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Abstract: In this paper we propose a pipeline for synthetic low resolution face generation as an alternative to image downsampling
and real-world low resolution datasets for use in forensic cases. The goal of the pipeline is recreating physically accurate low
resolution face images in a 3D space. We were able to incorporate a state-of-the-art conditioned machine learning algorithm to
generate a realistic synthetic high resolution gallery dataset, by combining StyleGAN2 and attribute based latent space exploration.
Using single image 3D reconstruction and a physically based renderer, an identity preserving pipeline was introduced that allows
for one-to-one gallery to low resolution probe dataset generation, while enabling flexible pose, lighting, resolution and compression
adjustment. Using volumetric path tracing, subsurface light scattering within human skin was emulated. To get further insight
into our pipeline output, facial recognition experiments were conducted using state-of-the-art commercial and open-source facial
recognition software and super-resolution upscaling using a convolutional neural network. Comparison to the real-world face image
dataset SCFace was also conducted to test for potential applicability of our pipeline in forensic cases. Lack of accurate optical
aberration and sensor characteristics resulted in a significantly different facial recognition performance on our synthetic dataset,
making current application of our pipeline in forensic scenarios unfit. Thorough description of design choices and background
make our research however an interesting stepping-stone for future research.

1 Introduction

The identification of people has been a problem for many years in
the world of forensics. Many places nowadays have cameras that
can help identifying people, for example security cameras in shops
to help identify robbers, but a low image quality is often still a prob-
lem when it comes to identification. With the increased potential of
artificial intelligence and machine learning, facial recognition can be
a powerful aid for identification. However, the facial recognition is
only as good as the training data fed to the system. And especially
in the forensic casework, problems in training data can have large
consequences. Currently, there are not a lot of real-world low res-
olution test databases and the ones that are available, for example
SCFace [1], are a few years old. The lawful restrictions on gath-
ering biometric data, for instance the EU restrictions on gathering
privacy sensitive data [2] [3], makes it difficult to compose new
training dataset. Some proposed methods for low resolution iden-
tification have therefore resorted to downsampling higher resolution
images to create training and test datasets. However, this has influ-
ence on the reported performance compared to real low resolution
databases, as discussed in [4]. Advances in machine learning, on the
other hand, might give new opportunities in creating realistic and
physically accurate low resolution test databases for forensic identi-
fication.

Powerful machine learning models for image generation have been
proposed in recent years, where in particular the generation of face
images has seen a lot of interest from this field of research. The
generation of photo-realistic face images of non-existing people has
also become a reality with the usage of for example Generative
Adversarial Networks [5]. There is however a difference between
photo-realistic and physically correct images. Certain physical phe-
nomena, such as diffraction, lens distortion and sensor colour filters,
have a larger impact on low resolution images and are therefore
important to correctly model. When the successful generation of
physically correct synthetic face images is however viable, it might
be usable to create datasets with tailored specifications for identifi-
cation matching a real forensic setting. To test the potential of such
datasets, this research will try to propose a pipeline to generate these
synthetic face images, using a 3D space to generate the low resolu-
tion images. The pipeline will have changeable components and the

proposed pipeline will be a proof of concept that could form a basis
for future research. Verification on low resolution images, based on
the generated synthetic face images from the pipeline, is then per-
formed through various methods to explore the effectiveness of the
synthetic dataset.

1.1 Research Questions

To explore the creation of the image pipeline, we split the research
into two parts. The first part focuses on the actual creation of the
pipeline and the subsequential design choices, which are answered
by means of literature research and practical implementations. This
also includes the high resolution synthetic images that will be needed
for training/facial recognition purposes:

• What steps/processes are of importance in a 3D pipeline for gener-
ating realistic synthetic face images comparable to images typically
found in forensic use cases?
1. What are the advantages/disadvantages of using a 3D over a 2D
pipeline to generate low resolution face images?
2. Which renderer is suitable for generating images with physically
accurate lighting conditions? What is the influence of diffraction of
light to create physically accurate low resolution images?
3. What are other influences of a lens, sensor characteristics and
image storage on the degradation of realistic low resolution images?
Can we implement these influences into our pipeline?
4. Which models can be used to generate 3D face structures?
5. How can subsurface scattering of light within human skin be
accurately modeled?
6. Which model for synthetic face generation is suitable?

The second part has its focus on identity matching performance with
the data created in the previous steps:

1. What is the impact of face images with an interpupillary distance
of a few pixels on facial recognition?
2. How do low resolution and super-resolution biometric compar-
isons perform with our very low resolution synthetic dataset, while
varying pose, lighting conditions and compression?
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3. How do low resolution facial recognition methods perform with
real-life low resolution face datasets compared to our synthetic
datasets?

The results of the last sub-question can give an insight into an overar-
ching question of our research: Does the proposed pipeline generate
low resolution face images that are comparable to a real-world
dataset, making them usable in a forensic setting?

2 Background

2.1 Low Resolution Face Images

As mentioned in the introduction, there is not a wide variety of low
resolution facial image datasets. However, when talking about low
resolution, there are of course different ways to interpret this term.
Therefore, we will establish what we understand under low resolu-
tion face images.

Resolution in general describes the amount of image detail. In digi-
tal images, the resolution is often defined by a pixel count. This can
be done by giving the width and height of an image in pixels, for
example 240×300, which means an image that is 240 pixels wide
and 300 pixels high. Another way to give the resolution pixel count
measurement, is to quantify it for a specific unit of length. Often
“pixels per inch” (PPI) or “dots per inch” (DPI) are used, where PPI
describes the amount of pixels both horizontally and vertically per
inch of an image [6]. For specifically face images, the pixel distance
between the eyes, or more specific the pixel distance between the
pupils, can be used to quantify the resolution. For example, the Inter-
national Civil Aviation Organization (ICAO) uses the pixel distance
between the centre of the eyes to give a resolution requirement for
face images in machine readable travel documents [7]. Going for-
ward, we will use this interpupillary distance (IPD) as our resolution
metric.

In literature, there seems to be no generalized definition of “low”,
when low resolution face images are mentioned. For example, in [8]
the low resolution images are described as having an IPD between
2 and 8 pixels, while in [9] low resolution is defined as images with
an IPD of 6 pixels and [10] uses an IPD of 7 pixels. This inconsis-
tency can also be observed with large face detection challenges, like
WIDER FACE [11] and FDDB [12]. WIDER FACE labels faces with
a height of 10 pixels or less, which roughly gives a IPD of 4 pixels
for frontal faces, with an “ignore” flag in their test dataset, because
they are too difficult to recognize [11]. FDDB excludes faces with a
height of 20 pixels, roughly a IPD of 8 pixels for frontal faces, for
similar reasons [12]. However, the performance of facial detection
algorithms on these datasets has increased since their release, with
the average precision (AP) on FDDB having reached 0.990 in 2017
and the AP on the WIDER FACE dataset with the lowest resolu-
tion reaching 0.921 in 2020. This means the solutions for detecting
faces, even faces with a relatively low IPD value, have improved over
the years. On the other hand, detection is only part of the recogni-
tion pipeline and the problem is not yet fully solved [13]. Also, the
very low resolution images below the dataset thresholds still yield
considerable deterioration in recognition performance [14]. Further-
more it can be noted, that besides the difference in definition, there
also seems to be a significant difference in performance for datasets
with self-proclaimed low resolution face images.

For this paper, we follow the same definition of low resolution as
proposed in [15] by Yuxi et. al., where there is made a distinc-
tion between upper low resolution (ULR), moderately low resolution
(MLR) and very low resolution (VLR). Figure 1 contains the pro-
posed resolution scale. The scale includes four biometric standards.
The first two are ISO/IEC 19794-5:2005 [16] and ANSI/INCITS
385-2004 [17]. They describe an example of proper face position
in an image, where the IPD of the face is about 50 pixels [18].
This is used as the separation between high and low resolution.
The separation between ULR and MLR is based on the European
norm EN 50132-7 [19], which describes the recommended mini-
mum resolution for CCTV objects as having an IPD of about 25
pixels. The ICAO requirement for machine readable document face
images, as mentioned above, is also added [7]. Their required IPD is
about 90 pixels. ULR will not pose a big challenge for most existing
facial recognition methods, while MLR is more difficult and meth-
ods designed for low resolution should outperform high resolution
facial recognition methods for MLR.

The transition point between moderately and very low resolution is
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Fig. 1: Face image resolution scale

set at an IPD of 13 pixels. If the IPD gets lower than this, we expect
poor results from most facial recognition methods to identify a per-
son. Low resolution datasets with images from real-life uncontrolled
settings like HumanID [20] and SCFace [1] do also contain images
that have IPDs below this threshold.

The threshold 13 pixels for VLU might be slightly higher than
expected, given the before mentioned papers in this chapter seem to
use an IPD between 2 and 8 pixels. The goal of this paper is to cre-
ate a pipeline that simulates real-life low resolution face images, and
here resolution is not the only factor that degrades facial recognition
performance. In other research, often down-sampled high resolution
images are used to create low resolution test datasets. However, real
low resolution images do perform significantly worse than down-
sampled high resolution images when performing facial recognition
[21] [22]. Therefore, simulating these real world effects is impor-
tant if we want to compare our results to real world low resolution
datasets, like HumenID and SCFace, and our separation between
MLR and VLR is set at a slightly higher IPD value.

In literature, low quality is sometimes also used instead of low res-
olution. Low quality, however, is a broader term that takes both low
resolution and other factors, like blur, heavy weather or (partial)
occlusion, into account [23]. From this point forward, if we talk
about low resolution face images, we mean VLR face images that
either include or simulate realistic camera effects, but not motion
effects or occlusion.

2.2 Facial Recognition Methods

Facial recognition is the automated recognition of an individual
based on a digital face image. In facial recognition, there is a sep-
aration between two types of input image: gallery and probe images.
The gallery image is a face image labelled with a known identity.
The probe image on the other hand is an input image from some-
one with an unknown identity to the system. The goal of the facial
recognition system is either verification, where a probe and gallery
image are compared and the output is a decision whether the images
are from the same person, or identification, where a probe image is
compared to a list of gallery images and the output is the identity of
a matching gallery image. The low resolution images that are dis-
cussed in the previous chapter are the probe images. Gallery images
do not have to be of poor quality and are often not in the form of e.g.
mug shots or passport photos.

In general, the facial recognition system can be split up in three main
steps: face detection, feature extraction and face recognition [24].
The detection step often not only detects the existence of a face in
an image, but also normalizes the face by e.g. landmark localization,
image alignment and colour adjustments. In the next step, the use-
ful features from the face are extracted. These features are abstract
measures that need to be stable, so present in most images, but also
distinctive so they vary from person to person. The final step, the
recognition, is done by matching the extracted features and giving a
score based on resemblance [25] [21].

Most facial recognition systems require both the probe and gallery
image to have the same resolution at input. In our scenario however,
we are dealing with low resolution probe images and high resolution
gallery images. There are generally speaking three methods to solve
this problem:

• Super-Resolution
• Low-Resolution
• Mixed-Resolution

Part of the main focus for our research is super-resolution, but all
three methods are discussed in more detail below to give a full
background.

2.2.1 Super-resolution

The first method solves the problem of different resolutions by up-
sampeling the low resolution probe image to a higher resolution.
This technique is generally known as super-resolution (SR). Two
main SR techniques can be distinguished: using a single image to
predict the higher quality output, better known as single image super-
resolution (SISR), or using multiple images to achieve this goal,
known as multiple image super-resolution (MISR). MISR can often
be used when multiple images from similar points of view are taken,
either from multiple cameras or from a video. In the case of video,
the separate frames can be used [26]. MISR often outperforms SISR
under a proper inter-image alignment, since less information is esti-
mated from the input images compared to the single input image
used with SISR [27]. With MISR sometimes lost frequency compo-
nents can be recovered, which is not possible with SISR [28]. SISR
on the other hand has a high efficiency and is therefore more popular
in practice, since MISR has a large computational demand [27] [29].
For this reason we will focus on SISR methods for this research. In
further research MISR methods could be used to predict more refined
potential of our image pipeline.

The typical SISR framework is presented in figure 2. Solving the
recovery part of the framework is an ill-posed problem, since there
are many possible high resolution solutions to a single low resolu-
tion input image.

Fig. 2: Typical SISR framework

Interpolation

One of the more widely used (up)scaling algorithms for images is
bicubic interpolation. It is for example the standard image scaling
algorithm used in Photoshop. It is the more advanced algorithm com-
pared to nearest neighbour and bilinear interpolation, which are both
also widely available in image editing software. Nearest neighbour
interpolation is the simplest of the three, where every new output
pixel after the scaling is replaced by its nearest input pixel. Bilin-
ear interpolation takes a slightly more advanced approach, where it
uses the 4 neighbouring points (see figure 3). Linear interpolation
between the top two known points, A and B, and the bottom two
known points, C and D, is done. This creates two new points, AB
and CD, between which linear interpolation is applied again to find
the final value at point X. Bicubic interpolation is a further exten-
sion of bilinear interpolation. Instead of using 2 points to interpolate
linearly, 4 points are used to draw a 3rd degree polynomial, known
as cubic spline interpolation in a 1-D space. For a 2D image, this
requires 16 neighbouring points, as shown in figure 3. Cubic spline
interpolation is performed for 4 rows, after which a final cubic spline
interpolation is performed on the 4 new interpolated points.
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Fig. 3: Bilinear (left) and bicubic (right) interpolation for image
scaling

Learning-based

Advances in machine learning opened the way to learning-based
SISR algorithms that quickly outperformed the interpolation SR
methods. Learning-based methods use machine learning algorithms
to analyze relationships between corresponding low and high res-
olution images based on a sizeable image dataset. Early methods
use for example sparse coding/representation, like the work by Yang
et al. [30] [31]. Due to the rapid advances in deep learning, supe-
rior advantages over these early techniques have been obtained [29]
[32]. Deep learning is a machine learning technique that is inspired
by biological neural networks. The term “deep” is a reference to
the multiple non-linear processing layers within the network that lie
between the input and output layers.

CNN

In the early days of applying deep learning to SR, most meth-
ods were based on Convolutional Neural Networks (CNN), a deep
learning model which uses convolution, often instead of matrix mul-
tiplication, in one of it’s neural layers [32] [33]. The work by Dong
et al. demonstrates that previous sparse-coding methods are practi-
cally equivalent to using a CNN, resulting in SRCNN [34].

The overall architecture of SRCNN is shown in figure 4. As can
be seen in the figure, the SRCNN model first implements a pre-
processing step. The pre-processing step consists of upscaling the
input LR image to the desired spatial dimensions of the output,
using bicubic interpolation. The goal during training is to learn a
mapping from this upscaled LR image to a HR output that is as
similar as possible to the ground truth HR image. The trained CNN
model itself consists of 3 layers. The first layer, patch extraction,
extracts (overlapping) patches from the upscaled LR input and rep-
resents each patch as a high-dimensional vector, which comprise a
set of feature maps, or filters. The second layer nonlinearly maps
each high-dimensional vector onto another high-dimensional vector,
which conceptually represents a HR patch. These mapped vectors
form another set of filters. The final reconstruction layer bundles the
HR patches to create the HR output image [34].

Fig. 4: SRCNN Architecture

SRCNN has a few significant attributes. First of all, the goal is not
to obtain a high accuracy on a dataset during training, but to find
the before mentioned filters. Once these filters are found, optimizing

a loss function on a per-image basis is not required. a simple for-
ward pass is enough to create the SR output images. This means the
SRCNN is completely end-to-end, meaning no intermediate steps
are needed to create the output. It is also fully convolutional, so an
input image of any size (as long as patches can be extracted) can be
fed to the model.

SRCNN is considered pioneering and a foundation on which many
other CNN SR models are built [29] [32]. For example, changing
the CNN to be bi-channel (BCCNN), where a separate informa-
tion channel for the raw input image and the face representations is
integrated to reconstruct face images [35]. SRCNN-IBP introduces
iterative back projection as a post-processing step to the CNN to gain
reconstruction performance [36]. Wavelet-SRNet uses wavelet trans-
forms to avoid the smoothing out of high frequency details after SR
[37]. In recent years, concepts like attention modules have also been
introduced to the CNN to focus on more important feature infor-
mation. For example SPARNet, where spatial attention designed for
face SR is implemented [38].

GAN and Other Advanced Models

CNN methods utilize pixel-wise loss to reconstruct images. But
maybe the exact reconstruction of pixel-level details, such as the
direction of hairs, is not always necessary as long as the overall
details are perceived as realistic. This led researches to introduce
GAN-based SR methods, inspired by GANs with the ability to
construct realistic face images from scratch with high detail, like
StyleGAN [39]. Generative Adversarial Networks, GANs for short,
are generative models that make use of an adversarial process. In
a GAN, two models are trained simultaneously: a generative model
and a discriminative model. They are in conflict with each other in
the form of a zero-sum game. The generative model tries to capture
a data distribution, while the discriminative model tries to estimate
whether its input came from the generator or the true data distribu-
tion. An early example of this model being applied in SR can be
found in UR-DGN [40], where the discriminative model tries to dis-
tinguish a real HR face image from a SR one, while the generative
model generates SR images to fool this discriminative model and
find a distribution of real HR face images. More recent examples
include PCA-SRGAN, where firstly decomposed face images are
progressively fed to the discriminator instead of the whole image
[41], or SPGAN, which uses a supervised pixel-wise GAN that can
also resolve VLR images [42]. Researchers have also directly made
use of the facial generation networks like StyleGAN. By using a pre-
trained GAN like SytleGAN as a generative prior, by for example
embedding the pretrained GAN into their own network like GPEN
[43], the generation power of these facial generation networks can
be used to improve SR reconstruction.

Instead of a generative prior, human face specific characteristics can
also be used to support the deep learning model. Known as prior-
guided face SR, information like facial boundaries, landmarks or
heatmaps can be extracted before, during or after reconstruction to
construct images with clearer facial structures [32]. ATSENet is such
a model, which uses a facial boundary heatmap as prior to recon-
struct especially VLR face images [44]. SR methods specifically
catered towards the facial recognition application have also been
introduced. Known as identity-preserving SR, the goal is to main-
tain consistency of the identity between the generated SR and a real
HR image. Most methods consists of a pretrained facial recogni-
tion network and a SR model. The SR model reconstructs the input
LR face image, which is fed into the facial recognition network to
find identity features. Concurrently, a corresponding HR image is
also fed into the facial recognition network, finding its identity fea-
tures. The identity features are used to calculate a identity loss, for
which a minimum is tried to be achieved during training [32]. An
example of such a identity preserving SR model with the specific
application for VLR images was presented by Jones et al [45]. A big
disadvantage of the usage of facial recognition networks is the need
for well labeled training datasets. A potential solution is so called
pairwise data-based methods, which take advantage of the contrast
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and similarity between identities to retain identity consistency, even
for weakly-labeled datasets [32]. A combination of various deep
learning models has also been put forward in order to combine the
advantages of the different models. ATMFN is such a SR model,
which combines a CNN, GAN and RNN (Recurrent Neural Net-
work) to create an ensemble of deep learning-based methods [46].

It has to be noted that in practice, SR is not yet used in real foren-
sic science. This is due to the addition of information to the original
image in the SR process. Since this addition can not be guaranteed
as fully accurate as of now, images enhanced with SR are seen as
manipulated and are no longer authentic, even when the visual result
is satisfying [47]. Work by Li et al. even demonstrates that bicu-
bic interpolation might work better for upscaling than SR for highly
degraded and VLR images, since various SR methods introduce
artifacts in an attempt to sharpen details [22].

2.2.2 Low-resolution

The second method to compare a probe and gallery image of differ-
ent resolutions, is to downsample the high resolution gallery image.
However, the biggest problem here is that the high-frequency infor-
mation from the image is lost in the downsampling process. And
this high-frequency information is of use for facial recognition.
Also, extracting features from low resolution images is more dif-
ficult because there is less information and therefore less features
in general. Despite this, quality/resolution robust feature extraction
methods have been proposed. These methods are mostly texture-
or colour-based and are training free, which makes them faster to
execute than learning-based methods [14]. Modifications of Local
Binary Pattern (LBP) features [48], improving Local Phase Quanti-
zation (LPQ), a method based on quantizing the phase information
of the local Fourier transform to characterize underlying image
textures [49], and a method based on Histogram of Oriented Gra-
dients (HOG) features and Gabor Filter [50] are amongst proposed
methods. These methods are however very sensitive to pose or illu-
mination occlusion and changes in expression, and features often
have to be hand-crafted [14].

2.2.3 Mixed-resolution

A third method, besides super-resolution and LR robust features, is
match LR to HR face images directly, by learning a common or uni-
fied space from both the LR and HR images. Most methods try to
find discriminative and class-separable features when mapping the
LR and HR images to the unified space. When projected into this
learned space, similarity measurements can be performed to carry
out the recognition task.

Practical implementations that illustrate this method include the
work by Biswas et al., where a multidimensional scaling method is
introduced. They simultaneously embed the LR and HR images into
the unified space so that the distance between the LR and matching
HR counterpart is approximately the same as the distance between
equivalent HR images. The method is extended to work for diffi-
cult pose and lighting conditions too [51]. To bridge the deviation
between LR and HR image domains, Wei et al. use a linear transfor-
mation with the constraint of sparsity for mapping [52]. The method
by Moutafis et al. jointly learns two semi-coupled bases, using HR
images to learn a basis and distance metric with increased class-
separation and LR images to learn a basis and distance metric that
can map LR images to the class-discriminated matching HR images
[53]. Inspired by this method is the mixed resolution facial com-
parison presented by Peng et al. The MixRes classifier transforms
the input probe and gallery samples to a common lower dimen-
sional space, from which the log-likelihood ratio is determined for
the probability that the samples originate from the same individual,
over the probability the samples originate from different individuals.
This method is particularly suitable for cases where the probe and
gallery images have different resolutions, but can also be trained for
same resolution inputs [54].

2.3 2D versus 3D

In order to create the synthetic face images, a method of generation
has to be established. One of the first goals we set for ourselves,
is that the images have to be physically accurate to properly model
the real-world effects that impact the image quality. As describes
in section 2.1, simply downsampling a high resolution image will
gather different results in facial recognition than real low resolution
images, due to various optical phenomena within a scene. The abil-
ity to change certain features in the scene, like lighting and the pose
of the face, are also important criteria to allow for the creation of
custom datasets. And since our research flows from the lack of real
world datasets, mass generation of images is also required to create
an actual dataset of substance.

The first distinction we can make, is whether we want to generate
the images in a 2D or 3D space. Of course, in the end all images are
2D representations, but here we try to distinguish between creating
certain features like pose and lighting in a 2D or 3D space.

Creating photo-realistic looking 2D images of synthetic faces has
become a possibility in recent years due to advances in machine
learning. For example the website Thispersondoesnotexist.com [55],
a website that generates a new realistic image of a person that
does not exist in the real world every time you refresh the page.
The generated images where deemed so realistic, that the website
was even featured in mainstream media [56][57][58]. The machine
learning algorithm behind this website is StyleGAN2 [5], a Gener-
ative Adversarial Network (GAN) developed by NVidia to generate
images of faces, cars or animals, depending on the training data. A
more advanced explanation of the StyleGAN can be found in section
2.4.4. In order to use a 2D pipeline to generate the face images, a
machine learning algorithm like StyleGAN2 could be used to gen-
erate a higher resolution image, while controlling certain attributes
to make the GAN conditional. In a post-processing step, realistic
aberration and other artifacts could be introduced in the form of e.g.
filters while also downscaling the image. However, the first problem
with this method is, that in this entire pipeline the effects of light on
the scene and camera are not based in physics, but are merely visu-
ally approached. This is partly due to the usage of machine learning.
The way light hits the face in the output images is based on how
the model thinks light from a certain angle looks, not on the real
behaviour of light. An extra problem can occur when face com-
ponents are inaccurately estimated, causing lighting artifacts [59].
Using filters and image transformations to emulate light passing
through a lens system and hitting a camera sensor, will on the other
hand leave out more unexpected behaviours that do occur in real
images. Another problem lies in changing the pose. StyleGAN is an
unconditional GAN, so it requires latent space exploration to allow
for an attribute manipulation like changing pose [60][61]. Editing
along the latent space is however not always smooth, which will
sometimes morph the relative location of features like the nose,
mouth and eyes while changing pose. Visually this is often not
directly noticeable, but it might be for facial recognition where local-
izing these features and subsequently matching them to a gallery
picture are a big part of the recognition system. Conditional GANs
are introduced that focus on identity preservation by disentangling
identity and non-identity factors. But these are often limited to
changing only one attribute, like pose [62][63], or lighting [59]. If
we want to create a dataset that is comparable to real images, while
also keeping as much control as possible on the image attributes,
these problems are significant hurdles.

The other approach is creating a 3D scene to create the low reso-
lution images. Here the 2D synthetic images described above can be
used to generate 3D face models. These 3D models can be placed in
a scene where pose and lighting can be changed without adjusting
the 3D model’s identity. Using a physically based renderer, realistic
material, camera and light properties can be rendered. We there-
fore deem this 3D approach as more suitable for our goal, and will
explore it in more depth in the next sections.
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2.4 3D Pipeline

In order to describe the required components of a 3D image gener-
ation pipeline, we will split a 3D scene into four parts, as seen in
figure 5. The 3D scene consists of a camera, that can be split up into
a lens(system) and a sensor, a 3D model of a face and the renderer
that will take all attributes and simulate the behaviour of light in this
scene. For each part, the theoretical background and design choices
will be discussed. The practical implementation of the components
will be discussed in the methodology section.

Fig. 5: Different components in our 3D scene

2.4.1 Renderer

As a basic definition, rendering is the projection of a scene from
a certain viewpoint onto an imaginary image plane by means of a
computer program. The scene is often described in a file, where
information like object geometry, viewpoint, lighting, shading and
textures are stored. The rendering program then applies a rendering
algorithm to project all the information in the scene into a picture,
or the render. Simply tracing all light particles in a scene is hugely
impractical and would require huge amounts of time and computer
power. Therefore, in modern computer graphics there are two basic
methods to approach the rendering of a scene. The first one is ras-
terization or scanline rendering, where all objects of the scene are
geometrically projected into the image plane and colour all the pix-
els accordingly. This method does not allow for advanced optical
effects. The second method is ray tracing, where rays are traced from
the viewpoint through each pixel and determine the objects that ray
hit. The colour of the pixel is determined by shading the object the
ray hits at that pixel. Often more than one ray is traced per pixel,
after which all the rays are sampled in order to determine the final
colour of an image pixel. Ray tracing can in turn be divided into
ray casting and ray tracing. Ray casting does not trace rays further
than the first object they hit. ray tracing on the other hand describes
a more general method of tracing light paths in a scene and can be
used to generate a photo-realistic render [64][65]. This is the method
of interest for our research.

Rendering Equation

In general, the amount of light that reaches the viewpoint from an
object is given by the sum of light emitted by the object and reflected
light. This idea can be expressed in an integral equation generally
known as the rendering equation. The equation is shown in equation
1. Lo(x, ωo) is the outgoing radiance from point x in direction ωo,
Le(x, ωo) the emitted radiance from that point in the same direc-
tion and the integral represents all the incident radiance from all
directions on the sphere Ω around point x.

Lo(x, ωo) = Le(x, ωo) +

∫
Ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n) dωi

(1)
Solving the rendering equation analytically is only possible for very
simple scenes, so most rendering algorithms rely on a numerical
approach. And to render a scene realistically, a solution has to be
found many times to find the overall lighting, or global illumina-
tion, of the scene. Particularly to simulate indirect lighting caused
by light bouncing between objects. Local illumination on the other
hand describes the responds of a single surface to light [64][65].

Solving the Rendering Equation

The two most common ways to find a solution to the rendering
equation are the finite element method and Monte Carlo method. The
finite element method is known as the radiosity method, where for
global illumination each object surface is divided into small patches
and the solution is found by modelling the transfer of light between
these patches. The radiosity method, however, is very memory and
time consuming and will only allow for diffuse reflections [64]. The
Monte Carlo methods rely on repeated random sampling to find
a solution for the integral part of the rendering equation. Finding
the global illumination is inherently recursive with the rendering
equation, as all the incoming light at one point is comprised of all
previous light rays that hit that point, also described with the render-
ing equation. Instead of integrating over all incoming rays on sphere
Ω, only certain points are sampled and only those rays traced to their
origin. This drastically reduces the amount of rays that have to be
traced, especially when the amount of samples is reduced the further
the ray is traced. It has to be noted however, that a very large amount
of samples is still necessary to create an accurate picture, with some-
times billions of rays being traced for moderately complex scenes.

Monte Carlo Methods

The first algorithm that was introduced using this Monte Carlo
method was path tracing. Here the rays are traced from the view-
point/camera into the scene until a light source is hit. When there
is a lot of big light source in the scene, this is a viable solution.
However, with darker scenes, tracing random rays is quite wasteful.
One can also choose to trace the rays from the light source to the
camera. But than a similar problem occurs, where you need to get
enough rays that reach the camera. Using bidirectional path tracing,
this problem is solved by tracing both rays from the camera and from
the light source and the vertices are connected in the middle by a
specific sampling strategy. Photon mapping is a similar method, but
instead of trying to connect the paths from the light source and cam-
era directly, the algorithm is split into two phases. First, rays from the
light source and camera are traced independently until a certain cri-
terion is met. Then in the second phase, the radiance at each point of
a surface is determined based on all the rays that passed that point.
Photon mapping is great for simulating caustics, concentrations of
light due to refraction, and can simulate light scattering. But unlike
path tracing, this algorithm is statistically biased. Light scattering
can also be simulated with volumetric path tracing. For normal path
tracing, the fr(x, ωi, ωo) term of the rendering equation is the bidi-
rectional reflectance distribution function (BRDF), which describes
the reflection of light from ωi to ωo at point x. This, however, only
describes reflection on opaque surfaces. With volumetric path trac-
ing, the BRDF is extended to model light entering at the surface and
scatters internally before exiting at a different point. This way effects
like fog and smoke can be rendered, but also subsurface scattering.
Subsurface scattering is of particular interest to us, as this process
also describes the reflectance of light on human skin [64][65]. There-
fore, we chose the volumetric path tracing algorithm to render our
scene. A more in depth description of subsurface scattering can be
found in section 2.4.4.

2.4.2 Lens

In order to project a scene onto a much smaller image sensor, a lens
system is used to converge the incoming rays towards the surface of
the sensor. In this section, we discuss the real-world lens system we
try to emulate and the effects of lens optics on the output image.

Lens System

There is of course a wide variety of camera types available, each with
different optical specifications and therefore different effects on the
output image. Hence we take a look back at the problem definition,
where security cameras are a big source of (low quality) images
within forensic cases. From this, it would logically follow that we
try to model the camera of our pipeline after a security camera. So,
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we use a real security camera as reference, the Axis P1435-LE [66].
Our choice for this camera mainly lies in the fact that the camera’s
datasheet gives a good overview of camera parameters, e.g. the F-
number, lens focal length and field of view in degrees, that can be
used to calculate more in-depth camera specifications. This is in no
way an endorsement of this specific brand or camera, as it merely
poses to give realistic camera parameters that are in ratio.

There are three main ways to model a camera that could be of interest
for us: a pinhole camera, a thin lens camera and a realistic camera.
The pinhole camera is a camera without a lens and a single point
as aperture, and in renderers is often simulated as an ideal pinhole
camera with an infinite depth of field. The scene can either be pro-
jected with a perspective transformation, based on a given field of
view, or with a orthogonal transformation, were parallel lines within
a scene are preserved. All real-world cameras with a lens give a
perspective projection. The thin lens camera simulates a lens with
a thickness of zero to purely simulate blurriness in a scene due to
depth of field. Here the lens size and focal distance can be adjusted
to change the part of the scene that is in focus. A realistic camera can
also be modeled, where the different components of a lens, like lens
thickness, radius of curvature and refractive index, could for exam-
ple be described in a table [65].

Optical Aberration

Once a real lens is introduced into the pipeline, there will not be
a ideal projection of the scene onto the camera sensor. One of the
main problems is aberration. Aberration is an optical phenomenon,
where not all rays converge to the same focal point once they passed
through one or more lenses. There are different variants of aberra-
tion, shown in figure 6.

Fig. 6: Types of aberration and distortion

Spherical aberration occurs due to the sphere shape of a lens, caus-
ing the focal point to differ for rays that hit the outer part of a lens
compared to the inner part of a lens. Coma aberration is similar, but
is caused by the difference in refraction of different lens zones when
the rays come in from a different angle of incidence. A lens can also
have imperfections, that can cause the lens to have an unexpected
refraction of rays. A larger, but common, imperfection is the lens not
being perfectly spherical. This causes astigmatism, where the focal
point from rays in the horizontal plane are different than in the verti-
cal plane. These forms of aberration can be compensated with multi
lens systems. And it is likely a security camera has a multi lens sys-
tem, since even optical systems like cheap phone cameras consist of
multiple lenses. Regardless, most camera lenses are catered to their
application. And since specialized lenses can become expensive very
quickly, these forms of aberration will most likely be present to at
least some extent for cameras with the simple purpose of filming.

Even when spherical, coma and astigmatism aberration are com-
pensated, the image is not projected into a straight plane but into
a curved one, called Petzval Field curvature. When using a straight

camera sensor, this will also cause a difference in focal point across
the sensor. This can for example be solved with a curved sensor.
Also, like lens imperfections, camera sensors can also have imper-
fections that cause aberration effects.

The last problem is distortion, that can occur even when all previ-
ously mentioned aberration effects are compensated. They cause a
difference in focus, while distortion can happen regardless. Lines
within a scene are not mapped with a linear radius, where relative
distances between lines are distorted in the final image. This can
result in either barrel distortion, where the center of the image is
magnified more then the edges, or pincushion distortion, where the
magnification becomes larger toward the edges of the image [67].
The camera we chose as a reference has barrel distortion.

Light as a Wave

When talking about rays, we try to describe the path of photons. Pho-
tons have both characteristics as massless particles carrying energy
and propagating electromagnetic waves. Due to this wave nature,
specific optical phenomena can be observed in lens systems. The first
is chromatic aberration, where the focal point is different for photons
with different wavelengths passing through a lens. A common way
to reduce chromatic aberration is the usage of multiple lenses with
different diffraction indices [68], but this is not observed in images
made with our reference camera.

Another potentially significant impact on the image quality, espe-
cially on a per pixel scale, caused by the wave nature of light is
diffraction. Diffraction is the bending or interference of waves when
they encounter corners or pass through a narrow aperture. In the case
of cameras, diffraction occurs because light travels through the round
aperture within a lens system. Due to the round nature of the aper-
ture, a specific interference pattern arises known as the airy disk (see
figure 7). The airy disk is a result of far field diffraction. Given the
small distance between the aperture and image sensor, normally near
field diffraction would occur. But the lens of the camera will result
the airy disk to appear at a finite distance, at the focal length to be
precise, from the aperture. As can be seen in figure 7, the intensity of
the interference pattern has both minima and maxima, with the min-
ima having an intensity of 0. Once the diameter of the central peak is
larger than a pixel on the image sensor, the interference pattern will
start to have an impact on the image quality. Once this is the case,
diffraction can for example be modeled into our pipeline by a con-
volution of the output image and a point spread function following
the intensity of the airy disk. The intensity is given by equation 2.

I(θ) = I0

[
2J1(x)

x

]2
(2)

I0 is the intensity at the center peak, J1 is a Bessel function of the
first kind and x is given by equation 3.

x =
2πa

λ

q

R
(3)

a is the aperture radius, λ the wavelength of light, q the radius from
the center of the airy disk and R the distance between the aperture
center and q. The first minimum of J1(x) is at x ≈ 3.8317. From
this it can be deduced that q1, or the radius of the first minimum of
the airy disk, is given as:

q1 ≈ 1.22R
λ

2a
= 1.22

λ

2A
(4)

Where A is the numerical aperture of the system. When the airy disk
is projected onto the focal plane at focal distance f of a lens, A is
related to the commonly given F-number, often denoted as N , of a
lens with:

A =
1√

4N2 + 1
(5)

It has to be noted that q1 is linearly related to the wavelength of the
light passing through λ. This means the diameter of the center peak
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is largest for red light, since this has the largest wavelength in the
visible light spectrum [69] [70]. In order to quantify the impact of

Fig. 7: Airy disk pattern and Intensity over the radius of the airy
disk (q)

diffraction on our lens system, we need to find both q1 and the size
of a pixel for our reference camera. The F-number is given in the
camera datasheet [66] as 1.4 for both the 3 mm and 10.5 mm lens
options. So for red light with a wavelength of 700 nm, this results
in a value for q1 of 1.27 µm. As we recall, q1 is the radius from the
center peak of the airy disk to the first minimum, so the diameter of
the center peak is twice q1, or 2.54 µm.

To calculate the pixel size of our reference camera, we need the
sensor size and pixel resolution. The Axis P1435-LE has a pixel res-
olution of 1920×1080 [66]. The sensor size can be found based on
the Angle of View (AOV), interchangeably denoted as Field of View
(FOV) in literature, and focal length with the following equation:

AOV = 2arctan
d

2f
(6)

d is the sensor size in the same direction as the AOV. This equation
holds for images with a rectilinear projection, which does not com-
pletely hold for our images as they contain barrel distortion. But the
error is small and the values we find are realistic for this camera’s
sensor (see section 2.4.3) [71].

Using equation 6 and the horizontal and vertical FOV given for the
3mm lens, 95◦ and 51◦ respectively, we can find the horizontal and
vertical sensor size. Dividing these sensor sizes by their correspond-
ing pixel resolution, we find the smallest size of a pixel as being 2.65
µm in the vertical plane. Since this is larger than the airy disk’s cen-
ter peak diameter of 2.54 µm, diffraction does not have a significant
effect on our camera. The second peak of the airy disk will however
spill over into the neighbouring pixels. But since this peak only has
a intensity of roughly 1.75% compared to the center peak (see figure
7), we consider this effect negligible.

2.4.3 Sensor

In real world digital cameras, after the light passes through the lens
system it hits the camera sensor. Once a photons hit the sensor sur-
face, they are converted into an electrical signal, often a voltage, by
the sensor. The voltage is a measure of light intensity at that loca-
tion of the sensor and can be used to construct the final image. There
are two main types of image sensors that are used in modern cam-
eras; the charge-coupled device (CCD) and the active-pixel sensor
(CMOS). Both are based on MOS semi-conductor technology, where
the CCD uses MOS capacitors to detect incoming photons, while a
CMOS sensor uses a combination of photodetectors, typically pho-
todiodes, and MOSFET amplifiers. CMOS sensors typically have
a lower production cost and power consumption, so they are more
widely used in consumer goods [72] [73].

The security camera we use as a reference, the AXIS P1435-LE, also
uses a CMOS camera sensor. To be specific, it uses a 1/2.8" progres-
sive scan CMOS sensor [66]. The fractional notation in inches is
based on the outer diameter of old camera tubes, which were later

replaced by digital sensors. The notation stuck, but there is no indus-
try standard that directly translates this notation to a diagonal sensor
size in mm. Values slightly differ per company and are more a gen-
eral grouping of sensor types. The sensor sizes we calculated in 2.4.2
differ slightly from most 1/2.8" sensors we found online, but still lies
within a realistic margin to be correct for a 1/2.8" sensor [74] [75]
[76]. This revelation does not impact our diffraction calculations, as
the aspect ratio is also different for the sensor sizes found online and
therefore did not result in a smaller pixel size than we used for our
calculations.

Bayer Filtering

A common way to represent colour in digital images is using the
additive RGB colour model, where the final colour of a pixel is
reproduced from adding the amount of red, green and blue light lev-
els. CCD and CMOS sensors often operate with a variant of the RGB
model, where professional cameras use three sensors, one for each
colour channel. The cheaper solution, and most likely the solution
used in the reference security camera, is using a single sensor in
combination with a colour filter array. The most common colour fil-
ter array, is the Bayer filter mosaic, as seen in figure 8. This is a
pattern of red, green and blue colour filters that lays on top of the
square grid of photo sensors, so the light intensity at each photo sen-
sor gives a colour value for the corresponding filter colour. In a Bayer
filter pattern, half of the filters are green while the other half is split
between blue and red filters. This layout roughly approximates the
physiology of the human eye, where the L and M cones have a bias in
the green spectrum when combined. In order to create the per pixel
colour of the output image, a demosaicing algorithm is used. Simple
algorithms use interpolation, like bilinear or bicubic interpolation, to
find the pixel colour based on the neighbouring red, green and blue
values, but also more advanced algorithms exist [77]. A disadvantage

Fig. 8: Bayer filter mosaic

of the Bayer filtering is the small scale artifacts that can occur due
to the demosaicing algorithm, like false colour artifacts or zippering
artifacts, often along edges in the image. Since we are working on a
small image scale of only a few pixels in our pipeline, these artifacts
can have a significant impact when introduced.

Compression

In order to reduce the cost of storage and transmission, compres-
sion is applied on each image frame of a video instead of saving the
raw image data for these frames. The AXIS P1435-LE uses either
H.264 or motion JPEG for its video compression [66], which both
use the lossy Discrete Cosine Transform (DCT) compression. Lossy
means the compression is irreversible and uses partial data discard-
ing and inexact approximations to create the compressed image. As a
result of this inaccuracy, compression artifacts, like ringing, banding,
aliasing and blockiness artifacts, are introduced [78].

2.4.4 3D Model

Since we are working in a 3D space, we need a 3D model to represent
a human face. In brought terms, the 3D model of a human face in
computer graphics can be divided into three components:
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• Mesh Structure - the 3D structure describing the geometry of the
face. Also known as a mesh structure, since that is a common way to
visualize a 3D model without specific texture information.
• Albedo Map - the image texture of the 3D structure without any
lighting information
• Subsurface scattering - the way a light ray reflects and scatters
when it hits the model’s surface

All 3 components are described below. But the goal of our pipeline
is not simply producing a single model of a face, but for many dif-
ferent identities. These identities have to be generated synthetically,
so this process is also described in this section.

Mesh Structure

As established, the goal of the pipeline is to generate a low reso-
lution probe image with an identity that still corresponds to a high
resolution gallery image. This means the 3D geometry of the face
has to correspond completely with the gallery image, at least when
seen from the same pose. This means the extraction, or reconstruc-
tion as it is more commonly known, of the 3D model has to be
based on the high resolution gallery images. Like super-resolution,
3D face reconstruction can be based on either a single or multiple
reference images. Multiple images from different angles will give
more information about the original 3D structure of an individuals
head. But, like expressed in section 2.3, creating synthetic images
from the same individual with different poses is difficult and can
lead to relative morphing of facial features. Also creating the 3D
model from different images requires stitching and warping these
images to fit the model from all angles, introducing extra room for
errors in feature placement. This can be made even more difficult
when expressions differ between images. Single image reconstruc-
tion on the other hand has a much stronger learning bias, as it has
to predict much more about the 3D shape. It is therefore common to
combine both a 3D morphable model of a face and a deep learning
algorithm to restrict the amount of possible solutions [79]. Predic-
tion of shape is however not necessarily a problem, as long as the
features align with the reference 2D picture for the same pose. Using
single image reconstruction also makes the amount of required syn-
thetic images more straightforward; For each identity only one high
resolution image is required for the pipeline to work. Therefore, we
chose single image reconstruction for our pipeline.

To choose a single image reconstruction model that fits our appli-
cation, we used the NoW (Not quite in the wild) benchmark as a
starting point [80]. It is a benchmark that was introduced to give a
standard evaluation metric to measure the robustness and accuracy of
3D face reconstruction methods. The performance of multiple meth-
ods is published on their website, so various well performing ones
can be compared to find one fitting for our application. This resulted
in a few interesting candidates:

• FOCUS (Face-autoencoder and OCclUsion Segmentation) [81]
and 3D Deep Face Reconstruction by Microsoft [82] are two of the
best performing methods. They are particularly good at reconstruct-
ing faces with occlusion. As a result however, they do not allow for
uv mapped textures and use resembling per-vertex textures instead.
This means the texture of the face is approximated and not taken
from the source 2D image. It is therefore not identity preserving,
which is not desired in our pipeline.
• DECA [83] and RingNet [80] use the FLAME [84] morphable
model as basis for their reconstruction. The FLAME model is trained
on 3800 real life 3D head scans to create a 3D shape space and in
addition allows for dedicated pose and expression articulation. Both
allow for uv mapped textures. DECA is the better performing of the
two and is therefore considered for our pipeline.
• 3DDFA v2 [85] and PRNet [86] create face meshes unlike the
full head 3D meshes of DECA and RingNet. Both are trained on
the 300W-LP dataset of landmarked face images with large poses.
They also both allow for uv mapped textures. 3DDFA v2 has the
better performance of the two, but PRNet has a more straight forward

execution of the code and can therefore be easily implemented in our
pipeline.
• PIXIE [87] also performs well and even allows for full body
3D reconstruction. However, it uses DECA for face reconstruction
without uv mapped textures.
• SADRNet [88] performs well on other benchmarks like REALY
[89]. It does however only regress pose and shape and does not
reconstruct the facial texture in any way.

So DECA and PRNet appear to be fitting candidates for our pipeline.
Both models were therefore implemented and compared. The prac-
tical implementation and results of this comparison can be found in
the methodology section.

Albedo Map

As mentioned before, an albedo map is the texture of a mesh
model without any lighting information. For identity preservation,
the albedo maps of our 3D models are extracted from the 2D input
face images. The process of uv mapping can be used to map coor-
dinates of a 2D image, refered to as U and V coordinates, to the 3D
space with x, y and z coordinates. For a face, facial landmarks in the
2D image are used as reference points to distort the 2D image texture
to fit the corresponding 3D landmark coordinates.

Subsurface Scattering

Realistic human skin is difficult to model, not only due to its complex
texture both in colour and roughness, but also do to its interaction
with light. Human skin does not behave as an opaque surface, but
is rather translucent in reality. This can for example be seen when a
hand is held in front of a bright light source, where a lot of light trav-
els through the hand in a diffuse manner instead of simply reflecting
back to the light source. This phenomenon, of light partly pene-
trating the surface and scattering through interaction with particles
within the medium, before leaving the medium at a different point,
is called subsurface scattering. A visual difference between opaque
reflections and subsurface scattering can be seen in figure 9. As

Fig. 9: Opaque reflection with BRDF (left) and subsurface scatter-
ing with BSSRDF (right)

mentioned in section 2.4.1, volumetric path tracing can be used to
render subsurface scattering. Volumetric scattering of a larger vol-
ume like fog or clouds can be modeled with this path tracing model,
but human skin too, since it is seen as simply a volume more dense
with particles. To achieve this, the bidirectional reflectance distribu-
tion function (BRDF) term, fr(x, ωi, ωo), in the rendering equation
(eq. 1) has to be replaced. This is done with the bidirectional sur-
face scattering reflectance distribution function (BSSRDF), which is
a distribution function S(xi, ωi, xo, ωo) that describes the ratio of
the exiting differential radiance at point xo in direction ωo to the dif-
ferential irradiance at point xi from direction ωi. To generalize the
BSSRDF, integration over both the incoming direction and surface
area A in needed, changing the full rendering equation into equation
7.

Lo(x, ωo) =Le(x, ωo)

+

∫
A

∫
Ω
S(xi, ωi, xo, ωo)Li(x, ωi)(ωi · n) dωi dA

(7)
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Generally, when the distance between point xi and xo increases, the
value of S diminishes. For practical implementation of an subsur-
face scattering algorithm, this fact can be a substantial starting point
[65].

An early approximation for S in the context of human skin is pre-
sented in the work of Wann Jensen et al. [90]. They construct the
BSSRDF model by taking the sum of a diffusion approximation
and single scattering term. This model accounts for light transport
between surface locations and it simulates both the directional com-
ponent and diffuse component. The diffusion approximation is based
on the observation that, in a highly scattering medium like human
skin, the light distribution tends to become isotropic, or uniform
for all orientations. This even holds if the phase function, the func-
tion describing the angle between ωi and ωo, and initial light source
distribution are highly anisotropic, or dependent on the orientation.
The light distribution tends toward uniformity for a larger number of
scattering events, since each scattering event blurs the light distribu-
tion. This leaves an approximation for S that is based on three main
parameters: the absorption coefficient (σa), the scattering coefficient
(σs) and the relative index of refraction of the medium with respect
to a boundary medium (η). These parameters can be found through
experiments, as also given in the work by Wann Jensen et al. σa and
σs are found for red green and blue wavelengths by focusing a tight
white beam of light on human skin and observing the radiant exi-
tance over the entire surface [90]. The refractive index of skin varies
throughout real skin, but only slightly and can be assumed as a con-
stant for larger areas. The refractive index of skin compared to are is
roughly 1.4 [91].

This method relies on a skin model of a single layer, which in not
realistic when compared to the anatomical structure of skin. In real
humans, the skin is build from multiple complex (cell) layers, like
the stratum corneum surface layer, the epidermis and dermis, each
reacting differently to light passing through them. More complex
BSSRDF models have therefore been developed as well, like a two
layer skin model by Donner et al. [91] or even a five layer model
by Krishnaswamy et al [92]. Using a complicated multi-layer model
can significantly improve the visual appearance skin [93]. However,
especially given the small scale of our output images, using a sin-
gle layer can still obtain a reasonable approximation [90]. Taking
the significant increase in image generation time for more complex
models into account, the simpler models can still be considered.

Identities

As input for our 3D reconstruction we need to generate synthetic
2D face images. We use StyleGAN2 by Nvidia [5], mentioned in sec
2.3, as a basis. StyleGAN is still considered state-of-the-art for face
image generation and still under active development.

As mentioned before, GANs are generative deep learning models
that make use of an adversarial process. The generative network is
trained by maximizing the error-rate of the discriminative network,
therefore passing as much synthesized data as true data. Independent
backpropagation is also applied to both networks to improve both
networks separately besides the adversarial loss [94]. StyleGAN uses
the progressive GAN training method, where the GAN generator is
grown from small to large in a pyramid shaped manner. First only a
small generator and discriminator play the zero-sum game to gener-
ate 4×4 images. The generator and discriminator are then expanded
and blended with a new layer to generate 8×8 images, and so on,
until the system generates full resolution 1024×1024 images [5].
Like mentioned in the name, StyleGAN uses a style-based gener-
ator. Instead of using a traditional input layer to create the latent
space, StyleGAN first uses a non-linear mapping network to trans-
form the input latent space to a intermediate latent space creating a
learned constant. Vectors from this intermediate latent space are split
into styles in the synthesis network to generate the different features
of the output image. This learned constant, compared to traditional
style transfer networks, makes an input example image superfluous
for generation [5].

As an unconditional GAN, StyleGAN’s latent space is tangled and
creates images with random pose, lighting etc. Untangling can be
done with conditioned exploration of this latent space to allow for
attribute based editing. Two promising methods of untangling are
considered: StyleFlow [60] and the work by Colbois et al. [61].

StyleFlow uses conditional continuous normalizing flows in the
GAN latent space to explore it non-linearly, conditioned by attribute
features. This allows for both generation based on input attributes
and editing a face image along its attributes, like pose and expres-
sion, while preserving its identity. The interface of StyleFlow is
however not optimized for mass generation of output, and is there-
fore less suitable for large dataset generation [60].

The method by Colbois et al. projects a dataset with known attribute
labels into the intermediate latent space of StyleGAN. Using support
vector machines, linear separations are fit in the latent space based
on single attributes. New synthetic identities are generated by ran-
dom sampling the StyleGAN input latent space. It does not allow for
real time attribute adjustment. Instead, it generates multiple images,
where poses and lighting options are varied at given increments.
This does allow for mass identity generation, as this method was
specifically developed for large synthetic dataset generation, which
is ideal for our pipeline [61]. So we pick StyleGAN2, in combination
with the method by Colbois et al. to make StyleGAN conditioned, to
generate our synthetic 2D face dataset.

3 Methodology

3.1 3D Pipeline

In this section, the used methods to practically implement the 3D
pipeline are presented. This section will follow the same structure
as the background counterpart, where the 3D scene is split into four
parts (see figure 5). The 3D scene consists of a camera, that can be
split up into a lens(system) and a sensor, a 3D model of a face and
the renderer that will take all attributes and simulate the behaviour of
light in this scene. For each part, the implemented components and
software will be discussed.

3.1.1 Renderer

To execute the picked volumetric path tracing algorithm to solve the
rendering equation, two software programs were considered; Phys-
ically Based Rendering, also known as PBRT [95], and Mitsuba
Renderer [96]. Both are so called physically based renderers and
allow for the incorporation of all Monte Carlo methods for solving
the rendering equation described in section 2.4.1. PBRT is however
the more well known one, since the authors received an Academy
Award for the technical and scientific impact their work has had on
film productions. While Mitsuba is updated more regularly and has
slightly more features [97], PBRT has more in depth documenta-
tion due to the accompanying book they released [65]. Therefore,
we chose to use PBRT as our renderer. We use the volumetric path
tracing integrator, since it allows for simple implementation of sub-
surface scattering in PBRT. We can set a high sampling rate, which
would normally cause a high computation time, since we are work-
ing on a low resolution scale of only a few pixels. Our sampling rate
is 2048 samples per pixel and we use the Halton sampler since it
gives a slightly better result with these sampling rates according to
the PBRT documentation.

3.1.2 Lens

For our pipeline, we initially tried to approximate a security camera
lens system in PBRT. PBRT can render a real lens by loading in
a table describing the various lens components [65]. However, we
could not find a schematic of a cheap security camera lens system
with reasonable parameters to model in PBRT. We therefore tried to
simplify the lens system to a single lens, finding the parameters with
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the lensmaker equation:

1

f
= (n− 1)

[
1

R1
− 1

R2
+

(n− 1)d

nR1R2

]
(8)

Here f is the focal length of the lens, n is the refractive index and
R1 and R2 are the radii of curvature of both sides of the lens. For
a convex lens surface, the sign convention gives that R1 > 0 and
R2 < 0. For a concave lens surface the opposite is true. The diam-
eter of aperture for the lens can be found with the F-number, as it
is the ratio of the focal length to the aperture diameter. Creating
such a lens, however, was found to produce unrealistic amounts of
aberration, as can be seen in figure 10. Even though the face in this
example is completely in focus, the face appears very fuzzy due to
mainly spherical aberration. The spherical aberration can be partic-
ularly observed as to the circular glow around the face. It was also
found that the aperture of our reference lens was only 2.14 mm. This
means the head model, projected at a relatively large distance from
the camera, appeared underexposed since most rays reflected from
the head would not reach the sensor. Increasing the ISO, a measure
of light sensitivity for the camera sensor, or exposure time solved this
issue. Due to the excessive aberration, we finally opted to use the pin-
hole camera model. The thin lens model, a theoretical lens with zero
thickness, did not produce a significant difference in quality when in
focus compared to the pinhole camera. The rendered output of PBRT
for both the pinhole and thin lens system, can also be observed in
figure 10. Even when the real lens would have been implemented,

Fig. 10: Lens options PBRT

chromatic aberration can not be modeled with PBRT, since the path
tracing algorithm of PBRT does only model rays as having the par-
ticle behaviour of photons. Spectral path tracing implementations
do exist to introduce wave behaviour [98] [99] [100], but are not
explored in this research.

3.1.3 Sensor

Sensor artifacts created by a Bayer filter could be reproduced by
applying a Bayer filter pattern over the raw image output of PBRT,
after which a demosaicing algorithm is applied to construct the final
image. However, due to time constraints, the effects of the Bayer
filter are not introduced in our actual pipeline. Instead, we use the
method available within PBRT for image construction. Here, for
each pixel of the image film, all the radiance values, represented
as RGB spectrum values, of the sampled rays that hit this pixel are
combined. A Gaussian filter is used over the pixel to combine the
radiance values into a final pixel colour [65].

In order to replicate compression artifacts in our pipeline, we take
the uncompressed image generated by PBRT and write the image to
a compressed file using a Python script and the JPEG compression
algorithm within the OpenCV Library [101].

3.1.4 3D model

DECA [83] and PRNet [86] were both found to be fitting sin-
gle image 3D reconstruction models for our pipeline. To execute

a proper comparison, both models were combined with PBRT to
generate images. Going forward, the shortcomings and advantages
of DECA and PRNet within our pipeline are compared, based on
the generated mesh structure and albedo map. Example outputs for
PRNet and DECA can be found in figure 11, both without realistic
lighting conditions and after being rendered with PBRT.

PRNet versus DECA

Fig. 11: 3D reconstruction of a synthetic face with PRNet (left) and
DECA (right). The bottom two images are rendered using PBRT

PRNet generates a mesh of the face, excluding the hair and neck of
an individual. When the structure is first generated, the mesh has a
ribbed structure, which is unfavourable due to unexpected reflection
patterns on the skin compared to a real face. To avoid this problem,
a smoothing script is applied using the open3d library and Python.

DECA can generate both high and low poly-count meshes of a full
head. The high poly-count mesh does allow expression modifica-
tion, but not uv mapping. Since uv mapping is required for a realistic
skin texture, the low poly-count output is compared to PRNet. In the
mesh, the eyes are generated as separate objects from the rest of the
head mesh. This results in unexpected reflection behaviour in PBRT
between the eyelids and eyeball objects, even noticeable in low res-
olution outputs. In addition, DECA uses a 3D reference head space
as its basis, as incorporated within the FLAME model [84]. This 3D
head is then morphed to fit the identity of the input 2D reference
image. It was observed that this morphing has some limitations, as a
gap/ridge, on top of the output head mesh was often observed where
the mesh was not properly connected. This too can result in unde-
sired reflection effects in the rendering process.

PRNet and DECA both use uv mapping to create an albedo map.
Both however have observable mapping inaccuracies. PRNet out-
puts have an alignment issue at the nose, where the texture of the
nostrils from the 2D image is often aligned below the nostrils of
the 3D mesh. DECA on the other hand has an alignment problem at
the eyes. It uses the FAN [102] model for eye landmark predictions,
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which are used for the mapping. FAN shows inaccuracy when detect-
ing narrow eyes, so predicted eye landmarks are often off center,
which in turn results in misaligned eye textures in the 3D model. We
found that the dlib library’s [103] landmark detector performs better,
so we implemented a code change to overrule the FAN predictions,
resulting in more accurate eye texture placement. DECA also crops
the input 2D images strongly around the face in its pre-processing
steps, causing an observable black bar at the forehead as a result of
filler black pixels due to excluded texture information. Furthermore,
DECA allows for texture reconstruction to create a LR estimation of
the missing head textures, such as the hair and neck [84][104]. They
are however not particularly accurate, likely due to the black bar at
the forehead, which confuses the prediction algorithm. Finally, both
PRNet and DECA have problems with interpreting textures of non-
visible face parts in the input 2D images. This results in parts of the
background from the input images appearing as face textures.

Altough DECA performs better in benchmark tests, the above listed
limitations found after implementation of the reconstruction method
were perceived as more impactful than the limitations of PRNet.
PRNet generated less albedo map artifacts and the relative simplic-
ity of the generated mesh allowed for less observable errors after
rendering. We therefore choose PRNet as our preferred 3D face
reconstruction method.

Subsurface Scattering

As discussed before, we use PBRT to render lighting conditions. The
build-in volumetric path tracing algorithm of PBRT is used, which
can be utilized to model subsurface scattering for the skin texture.
PBRT uses a single layer model, similar to the method discussed
in section 2.4.4. PBRT likewise takes σa, σs, both as RGB values,
and η as input parameters. σa and σs are taken from the real-world
experimental values found by Wann Jensen et al. [90], while η is
approximated as the constant value 1.4 [90]. As seen in the bottom
images in figure 11, this gives reasonable results for our application.

Identities

StyleGAN2 [5], in combination with the method by Colbois et al.
[61] to untangle its latent space, is used to generate the synthetic
identities. With this method, each identity can be generated with dif-
ferent poses in given increments. An example output for a single
identity is given in figure 12. We use frontal images as input for
our 3D reconstruction method, since this results in the least miss-
ing texture artifacts, unlike only one side of the face being visible.
Therefore, we filter on frontal face images using the pre-trained pose
estimation model HopeNet [105]. Since most real face datasets do
not contain children due to complex privacy laws, we also filter out
synthetically generated children from our dataset. Here a pre-trained
model is used, an age estimation model trained by the Swiss Federal
Institute of Technology [106]. Finally, our 3D reconstruction method
does not anticipate glasses, which will result in the glasses being pro-
jected on the albedo map without having a 3D mesh. We use canny
edge detection between the eyes, to detect a potential glasses nose
bridge, as filtering method.

Fig. 12: Different poses for a single synthetic identity, as generated
by the controlled StyleGAN2

The paper by Colbois et al. partly focuses on privacy concerns
regarding face datasets. Therefore experiments are described to ver-
ify that StyleGAN does not simply reproduce identities from its
training dataset (FFHQ), which would make the output not fully
synthetic. This is confirmed to be the case, which is in line with our

own requirements. It was however observed that the variability of the
synthetic dataset is less than the real-world dataset. We therefore per-
form an extra check to verify the generated identities are unique from
each other. The synthetic images are encoded into 128 element vec-
tors with the face-recognition python library [107], which is based on
a pre-trained model by Openface [108] and dlib [103]. The vectors
are normalized and the angles between 1500 identities are plotted in
fig13, where the smaller angles correspond to face pairs with sim-
ilar attributes. No vectors were fully aligned, as the smallest angle
found in this dataset was 11.2◦. The pairs of images with the small-
est angle between them where then manually inspected to check for
similar identities. Some pairs had genuine attribute resemblance, but
the overall identity was still confirmed to be different, as can be seen
in figure 13.

Fig. 13: Angles between encoded face images (in degrees) to verify
uniqueness

3.2 Overview Pipeline

Now that all implemented components of our pipeline are discussed,
a full pipeline overview can be presented. Figure 14 shows the
flow diagram for full synthetic VLR image generation. The left side
presents the generation of synthetic HR face images using Style-
GAN2 [5] in combination with the latent space untangeling method
by Colbois et al [61]. We filter the direct output of this combined
model and only let frontally posed, adult and non-glasses images
through. This creates a HR synthetic face dataset, that can also be
used as gallery dataset in the context of facial recognition. The right
side of the diagram presents the LR pipeline. We first use PRNet [86]
to perform single image 3D reconstruction. The output of PRNet
contains undesired ridges, which are smoothed out with a simple
Python script. Now we have a 3D face mesh and a albedo map con-
structed from the HR input image. Next, they are placed in a 3D
scene to be rendered by PBRT [65]. A 3D scene is described by a
text file, describing all present 3D models and textures, as well as
the used camera, camera position, light sources, material properties
like scattering parameters and rendering algorithm. After running
PBRT to render the described scene, a raw image file is generated as
output. This file can either be converted to a .png output image, or
JPEG compression can be applied using OpenCV [101] and Python.
Both options result in a LR output image with the same identity as
the HR input, either with our without compression. The LR pipeline
is completely one-to-one, meaning one HR input images results in
one LR output.
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Fig. 14: Complete overview of our synthetic image generation
pipeline

3.3 Facial Recognition Software and ROC

To answer the second part of our research questions, we need facial
recognition software to compare the different output variations of
our pipeline against each other and a real-world low resolution
dataset. The facial recognition software of choice is FaceVACS [109]
and Deepface [110]. FaceVACS is a closed-source facial recognition
engine that presents itself as a state-of-the-art commercial com-
petitor. Since FaceVACS is closed source, the inner workings are
considered a black box. Batch matching of images is possible, with
similarity scores being generated as outputs. Deepface on the other
hand is an open-source library, that incorporates multiple commonly
used and well performing open-source face detection models, facial
recognition models and similarity metrics. From the available mod-
els, we choose RetinaFace [111] for detection of landmarks and
cropping, since it also performances particularly well on low res-
olution faces. The ArcFace facial recognition model [112] is used to
encode the face images as vectors. The euclidean distance is found
between the L2-norms of a vector/face pair to find similarity scores.
Euclidean L2 form seems to be the most stable similarity score met-
ric according to experiments by the library authors [113].

The similarity scores generated by Deepface and FaceVACS are used
to plot Receiver Operating Characteristic (ROC) curves. We gener-
ate probe and gallery images for 500 synthetic identities, which we
compare against each other to generate similarity scores for 250.000
image pairs. The ROC curve plots the True Positive Rate (TPR),
or probability of successful matching, against the False Positive
Rate (FPR), or probability of false successful matching, for differ-
ent thresholds. The similarity scores from Deepface and FaceVACS
are used as probability scores with truth labels attached. Since the
ROC plots the TPR against the FPR, the positive diagonal represents
the situation where the probability of an image pair being flagged as
a true match, is equal for both a real or false identity pair. With other
words, this line represents a random classifier. The Area Under the
Curve (AUC) can therefore be used as a measure of similarity score
accuracy. A random classifier has a AUC of 0.5. An AUC higher
than 0.5 means a classifier better than random and consequently an
AUC less than 0.5 means a classifier worse than random. Yet, it has
to be noted that the AUC has a probability distribution on its own
when a finite, and in particularly limited, set of genuine and imposter
scores is used to plot the ROC curve. This means the probability of
a random system having an AUC significantly different from 0.50
is non trivial for a limited number of genuine and imposter scores
[114]. In other words, AUC scores larger than, but close to 0.5 might

still indicate a random classifier for these cases. In addition, an AUC
score of say 0.7 might indicate a classifier better than random, but is
still considered a poor performance for a facial recognition model.
Especially compared to state-of-the-art accuracy scores for high res-
olution facial recognition, which are well above 0.9 [115] [113].

To properly compare results, we have to take the probability distri-
bution of the AUC into account in case the AUC values are close.
Based on the findings by Bamber, the AUC is closely related to
the Mann-Whitney U statistic [116]. Based on the properties of the
Mann-Whitney U statistic, DeLong et al. constructed a method to
find a non-parametric approach of comparing AUC scores of two
correlated ROC curves by generating an approximated covariance
matrix [117]. Hanley et al. show how the DeLong method can also
be used to find an estimate of the variance of the mean AUC score
[118]. We will be implementing the method proposed by Sun et al. to
find this variance of the mean AUC score, who have reduced the time
complexity of DeLong’s algorithm from quadratic down to linearith-
mic order [119]. From the variance of the mean we can also find the
standard deviation of the mean by simply taking the square root. To
compare two AUC scores, we would like to find a 95% Confidence
Interval (CI). This estimated confidence interval will give the inter-
val in which 95% of the AUC score means will lie. To achieve this,
the distribution of the AUC score has to be known. It is shown that
for large values of genuine and imposter scores, the estimated AUC
is approximately normally distributed [120] [116] [114]. Given our
dataset size (500 identities, 250.000 image pairs), enough scores are
present to assume this normal distribution.

The ROC curves or AUC scores will not be used to compare between
the two facial recognition models used. So the difference between
compared ROC curves can be attributed to differences in the pre-
sented dataset, since the model is a constant. As a result, when two
ROC curves or AUC scores are equal, the variables within the two
corresponding datasets, like amount of noise or difference in colour,
are perceived as equally challenging during the facial recognition
process.

3.4 Super-resolution Software

In order to test the influence of applying super-resolution on probe
images before facial recognition, we need to pick a super-resolution
algorithm. Our choice fell on a relatively simple CNN, the SRCNN
model as presented in section 2.2.1. As a benchmark for its influence,
bicubic interpolation is also used to create SR images. SRCNN is
not state-of-the-art, but should yield a significantly better SR per-
formance compared to bicubic interpolation upscaling [34] [29].
SRCNN can also easily be combined with existing facial recogni-
tion software like FaceVACS or Deepface, as it can be introduced
as a pre-processing step without a need to modify the facial recog-
nition model. In addition, it requires relatively short training times.
The model has to be trained just to find the filters instead of accuracy
and the model is very small and compact.

Table 1 SRCNN Parameters
Filter sizes for each layer:

Patch Extraction 64 x 1 x 9 x 9
Non-linear Mapping 32 x 64 x 1 x 1

Reconstruction 1 x 32 x 5 x 5
Optimizer: Adam

Loss Function: MSE
Input Patch Size: 33 pixels

Output Patch Size: 21 pixels
Stride: 14 pixels

Batch Size: 128

The used parameters during training are presented in table 1. We
train for both 2× and 4× upscaling to compare between the two.
Most parameters are based on the basic network settings as pre-
sented in the paper, like the filter sizes and the Mean Squared Error
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(MSE) as the loss function. One place we deviate from the paper is
the choice of optimizer. Using the Adam optimizer obtained better
results with less hyperparameter tuning compared to the RMSprop
optimizer used by Dong et al. For our training dataset, we use 1000
synthetic faces, each from a different identity, generated by our
pipeline. Their resolution is either 2× or 4× larger compared to the
expected VLR input, respective to the target upscaling. The corre-
sponding VLR input images in our training data are also generated
with our pipeline. Like explained in section 2.2.1, the input is first
up-scaled with bicubic interpolation in the pre-processing. This is
also done for our training data. The patch sizes for the first and last
layer inputs are also shown in table 1. The size of the input layer
patches are larger than the output because zero padding is avoided in
the network, since it introduces border artifacts. As a result, the spa-
tial dimensions reduce each convolutional layer, so the input patch
has to be bigger. The stride parameter is the step size of our slid-
ing window while creating patches of our full resolution input. It is
smaller than the patch size to create overlapping, which improves the
reconstruction step. We train for 160 epochs for 2× upscaling and 40
epoch for 4× upscaling. The best training parameters for number of
epochs and dataset size were checked with the Peak Signal-to-Noise
Ratio (PSNR) between HR references generated by our pipeline and
the SR outputs. PSNR is used as comparison metric, since it was
also used in the original paper [34]. It was found that an output peak
exists, where more training data or epochs will reduce the quality
of the SR output after a certain point. This is most likely due to the
over-prediction of image information that is not present in the refer-
ence HR images.

Example outputs for are SRCNN model are presented in figure 15.
Their PSNR relative to the HR reference images are also given,
where a higher PSNR value means a more faithful reconstruction.
For comparison, the outputs when bicubic interpolation is used for
the same upscaling are also included. It can be seen that SRCNN
has a perceptible increase in reconstruction abilities over bicubic
interpolation, as expected.

Fig. 15: Example SRCNN and bicubic interpolation outputs for 2×,
2×2 and 4× upscaling. Their PSNR values relative to their HR ref-
erence counterparts are also given

4 Experimental Setup

After thoroughly describing the different components of our
pipeline, facial recognition models used, classifier comparison
method and super-resolution model, we use them to find answers
for our second set of research questions.

As mentioned in section 3.3, we use probe and gallery images
from 500 synthetic identities for our experiments, unless indicated
otherwise.

4.1 Influence of IPD

To test the influence of face images with a interpupillary distance
of a few pixels on facial recognition, we generate images for three
different IPD values that are frontally lit and posed. No compression
is applied and the images are rendered with a pinhole camera, so
these images are ideal, as in without distortion or artifacts. This way,
the only variable is resolution or IPD. We chose an IPD of 8, 11 and
14 pixels for comparison. According to our definitions set in section
2.1, these face images are considered very low resolution or slightly
moderately low resolution.

4.2 Variation in Pose, Lighting and Compression

To include the variation in pose, lighting and compression for our
SR experiment, a lot of different options for each parameter can be
generated. However, this gives an abundance of results. Therefore we
try to narrow these options down by picking six parameter options
that give a good representation of our pipeline output. We conducted
a pre-experiment, with 10 identities, where we generated 48 options
for each identity by combining the following parameters:

• 4 poses (frontal, looking up, looking down, looking sideways)
• 4 lighting positions (frontal, from above, from bottom, from side)
• 3 levels of compression (none, small, heavy)

From this we found that the six options in figure 16 give a good
visual representation of the capabilities of our pipeline. We use an
IPD of 8 pixels for these options to truly challenge our facial recog-
nition models in the very low resolution domain. The cases where
JPEG compression is applied, heavy compression is applied since
this seemed to coincide with the observed compression in the real
world dataset we will be comparing our pipeline output to. The
examples of the six options shown in figure 16, are for a single
identity. The synthetic gallery image is also shown as a reference.

Fig. 16: Six pipeline output combinations used for further experi-
ments

4.2.1 Influence of Super-resolution

To quantify the influence of applying SISR to the low resolution
probe images before performing facial recognition, we use the super-
resolution algorithm as described in section 3.4. The pipeline output
options, as described in figure 16, are used to find our reference or
base AUC scores. Then, 2×, 2×2 and 4× upscaling is performed on
these datasets using SRCNN. The bicubic interpolation algorithm, as
described in section 2.2.1, is also used for 2× and 4× upscaling. This
way, a distinction between super-resolution algorithm complexities
can be made.

4.2.2 Pipeline vs SCFace

Finally, we will compare our pipeline output to a real-world low res-
olution dataset. The SCFace dataset [1] will be used as the real-world
dataset. The SCFace dataset contains high resolution gallery images
for 130 different identities. These 130 people are photographed with
5 different surveillance cameras at 3 different distances from the
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camera. The cameras are placed at a height of 2.25 meters and the
people stand at a distance of either 1.0, 2.6 or 4.2 meters from the
camera. For our comparison, the images at a distance of 4.2 meters
are of interest to us, since the closer images are no longer consid-
ered VLR or even MLR according to our definition set in section
2.1. These are the images in the dataset labeled with "distance 1".

In order to compare our pipeline output to SCFace, we first take the
high resolution gallery images in the SCFace dataset and put them
into our pipeline where normally the synthetic gallery images are
used as input. We set our pipeline parameters, such as pose, light-
ing direction, illumination and compression amount to visually copy
the real probe image datasets of SCFace. Two cameras, surveillance
camera 1 (Bosch LTC0495/51) and 3 (J&S JCC-915D), are selected
to be replicated. Camera 1 and 5 produce images with a similar yel-
low hue. Camera 5 has a higher contrast, while camera 1 produces
images with a slightly higher IPD compared to all other cameras,
probably due to a smaller field of view. The slightly higher IPD was
regarded more interesting for a comparison. Images from camera 2,
3, and 4 all contain a similar blue hue and IPD, so the replication
challenge would be similar for all three [1].

Objectively comparing the output of our pipeline and real cameras
was considered, but found to be difficult. SCFace presents itself as
an uncontrolled indoor dataset. In particular, the illumination con-
ditions are uncontrolled and the participants were not asked to look
at a fixed point. Therefore the illumination, pose and even IPD as
a result of uncontrolled poses are slightly different between the
images. Recreating every individual image from SCFace with our
pipeline is possible, but is tedious work for 130 seperate images and
defeats the point of generating a dataset. As a result, the slightly
more artistic approach of replication was taken to tailor an output
that visually resembles the camera dataset as a whole.

Figure 17 shows SCFace’s camera 1 for four identities, the corre-
sponding replication of the camera’s specifications with our pipeline
and the corresponding high resolution gallery images. Figure 18
shows the same for SCFace’s camera 3.

Fig. 17: SCFace camera 1, our pipeline and high resolution refer-
ences for four identities

Camera 1 was observed to create images with an average IPD of
13 pixels, while camera 3 puts out an average IPD of 9 pixels. The
illumination was matched for both cameras by tweaking the RGB
spectral distribution of the radiance emitted by the light source in
PBRT. The SCFace paper [1] describes the only light source as being
a window on one side of the room. In the images, the light source

Fig. 18: SCFace camera 3, our pipeline and high resolution refer-
ences for four identities

appears to light the individuals quite uniformly, coming from above
to create the shadow beneath the nose and slightly right since the
left cheek appears to have a more shadow. So, the light source in our
3D scene was placed accordingly. The camera position, and there-
fore pose, can be modeled after the described position in the SCFace
paper (2.25m up, 4.2m away). The images appear to have signifi-
cant JPEG compression, since typical JPEG artifacts created by lossy
DCT compression can be observed such as blockiness and ringing
artifacts between the head and background. Therefore, heavy JPEG
compression is also applied to our raw pipeline output. In particu-
lar camera 1 also appears to introduce colour/wavelength dependant
artifacts, which could have been introduced by a Bayer filter or chro-
matic aberration, or the combination of the two. As discussed before,
these forms of degradation can currently not be replicated with our
pipeline.

To compare the effect of synthetic identity generation to the real
world SCFace dataset, the exact same pipeline parameters found to
recreate camera 1 and 3 are applied to our 500 synthetic identities.
In addition, their is a significant difference between the background
of the SCFace images and the background of our pipeline gener-
ated images. As can be seen in both figure 17 and 18, the SCFace
images are taken in front of a white wall and the images do contain
the full head, including hair and the neck, and upper body of every
individual. Our pipeline, as described before, only depicts the face
in a void, as generated by PRNet. While the pipeline images do con-
tain the most common attributes used to find landmarks in the facial
recognition process, like nose, eyes, mouth and jawline, their might
be a difference in recognition performance when more of the body
is visual. Therefore, the facial recognition software is also run a sec-
ond time on the real SCFace datasets, but this time with the faces
cropped manually to match our pipeline output. Examples of this
cropping are shown in figure 19.

Fig. 19: Manual cropping of the SCFace dataset
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5 Results and Discussion

In this section the results of the experiments from the previous
section are presented and discussed.

5.1 Interpupillary Distance

Figure 20 shows the ROC curves and AUC scores for face images
with an IPD of 8, 11 (VLR) and 14 (MLR), for both FaceVACS
and Deepface. As described in section 4.1, these images are ideal.
These AUC scores indicate that interpupillary distance has negative
impact on the facial recognition software’s ability to correctly verify
identities at an IPD of 8 pixels. This appears to be especially the case
for Deepface. However, once the IPD approaches the MLR range
this impact quickly disappears as FaceVACS and Deepface perform
as almost perfect classifiers for an IPD of 11 and certainly 14 pixels.

Fig. 20: ROC curves for face images with an IPD of 8, 11 and 14
pixels for both FaceVACS and Deepface

5.2 Super-resolution

Table 3 presents the AUC scores for the six pipeline parameter com-
binations described in table 2 and section 4.2 while using FaceVACS
as facial recognition software. Table 4 presents the same results
while using Deepface. Base represent the scores for the unaltered LR
images. The results of our super-resolution experiment, as described
in section 4.2.1, are also presented in these tables. For all AUC
scores, their 95% confidence bounds, as substantiated in section 3.3,
are also included.

The first thing that becomes apparent from our results, is the signif-
icant impact of compression on the verification capabilities of both
FaceVACS and Deepface. For our base pipeline outputs with heavy

Table 2 Pipeline output options to test the influence of pose, lighting and
compression

Option 1 2 3 4 5 6
Compression No No No Yes Yes Yes

Lighting Frontal From Above From Above Frontal From Below From Below
Pose Frontal Frontal Looking Down Looking Down Looking Up Looking Left

compression, Deepface basically perform as a random classifier with
AUC scores slightly above 0.5. Although FaceVACS handles com-
pression better, the performance loss is still significant compared
to the non-compression cases. Applying either bicubic upscaling or
super-resolution resulted in no meaningful improvement in classi-
fication capabilities for these compression cases. The opposite is
even true for implementing SR before FaceVACS. The only signifi-
cant, while taking the confidence bounds into consideration, change
in AUC scores is negative compared to the base cases. A potential
explanation is that FaceVACS uses a method to compare LR and HR
images that is better resistant to compression than SR. A by-product
of SRCNN upscaling is a sharpening process, which in cases with
a lot of compression also means sharpening compression noise, as
a result hurting verification. This would also explain why bicubic
interpolation results in a slightly less prominent performance loss,
as its algorithm results in less apparent sharpening compared to SR.
Since FaceVACS is closed source, this phenomenon is however non-
verifiable.

When the input images for FaceVACS do not contain heavy com-
pression, their is a modest, but statistically significant improvement
when 2× upscaling is performed with SR. However, further up-
scaling does not result in further improvement, but rather loss in
verification performance. Especially for 4× SR upscaling. The ini-
tial improvement could be explained by the increasing of the IPD,
which improves FaceVACS’ performance as shown in our previous
experiment. The subsequential performance loss for 4× upscaling
could be explained in a similar vain as for compression cases. But
instead of sharpening compression noise, the sharpening introduces
distinct facial feature details that are not present in the gallery HR
images, making varification more difficult. Or at least compared to
the method the closed source FaceVACS uses to compare LR and HR
images. This could be substantiated by the fact that bicubic interpo-
lation, which does not sharpen the up-scaled images, does not show
this apparent drop in AUC scores for 4× upscaling. This would be
in line with research by Li et al. [22] as mentioned in section 2.2.1.

Deepface experiences positive improvement from upscaling when
the input images contain no compression, where SR has a signif-
icant edge over bicubic interpolation. The overall improvement in
facial recognition can likely be attributed to the increase in IPD. As
seen in our previous experiment, this significantly improves Deep-
fake’s ability to correctly match identities. For the base cases, it was
observed that RetinaFace had sometimes difficulty with correctly
placing all facial landmarks, even though this model performs partic-
ularly well with LR faces compared to the other available detection
models in Deepface. Increasing facial details while upscaling helps
to place landmarks on more realistic locations, which would explain
why SR performed significantly better than bicubic interpolation. We
find this likely, since most increases in AUC score correspond with
the increase in PSNR value as presented with our example in figure
15. Looking at the SR cases, they contain the higher PSNR values,
which relates to a better reconstruction of image details.

Changing the pose and lighting directions to something different
than frontal also has an impact, although much less intense than the
impact of compression. The change in pose and lighting direction,
in particular the combination of the two, lowers the AUC score by
roughly 0.09 for both FaceVACS and Deepface. Interestingly, super-
resolution, whether being bicubic interpolation or SRCNN, does not
close the gap on this loss of performance. The loss of performance
can likely be attributed to making detection more difficult. Change
of pose introduces and obscures facial features compared to frontal
images, while change of lighting direction introduces hard shadows,
mostly around important landmark locations such as the eyes and
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Table 3 AUC with 95% confidence interval bounds for six pipeline parameter combinations using FaceVACS
FaceVACS

1 2 3 4 5 6
Base 0.953 ± 0.008 0.870 ± 0.016 0.869 ± 0.017 0.786 ± 0.020 0.667 ± 0.026 0.653 ± 0.024
Bicubic 2 0.960 ± 0.007 0.884 ± 0.015 0.887 ± 0.015 0.781 ± 0.020 0.659 ± 0.026 0.648 ± 0.025
Bicubic 4 0.961 ± 0.007 0.885 ± 0.014 0.891 ± 0.014 0.763 ± 0.021 0.658 ± 0.025 0.644 ± 0.024
SR 2 0.969 ± 0.005 0.897 ± 0.013 0.902 ± 0.012 0.732 ± 0.022 0.651 ± 0.025 0.643 ± 0.024
SR 2x2 0.970 ± 0.005 0.882 ± 0.013 0.878 ± 0.014 0.701 ± 0.023 0.649 ± 0.025 0.630 ± 0.024
SR 4 0.945 ± 0.008 0.845 ± 0.017 0.852 ± 0.016 0.721 ± 0.023 0.648 ± 0.025 0.634 ± 0.025

Table 4 AUC with 95% confidence interval bounds for six pipeline parameter combinations using Deepface
Deepface

1 2 3 4 5 6
Base 0.786 ± 0.019 0.698 ± 0.023 0.669 ± 0.025 0.579 ± 0.026 0.510 ± 0.025 0.525 ± 0.025
Bicubic 2 0.810 ± 0.019 0.711 ± 0.023 0.683 ± 0.025 0.579 ± 0.026 0.513 ± 0.025 0.523 ± 0.025
Bicubic 4 0.831 ± 0.017 0.734 ± 0.022 0.706 ± 0.024 0.591 ± 0.026 0.511 ± 0.025 0.523 ± 0.025
SR 2 0.907 ± 0.013 0.812 ± 0.019 0.751 ± 0.023 0.590 ± 0.027 0.511 ± 0.025 0.533 ± 0.025
SR 2x2 0.925 ± 0.011 0.820 ± 0.018 0.774 ± 0.022 0.592 ± 0.026 0.511 ± 0.026 0.534 ± 0.026
SR 4 0.917 ± 0.011 0.806 ± 0.019 0.793 ± 0.020 0.625 ± 0.025 0.517 ± 0.025 0.549 ± 0.025

nose. Both make the detection of landmarks more difficult, effects
that stay relevant even after compression.

When looking at the main context of this research, real world VLR
face images with realistic image degradation and thus heavy com-
pression and pose/lighting variation, the application of SR does not
appear to help, but rather hurt facial recognition performance. Facial
recognition appears to perform poorly in general for these cases,
with Deepface performing non better than a random classifier and
FaceVACS showing performance significantly sub-par when com-
pression is involved. Only for ideal cases with low amounts of noise,
shadows or pose variation do FaceVACS and Deepface show good
AUC scores. In these cases, SR upscaling might be meaningful, but
the exact application really depends on the facial recognition soft-
ware used. And since these cases are not really realistic in real-world
settings, the significance can be questioned.

5.3 Comparison to SCFace

We also tried to compare the facial recognition performance on our
pipeline output to the real low resolution dataset SCFace. The com-
position of the datasets are described in section 4.2.2. The AUC
scores for SCFace’s camera 1 and 3 (SCFace), the cropped SCFace
images (SCFace Crop), their pipeline recreations (SCFace Syn) and
the pipeline output using the same parameters but with the fully syn-
thetic data (Pipeline) can be found in tables 5 and 6. Figure 21 shows
the corresponding ROC curves for FaceVACS, while figure 22 shows
the ROC curves for Deepface.

When looking at the ROC curves, two things immediately become
clear. Firstly, FaceVACS does a much better facial recognition job
than Deepface for the various datasets. FaceVACS even performs as
a perfect classifier on the SCFace camera 1 dataset with an AUC of
1.000 and a very small confidence interval of ±0.0002. Deepface
has much more difficulty, particularly with the real world data. Here,
even for the camera 1 dataset with the higher IPD, the AUC score
lies around 0.74. As mentioned in section 2.2, this is considered
weak performance for a facial recognition model. This difference
in performance between the models is not surprising, given the gen-
eral better performance of FaceVACS in both previous experiments.
Secondly, it is significantly easier to correctly match identities for
camera 1 than for camera 3. The camera 1 datasets have a higher
IPD, as discussed in section 4.2.2, than camera 3 datasets. And as
shown with our first experiment, a higher IPD will result in better
facial recognition performance for both Deepface and FaceVACS.

Another thing we notice, is that the synthetic data is matched better
with Deepface than the real-world SCFace data, exactly the opposite
of FaceVACS. This might be explained by the fact that FaceVACS
is differently optimized for specific image artifacts and degradation,

Fig. 21: FaceVACS ROC curves for SCFace camera 1 and 3

but this is hard to check because of the closed source nature of Face-
VACS.

In general, taking our main goal into consideration of creating a
VLR synthetic pipeline that generates face images comparable with
a real-world dataset, we can see that we were not successful. Would
we have been successful in recreating the image degradation of real
world images, than in particular the SCFace cropped and SCFace
synthetic dataset should have a equal ROC curves and AUC scores.
As explained in section 2.2, since the facial recognition models are a
constant, the difference in image information parameters will deter-
mine the difference in these scores. And the parameters of these two
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Fig. 22: Deepface ROC curves for SCFace camera 1 and 3

Table 5 AUC, standard deviation and 95% confidence interval for SCFace and
pipeline comparison using FaceVACS

FaceVACS cam1 cam3
AUC σ ±CI 95% AUC σ ±CI 95%

SCFace 1.000 0.0001 0.0002 0.988 0.005 0.010
SCFace Crop 0.992 0.002 0.004 0.954 0.009 0.018
SCFace Syn 0.967 0.008 0.016 0.933 0.011 0.022

Pipeline 0.905 0.007 0.013 0.803 0.010 0.020

Table 6 AUC, standard deviation and 95% confidence interval for SCFace and
pipeline comparison using Deepface

Deepface cam1 cam3
AUC σ ±CI 95% AUC σ ±CI 95%

SCFace 0.714 0.026 0.051 0.618 0.025 0.050
SCFace Crop 0.743 0.022 0.043 0.592 0.026 0.051
SCFace Syn 0.879 0.016 0.031 0.720 0.022 0.043

Pipeline 0.787 0.011 0.021 0.679 0.012 0.023

datasets are most similar, having visually similar appearances and
cropping, and contain even the same identities. Across the board, so
for both recreated cameras and facial recognition models, the scores
and curves can not be called statistically significantly equal. Only for
the camera 3 datasets when matched with FaceVACS, do the confi-
dence bounds have overlap. But given the full set of results, we do
not consider this enough evidence for dataset equality.

FaceVACS did the best job at facial recognition for the normal
SCFace dataset, where manually cropping the dataset as a pre-
processing step significantly hurts this performance. Maybe Face-
VACS is better at finding features when a full head image is pre-
sented. Or maybe the manual cropping accidentally cut out features,
especially around the jawline, that altered the identity information

significantly. If this is the case, than comparing SCFace syntethic
and the normal SCFace datasets might be better to cover for this
alteration of feature information. However, the difference between
the normal SCFace dataset and SCFace synthetic is even larger for
FaceVACS, keeping our statement of unsuccessful real world image
replication intact. For Deepface, cropping the SCFace images did not
significantly alter Deepface’s ability to match identities.

We think the shortcomings of our pipeline, especially the lack of
a real lens aberration and Bayer filter, had too much impact to suc-
cessfully recreate image degradation present in the SCFace datasets.

Introduction of fully synthetic identities ("pipeline" scores) made
correct facial recognition considerably harder than on the SCFace
synthetic dataset, in particular for FaceVACS. The difference in
facial recognition performance on these datasets is somewhat
counter-intuitive, as the exact same pipeline with the exact same
scene parameters is used. Since these variables are equal, we have
to look at the high resolution input datasets. The first big differ-
ence between the SCFace gallery dataset and our synthetic dataset is
the diversity in ethnicity. SCFace overwhelmingly uses individuals
with a Caucasian background for their dataset, while our synthetic
dataset also contains a significant amount of individuals with an
Asian, Latino or African ethnic background. In facial recognition
models, their is often a positive bias toward the matching of Cau-
casian individuals, as a lot of face datasets used for training have
a lack of other ethnic representation. Another reason might be the
opposite, a lower variability of the synthetic dataset. As mentioned
in the Identities section in 3.1.4, Colbois et al. observed less vari-
ability in the synthetic dataset generated by their method compared
to a real-world dataset. Less variability in facial features between
individuals makes the probability of false positive matching higher.

6 Conclusion

The goal of this research was to propose a proof of concept for a
realistic but synthetic low resolution face image generation pipeline,
which was tested for a potential application in forensic facial recog-
nition settings. Improvements in machine learning in recent years
have sprouted interesting techniques for photo-realistic synthetic
face and image generation, that could potentially be combined to
build such a pipeline. Our first set of research questions was focused
on the creation of the pipeline, answered by literature research and
practical implementations.

What steps/processes are of importance in a 3D pipeline for gener-
ating realistic synthetic face images comparable to images typically
found in forensic use cases? The most important steps in our
approach are high resolution synthetic face image generation, 3D
face reconstruction, a physically based renderer and simulation of
camera behaviour.

What are the advantages/disadvantages of using a 3D over a 2D
pipeline to generate low resolution face images? At this moment in
time, using 3D models appears to be the better approach to creating
a synthetic pipeline, due to the possible implementation of physics
based lighting and better identity preservation compared to 2D mod-
els when changing poses.
Which renderer is suitable for generating images with physically
accurate lighting conditions? What is the influence of diffraction of
light to create physically accurate low resolution images? PBRT can
execute the volumetric path tracing needed for physically accurate
particle behaviour of light, while being well documented and there-
fore easy to implement. However, PBRT is not a spectral renderer,
which made the implementation of lights wave behaviour partly
unexplored. The effects of diffraction are however shown to be neg-
ligible for realistic security camera lens system parameters, leaving
only the absence of chromatic aberration due to PBRT’s inability to
render wave characteristics.
What are other influences of a lens, sensor characteristics and image
storage on the degradation of realistic low resolution images? Can
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we implement these influences into our pipeline?
A lens system introduces image degradation through wrong projec-
tion on the output image, known as optical aberration, which can
be modeled with PBRT. However, the lack of realistic lens system
schematics made the actual implementation difficult, leading us to
use a much simpler pinhole camera model for this proof of concept.
Two main contributors to sensor and storage based artifacts on a
very low resolution level are Bayer filtering and subsequently com-
pression of the raw image before storage. Only Compression was
successfully implemented in our pipeline, by applying the OpenCV
JPEG compression algorithm as a post-processing step to the raw
pipeline output.
Which models can be used to generate 3D face structures? Sin-
gle image reconstruction had our preference over multiple image
reconstruction, mainly to enable one-to-one gallery to low resolution
probe image generation with our pipeline. For identity preservation,
the albedo map had to be constructed from the source image and
not approximated, which limited the available state-of-the art 3D
reconstruction methods. PRNet and DECA were deemed as suitable
candidates, with both models having sometimes conflicting trade-
offs and shortcomings. PRNet was preferred due to less observable
errors and artifacts in the output when combined within the pipeline.
How can subsurface scattering of light within human skin be accu-
rately modeled?
Subsurface scattering in human skin can be approximated by intro-
ducing the BSSRDF into the rendering equation. In practice, the vol-
umetric path tracing algorithm can be used to render the subsurface
scattering. Models with multiple scattering layers are introduced to
approximate skin better, but a single layer model is implemented
with PBRT which creates a reasonable approximation for VLR
images.
Which model for synthetic face generation is suitable? We were
able to incorporate a state-of-the-art conditioned machine learning
algorithm to generate a realistic synthetic high resolution gallery
dataset, by combining StyleGAN2 and attribute based latent space
exploration as introduced by Colbois et al. The combination of the
two models made for realistic image generation while making the
output controlled. filtering the output of this combined model on
pose, age and glasses was required and implemented to create a syn-
thetic dataset compatible with the rest or our pipeline.

The second part of our research had its focus on identification per-
formance with a state-of-the art and open-source facial recognition
model, taking its input from our pipeline.

What is the impact of face images with an interpupillary distance
of a few pixels on facial recognition? Once the face images have an
interpupillary distance that enters the very low resolution domain, so
an IPD < 11 pixels, even for ideal face images the facial recognition
performance is significantly impacted.
How do low resolution and super-resolution biometric comparisons
perform with our very low resolution synthetic dataset, while vary-
ing pose, lighting conditions and compression?
Introducing heavy compression into our dataset significantly
reduced the performance of state-of-the-art and in particular open-
source facial recognition. Super-resolution upscaling does not
improve, but can rather hurt performance for these compression
cases. Varying pose and lighting directions into something differ-
ent than frontal does also introduce facial recognition performance
loss that can not be bridged by applying super-resolution as a pre-
processing step. Only for synthetic datasets with a low amount of
noise, shadows or pose variation can super-resolution help recogni-
tion performance, but the exact application is really model depen-
dant.
How do low resolution facial recognition methods perform with
a real-life low resolution face datasets compared to our synthetic
datasets? To make a substantiated comparison between a real-life
and our synthetic dataset, we tried to visually approach two VLR
SCFace datasets by tweaking our pipeline parameters before gener-
ating synthetic datsets with the same and fully synthetic identities.
The facial recognition models performed significantly different with
the real VLR datasets compared to our synthetic approximations.

Our fully synthetic identities also resulted in worse facial recogni-
tion performance compared to datasets created with equal pipeline
parameters but real identites.

This leads us to answering our overarching research question: Does
the proposed pipeline generate low resolution face images that are
comparable to a real-world dataset, making them usable in a foren-
sic setting? From our experimental results we can conclude that we
were not able to fully replicate real-world VLR image degradation,
making the proposed pipeline unusable in a forensic setting.

7 Future Work

The pipeline introduced in this paper was not able to recreate real
world digital image degradation on a very low resolution scale. But
we think, given the extensive background research and presenta-
tion of shortcomings, this work can be used as a starting point for
future research. As mentioned in our introduction, this research was
started with the intention of proof of concept. And although not per-
fectly executed, as demonstrated with our results, we still believe
expanding the general outline of a 3D pipeline, as presented in
our background and methodology, could garner promising results in
future work.

A key advantage for future research, is the fact that the components
of our pipeline are backed by very active research fields. For example
the generation of synthetic face images. The framework for a GAN
was first introduced in 2014 [94], the first fully synthetic human
face images were generated in 2017 [121], while the first ground-
breaking version of StyleGAN was made public in 2019 [39]. This
means that in a time-span of less than a decade, we went from the
first introduction of the underlying techniques to mass generation of
photo-realistic synthetic faces. An interesting publication during our
own research was the work by Princeton U and Adobe, introducing
3D-FM GAN as a identity preserving and 3D-controllable synthetic
face image generator [122]. Their work could for example replace
our relatively roundabout way of combining two models to create a
conditioned StyleGAN.

Other significant improvements of our pipeline would be the incor-
poration of a real lens system into our pipeline and extending the
physically based renderer to include spectral rendering. Finding
detailed lens system specifications, detailing things like exact lens
shapes and glass types used, for cameras used in realistic forensic
scenarios would be a must. For spectral rendering, software does
exist, like the work by Stanford Vista Lab [100], and improved
implementations of physically based rendering are still being intro-
duced and developed. When spectral rendering within a pipeline
is realized, implementing sensor characteristics like a Bayer filter
would also give a great boost towards realism. For 3D face model
construction, using multi image reconstruction could also be an
interesting expansion. This would negate the ability of the pipeline
to work in a one-to-one manner, but could potentially increase the
realism of the 3D face/head models.

To get even better insight into the output of a low resolution syn-
thetic face pipeline, the super-resolution experiment performed in
our research could be expanded with state-of-the-art super-resolution
models. Especially using super-resolution methods specifically
intended for upscaling face images could garner interesting results.
Also experiments incorporating resolution robust feature extraction
methods or mixed-resolution methods are interesting for future work
to cover all the bases for low resolution to high resolution image
matching.
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