connects to the output.

Figure 4.28. Solution E2, voxel coloring as it is used in Figure 4.29 to indicate parts.
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Figure 4.29. Graph analysis using the C&CM for solution E2. Colors represent the voxels as seen
in Figure 4.28. Black boxes separate the parts that are connected to flow input A and flow output
B.

WS Flow domain Displacement Effort Carrier
WS1,8 Rotational 1D Angle Torque Angular momentum
WS2,3,6,7 Mechanical 3D Angle, position Force Linear momentum (3D)

WS4,5 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.20. Description of WS flows in Figure 4.29 for solution E2.

Solution E3, E4 and E5 all have one part, just as solution E1, but two additional CSSs are
identified that help the artifact to wind itself. This analysis for E3 through E5 can be seen in
Figure 4.33 and Table 4.21.

Figure 4.30. Solution E3, voxel coloring as it is used in Figure 4.33 to indicate parts.
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Figure 4.31. Solution E4, voxel coloring as it is used in Figure 4.33 to indicate parts.

Figure 4.32. Solution E5, voxel coloring as it is used in Figure 4.33 to indicate parts.
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Figure 4.33. Graph analysis using the C&CM for solution E3 through E5. Colors represent the
voxels as seen in Figure 4.30 for E3, 4.31 for E4 and 4.32 for E5.

WS Flow domain Displacement Effort Carrier
WS1,10 Rotational 1D Angle Torque Angular momentum
WS2´5,8,9 Mechanical 3D Angle, position Force Linear momentum (3D)

WS6,7 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.21. Description of WS flows in Figure 4.33 for solution E3 through E5.

As seen in Figure 4.24, large (ą 1500 generations) periods are seen where no or little (ă 1%)
increase in fitness is seen, just like in run D. The age of the fittest individual does drop in higher
generations which indicates that the best individual at that point has evolved from another
individual. This can also be seen upon visual inspection of the solutions (see Figure 4.25):
differences in the embodiment of the solutions are present. Other selection methods will be tried
to artificially promote this diversity.

A difference in artifact behavior is seen between simulation for similar solutions on the server
and desktop. The discrepancy between those indicated a flaw which is caused by the correction
of rotation conversion done in run C, which was not implemented on the desktop. To ensure
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correct simulations in Voxelyze, the correction is undone for later runs: two complete rotations
are again defined as 4 ¨ π.

4.2.6 Run F

This run will explore another selection method, one that is adapted from simulated annealing.
The algorithm used was introduced in Section 3.3.2. See also Equation 3.2 and 3.1. For this run
b “ 6 and the maximum generation in the simulated annealing calculation is taken at 1000 (note
that this does not correspond to the actual maximum generation). The selection probability of
the first and last generation can be seen in Figure 4.34.
To speed up the run, next to the maximum time of 1s, an additional stopping condition is added:
when voxel movement per time step is lower than 5 ¨ 10´8mm, the simulation is stopped as well.
Other parameters for this run can be found in Table 4.22.
Five individuals with a high fitness are selected and shown in Figure 4.35 and 4.36 with corre-
sponding properties seen in Table 4.23.
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Figure 4.34. Relative probability of an individual to be selected for the next generation at gener-
ation 0 (left) and 1450 (right).
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Experiment F
Size (x,y,z) (20,11,1)
Population size 250
Random individuals 20
Number of generations 1450
Initiation time 0.01 s
Simulation time 1s or no motion
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q -

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.5,0)
Location of B (0.33,0.5,0)
Moment at A 0.5 Nm 	 �

Selection method Simulated Annealing
Computing time F2(h:m) 27:28

Table 4.22. Parameter values used in run F, changes compared to run D highlighted.

Individual F1 F2 F3 F4 F5
Generation 46 1327 1373 1376 1440
Fitness (Rotation) 1.975 3.812 5.898 7.577 7.445
Age 10 275 321 324 388
No. voxels 40 85 92 108 90

Table 4.23. Five solutions generated in run F1.

Figure 4.35. Solutions F1 to F5 (left to right).

Figure 4.36. Simulations of solutions F11 to F15 (left to right).
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Figure 4.37. Increasing fitness over the course of generations for run F1.

Analysis run F

No continuous working principle was found in this run. Unlike solution F1, solutions F2 to 5 all
have the same working principle as solution D5 (see Figure 4.23 and Table 4.16). The influence
of the simulated annealing selection method can be seen in Figure 4.37, a sudden increase in
fitness is seen after generation 1000. This can be explained by an error in the calculation of
annealing temperature, instead of a float, an integer was used so the annealing temperature was
kept constant during generations 0 to 1000. This run is repeated without this error. This run is
included for illustrative purposes since a high fitness is reached.

Analysis rerun F2

Older individuals dominate the higher generations in rerun F2 as can be seen in Figure 4.38.
This possibly indicates that a local optimum was entered in an early generation. In run F2,
the best individual is not better than the one in run F1. The sudden increase in fitness in that
(erroneous) run happens, after 1000 generations of completely random selection, when suddenly
a strict selection for higher fitness is performed. This leads to the conclusion that this method
of simulated annealing is highly dependent on the state of the population at the moment the
annealing temperature increases. In the next run, some parameters are adjusted in an attempt
to get a more gradual increase of fitness.
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Figure 4.38. Fitness and age of the best individual over the course of generations for run F2.
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4.2.7 Run G

Continuing with the same simulated annealing selection method, run G is performed with a
larger influx of random individuals in each generation, see Table 4.24. It is hypothesized that
this will result in less reductions to a low fitness of the best individual, because more individuals
are deleted from the population and the randomly added individuals usually have a low fitness,
so the chance of higher fitness individuals remaining increases. This should result in a more
gradual increase of fitness.
In this experiment, the moment is applied in the same direction as the objective rotation, the soft
material is added again but, erroneously, with a higher density. The simulation floor is disabled
as well to allow solutions to move in more directions. The data about the individuals with a
jump in fitness are seen in Table 4.25, their phenotype in Figure 4.40 and the fitness over the
course of generations in this run can be seen in Figure 4.39.

Experiment G
Size (x,y,z) (20,11,2)
Population size 200
Random individuals 200
Number of generations 1000
Initiation time 0.01 s
Simulation time 1s or no motion
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q 5, 1 ¨ 106

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.5,0)
Location of B (0.33,0.5,0)
Moment at A -0.5 Nm 	 	

Selection method Simulated Annealing
Computing time (h:m) 60:19

Table 4.24. Parameter values used in run G, changes compared to run F highlighted.

Individual G1 G2 G3 G4 G5
Generation 366 580 620 850 1000
Fitness (Rotation) 0.767 1.177 0.286 2.273 1.443
Age 13 20 12 142 292
No. voxels 245 36 166 24 10

Table 4.25. Five solutions generated in run G.
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Figure 4.39. Increasing fitness over the course of generations for run G.

Analysis run G

More higher performing individuals are kept in this run which resulted in a more gradual increase
of fitness, as hypothesized. Often, still the best individual is removed from the population which
can be seen from the significant and often lowering of the fitness over the course of generations.
No continuous working principles were found and G2 through G5 all lead to the working principle
as analyzed for solution C1 through C4 (see Table 4.10 and Figure 4.12). The high density of
the soft material has an influence on the fitness of individuals that consist of soft material. Since
the torque is kept the same as in previous runs, a lower rotational velocity can be achieved with
the same shape. However, since this run also included the same hard material as previous runs
and this could have led to a higher rotational velocity, when used in individuals, because of the
lower density, the run is incorporated. It can still be concluded that the usage of this particular
implementation of simulated annealing did not result in more different working principles and
that individuals with a high fitness are deleted from the population without resulting in a new
higher fitness.

Figure 4.40. Solutions G1 to G5 (left to right).

To conclude the two runs with simulated annealing: it can be said that the usage of this particular
implementation of simulated annealing does not lead to more diverse results but closes in on one
local optimum at a point with a high annealing temperature is reached since individuals with
a high fitness are sometimes deleted from the population. This is not a desirable result so a
different selection method is tested in the next run.

4.2.8 Run H

Run H is performed with the same settings as run D and F except a different selection method
has been applied: ancestor comparison selection, other settings are shown in Table 4.26. This
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was introduced in Section 3.3.2. The ancestry of every individual that is introduced into the
new population after the introduction of the best individual, is compared to the ancestry of all
individuals. In the case that an individual has more than 50% identical ancestors to more than
10% of the population, that individual is rejected.
It is hypothesized that this selection method does not discard as many individuals as the simu-
lated annealing selection method (runs F and G).
This run was cut short since too many individuals were deleted from the population in genera-
tion 190 to continue the run. It was chosen to continue with the next run with another selection
method instead of rerunning this run because it was hypothesized that allowing multiple indi-
viduals with overlapping ancestry to co-exist is more beneficial to explore the solution space,
than to have many individuals with a unique ancestry. The individuals that showed a significant
increase in fitness or at a stagnation point (H3) (see Figure 4.41) are shown in Figure 4.42 with
their data in Table 4.27.

Experiment H
Size (x,y,z) (20,11,1)
Population size 250
Random individuals 20
Number of generations 190
Initiation time 0.05 s
Simulation time 1s or no motion
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q -

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.5,0)
Location of B (0.33,0.5,0)
Moment at A 0.5 Nm 	 �

Selection method Ancestor comparison
Computing time (h:m) 4:47

Table 4.26. Parameter values used in run H, changes compared to run F highlighted.

Individual H1 H2 H3 H4
Generation 6 15 93 169
Fitness (Rotation) 0.0069 0.5151 1.385 1.669
Age 6 8 68 162
No. voxels 18 18 82 13

Table 4.27. Four solutions generated in run H.

Analysis run H

No continuous or new working principles were found in this run, solution H1 has the same working
principle as solution D1 (see Table 4.13 and Figure 4.16) and solution H2 through H4 have the
same working principle as solution D3 and D4 (see Table 4.15 and Figure 4.21), but a different
embodiment because of a difference in repetition of WSPs.
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Figure 4.41. Increasing fitness over the course of generations for run H.

Figure 4.42. Solutions H1 to H4 (left to right).

To analyze the implications of the three selection methods so far, the composition of a single
generation is analyzed. Figure 4.43 shows three histograms of the age distribution of individuals
in generation 190 for run D, F and H. Generation 190 was chosen since this is the last generation
of run H.
Run F shows many young (0 ă age ă 38) individuals which is explained by the low virtual
temperature at that generation (190 of 1000). Young individuals tend to have a lower fitness
but, due to their random creation and thus their independence from older individuals, provide a
possibility to get out of a local optimum. However, it was already concluded that this particular
implementation of simulated annealing does not provide the best selection method.
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Figure 4.43. Histograms of the age distribution of every individual in the population at generation
190 for pareto selection (run D, left), annealing selection (run F, middle) and ancestor deletion
selection (run H, right).

The histogram of the last run, run H, has less young individuals than run F, but more than
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run D. The hypothesis is that this will enhance variety among solutions which will result in a
better chance of avoiding local optima as long as the correct individuals get the opportunity
to evolve to a high fitness. It is not possible to determine these individuals beforehand but
it is hypothesized that, unlike in the ancestor comparison selection method, niches of similar
individuals should exist in the population to allow the exploration of a local optimum instead of
just one individual. This will be tested in run I with a combined pareto and ancestor deletion
selection method. Please note that no comparison with run G is done because the number of
randomly added individuals per generation is different.

4.2.9 Run I

In previous runs, no selection method was found that sufficiently identifies a local optimum and
abandons it after exploring. To solve this, a new selection method is applied in this run which
is a combination of a pareto selection and the ancestor comparison method (used in run H).
Pareto selection is used as long as there is an increase in fitness. A reset will be performed at
the moment that the sum of the relative change in fitness over the last 300 generations is less
than 0.5% (see Equation 4.1). This reset deletes the best individual and any close relatives:
individuals that have more than 70% of their ancestors in common.

gen
ÿ

gen´300

fitnessgen ´ fitnessgen´1
fitnessgen´1

ă 0.005 (4.1)

Parameters for run I (see Table 4.28) are taken so that artifacts have a larger space (similar to
run E) and many generations are allowed to be able to analyze the influence of the introduced
resets. The population size is lowered to conserve computing time. Fitness and age of the best
individual in each generation is shown in Figure 4.44, data of the individuals with the highest
fitness are shown in Table 4.29.

Experiment I
Size (x,y,z) (20,11,2)
Population size 100
Random individuals 20
Number of generations 9999
Initiation time 0.01 s
Simulation time 1 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q 5, 1 ¨ 103

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.47,0)
Location of B (0.31,0.47,0)
Moment at A 0.5 Nm 	 �

Selection method Pareto reset
Computing time (h:m) 232:47

Table 4.28. Parameter values used in run I
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Individual I1 I2 I3 I4 I5
Generation 433 2310 4676 7623 9995
Fitness (Rotation) 105.97 14.86 10.038 70.565 8.4907
Age 287 894 1124 1158 535
No. voxels 59 48 48 17 77

Table 4.29. Five solutions generated in run I.
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Figure 4.44. Fitness and age of the best individual over the course of generations for run I.

Analysis run I

This run resulted in multiple solutions with a very high fitness. These can be seen in Figure 4.45
and 4.46.

Figure 4.45. Solutions I1 to I5 (left to right).

Figure 4.46. Simulations of solutions I1 to I5 (left to right).

First the influence of the new pareto reset selection method will be analyzed. As can be seen in
Figure 4.49, the resets (indicated with dotted lines) bring down the fitness and age of the best
individual after 300 generations of no increase in fitness. This seems to have a positive effect
on the variety of the solutions, as can be seen in Figure 4.45 and 4.46. The individuals that
were removed from the population in generation 584 are shown in Figure 4.47. This reset was
performed because a stagnation in increase of fitness was measured since generation 284, 300
generations earlier. The best performing individual (I1) was removed, along with all individuals
that have more than 70% similar ancestors. Various similar artifacts can be seen as individuals
compared to individual I1 but some do not share visible similarities.
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Figure 4.47. Individuals that were removed in the reset after generation 584 with more then 70%
overlap in ancestors with individual I1. Fitness (top left to bottom right) 105.5, 2.532, 1.034,
0.3530, 0.04426, 0.005832, -0.00074, -0.4743, -0.7155

Since the CPPN determines the shape of the artifacts, it is not possible to determine beforehand
which percentage of overlap of ancestors results in visually comparable artifacts. It is confirmed
that the next best individual does have a different shape, as is shown in Figure 4.48. For now,
these reset parameters are kept.

Figure 4.48. The next best individual (with fitness 4.630) after the reset in generation 584.
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Figure 4.49. Age and fitness of best individual over the course of generations for run I, dotted lines
indicate a reset. The fitness and age scale are capped to show the details in lower values.

All the individuals with a high fitness are now analyzed. Solution I1 has a working principle that
is not seen before, as analyzed in Figure 4.51 and Table 4.30. It works continuously but closer
inspection shows that even though this solution is feasible in the simulation, this solution could
not work in real life. The blue part passes line A and B on both sides of the voxel (yellow and
orange) which prohibits any physical connection of input and output flow to an external system.
Only some kind of magnetic mounting might make this feasible.

Figure 4.50. Solution I1, voxel coloring as it is used in Figure 4.51 to indicate parts.
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WS1
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Connector WS3
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ConnectorCSS
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Figure 4.51. Graph analysis using the C&CM for solution I1. Colors represent the voxels as seen
in Figure 4.50 for I1

WS Flow domain Displacement Effort Carrier
WS1,10 Rotational 1D Angle Torque Angular momentum
WS2´5,8,9 Mechanical 3D angle, position Force Linear momentum (3D)

WS6,7 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.30. Description of WS flows in Figure 4.51 for solution I1.

Solution I2, I3 and I4 (Figure 4.52, 4.53 and 4.54, respectively) have the same working principle
and also work continuously, as seen in the analysis in Figure 4.55 and Table 4.31. Only a
difference in embodiment is seen because there is a different number of repetitions of a number
of WSs.

Figure 4.52. Solution I2, voxel coloring as it is used in Figure 4.55 to indicate parts.

Figure 4.53. Solution I3, voxel coloring as it is used in Figure 4.55 to indicate parts.

Figure 4.54. Solution I4, voxel coloring as it is used in Figure 4.55 to indicate parts.
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Figure 4.55. Graph analysis using the C&CM for solution I2,3 and 4. Colors represent the voxels
as seen in Figure 4.52 for I2, Figure 4.53 for I3 and Figure 4.54 for I4.

WS Flow domain Displacement Effort Carrier
WS1,10 Rotational 1D Angle Torque Angular momentum
WS2´5,8,9 Mechanical 3D Angle, position Force Linear momentum (3D)

WS6,7 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.31. Description of WS flows in Figure 4.55 for solution I2, 3 and 4. WS5 and WS9 are
not present for solution I3. Black boxes separate the parts that are connected to flow input A and
flow output B.

The working principle of solution I5 (see Figure 4.56) seems to be similar to that of the previous
solutions, but the difference in stiffness causes one end (dark blue) to make direct contact with
the Connected to B, and the other end (light blue) to slightly bend and convey its momentum
using a friction force. This analysis can be seen in Figure 4.57 and Table 4.32.

Figure 4.56. Solution I5, voxel coloring as it is used in Figure 4.57 to indicate parts.
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Figure 4.57. Graph analysis using the C&CM for solution I5. Colors represent the voxels as seen
in Figure 4.56 for I5. Black boxes separate the parts that are connected to flow input A and flow
output B.

WS Flow domain Displacement Effort Carrier
WS1,12 Rotational 1D Angle Torque Angular momentum
WS6,7,9 Mechanical 3D Angle, position Force Linear momentum (3D)
WS4,7B,9B Translational 1D Position Friction force Linear momentum

WS2,3,5,8,10,11 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.32. Description of WS flows in Figure 4.57 for solution I5.

It can be said that this selection method, using these parameters, does lead to solutions that
meet the verification demands set in Section 3.3.1: Three distinct working principles were found
that work continuously.

4.2.10 Run J

For better insight in current PoC for the CAI-tool, run I is repeated with parameters that make
the simulation faster to accommodate ten simultaneous runs (see Table 4.33) with a different
seed for any random numbers generated in the run.
The individual size as well as population size is reduced for a faster simulation. In earlier runs,
collision of voxels is inaccurate: collision is detected before a contact can be seen in the simulation
GUI. Therefore, a different collision horizon is used (see Section 3.3.2), 1 instead of 2. The floor
is enabled again and the introduced axles at A (orange) and B (yellow) are lengthened with one
voxel on each side, to prevent results such as solution I1 the shape of these voxels can be seen
in Figure 4.58. The individuals with the highest fitness are shown in Figure 4.59 and 4.60, their
data can be seen in Table 4.33.
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Figure 4.58. Voxels that are introduced at A (orange) and B (yellow).

Experiment J0-J9
Size (x,y,z) (14,7,1+2)
Population size 19
Random individuals 1
Number of generations 9999
Initiation time 0.1 s
Simulation time 1 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q 5, 1 ¨ 103

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.47,0)
Location of B (0.31,0.47,0)
Moment at A 0.5 Nm 	 �

Selection method Pareto reset
Computing time (h:m) 108:47-131:29

Table 4.33. Parameter values used in run J

Individual J0-1 J2-1 J4-1 J5-1 J5-2 J7-1 J9-1
Generation 1648 5224 6492 1735 1741 8034 5080
Fitness (Rotation) 55.91 70.83 84.82 7.512 13.53 63.72 55.86
Age 1309 1000 876 1634 1640 932 650
No. voxels 18 16 23 18 18 13 16

Table 4.34. Five solutions generated in run J.

Analysis runs J

In this run, not many continuously working solutions were found as can be seen from the low
number of significant increases in fitness in Figure 4.61. Although a different embodiment is seen,
all have the same working principle, which is the same as solution D2 (see Figure 4.18 and Table
4.14). In some solutions (J0-1, J5-1 and J5-2), it appears that friction is used in transferring the
flow between some WSs but a closer inspection shows that this is not the case and only the direct
force causes this, similar to the other solutions. The reduced collision horizon does not lead to
a more accurate simulation visually but simulation time is increased. The collision horizon is
reverted to the original value of 2 for further experiments.
It is hypothesized that the small individual size results in less continuously working solutions and
the small population size makes it harder to explore the solution space to find these solutions.
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Figure 4.59. Solutions J0-1 to J9-1 (top left to bottom right).

Figure 4.60. Simulations for solutions J0-1 to J9-1 (top left to bottom right).
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Figure 4.61. Increasing fitness over the course of generations for run J0, run J1, run J2, run J3,
run J4, run J5, run J6, run J7, run J8 and run J9. The bottom graph is zoomed in to provide a
more detailed view of lower fitness.
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4.2.11 Run K

In this run, gravity was added to the environment, perpendicular to the rotation axes. The
settings of run I were used except for a reversed moment and no extended axles, also the number
of generations is lower. See Table 4.35 for these settings.

Experiment K
Size (x,y,z) (14,7,1)
Population size 100
Random individuals 20
Number of generations 1500
Initiation time 0.1 s
Simulation time 1 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q 5, 1 ¨ 103

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105

Location of A (0.66,0.47,0)
Location of B (0.31,0.47,0)
Moment at A 0.5 Nm 	 �

Selection method Pareto reset
Computing time (h:m) 118:35

Table 4.35. Parameter values used in run K

Analysis runs K

Solutions in early generations make use of gravity to rotate, but this does not lead to any con-
tinuous working principle (K1). Continuous working solutions (K2-4) show the same working
principle as I1. Solutions can be seen in Figure 4.62 and 4.63, with their values seen in Table
4.36.
This run was repeated but with a floor, in that run no continuous working solutions were found
after two runs and this path was abandoned. It should be pointed out that no continuously
working solutions could be designed manually either by the author for this situation.

Individual K1 K2 K3 K4
Generation 498 511 1236 1420
Fitness (Rotation) 3.572 50.84 272.2 327.7
Age 93 37 762 946
No. voxels 42 101 71 48

Table 4.36. Four solutions generated in run K.

Figure 4.62. Solutions K1 to K4 (left to right).
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Figure 4.63. Simulations of solutions K1 to K4 (left to right).

4.2.12 Runs L and M

The inputs for the CPPN in these runs were changed. Instead of x, y, z and d, distance to centre
and b, a bias, the distance to centre is replaced by two inputs that are defined by their distance to
flow input location A (da) and flow output location B (db). This does provide information about
the mechanical engineering problem to the optimization itself, but still no working principle is
introduced. It is hypothesized that this changed CPPN structure leads to faster results since the
flow locations are now known, but that ultimately a lower number of different working principles
will be found since the CPPN is more inclined to certain shapes. Run L has a height of 3 voxels
and run M a height of 2 voxels. Both runs were performed twice with different seeds. Other
parameters are shown in Table 4.37. Fitness and age of the best individual over the course of
generations for these runs can be seen in Figure 4.64, data of the individuals with the highest
fitness is seen in Table 4.38 and their phenotype in Figure 4.65 and 4.66.

Experiment L1,L2 M1,M2
Size (x,y,z) (20,10,3+2) (20,10,2+2)
Population size 50 50
Random individuals 5 5
Number of generations 11000 15000
Initiation time 0.01 s 0.01 s
Simulation time 3 s 3 s
Hard material EpMPaq, ρp kg

m3 q 50, 1 ¨ 103 50, 1 ¨ 103

Soft material EpMPaq, ρp kg
m3 q 5, 1 ¨ 103 5, 1 ¨ 103

A material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105 50, 1 ¨ 105

B material EpMPaq, ρp kg
m3 q 50, 1 ¨ 105 50, 1 ¨ 105

Location of A (0.66,0.5,0) (0.66,0.5,0)
Location of B (0.33,0.5,0) (0.33,0.5,0)
Moment at A 0.5 Nm 	 � 0.5 Nm 	 �

Selection method Pareto reset Pareto reset
Computing time (h:m) 367:44-376:48 336:34-367:09

Table 4.37. Parameter values used in run L and M

Individual L1-1 L1-2 M1-1 M1-2
Generation 3550 10134 5869 6225
Fitness (Rotation) 36.15 13.58 14.77 13.53
Age 270 678 644 643
No. voxels 54 112 130 93

Table 4.38. Four solutions generated in run L and M.
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Analysis runs L and M

Not many continuously working solutions were found in either runs. Only run M1 resulted in
two different continuously working solutions.
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Figure 4.64. Increasing fitness over the course of generations for run L1, run L2 (left) and run M1
and run M2 (right)

Figure 4.65. Solutions L1-1, L1-2, M1-1 and M1-2 (left to right).

Figure 4.66. Simulations of solutions L1-1, L1-2, M1-1 and M1-2 (left to right).

Solution L1-1 and L1-2 seem to make use of a similar working principle. However, L1-1 has an
extra CSS that stores energy as can be seen in Figure 4.68 and Table 4.39 and 4.40, coloration
indicated in Figure 4.67. Solution L1-2 is analyzed in Figure 4.70 with Tables 4.41 and 4.42
using the coloration as shown in Figure 4.69. According to the definition, the solutions have a
different working principle.
Both solutions make use of some sort of clamping force which is stored by CSSd and CSSe in
solution L1-1 and in solution L1-2 by CSSc and CSSd. This causes a force to be exerted on
the Connected to A in both situations which slows it down, but it is beneficial for the working
principle as a whole since the caused friction makes the Connected to B rotate.
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Figure 4.67. Coloration as used in Figure 4.68 for the analysis of solution L1-1.

WS Flow domain Displacement Effort Carrier
WS1,12 Rotational 1D Angle Torque Angular momentum
WS6,7,9 Mechanical 3D Angle, position Force Linear momentum (3D)

WS2´5,8,10,11 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.39. Description of WS flows in Figure 4.68 for solution L1-1.

CSS Flow domain Energy storage
CSSc,d,e Mechanical 3D Potential energy

Table 4.40. Description of CSSs in Figure 4.68 for solution L1-1.

WS1
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CSS
ConnectorCSS

WS8B

WS10B

Figure 4.68. Graph analysis using the C&CM for solution L1-1. Colors represent the voxels as
seen in Figure 4.67.

Figure 4.69. Coloration as used in Figure 4.70 for the analysis of solution L1-2.
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WS Flow domain Displacement Effort Carrier
WS1,10 Rotational 1D Angle Torque Angular momentum
WS4´6 Mechanical 3D Angle, position Force Linear momentum (3D)

WS2,3,7´9 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.41. Description of WS flows in Figure 4.70 for solution L1-2.

CSS Flow domain Energy storage
CSSc,d Mechanical 3D Potential energy

Table 4.42. Description of CSSs in Figure 4.70 for solution L1-2.

WS1
WS2 WS9 WS10

Connector WS3

CSS

WS4 WS5

CSSd

WS7A

WS6

CSSe

WS8A

Connected to A Connected to B

WS7B

WS8B

CSS
ConnectorCSS

Figure 4.70. Graph analysis using the C&CM for solution L1-2. Colors represent the voxels as
seen in Figure 4.69. Black boxes separate the parts that are connected to flow input A and flow
output B.

Solutions M1-1 and M1-2 show a different working principle on first sight but a closer inspection
learns that the difference is quite small. The analysis for both is shown in Figure 4.73 using
coloring indicated in Figures 4.71 and 4.72, Tables belonging to these analyses are 4.43 and 4.44.
The only difference is the storage of some energy in the Connected to A (CSSb) in solution M2-1.
Taking into account this difference, according to the definition a different working principle is
seen for both solutions.

Figure 4.71. Coloration as used in Figure 4.73 for the analysis of solution M1-1.
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Figure 4.72. Coloration as used in Figure 4.73 for the analysis of solution M1-2.

WS Flow domain Displacement Effort Carrier
WS1,10 Rotational 1D Angle Torque Angular momentum
WS4´6 Mechanical 3D Angle, position Force Linear momentum (3D)

WS2,3,7´9 Mechanical 3D Angle, position Internal Force,
Torque

Linear &
angular momentum (3D)

Table 4.43. Description of WS flows in Figure 4.73 for solution M1-1 and M1-2.

CSS Flow domain Energy storage
CSSb Mechanical 3D Potential energy

Table 4.44. Description of CSSs in Figure 4.73 for solution M1-1 (with CSSb).

WS1
WS2 WS7 WS8

Connector WS3

CSSb

WS4

CSS
ConnectorCSS

WS5

CSS

WS6

Connected to A Connected to B

Figure 4.73. Graph analysis using the C&CM for solution M1-1 and M1-2. Colors represent the
voxels as seen in Figure 4.71 and 4.72. Note that CSSb only stores energy in solution M1-1 and
not in M1-2.

The influence of the difference in this run to other runs, network input of the distance to A and
B instead of distance to the center, is not clear. The shapes of the solutions are slightly more
concentrated around A and B, but when random individuals from the population are taken, no
clear concentration close to A and B can be seen (see Figure 4.74). No conclusion can be drawn
from just this run.

Figure 4.74. Some randomly selected individuals from run L1 that are non-continuous solutions.

4.2.13 Miscellaneous runs

More runs were performed that had results on which no conclusions could be drawn. For com-
pleteness, these are mentioned below.
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• Changing network mutation probability. The probability of mutating parts of the network
might have some influence on the outcome but not enough runs were performed to draw
any conclusions.

• Valid phenotype was changed to not only check whether an individual has at least one
voxel, but also if it is not completely filled with voxel. This is done because completely
full individuals have a close to zero fitness. This did not have the desired result: many
individuals are completely full when initialized, but when these are considered invalid,
more computation-time is needed to generate new individuals. Besides this, fitness of later
mutations of these individuals could be high, which cannot be determined at initialization.

• An extra CPPN was added to evolve stiffness of the artifacts as well as the shape. Erroneous
behaviour was seen in the simulation in Voxelyze and as of now, no proper integration has
been achieved.

4.3 Evaluation and conclusions of proof of concept

The software in the PoC, based on Evosoro, has been tested and runs to determine the right
parameter settings and algorithms were performed empirically. Various parameters and elements
were varied to test their influence on the ability of the software, an overview of these can be seen
in Appendix A.5 in Table A.6 and A.7.
Various introduced shapes for A (applied torque) and B (measured rotation) were evaluated.
It is unnecessary to use more than one voxel to portray the input and output flow for this
particular problem. As objectives for the simulated artifact, angle or total rotation, rotation
speed and number of voxels were evaluated. In the optimization, individual age was also used
as an objective, next to these. Using total rotation to measure fitness and age and number
of voxel elements as secondary objectives leads to the best results. Age and the number of
voxels was already used in Evosoro [2]. Applying a large force or moment relative to material
stiffness results in incorrect simulations because this results in a divergence or a failure to detect
collisions. No threshold for values for the occurrence of these phenomena has been determined.
Different selection methods that were added to the software were tested for their desired effect:
the introduced pareto-reset selection method did indeed result in other individuals evolving to
a new optimum. The particular simulated annealing and ancestor selection implementations
used in this PoC did not result in individuals with a higher fitness or more different working
principles. A higher population size as well as a greater number of generations leads to a wider
variety of solutions. A large individual size is important to guarantee the existence of a multitude
of solutions within the solution space with different working principles.

The demands set earlier for the PoC will be evaluated in Section 5.1 to determine whether the
PoC was successful.
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5
Verification and validation

Verification of software is done to check whether it meets the demands determined on beforehand,
validation of software is done to check that the software fulfills the goal, i.e. is it useful and to
check if the demands were set correctly.
The proof of concept (PoC) will be verified by comparing the results of the runs and analyses
with the goals set for the proof of concept in Section 3.3.1. To validate the proof of concept and
the CAI-tool presented in this research, the versatility and usability are discussed.

5.1 Verification

This proof of concept has been evaluated as successful according to the demands set in Section
3.3.1:

• The mechanical engineering problem will need to be described by one function
and an input- and output flow, as is prescribed by the CAI-tool (Figure 3.5).
This has been done as the description of the problem shows: a function (transmitting) and
input- and output flow (mechanical rotational energy) were defined and used as input for
the software.

• Any basic element used to build artifacts in the proof of concept should, in itself,
not fulfill a function that is sought in the mechanical engineering problem that
is to be solved.
It can be said that indeed no basic elements, i.e. voxels, fulfill any function of their own in
the created runs with the related mechanical engineering problem, as it is impossible for a
single voxel to transfer the rotational mechanical energy from A to B.

• The proof of concept will be successful when at least two solutions for the
entered mechanical engineering problem, with different working principles, are
produced in one run. Because more than one working principle was found for the used
mechanical engineering problem within one run without changing any parameters, this
demand has also been met. This implies that no working principle was predetermined in
any way in the software.

Run I, run L and run M resulted in two continuously working solutions with different working
principles, these can be seen again in Figure 5.1. It must be noted that solution I1 is physically
impossible. This was caused by the simulation environment but, if that environment could be
made in real life, the solution has the ability to work. Next to those results, run D resulted
in multiple continuous working solutions with a different embodiment and at least one other
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non-continuous working solution with a different working principle. Run J and run M resulted in
continuously working solutions with different embodiment but with the same working principle.

(a) Solution I1 (b) Solution I4 (c) Solution L1

(d) Solution L2 (e) Solution M1-1 (f) Solution M1-2

Figure 5.1. Continuously working solutions with different working principles.

The demands were determined to rule out the introduction of working principles, even if im-
plicitly. The working principles that were found in the runs were not introduced in any way
since they are represented by their underlying CPPN that is in no way related to any working
principle. This is confirmed by the fact that multiple working principles are found per run.

By fulfilling the demands set beforehand it can be said that the working of the software as a
PoC is verified because all demands were met.

5.2 Validation

The demands set in Section 3.3.1 for a CAI-tool were met by the conducted proof of concept as
discussed in the previous section. This is merely a sample of the possible problems that could
have been tested for the proof of concept. Now two questions remain: is the PoC validated and
is the CAI-tool itself validated?

5.2.1 Validation of the proof of concept

The goal of the proof of concept was to prove that the proposed CAI-tool has the envisaged
abilities. In the opinion of the author, non standard mechanisms were created which did solve the
specific problem of a transmission as defined in the PoC, and several distinct solution “concepts”
of working principles could be identified. Since the CAI-tool is the same for all the functions and
flows (see Table A.2 and A.3 in Appendix A.3), theoretically all mechanical engineering problems
described in that way can be entered in the CAI-tool. It must be noted that when incorporating
other flows or functions, these must first be implemented in the software. Moreover, based on the
PoC nothing can be said about the viability of solving these other problems with the software or
the method for the CAI-tool. In conclusion, it can be said that the PoC only has been partially
successful in confirming all the abilities of the CAI-tool since the full application range has not
been tested yet.

5.2.2 Validation of the CAI-tool

The goal of the CAI-tool itself is to generate artifacts that are function solutions for mechanical
engineering problems on a conceptual level. The demand, that this needs to happen without

94



5.2. Validation

introducing the working principle, is made so the solutions generated by the tool are not depen-
dent on user or historical knowledge. However, solutions, that are recognizable by the author
as historical solutions, were found and can be seen in Figure 5.2. For instance the transmission
with teeth-uncompleted gears works in a similar way as solution D2. Solution K4 could be seen
as a flexible coupling.

Figure 5.2. Transmission with teeth-uncompleted gears [131] and flexible coupling [132].

Nonetheless, it can be said that some of the solutions found in the PoC (e.g. I1) are novel and
can not be found in literature on mechanisms [133]. Both novel solutions and ones that can be
recognized as historical would be useful since these correspond to solutions that are achieved
using discursive and intuitive, respectively, CAI-tools (see Table 2.1).
However, the level of detail of the solutions achieved in the PoC was not yet high enough to
be applicable in mechanical engineering problems in practice. But, if the CAI-tool would be
extended from the PoC on out, its ability to generate a multitude of working principles for one
mechanical engineering problem would validate the CAI-tool as a novel one that blurs the line
between intuitive and discursive CAI-tools as described in Section 2.1.2.
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6
Discussion, conclusion, and recommendations

In this final chapter, the results of the complete research are interpreted, put into perspective
of existing work and strengths, weaknesses and relevance are discussed. Finally, a conclusion is
drawn and recommendations are made for further work.

6.1 Discussion

In this research, a CAI-tool was developed and a proof of concept was made. By using a form
of computational optimization, artifacts were generated that were function solutions for a basic
mechanical engineering problem. No working principle was introduced. Therefore, the main goal
of this research has been met. However, some methods and findings in this research leave room
for discussion which will be reviewed in this section.

6.1.1 CAI-tool

To use computational optimization to generate artifacts that are solutions to mechanical engi-
neering problems a framework for a CAI-tool is developed (for clarification see Figure 3.5 on
page 42).

A key element of this tool is the disengagement of knowledge on working principles and the
mechanical engineering problem from the generation and optimization of artifacts. The basic
elements that make up these artifacts have behavior and characteristics but should have no
functionality of their own. Also no implications of certain working principles must be made in
the definition of the problem that is used in the optimization (e.g. number of objects or their
connection).
The intention of this disengagement is to allow creative solutions to be generated. The assump-
tion that the reverse (to generate creative solutions with foreknowledge in the CAI-tool) is not
possible, might have ruled out otherwise viable options for this CAI-tool but this has not been
considered in this research.

The functional basis, using the EMS model, by Hirtz et al. [1] is implemented to describe the me-
chanical engineering problems according to their input and output flow and the function between
those. This flow is also used in the C&CM method to describe the flows across working surfaces
to analyze solutions in the proof of concept. This use of the word flow is quite confusing: a flow
in the mechanical domain would mean a linear velocity, while in the EMS model a flow can be
an energy, material or signal. In the C&CM method, the same terminology is used, since in that
method flows move from one working surface to another, which is something a momentum or
effort (e.g. force) could do but not a linear velocity.
While all this does not improve the clarity of analysis and mechanical engineering problem de-
scriptions in this research, it is expected by the author that a change of definitions would have
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had no effect on the outcome of this research.
It must be noted that even though the usage of flow in defining the mechanical engineering prob-
lem has been tested in the proof of concept for an energy, the case that this flow is a material
or signal has not been verified in the PoC, which would be necessary for the verification of the
complete model.

The model for the CAI-tool, as it is now, just incorporates one mechanical engineering function.
While many properties can be included in the introduced problem definition, no extension for
the implementation of other design requirements was made. For example, the combination of
multiple functions or environmental constraints have not been incorporated even though these
could have an influence on the solutions of a particular problem.

Many other CAI-tools exist but not one using these particular elements, structure and method.
A CAI-tool that has some similarities to this research was mentioned in Section 2.1.2: Huang,
Bo, and Chen [37] presented a process model for conceptual design based on computational in-
telligence. Key differences are the inclusion of a knowledge base, evaluation of solutions using
predetermined values for partial solutions and strong human-machine interaction.
The possibility of using evolutionary algorithms in CAI-tools to hybridize (i.e. combining) exist-
ing solutions was mentioned by Leon [134]. However, again this makes use of existing solutions.
An example is the synthesis of mechanisms using genetic algorithms by Zhang, Wang, and Dai
[135], but they still used a predefined set of which the solutions consist.
The work of Cheney et al. [2], that is used in the PoC, shows similarities to the proposed CAI-
tool but, as already mentioned in Section 1.2 and 2.4 does not create a technical system since no
interaction occurs with adjacent systems according to the definition presented in Section 2.2.3.

The use of this definition is a point of discussion: different definitions of technical systems exist
as well, for instance, TRIZ requires “a tool, engine, transmission and control” in a minimal tech-
nical system [136], which would see the solutions of the CAI-tool as a tool with a transmission
within a technical system instead of a technical system itself. The engine providing energy then
refers to the input flow, which is not part of the generated artifact.
Compared to the soft robots generated by Cheney et al. [2] a difference can be seen in the
control : the element which governs at least one of the other systems. The function that the
soft robots fulfill is converting-transferring the flow thermal energy to mechanical translational
energy. While the soft robots rely on an oscillating temperature to control the tool to deliver
their function, for the solutions that are generated in the PoC in this research, no clear control
element can be indicated but the function is fulfilled without outside regulation.

Another point of interest is the time-complexity of the CAI-tool. The large solution space is the
direct result of the desire to work without any input of working principles or foreknowledge about
solutions. In the PoC, a relatively simple simulation was used as evaluation of artifacts and a
limited set of materials and physical phenomena. Runs of the PoC were already costly consid-
ering the relative simplicity of the problem and thus small solution size, this would be increased
should more materials or physical elements be included. No statements were made considering
the implications thereof but knowledge on time-complexity is an essential part of further research.

6.1.2 Proof of concept

To prove that the framework for the CAI-tool results in software that is able to meet the set
demands, a proof of concept was made, based on Evosoro [2]. Various elements were changed or
added to the software including different population selection methods, allowing multiple objects
and new fitness calculations.

With this software, a mechanical engineering problem was solved: transferring the input flow
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rotational mechanical energy to output flow rotational mechanical energy. Various runs were
performed to adjust parameters and algorithms empirically. Multiple runs, wherein nothing was
changed manually during the run, resulted in multiple solutions with a different working princi-
ple, thereby complying with the demands set for the PoC.

The choice of using CPPNs and choice of implemented mathematical functions to represent ar-
tifacts has a strong influence on their shape. While this is beneficial to the time-complexity
of the software, some shapes appear more often than others (concentric shapes such as seen in
solution I1, Figure 4.50). This prevalence of certain shapes could be seen as an unwanted effect:
a possible inclination to these shapes in spite of the fact that an explicit limitation of the solution
space is unwanted for the CAI-tool. The possible complexifying of the CPPNs at every mutation
which is a result of the use of NEAT can cause a dithered artifact at higher ages (see Figure
4.40, solution G1, for instance). This results not only in many unfunctional voxels but also in
an uniform complexity in many of the individuals.
The use of voxels in the PoC to build artifacts restricts solutions to these shapes that are not
practical to implement in real-life. That makes the current software in the PoC more suitable as
an inspiration tool for engineers than that it does provide directly applicable solutions.

Additionally, the difference between a continuous working principle and non-continuous working
principle in this PoC often results in a discontinuity in the fitness-generation graph as a single
voxel can determine that difference. In the work of Cheney et al. [2], most of the robots al-
ready work continuously from very early generations and single voxel differences have a smaller
influence on functionality. These differences result in a more gradual increase in the fitness over
generations.
No clear confirmation can be given of the hypothesis on why the introduced pareto selection with
reset after a stagnating improvement seems to work better than the pareto selection method as
used for the soft robots: not enough comparative runs have been performed for a thorough anal-
ysis. It can be said that these selection methods lead to rejuvenation of the population which
leads to the discovery of unexplored niches in the solution space.

The implementation of the flow-function-flow description to convert the desired mechanical en-
gineering function to an objective function and input and output flows in the simulation for the
example problem leaves room for discussion as well, as also mentioned in Section 6.1.1.
The flow that is imported as well as exported, ’rotational mechanical energy’, in the example
problem of the PoC, is represented by a continuously applied moment at the input, an effort
source, and is measured as rotation at the output, which can be seen as the average speed since
simulation times are equal within a run. The input flow is not defined as an angular velocity
which would be the correct definition of flow while the output flow is. Defining an angular
velocity at the input could lead to an infinite torque when rotation is blocked. These unclarities
with regard to the conversion of the mechanical engineering problem to measurements for the
objective function and imported energies should be solved to improve the CAI-tool.
Additionally, instead of transferring mechanical energy, the problem which is solved in the proof
of concept could also be seen as turning (function) of a solid object (flow). This might even fit in
with the used objective function where the number of turns determines fitness, not the amount
of energy that was conveyed from A to B. This ambiguity is also not beneficial for the clarity of
the CAI-tool.

The C&CM is used to analyze the differences in working principles generated in the PoC. It could
be argued that, since this method can be used at different levels of detail and the user determines
the desired level of detail, it does not provide the desired unambiguousness. Especially for
complex shapes, for instance solution M1-1 (see Section 4.2.12), the distinction between different
WSs and CSSs is hard to make. Even though the author feels that the distinction between
different working principles using the C&CM has largely corresponded with intuitive assessment,
a different analysis method or changes to the C&CM could be beneficial to a more substantiated

99



Chapter 6. Discussion, conclusion, and recommendations

proof.

The friction model in Voxelyze is inconsistent, which became apparent when friction coefficients
were changed, this could have effected certain outcomes where friction was used to describe the
working principle.

The number of runs to determine parameters and properties of selection methods was restricted
due to time-complexity of the software. The fact that the demands for the PoC were met is
worth no less because of this but, due to the restricted number of runs, it cannot be said that
optimal values for parameters were determined. The same applies to the choice for the pareto
reset selection method: empirically better results are achieved but this might not hold when a
larger set of runs is performed with a larger variety in parameter values.

Reviewing the discussion of both the CAI-tool and the PoC, it can be said that the demands
for the proof of concept were met, the proposed CAI-tool has a feasible structure and that the
CAI-tool is new and unique. However, further research needs to be done on the viability and
possible application of the CAI-tool as well as the particular software implementation as it is
executed in the PoC.

6.2 Conclusion

The goal of this research was to prove that it is possible to use computational optimization to
generate artifacts that are function solutions for basic mechanical engineering problems on a
conceptual level without introducing the working principle as input for said optimization. This
goal has been met by answering the following research questions:

• What should be the structure and components of such a CAI-tool?

– Which components are needed besides the computational optimization al-
gorithm?
As was discussed in Section 3.2, it is necessary to have a method which allows the
user input to be converted from a description of an engineering problem into input
for the optimization. Along with that, some shape representation needs to be used
that is able to express basic elements that have behavior and characteristics but no
functionality on their own. An evaluation of artifacts needs to be done using a simu-
lation that is able to simulate any laws of physics that are relevant to that mechanical
engineering problem.

– How can an engineering problem be converted to an input for such a CAI-
tool?
The problem is described as a function using the functional basis by Hirtz et al. [1]
(as in Section 2.2.2) which is imposed upon an input flow to create an output flow.
These flows (energy, material or signal) and their properties for this specific problem
are inserted in the simulation and the function is converted to an objective function
that describes the relation between in- and output in this situation. See also Section
3.1 and 3.2

– How to detect to what extent a mechanical engineering function is fulfilled
by a solution?
The objective function returns a fitness value so a comparison between solutions can
be made. A distinction can be made from this value, as described in Section 3.3.4,
whether a solution does not work, resulting in a very low fitness value (fitness « 0),
or a working solution, with a fitness value that reaches a set value after some time
(fitness “ x) and finally a continuously working solution, of which the fitness value
keeps increasing over time when the simulation is continued (fitness “ x ¨ t).
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– How to ensure no knowledge of working principles is introduced?
Besides the usage of basic elements without functionality, the problem is disengaged
from the actual artifact generation and optimization by the usage of the flow-function-
flow description, which was presented in Section 3.2. Also a shape representation is
used to describe the shapes that are made up from the basic elements as this ensures
an extra uncoupling between the problem description and generated artifacts, another
advantage is that it compresses the size of artifact description.

• How can a proof of concept be made to test such a CAI-tool based on a genetic
algorithm?

– Which genetic algorithm based software is suitable to be adapted for a
proof of concept for such a CAI-tool? The CPPN-NEAT based Evosoro [2] is
suitable to be adapted as a proof of concept for the CAI-tool because it has all the
necessary elements as described above: a shape representation (CPPN) that repre-
sents artifacts made from basic elements (voxels) and a powerful generative encoding
to optimize these (CPPN-NEAT) using a fast simulation (Voxelyze). Evosoro was
discussed in Section 3.3.2 and other genetic algorithms in 2.3.

– What adaptions should be made to that software? To be able to solve me-
chanical engineering problems as described for the CAI-tool, multiple objects need to
be allowed, other boundary conditions and fitness measurement are necessary and, to
avoid getting stuck in local optima, because of the highly non-linear solution space, a
different selection method needs to be introduced. All adaptions can be seen in Table
3.4.

– How can (generated) artifacts be distinguished as function solutions? Be-
sides the fitness value to establish continuous working principles, an adapted version
of the C&CM (see Section 2.2.3 and 3.1) is used to distinguish working principles from
one another by analyzing the flows across working surfaces and channel and connect
structures using a graph structure.

– What demands need to be met for the proof of concept to be successful?
To be sure that no working principle is introduced, more than one working principle,
fulfilling the mechanical engineering function, needs to be found in one run of the
software in the proof of concept. These requirements can be found in Section 3.3.1.

This research has demonstrated that it is possible to let software generate working principles for
mechanical engineering functions, without introducing any working principles first. The ability
to do this could be useful in concept generation as a CAI-tool or, after another software imple-
mentation has been realized, to directly generate applicable solutions. This tool has the potential
to uncover the path to easier radical innovation because it is not affected by foreknowledge. More
work needs to be done to improve the software made in the proof of concept so that different
functions can be solved and more extensive experiments are necessary to determine parameter
values and other elements that are in need of improvement.

6.3 Recommendations

The CAI-tool that is presented here lends itself to be explored further in different areas. The
following recommendations are made to direct future research on the CAI-tool itself:

• The conversion of the problem description using the functional basis leaves, to say the least,
room for discussion. Instead of transferring mechanical energy, the problem in the proof of
concept could also be seen as turning (function) of a solid object (flow). This might even
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fit in with the used objective function where the number of turns determines fitness, not
the amount of energy that was conveyed from A to B.

• Add a way of describing the environment of the mechanical engineering problem in the
CAI-tool such as external forces or constraints so that a more detailed problem can be
solved for a particular situation.

• Evaluate what other functional demands could be included as opposed to just one mechan-
ical engineering function as an objective.

• Perform a user study to determine user demands and discover possible applications.

The following recommendations are made about pursuing further research on the specific software
implementation as was done in the PoC:

• Extend the software to solve other mechanical engineering functions to verify the other
parts of the full spectrum of functions and flows, as used in the CAI-tool, such as material
and signal flows.

• Make the C&CM more explicit or use a different method so distinction between working
principles can be made less user-dependent.

• Implementing the C&CM to automatically analyze and evaluate solutions during the sim-
ulation could enable distinguishing niches in the solution space and their relevant working
principles. This could be combined with an automatic calculation of the variety rating that
was presented in Section 3.1, leading to a variety sum of the complete population at that
point.

• Analyze ancestry of successful individuals to compare them to unsuccessful individuals and
use that difference to detect promising local optima if possible.

• Vary constraints, environments, the way of defining flows or apply more complicated re-
quirements. For instance: applying a rotational velocity instead of a moment as the bound-
ary condition, as a source of flow instead of effort. Or a requirement can be set on the
rotation transmission ratio.

• Continue with the implementation of an extra CPPN to evolve stiffness as well as shape.
A small difference in stiffness can have a large influence on the performance of a working
principle since for instance artifacts can bend to accommodate further movement.

• Improve the friction implementation in Voxelyze, since no consistent results were achieved.

• Test if not allowing completely filled individuals influences the optimization in a positive
way by analyzing the genealogy of individuals that have high fitness.

• Apply crossover when generating the new population. This is already possible using CPPN-
NEAT, just not in Evosoro. This will allow individuals with high fitness to combine bene-
ficial properties.

• When pursuing simulated annealing, better results from earlier generations should not be
ignored but kept in the population. This way, the best individuals are not discarded.

• Determine the influence of the ancestor overlap and stagnation threshold for the reset
in the pareto reset selection method. These were determined empirically and not tested
thoroughly.

• Instead of voxels, use smooth basic elements or a representation that allows this to have
directly applicable solutions.
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• A less time costly simulation could lead to better results since more individuals can be
evaluated.

• Try different software to implement the CAI-tool. The usage of the CPPNs as artifact
representation instead of direct encoding diminished the time complexity but could have
omitted results. Otherwise, other activation functions in the network could enlarge the
possibilities. Or a totally different representation such as the VRML scene graph (see
Figure 2.7) might result in a faster search, a wider range of possible working principles or
other positive effects on the solutions that are generated.

Future possibilities

Even though it is proven that concepts can be created using genetic algorithms for the specific
case of the presented proof of concept, the relevance of the posed method remains a point of
discussion. With the emergence of other artificial intelligence systems, the author thinks it is
not a question of if but how computers will be able to take over (parts) of conceptual designing.
It could well be that machine learning combined with existing patents and designs could be
implemented faster and/or more easily to help in the conceptual phase.
Next to new results for stand-alone engineering problems, the proposed CAI-tool could provide
a crossover between solutions for more complex problems that would otherwise be impossible to
be created. Using for instance multi-material 3D-printers that are capable of printing a gradient
of stiffness, more complex shapes could be created than can be designed by a human. The
time-complexity and computing power limit the complexity of problems that could be solved.
However, with ever-increasing computer capacity, the author thinks eventually integrated or
combined results will be possible.
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Appendix

A.1 CAI Categories

A.1.1 Categories based on application field

This section is based on Kohn and Hüsig[19].

• Strategy management, which aids designing projects on a higher strategy level. Scenario-
, portfolio-, project management and business intelligence are within this category.

• Idea Management, helps from the start of idea generation, collection of these ideas and
finally evaluating them.

– Idea generation includes tools that rely on techniques such as TRIZ, brainstorming
and mind mapping tools.

– Idea collection helps in gathering ideas by different designers and bringing them
together to increase efficiency of the designing process.

– Idea classification and portfolio usually helps in clustering and subsequently vi-
sualizing the ideas.

– Analysis of ideas One example is the use of TRIZ function trimming on an already
existing design [137].

• Patent management Not only can patents protect inventions, they can also help in
creating new inventions. TRIZ for example, relies partially on existing solutions.

– Invention report Allows for a more efficient process because new inventions are
reported in a CAI tool.

– Patent search Many online search engines exist that perform searches through
databases of historic patents.

– Patent analysis To digitize or understand the patents they have to be analyzed.
Recent research has been able to categorize and interpret patents using linguistic
processing [138].

– Patent administration This is less relevant for a designer because CAI tools in this
category help after a design is made, for instance registering patents and financial
aspects.

– Patent evaluation For the patents that are owned or in use by a company it is
necessary for them to be evaluated for significance.

– Patent portfolio management Evaluated patents can be managed by CAI.
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When multiple categories are included in one CAI product it is called a holistic solution, which
leads to results that could not have been obtained if just one of the separate categories was used.

A.1.2 Categories based on potential benefits

• Efficiency enhancing Routine tasks and sharing of information have great potential to
be integrated in CAI. It relieves workforce when repeating tasks that do not require a
deeper insight in the situation are outsourced to CAI. The streamlining and digitizing of
information sharing leads to more consistent, easier accessible and updatable data.

• Effectiveness enhancing The innovativeness of a project is usually set in the first phase
with no easy change of concept in later phases, therefore a large part of the outcome of a
project (which is already defined in these early stages) could benefit if CAI was implemented
in this early stage. Visualisation and fast simulation of concepts helps in the evaluation of
more concepts than usual but also more complex tools that are capable of analyzing and
evaluating customer or technological information will improve the effectiveness of NPD
projects.

• Competence enhancing Helps a larger part of a firm become familiar with CAI methods.
Users transcend their level of competence by using CAI and having access to up-to-date
data. Also a better connection to the end user is possible, for instance Sosa and Gero
[139] investigated a social simulation to relate the context of the market to the process of
innovation.

• Creativity enhancing There is only one application category that has the potential to
enhance creativity: idea generation. Kohn and Hüsig [19] argue that while later stages in
NPD are focussed on quality, the early ideation stage is characterized by quantity. This is
reflected by the works cited and other related work, which tend to focus on the support
of designer creativity such as “electronic meeting” or structured approach of brainstorming
techniques such as TRIZ. And while it is true that generally a large pool of concepts is
preferred, the quality of the best concept determines the maximum level of quality the
whole product will eventually be able to reach. This makes any improvement of creative
capabilities valuable to NPD.
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A.2 Blocks and tackles

Table A.1. Components used in DM to overcome blocks [71].
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A.3 A functional basis by Hirtz et al.

Table A.2. Functions used in the functional basis by Hirtz et al.[1]
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Table A.3. Flows used in the functional basis by Hirtz et al.[1]

Table A.4. Energy carriers with associated potential and flow quantities [129].
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Table A.5. Power conjugate complements for the energy class of flows [1].

Types of energy, physical effects and manifestations with examples [5], as seen in Table A.4 and
A.5:

• Mechanical: gravitation, inertia, centripetal force, friction.

• Hydraulic: hydrostatic, hydrodynamic.

• Pneumatic: aerostatic, aerodynamic.

• Electrical: electrostatic, inductive, capacitative, piezo-electric, transformation, rectifica-
tion.

• Magnetic: ferromagnetic, electromagnetic.

• Optical: reflection, refraction, diffraction, interference, polarisation

• Thermal: expansion, heat transfer, heat conduction, heat storage.

• Chemical: combustion, oxidation, reduction, dissolution, electrolysis, exothermic and en-
dothermic reactions.

• Nuclear: radiation, isotopes.

• Biological: fermentation, putrefaction, composition.

A.4 Mechanical systems

Since the proof of concept in this research uses a mechanical system, specific description methods
for working principles based on kinematic features could be relevant as well. A kinematic feature
is described as a generic entity that can be used to study the motion of an artifact.
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Figure A.1. Kinematic elements with coupled rotational and translational freedoms [140]

Several elements are used in describing a kinematic feature: [140]:

• Joints, such as pin joints, a sliding pair or a ball joint.

• Links: the rigid connections between joints.

• Support: the connection to the world.

• DOF (degree of freedom) of every joint and the total space.

This allows analyzing mechanisms as their kinematic structure. Figure A.1 shows kinematic
elements that have coupled freedoms, analysed by their DOF.
Chakrabarti and Bligh [57] discourage usage of this approach. In these cases an application
beyond mechanisms might be possible: it is not generalizable and integrable with designs in
other domains. It also does not support decomposing problems from general to specific as it
has one set (joints, links and supports) of elements that it works with on all levels. But most
important: it does not provide individual functional reasons why each element is necessary in a
solution concept. Their alternative is to follow the power flow path from input to output point,
where the motion transmission elements are the “primary structures”. These transform some
of the characteristics of the variables between input and output. A bicycle drive is shown as
example in Figure A.2 where for instance structure A transforms the input force I at position p1
to an output torque at position p2.
This method is too specific to be used to analyze solutions in the PoC and therefore is not
included any of the chapters.

Figure A.2. Design knowledge extracted using power flow paths [57]
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A.5 Overview run parameters
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