
UNIVERSITY OF TWENTE

MASTER THESIS

An application of a proximal method with
a fractional Laplacian regularizer for

inverse problems

Author:
Martijn HEUTINCK

Supervisor:
Dr. rer. nat. José A. IGLESIAS

MARTÍNEZ

A thesis submitted in fulfillment of the requirements
for the degree of Master of Mathematics

in the group

Mathematics of Imaging and AI
Department of Systems, Analysis and Computational Sciences

December 20, 2022

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

Contents

1 Introduction 2

2 Theory 4

2.1 Inverse problems and ill-posedness 4
2.2 Regularization . 6

2.2.1 Research question . 8
2.3 Optimization . 9

3 Theoretical basis 19

3.1 Fractional Laplacian . 19
3.2 FISTA and its fractional Laplacian version 24
3.3 Bases . 26

3.3.1 Haar wavelets . 26
3.4 SSIM . 28
3.5 Radon transformation . 29
3.6 Autoconvolution . 30

4 Computational approach 32

4.1 The Radon transform . 32
4.2 The auto convolution . 33

4.2.1 Computation of the Haar wavelets 33
4.2.2 Setup of the autoconvolution 35
4.2.3 The adjoint of the Autoconvolution 39
4.2.4 Optimization algorithms 41

5 Results 45

5.1 Results for the linear operator . 45
5.2 Results for the non-linear operator 51

6 Conclusion 56

1

1 Introduction

In most scienti�c �elds calculating the inverse of some matrix or operator is done
quite often. This is usually done to �nd a certain value from an observation or
measurement that was made. This situation can be expressed concisely with
the following equation:

Au = f (1)

In this simple equation A can be a matrix or an operator describing some
physical phenomena and f is usually a vector, a matrix or a function that has
been measured or observed. The u is the desired quantity or function that needs
to be retrieved. In a ideal world the inverse could be taken and the answer to
this question would be:

u = A−1f (2)

Unfortunately, calculating an inverse is not always trivial if at all possible.
A multitude of reasons can make it di�cult to get to an inverse. An example
of these di�culties is that the inverse does not always exist. An operator or a
matrix is not always invertible. Another example is that the size of the calcula-
tions that need to be done to get to the inverse can be too big. It would simply
take too much space for a computer. Most importantly, the operator or matrix
can be ill-conditioned. Meaning that a small error would lead to a big di�erence
in the eventual answer. These obstacles encountered in these calculations gave
rise to the �eld of inverse problems and there are more obstacles that are not
mentioned.

These inverses are of signi�cant interest and a lot of research is being done in
this �eld. Analysis has been done and numerical methods have been developed
to support practical issues where these inverse problems arise. One of these
places where these problems arise is in image reconstructions [14, 16, 23]. Im-
age reconstruction is done in a lot of places, where the most well known is in the
medical �eld. X-ray computed tomography [14] is a very well known situation
where image reconstruction takes place. There are many more examples, both
in the medical �eld and in other �elds like geophysics [31], which explains why
there is so much interest in this topic. This research will contribute to the devel-
opment of image reconstructions with a focus on edge preserving regularization.
A new method based on a fractional Laplacian operator will be investigated
and compared to already existing edge preserving methods. Edge preserving
methods are of great interest because of reconstructions consisting of separate
objects and the need to exactly know where the edges are. A comparison will
be made between the already existing method based on total variation [30] in
regards to their reconstruction accuracy and speed in a linear inverse problem
related to tomography. The accuracy will be measured using the SSIM index,
which is a quality measure from image processing that correlates with subjec-
tive assessment better than mean squared error. Furthermore, the fractional
Laplacian operator will also be tested on a non-linear operator. This time it
will be compared to an algorithm called FISTA with a Haar wavelet basis to

2

simulate the edge preserving nature. It will only be compared on reconstruc-
tion accuracy in this case. This research will show that a fractional Laplacian
as regularizer creates very comparable reconstructions to already existing edge
preserving reconstruction algorithms, while at the same time being faster and
easily extendable to non-linear operators.

3

2 Theory

In this theory section the basic concepts of inverse problems will be introduced.
This will start of with inverse problems for measurements perturbed by noise,
to continue with regularization methods and �nish with how optimization algo-
rithms work that solve these kind of inverse problems.

2.1 Inverse problems and ill-posedness

An inverse is not always trivial. To understand why, an introduction into inverse
problems is going to be given now. The ideal situation, which is a measurement
f that has been produced from the data we want to recover, can be described
with the equation:

Au = f (3)

This was already seen in the introduction, but unfortunately, this equation
rarely describes the real world situations accurately. Almost all of the time,
observations and measurements are perturbed by noise. This noise can have
many causes and needs to be accounted for. Therefore, a better description
than equation 3 is the following:

Au = f + n = fn (4)

Where fn is the observations or measurement perturbed by the noise. This
noise causes a number of issues. To understand the issues, the de�nition of
well-posed and ill-posed problems is necessary. Using [25] where the following
de�nition can be found:

De�nition 1.

A problem is called well-posed in the sense of Hadamard if:

1. There exists at least one solution. (Existence)

2. There is at most one solution. (Uniqueness)

3. The solution depends continuously on data. (Stability)

A problem is called ill-posed if one of these conditions is not satis�ed. In [25]
this de�nition is only used in the case that A is a matrix and u, n, fn are
vectors. The same de�nition also holds, when A is an operator and u, n, fn are
functions, which can be seen in [12].

In most situations the assumption is made that the forward problem is well-
posed, while the backward problem is ill-posed. These problems are described in
both Korolev and Latz [25] and Clason [12]. One of the problems is the stability
of the solution. In the example that is used in [25], they show that with A being
a matrix with a high conditioning number, the inverse is dominated by the noise.
The reconstruction of u using the inverse results in ũ = A−1fn = u + A−1n.

4

In this situation there is: ∥A−1n∥2 ≈ ∥n∥2/λk, with λk being the smallest
eigenvalue. This shows that the reconstruction can become arbitrarily large
based on the noise.

To extend this analysis to inverse problems for functions a couple of new
de�nitions will be introduced, namely self-adjoint operators and compact oper-
ators. Starting o� with the adjoint. The adjoint is de�ned as follows . Let H be
an Hilbert space and A : H → H. Then the adjoint operator A∗ has to satisfy
the next equality for all f, g ∈ H:

⟨Af, g⟩ = ⟨f,A∗g⟩

In the case that an operator is self-adjoint it means that A = A∗ and that
the shown equality is the same as: ⟨Af, g⟩ = ⟨f,Ag⟩.

Now the de�nition of a compact operator will be introduced. Let V,W be a
Banach space with operator T : V →W . T is a compact operator if it maps the
closed unit ball of V into a compact subset of W , meaning in particular that
the subset needs to be closed and bounded [11]. The converse only holds if the
dimensions of the space are �nite. In in�nite dimensions closed and bounded
do not mean compact.

With these de�nitions in place it is possible to state the spectral theorem and
what a spectral decomposition is. Let A be a self-adjoint and compact operator
working on Hilbert space H with A : H → H. Then there exist orthogonal
projections: Pi : H → H with Ei = R(Pi). Here Ei denotes the eigenspace
which is denoted as Eλ = {f ∈ H | A(f) = λf} = N (A − λId). Moreover, Ei

is one dimensional and can have both �nite and in�nite number of eigenspaces
with i ∈ N and corresponding real numbers λi, with |λ1| ≥ |λ2| ≥ |λ3| ≥, all
non-zero but not necessarily distinct. This results in the following equalities:

1. A =
∑

i λiPi

2. PiPj = δijPi

Moreover, if there are in�nitely many eigenvalues λi, then limi→∞ λi = 0.
If a clever choice is made for each Ei, namely by choosing in each one of

them a unit vector gi, then the following also needs to hold:

A(f) =
∑
i

λi ⟨f, gi⟩ gi

Here gi is in fact an orthonormal system and this holds for all f ∈ H. From
these de�nitions and theorems it is easy to understand how noise can have a big
impact on the reconstruction error. If A−1 is bounded it would be possible to
do the following [18]:

A−1(f) =
∑
i

1

λi
⟨f, gi⟩ gi

This shows the obvious problem of the decaying eigenvalues and why the
backward problem can be ill-posed as was shown in the matrix example. This

5

entire problem can be resolved by using Tikhonov regularization. Regularization
will be discussed in more detail in the next section, but it will be shortly shown
here. Using Tikhonov regularization the problem gets altered to solving the
following:

uα ∈ argmin
u

∥Au− (f + n)∥2H + α ∥u∥2H

With this added term the inversion also changes. The inversion now looks
like this:

A−1(f + n) =
∑
i

λi
λ2i + α

⟨f + n, gi⟩ gi

Which means that even if the eigenvalues decay to zero that the result will
be useful.

2.2 Regularization

The problem of the decaying eigenvalues shows the necessary insights into in-
verse problems. To solve these problems, there need to be methods that stabi-
lizes and guarantees a solution. Subtracting the noise is not possible because
most of the time the value is not known and not a constant. Therefore one of
the ideas to solve this problem is through regularization techniques.

One of the classical methods of regularizing is the Tikhonov regularization.
This method solves the following equation:

min
u

(∥Au− fn∥2 + α∥Lu∥2) (5)

By adding the term α∥Lu∥2 an attempt is made to increase the stability
of the inverse problem, while at the same time not deviate too much from the
ideal solution u. The balance between stability and deviation from the optimal
solution can be adjusted by tuning the parameter α. Additionally an operator
L that works on u dictates how the regularization works in combination with
the norm that is imposed.

One of the algorithms that solve these kind of minimization problems is called
FISTA [5]. FISTA is an iterative solver that solves the following minimization
problem:

min
u

(∥Au− fn∥2L2 + α∥u∥L1) (6)

This is a slightly altered version of the Tikhonov regularization and has been
proven to work very well [5]. The idea is to promote sparse solutions with few
nonzero coe�cients. The minimization (6) is iteratively solved using a least
square approximation in combination with a soft-thresholding function. This
soft-thresholding function is the explicit solution of:

min
u

(∥u− fn∥2L2 + α∥u∥L1) (7)

6

Iterating over it obtains very good results and solves (6). This is called
forward-backward splitting and will be explained in the next paragraph. An-
other important result has come from another variation on Tikhonov regular-
ization, namely:

min
u

(∥Au− fn∥2L2 + α∥∇u∥L1) (8)

This is a very well known minimization problem with total variation (TV)
regularization. This minimization (8) will also be discussed in more detail fur-
ther on. The main idea of this method is to have regularization which preserves
edges very well. This minimization problem can however not be solved using
forward-backward splitting and can also be somewhat slow due to the minimiza-
tion over the L1 norm of the gradient of u. If the norm of the regularization
was an L2 norm then the minimization would look like this:

min
u

(∥Au− fn∥2L2 + α∥∇u∥2L2) (9)

This model can now be solved using forward-backward splitting once again
and is easier to solve than (8). The forward-backward splitting would consist of
solving (10) and a least squares approximation.

min
u

(∥u− fn∥2L2 + α∥∇u∥2L2) (10)

The solution to this minimization problem (10) is relatively simple in Fourier
space. In this solution the F sign will mean that a function has been Fourier
transformed. With some simple calculations, the solution to (10) looks like this:

F(u) =
F(fn)

1 + α | k |2
(11)

However in this case the reconstruction of the sharp edges is once again lost.
This is due to the e�ect that the norm has on the reconstruction process. This
can be shown by the following example. Take f : [0, 1] → R with boundary
conditions f(0) = 0 and f(1) = 1. Now the objective is to �nd the function
which is minimal in L2space and the function that is minimal in L1 space. For
the L2 norm it means to solve:

min
f

1�

0

|f ′(x)|2 dx

This yields the unique minimizer f(x) = x. Doing the same for the L1 norm
gets the following minimization:

min
f

1�

0

|f ′(x)| dx

7

The answer in this space allows a step function where it does not matter
where the jump is as long as it is within the interval [0, 1]. So a possible answer
would be:

f(x) =

{
0 if x < 1

2

1 if x ≥ 1
2

This is not the only answer, the answer f(x) = x also works in the L1 space.

2.2.1 Research question

This previous example shows how important the norm of the regularizer is and
what kind of in�uence it can have on the reconstruction. This also shows a little
bit of the underlying problem of getting regularization that is computationally
fast while being edge preserving. In this report a fractional Sobolev norm will
be used on the regularization with the goal to be computationally faster than
the well established TV-regularization (8) and to test how well this norm pre-
serves edges in comparison to TV-regularization. This research therefore has
two questions:

1. Is using a fractional Sobolev norm faster than using TV-regularization?

2. How well does a fractional Sobolev norm preserve edges?

In chapter 3 it will be explained in more detail what a fractional Sobolev norm is
and how a fractional Laplacian can induce this norm. This will at the same time
show that the fractional Laplacian operator can be solved as a slight alteration
of (10). How well it preserves edges it shown in the results of chapter 5, where
it will also be showcased on non-linear operators.

8

2.3 Optimization

To actually calculate these minimization problems, computational means will
be necessary. To understand how they work, the basics of these methods are
useful to know, therefore a brief introduction will be given now.

In general it is not necessary for a function to have a minimizer or that
it has only one minimizer. About an arbitrary function nothing can be said.
Therefore a couple of assumptions need to be made. For the purpose of talking
about optimization it is assumed that f(x) will have at least one minimizer [7].
Starting o� with how di�erentiability is used. Assume that there is a function
f : Rn → R, which is di�erentiable, and that f(x) has a minimum that is located
at the value x⋆. Obtaining this minimum of this function can now be written
as follows:

min
x∈Rn

f(x)

Since x⋆ is a minimum that means that it would be an answer to this problem.
A necessary condition for x⋆ to be a minimizer is that the gradient needs to
vanish, meaning that:

∇f(x⋆) = 0

This means that minimizing a di�erentiable function can also be thought of
as �nding an x⋆ such that ∇f(x⋆) = 0. Now convexity will also be assumed on
f(x), and this is introduced with the following inequality:

f(y) ≥ f(x) + ⟨y − x,∇f(x)⟩ (12)

This holds for all x, y in the domain on which f(x) exists. Convexity makes it
such that if a point has vanishing gradient, then it has to be a global minimum.
With convexity it is still possible to have multiple points that have a vanishing
gradient, but all these points then have to be a global optimum.

To compute a minimum for a large problem, iterative methods are going to
be necessary. Many of these iterative methods have the same basic form.

Starting o� with the initialization: Start with k = 0 and x0 as starting point.
The starting point can be an arbitrary guess or somewhere in the neighborhood
of the minimizer because prior information is available.

For as long as the algorithm has not converged to a minimizer, which is
numerically the same as saying it has not reached a stopping criterion yet, the
following steps will be repeated:

� First the direction to move dk ∈ Rn will be calculated.

� Second the step size ak ≥ 0 is calculated.

� Thirdly the actual step will be made, which corresponds to xk+1 = xk +
akdk

� Lastly the index will be updated with k = k + 1

9

These steps are repeated until a minimum has been found [7]. A stopping
criteria that is often used is ∥xk − xk−1∥ < ϵ, where ϵ is a number that says if
the progress of the iterations is smaller than it, the algorithm is close enough
that a minimum has been obtained. The ϵ can be any number but it should be
several orders of magnitude smaller than the expected optimum ∥x⋆∥. A choice
that is often made is to have ϵ a magnitude of 10−3 smaller than the optimum,
but it can happen that it need to be even more. The question remaining is how
to calculate dk and ak. There are a lot of ways to calculate these and not all
will be discussed. The main variation that is of interest for this research is the
(accelerated) gradient descent method. The gradient descent method uses as
the name implies the gradient to calculate the direction in which to make a step.
In its simplest form gradient descent calculates the step using the following rule:

dk = −∇f(xk)

This is the direction of the steepest descent at xk. This can often be cal-
culated relatively easily, but the convergence can be slow. This is however
completely dependent on f , there are situations where taking the gradient is
not even possible. Because of the possible slow convergence, a momentum term
can be added to accelerated the convergence. This looks as follows:

pk = xk − xk−1

combined with

dk = −∇f(xk) +
bk
ak
pk

Where bk, ak ∈ R. The conjugate gradient descent method and the "heavy
ball" method use this as their direction. Another update rule that is often seen
is Nesterov's method which describes the step direction, using the gradient as
an expected future position, as this:

dk = −∇f(xk + bkpk) +
bk
ak
pk

These momentum terms can in some cases greatly reduce the number of
iterations that are required to converge. The intuition behind both methods
can be seen in �gure (1):

Figure 1: Comparison between gradient descent without momentum and with
momentum [33]

10

Now the step size, there are also multiple ways of calculating this. The
easiest way to do the step size is to �x it at a certain value. This is not always
advised since the step size can be crucial to the convergence of the algorithm.
A �xed step size is not even guaranteed to converge. However with gradient
descent it is possible to pick the step size in such a manner that the convergence
is guaranteed. To do this, it is assumed that f(x) has a Lipschitz gradient,
which means that the following holds:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 (13)

with L > 0. This assumption ensures that the gradient of the function
changes in a controlled manner. So there will not be any erratic changes in the
descent direction from point to point. Now using Cauchy-Schwartz inequality
this equations can be transformed into:

(∇f(x)−∇f(y))T (x− y) ≤ L∥x− y∥22

From this point it is not di�cult to show that (13) is equivalent to the
following statement:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥x− y∥22 (14)

To prove it, take a function g(t) = f(x+t(y−x)) with t ∈ [0, 1]. The function
is chosen speci�cally because for convex functions this inequality always holds
f(x+t(y−x)) ≤ tf(y)+(1−t)f(x). Choosing g(t) this way allows the following
formulation:

g′(t)− g′(0) = (∇f(x+ t(y − x))−∇f(x))T (y − x) ≤ tL∥x− y∥22

Now for the last step, take the following:

f(y) = g(1) = g(0) +

1�

0

g′(t)dt

≤ g(0) +

1�

0

g′(0) + tL∥x− y∥22

= g(0) + g′(0) +
L

2
∥x− y∥22

= f(x) +∇f(x)T (y − x) +
L

2
∥x− y∥22

This is an important result as it creates a lower bound under which it is
not necessary to reduce the time step and still guarantee convergence. Take the
�xed step size to be ak = 1

L , then the gradient descent method looks like this:

xk+1 = xk − 1

L
∇f(xk)

11

Now using the previous result, a substitution will be done with y = xk+1,
yielding the next equation:

f(xk+1) ≤ f(xk) + ⟨xk+1 − xk,∇f(xk)⟩+
L

2
∥xk − xk+1∥22

= f(xk) +

〈
− 1

L
∇f(xk),∇f(xk)

〉
+
L

2
∥ 1
L
∇f(xk)∥22

= f(xk)−
1

L
∥∇f(xk)∥22 +

1

2L
∥∇f(xk)∥22

= f(xk)−
1

2L
∥∇f(xk)∥22

This is an important result as it shows that f(xk+1) < f(xk) for as long
as the algorithm is not converged. It also shows that if the gradient is large
then the progress made in each iteration will also be large. This shows that for
gradient descent if the Lipschitz constant can be found there is a guarantee that
the algorithm will converge. As mentioned earlier, there are other methods to
calculate the step size, but those methods will not be discussed seen as they will
not be used. Another point that deserves a mention is that when the assumption
of strong convexity is made for f(x), then an upper bound can be found as well.
A function is strong convex if the following inequality holds:

(∇f(x)−∇f(y))T (x− y) ≥ m∥x− y∥22
for all x, y in the domain of the function, with m ∈ R and m > 0.
With this assumption it is possible to signi�cantly improve the convergence

rate to an optimum, however the assumption made on f(x) is also more restric-
tive and not always possible in optimization problems. It is therefore notewor-
thy in the cases that the objective function is indeed strong convex, but it is
unfortunately not always reasonable to assume it.

The next step that does need to be addressed is some of the assumptions
that have been made on the function f(x). At the beginning it was assumed
that f(x) was convex and di�erentiable. Sadly, it is not always the case that
a function is di�erentiable or sometimes called smooth. A very simple example
would be the l1 norm, if a function is minimized over this norm then it not
di�erentiable. This problem can fortunately be resolved through the means of
subgradients. What are subgradients? To answer this it is necessary to �rst look
back at (12). When f(x) is not di�erentiable at some point x, a subgradient
might be found. A subgradient of the function f(x) at point x is a vector g such
that:

f(y) ≥ f(x) + ⟨y − x, g⟩
for all y in the domain of f(x). This subgradient does not have to be unique,

it is possible that there are multiple subgradients for the same value of x. The
collection of all subgradients at point x, is called the subdi�erential:

∂f(x) = {g : f(y) ≥ f(x) + ⟨y − x, g⟩ ,∀y ∈ Rn}

With this established two general properties can be established:

12

1. When f(x) is convex and di�erentiable at point x, then the subdi�erential
contains only one element, namely the gradient.

2. If f(x) is convex and a function on Rn, then within the domain where
f(x) is convex the subdi�erential is non-empty and bounded at all x in
the interior of the domain of f(x).

When a function is not convex these points do not have to hold in general. How
this subdi�erential works is going to be shown on the function f(x) = ∥x∥1.
This is a good example and it will give useful insight into an algorithm that will
be shown later on. So the question would be to �nd the subdi�erential of ∂∥x∥1
at the point x. According to (12) this would mean that:

∥y∥1 ≥ ∥x∥1 + ⟨y − x, g⟩

for all y ∈ Rn. Now a new set will be introduced that looks like this:

Γ (x) = {n : xn ̸= 0}

This set contains all indices of x that are not zero. This in combination with
the right side of the inequality allows us to rewrite the equation into something
more useful:

∥x∥1 + ⟨y − x, g⟩ =
N∑

n=1

|xn|+
N∑

n=1

gn(yn − xn)

=
∑
n∈Γ

|xn| − gnxn +

N∑
n=1

gnyn

Now set gn to be the following:

gn = sign(xn) =

{
1 if xn ≥ 0

−1 if xn < 0

With this choice of gn it follows that gnxn = |xn| for all n ∈ Γ thus the sum
reduces to: ∑

n∈Γ

|xn| − gnxn =
∑
n∈Γ

|xn| − |xn| = 0

With this smart choice of gn = sign(xn), the inequality reduces to:

∥y∥1 ≥ ⟨y, g⟩

This equation will hold as long as |gn| ≤ 1 for all n. The vector g would look
as follows:

gn = sign(xn) if n ∈ Γ

|gn| ≤ 1 if n /∈ Γ

13

This means that gn ∈ ∂∥x∥1.
With this in place some optimality conditions can be stated for convex func-

tions. Let f(x) be a convex function, then x⋆ is a solution to the problem:

min
x∈RN

f(x)

if and only if
0 ∈ ∂f(x)

The proof of this is trivial. Use the fact that if 0 ∈ ∂f(x), then

f(y) ≥ f(x⋆) + ⟨y − x⋆, 0⟩
= f(x⋆)

for all y within the domain of f(x). Which proves that x⋆ is a solution. Now
the other way, if

f(y) ≥ f(x⋆)

for all y within the domain of f(x). Then it must also be true that

f(y) ≥ f(x⋆) + ⟨y − x⋆, 0⟩

which shows that 0 ∈ ∂f(x) has to hold.
With this all ready, it is possible to adapt the gradient descent method to

a method which also works on non-smooth functions. The basics will again be
the same:

xk+1 = xk + akdk

Now dk can be any subgradient at xk. This could mean that at every step
there are many choices for dk, which also impacts the speed at which you con-
verge if you even converge at all. With the right step size it can be analytically
proven that this subgradient method will converge even if it is slow to reach an
optimum [28]. However this analysis will not be discussed, because it is long
and the subgradient method will not be used. The main reason that the sub-
gradient method converges slowly and that for a �xed step size, it does not have
to converge, is because it is possible to have large subgradients near and at the
solution. A simple example of this can be the function f(x) = ∥x∥l1 , which
would look like this if f : R → R.

14

Figure 2: Example function for subgradient method

To counteract this problem it is possible to add a di�erentiable regularization
term. This regularization terms is chosen in such a way that if x⋆ is a minimizer
for f(x), then it is also a minimizer for the function with regularization. To
that end the following regularization is chosen:

min
x∈Rn

f(x) + δ ∥x− x⋆∥22

with δ > 0 and δ ∈ R. With this as the new minimization problem, the
problem has become strongly convex. Furthermore, the only subgradient at
the solution is the zero vector. This gets completely rid of the problem that
the subgradient method had. There is however a problem with new idea and
that is that it requires that x⋆ is known in advance. This is in all practicality
not very useful, because the goal was to �nd x⋆ by solving a minimization
problem. However, this new minimization can be transformed into an iterative
algorithm, which is called the proximal algorithm or proximal point method.
This algorithm uses the following iterations:

xk+1 = arg min
x∈Rn

(
f(x) +

1

2ak
∥x− xk∥22

)
(15)

With f(x) being convex and f(x) + δ ∥ x − z ∥22 being strongly convex for
all δ > 0 and z ∈ RN . The mapping of xk to xk+1 is well de�ned. To make
notation easier later on, a de�nition of the proximal operator is going to be
made. This looks as follows:

proxak
f = arg min

x∈Rn

(
f(x) +

1

2ak
∥x− xk∥22

)
(16)

The original optimization problem has now been altered such that there is a
sequence of many optimization problems. This however is sometimes easier to
solve. The regularizer will make every iteration of the algorithm easier to solve
while naturally disappearing as the algorithm gets closer to the solution. This
even converges for a �xed step size.

This proximal point algorithm can be interpreted as a variation on gradient
descent. To show this, a di�erential equation for gradient �ow will be used.

15

This has the equations:

x′(t) =−∇f(x)
x(0) =x0

The points for which the system has an equilibrium, are the points such that
∇f(x) = 0. This corresponds perfectly with the minimizers for f(x) because
the function is convex. Now this di�erential equation is going to discretized
using the forward Euler method. This yield the approximation:

x(t+ h)− x(t)

h
≈ −∇f(x)

Where h needs to be small. Now this equation turns into gradient descent
iterations when it is rewritten as this:

xk+1 = xk − h∇f(xk)

The same di�erential equations is now going to be discretized using the
backward Euler method or also known as backward di�erence. This yields this
equation:

x(t)− x(t− h)

h
≈ −∇f(x)

Where h needs to be small. This is going to be rewritten, where the iterates
are looking as follows:

xk+1 = xk − h∇f(xk+1)

Now if h is chosen equal to ak and the equations is rewritten a bit more into:

0 = ∇f(xk+1) +
1

ak
(xk+1 − xk)

In this formula it is not very easy to calculate an iteration. This is because
the next point xk+1 has to be found such that it obeys the equation. This
however is the same as what the proximal operator does. What is even more
so, if f(x) is di�erentiable then the two equations are equivalent.

xk+1 =arg min
x∈Rn

(
f(x) +

1

2ak
∥x− xk∥22

)
⇕

0 =∇f(xk+1) +
1

ak
(xk+1 − xk)

This is a nice result, because the proximal point method can be interpreted as
a backward Euler discretization for gradient �ow. The backward Euler method
is known to be stable [28], so this is a nice result for the proximal point method.
What is also note worthy is the fact that di�erentiability of f(x) was assumed in
order for the equivalence relation to work. However, f(x) need not to be di�er-
entiable for the proximal operator to work. It can sometimes also be computed

16

if f(x) does not have a gradient. Functions whose proximal is easy to compute
are therefore of interest. Below it will be calculated analytically for ∥·∥l1 on Rn,
while the proposed algorithm based on a fractional Sobolev seminorm also has
an easy to compute proximal.

Solving every iteration of the proximal point method could be quite tedious.
Therefore it might sometimes be nice that when f(x) is di�erentiable to replace
it with its linear approximation f(xk)+ ⟨x− xk,∇f(xk)⟩. This will be put into
(15), which turns it into:

xk+1 = proxak
f(xk) = arg min

x∈Rn

(
f(x) +

1

2ak
∥x− xk∥22

)
≈ arg min

x∈Rn

(
f(xk) + ⟨x− xk,∇f(xk)⟩+

1

2ak
∥x− xk∥22

)
= arg min

x∈Rn

(
1

2ak
∥∇f(xk)∥22 + ⟨x− xk,∇f(xk)⟩+

1

2ak
∥x− xk∥22

)
= arg min

x∈Rn

(
1

2ak
∥x− xk + ak∇f(xk)∥22

)
= xk − ak∇f(xk)

This shows, that taking a linear approximation for f(x), reduces the proximal
method into standard gradient descent. Now the problem is going to be altered
slightly. The objective function is going to broken into two parts which would
look like this:

f(x) = g(x) + h(x)

Now the assumptions are made that g(x) is convex and di�erentiable, while
h(x) is only convex but there exists a proximal operator for h(x). A simple
example that has already been seen is (6). The same derivation as was seen
earlier is now again going to be done, but now on f(x) = g(x) + h(x). The
linear approximation of g(x) will be inserted resulting in:

xk+1 = arg min
x∈Rn

(
g(xk) + ⟨x− xk,∇g(xk)⟩+ h(x) +

1

2ak
∥x− xk∥22

)
= arg min

x∈Rn

(
h(x) +

1

2ak
∥x− xk + ak∇g(xk)∥22

)
= proxak

h(xk − ak∇g(xk))

Now there is a new update rule that is called forward-backward splitting.
Here the forward refers to the gradient step, while the backward refers to the
proximal step because that was equivalent to the backward Euler method. To
show how this would work, it will be applied to (6). The minimization problem
was:

min
u

(∥Au− fn∥2L2 + α∥u∥L1)

Now take g(u) = ∥Au − fn∥22, which is clearly a convex and di�erentiable
function. Furthermore, h(u) = α∥u∥L1 and g′(u) = 2AT (Au − fn). Now this

17

gets inserted into the proximal operator for the l1 norm that was shown in an
earlier example.

proxak
h(u) = arg min

z∈Rn

(
h(z) +

1

2ak
∥u− z∥22

)
= arg min

z∈Rn

(
α∥z∥1 +

1

2ak
∥u− z∥22

)
= Λα,ak

(u)

Where Λα,ak
is the soft-thresholding operator:

Λα,ak
(u)i =

{
(|ui| − akα)sgn(ui) if |ui| ≥ akα

0 if |ui| < akα

Now the gradient step for g(x) and the proximal step for h(x) are going to
be combined. This will come together in this equation:

uk+1 = Λα,ak
(uk + 2akA

T (Au− fn))

This method is called iterative soft-thresholding algorithm or in short ISTA.
ISTA outperforms the subgradient method very signi�cantly and is the prede-
cessor of FISTA which outperforms ISTA. FISTA will be discussed in a later
chapter.

18

3 Theoretical basis

In this research a new type of regularization will be considered regarding Tikhonov
minimization problems. The main idea behind this new minimization problem
is the regularization term which tries to preserve sharp edges which is at the
same time computational e�cient. The idea of having sharp edges is not new.
In [30] they already suggested a denoising algorithm based on total variation.
This translates to the minimization problem that is as follows:

min
u

(∥Au− fn∥2L2 + α∥▽ u∥L1) (17)

The algorithm to solve this type of minimization can be quite slow in the
case of a linear operator. In the case of a non-linear operator it is even worse
and there is still discussion on how to use TV-regularization. However in this
research instead of using the gradient on u, a fractional Laplacian operator will
be used as regularizer. The minimization problem would look as follows:

min
u

(∥Au− fn∥2L2 + α∥△ s
2 u∥2L2) (18)

A more detailed explanation will be given in the next section to the properties
of this fractional Laplacian operator and why this would be a good idea to use
this instead of the TV-regularization. The main purpose of this research is to
investigate how well a fractional Laplacian operator performs compared to the
already existing minimization (17) on a linear operator and its performance to
FISTA on a non-linear operator.

3.1 Fractional Laplacian

In the recent years Fractional derivatives have gained a lot of interest [2]. This is
because these operators appear in a variety of �elds and models. To name a few,
fracture mechanics, turbulence and models with periodic boundary conditions
[10, 13, 15, 20, 29]. These are not the only �eld. In image denoising it has
already been shown that it can work as well. In [2] they show that a fractional
derivative can have its advantages. They apply it on the well known model of
Rudin-Osher-Fatemi (ROF) [2, 30]. This model is the well known total variation
based image denoising model also known as TV-regularization. This method of
regularization is a celebrated method and is known to work very well. Starting
with the model, which looks as follows:

E(u) = α|Du|(Ω) + ∥u− f∥2 (19)

In this model u ∈ BV (Ω) ∩ L2(Ω) is sought to be minimized. Furthermore
Ω is the domain on which the image exists [2, 30], f is the noisy image, BV (Ω)
is the set of functions with bounded variation [4] and α is the regularization
parameter . The term |Du|(Ω) is the total variation, which is the regularizer
that allows discontinuities. This is good, because in images the discontinuities

19

represent the sharp edges [2]. To understand why these discontinuities are al-
lowed a deeper dive into the set BV (Ω) is now going to be made. Starting of
with its de�nition:

BV (Ω) =
{
u ∈ L1(Ω) : V (u,Ω) <∞

}
This de�nition however is not very enlightening since V (u,Ω) is not de�ned.

So, this is what is going to be done next:

V (u,Ω) = sup

�

Ω

u(x)div(ϕ(x))dx : ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

This can also notated as V (u,Ω) =

�
Ω
|Du|. Which is exactly the same as the

total variation term.
The (19) can now be seen to be a generalization of (17) with some assump-

tions. If u is smooth, take:

ϕ =

{
∇u
|∇u| if |∇u ̸= 0

0 if |∇u = 0

Which results in:

min
u

(∥Au− f∥2L2 + α∥▽ u∥L1) (20)

On the domain Ω, which is the same as (17). A small side note has to be
made that the operator A has been added to the equation. As long as it is linear
and non-zero, this is not a problem. An example function is now going to be
given, if:

u(x) =

{
1 if |x > 1

2

0 if |x ≤ 1
2

(21)

With Ω = [0, 1] has this as a graph:

Figure 3: Example function

20

For this example function it holds that
�
Ω
|Du| = 1. Meaning that u ∈

BV (Ω). This will now be shown. For the one dimensional example the V (u,Ω)
can be written a bit di�erent [4] namely:

V (u,Ω) = sup
P∈Θ

n−1∑
i=0

|u(xi+1)− u(xi)|

Where Θ is the ordered set of elements consisting of all partitions of the
interval. This can be written more clearly as follows:

Θ = {P = {a = x0, x1,, xn = b} | xi < xi+1, 0 ≤ i ≤ n}

From this it is very easy to see why
�
Ω
|Du| = 1 would hold for this

function. This is because the only part where the summation is not 0 is at
the jump. Meaning that if that jumps happens between xj and xj+1 that∑n−1

i=0 |u(xi+1)− u(xi)| = |u(xj+1)− u(xj)| = 1 − 0 = 1. This holds for any
partition that is made so V (u,Ω) = 1, meaning that this example function is in
the set of bounded variation.

A disadvantages that come up in [2] is that total variation is di�cult com-
putation wise. Therefore one might get the idea to alter the space in which a
solution is sought. A natural idea would be to seek the solution in a Sobolev
space. A Sobolev space is de�ned as follows:

W k,p(Ω) =
{
u ∈ LP (Ω) : Dαu ∈ LP (Ω) ∀|α| ≤ k

}
(22)

Where Dα denotes the α-th weak derivative. A special case for p = 2 is
denoted as as W k,2 = Hk. What is easy to see is that if k = 0 the Sobolev
space reduces to an Lp space. With this de�nition of a Sobolev space it is
easy to understand why this could be a good alternative to BV (Ω). The least
regular Sobolev space is the space W 1,1. Unfortunately u /∈W 1,1 in the case of
the example (21), this is due to the fact that the weak derivative does not exist
at 1

2 . The next idea would then be to go to a space with even less regularity.
Such a space would be a fractional Sobolev space. The de�nition for this is
next. Take s ∈ (0, 1) �xed and for any p ∈ [1,∞), the fractional Sobolev space
is de�ned as:

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p +s

∈ Lp(Ω× Ω)

}
(23)

This space also has a norm which is:

∥u∥W s,p(Ω) =

�
Ω

|u|pdx+

�

Ω

�

Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

 1
p

(24)

In comparison to the Sobolev spaces the fractional Sobolev spaces have some
strange properties. An explanation will now be given as to why this de�nition

21

of a fractional Sobolev space makes sense. In order to do this a comparison is

going to be made. Starting with x, y ∈ Ω for |u(x)−u(y)|
|x−y|

n
p

+s ∈ Lp(Ω× Ω) to hold it

needs to be true that:
�

Ω×Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy <∞ (25)

The key point is that for q = n+ sp ≥ n,

�
Ω

1

|x− y|q
dy = ∞.

This imposes on (25) that |u(x) − u(y)| → 0 faster then |x − y| → 0 for all
x, y ∈ Ω. When looking back at the example (21). It can now be seen that for
this example u ∈ Hs as long as s < 1

2 holds.
Focusing on the case p = 2, the fractional Sobolev spaceW s,2(Rn) = Hs(Rn)

is a Hilbert space and is strictly related to the fractional Laplacian operator [17].
To showcase this take a u ∈ L, where L is the Schwartz space of rapidly decaying
functions and s ∈ (0, 1). The fractional Laplacian operator is de�ned by:

(−△)su(x) = C(n, s)P.V.

�

Rn

u(x)− u(y)

|x− y|n+2s
dy (26)

Here the C(n, s) is a dimensional constant that is exactly given by:

C(n, s) =

�
Rn

1− cos(ζ1)

|ζ|n+2s

−1

Furthermore the P.V. stands for principle value. This is because of the sin-
gularity that exists within the integral at x = y. This however can be resolved,
for s ∈ (0, 12) it can be shown that this integral in not really singular near x [17].
What is even more so is that (26) can be rewritten such that it is a weighted
second order di�erential quotient. Again let s ∈ (0, 1) and u ∈ L then:

(−△)su(x) = −1

2
C(n, s)

�

Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

for all x ∈ Rn [17]. Now it will be shown why changing the space matters
for the computation time. Fourier transforms are known to be a very fast
computation wise. To that end the fractional Sobolev space will now also be
de�ned via its Fourier transform. This de�nitions is as follows:

Ĥs(Rn) =

u ∈ L2(Rn) :

�

Rn

(1 + |ξ|2)s|Fu(ξ)|2dξ <∞

22

In this case the F denotes the Fourier transformation. To enforce a norm on
this space a small step back needs to be taken. First the Gagliardo seminorm
has to be introduced, this is as follows:

[u]W s,p(Ω) =

�
Ω

�

Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

 1
p

When compared with the norm for fractional functions it is easy to see that
this seminorm is simply only the second part of it. With this seminorm the
norm for the functions in the fourier space can be written like this:

[u]2Hs(Rn) = 2C(n, s)−1

�

Rn

|ξ|2s|Fu(ξ)|2dξ

With this available it is now possible to show that for s ∈ (0, 1) and u ∈ L
and the fractional operator de�ned as 26, that the following statement holds:

(−△)su(x) = F−1(|ξ|2s(Fu)) ∀ξ ∈ Rn

This result is extremely useful to since this means that the following relations
is also true:

F((−△)su(x)) = |ξ|2s(Fu) ∀ξ ∈ Rn

This shows that the computation of the fractional operator can be done
very quickly in Fourier space as it is nothing more than a multiplication with its
frequencies and Fourier transforms are known to be fast by using the fast Fourier
transformation, which is a algorithm. Moreover, it shows that the fractional
Laplacian can be viewed as a pseudo-di�erential operator. With this Fourier
transformation now properly de�ned it is also easy to see that periodicity is at
hand. This is because a Fourier series, which is what is used to approximate
any function that gets transformed into Fourier domain, is a sum of sinusiods.
This means that the Fourier transformation induces periodicity. As a result of
this the domain on which the regularization works can be expanded to Tn which
is an n-dimensional torus. This is interesting because now the following can be
shown (this follows from the citations of [2]), as long as s < 1

2 :

BV (Tn) ∩ L∞(Tn) ⊂ Hs(Tn)

This means that TV-regularization is completely embedded within the frac-
tional Sobolev space. So, a fractional Laplacian operator has the same capabil-
ities as TV-regularization while at the same time being far easier to compute.

23

3.2 FISTA and its fractional Laplacian version

FISTA stands for Fast Iterative Shrinkage Thresholding Algorithm and is an
improvement of the previous algorithm called ISTA [5]. FISTA is one of the
many algorithms and approaches that solve convex but non smooth minimiza-
tion problems. FISTA is solves the following Tikhonov minimization:

min
u

(∥Au− fn∥2L2 + α∥u∥L1) (27)

This is the same as has been seen in (6). The L1 regularization term is
a very important part, it induces sparsity into the solution. What needs to
be mentioned is that the model that is shown has regularization in L1, but
computers cannot work with continuous function and discretize them in order
to be able to work with them. This means that in practice FISTA would solve
a sequence in l1. Meaning that the output of u would be some kind of vector of
which it makes sense that sparsity might be a good attribute. Another bene�t
of this type of of regularization is that the L1 norm is less susceptible to outliers
compared to other norms like L2.

FISTA almost works the same as ISTA. In FISTA a standard gradient decent
step is taken, which is combined with a soft thresholding step. So the general
computational outlay looks as follows [5]:

yk =Λ(uk − 2LA∗(Au− fn))

tk+1 =
1 +

√
1 + 4t2k
2

uk+1 =yk +

(
tk − 1

tk+1

)
(yk − yk−1)

(28)

Where L is a constant corresponding to the Lipschitz constant of the gradient
of∥Au− fn∥2L2 . Furthermore the algorithm is initialized with t1 = 1 and u1 =
y0 ∈ Rn. The Λ signi�es the soft thresholding step which looks as follows:

Λ(u)i =

{
(|ui| − α)sgn(ui) if |ui| ≥ α

0 if |ui| < α
(29)

This soft thresholding steps causes small components of u to be reduced to
zero. Everything between (−α, α) will be set to zero. If it is not in that interval
it will be the line y = x± α, where it is either a plus or a minus depending on
which side of the aforementioned interval you are. This is easier to see by using
the graph.

24

Figure 4

The choice of α is thus very important for this algorithm. If it is chosen to
low, a lot of noise will stay in the solution, while if it is to high the original
signal might be compressed. The only di�erence between FISTA and ISTA is
that FISTA in its gradient descent step uses Nesterov momentum while ISTA
does a regular gradient descent.

Another comparison that needs to be made is that the computational steps
from (28) and(29) are sequential. In [5] it is shown that this equates to solving
the minimization (6). It is important that this is possible, because the proposed
minimization with the fractional Laplacian as regularizer, is going to have a
similar sequential computation step. The main di�erence is that the proximal
step will now be a fractional Laplacian. This means that the proximal step that
was shown in (29) will become this for the fractional Laplacian:

Λ(u) = F−1

(
F(u)

1 + α | k |2s

)
This is almost the same as equations (10) only now with the fractional con-

stant s in it.
FISTA is an algorithm designed for linear inverse problems and guarantees

that when well implemented it will come close to uideal. In a non-linear setting
however, FISTA is not guaranteed to converge to uideal. Local minima can cause
the algorithm to get stuck in a solution that is not close to uideal. However,
this is a problem for all algorithms, but with the right initialization it will often
converge to uideal even in a non-linear situation. Another slight adaptation that
needs to be made in the non-linear setting is, instead of using the adjoint of A
it is necessary to use (A′(f))∗. This is the adjoint of the Fréchet derivative and
it will be explained a bit more in the section on the non-linear operator that is
used.

FISTA is one of the algorithms that the new optimization method is going
to be compared against. FISTA has a good reputation as an inverse problem
solving algorithm. It is quite time e�cient with good results [5] and therefore
is a suitable algorithm to compare the performance with.

25

3.3 Bases

A mathematical basis is used to store coe�cients instead of functions. Therefore
the following de�nition will be given for a basis in a separable Hilbert space:

De�nition 2

A set of basis elements β = {e1, e2,} is an orthonormal basis of the separable

Hilbert space H if:

� ⟨ej , ek⟩ = δjk for j, k ∈ N

� For all f ∈ H there are unique coordinates λk = ⟨ek, f⟩ such that

f =
∑
k∈N

λkek

Here δjk is the Kronecker delta.

Furthermore, it is possible that this space is in�nite in dimensions causing
the basis to also be in�nite in elements. This means that computationally it
would only be possible to approximate functions as a computer cannot hold
in�nite basis elements in its memory nor is the computation time of the basis
coe�cients feasible. Therefore, it is important to choose an appropriate basis
that can approximate any function or vector reasonably well with a reasonable
amount of nonzero coe�cients. Therefore the following basis has been chosen.

3.3.1 Haar wavelets

Haar wavelets is a particular set of wavelets thought of by the mathematician
Haar. It is a rectangular wave as can be seen from the �gure below:

Figure 5: Example of a Haar wavelet

This wavelet can be captured with the following mathematical equation:

φ(x) =

1 if |0 ≤ x < 0.5

−1 if |0.5 ≤ x < 1

0 else

(30)

26

In combination with:

ψ(x) =

{
1 if |0 ≤ x ≤ 1

0 else
(31)

this φ(x) function can be shifted and transformed such that it forms a complete
orthonormal basis[32]. This is done with the following shifts:

φj,k(x) = ψ(2jx− k) (32)

for j a nonnegative integer and k an integer within the bounds: 0 ≤ k ≤
2j − 1. These j and k can be captured in the following set: Λ = {1} ∪ {(j, k) :
j ∈ N0, 0 ≤ k ≤ 2j − 1}. The j is responsible for the scale of the Haar wavelet,
while the k de�nes the location of the wavelet.

All of these wavelets are orthogonal to each other if they do not have the
same j, k. Using these wavelets any function can be recreated within the domain
of [0, 1] [32], this is because the set of wavelets is complete. This means that
the set of Haar wavelets is a basis with the added bene�t that any function
can be represented as it's Haar coe�cients, which are found using the inner
product from de�nition 2. Another bene�t of these Haar wavelets is that they
work very well on discontinuous function due to their own discontinuous nature.
This is the main reason that Haar wavelets are chosen as a basis. The Haar
wavelets can be seen as a discretization of Du, meaning that on images it can
simulate the regularization term ∥∇u∥ ≈ ∥Hu∥ [8]. In this case H is the Haar
matrix containing all Haar wavelets. These Haar wavelets will be used as a
basis within the programs to approximate functions. With the Haar wavelets as
basis it is possible to simulate the edge preserving nature of TV-regularization
within FISTA. As mentioned earlier TV-regularization is not easy to implement
on non-linear operators and therefore FISTA will be used on the non-linear
operator. It is however unfair to compare the fractional Laplacian operator
to FISTA on edge preserving nature when the fractional Laplacian is intended
for this job and FISTA not necessarily. Therefore a basis of Haar wavelets
is necessary, because this enables FISTA to reconstruct sharp jumps since it
minimizes over the Haar wavelet coe�cients [8]. This will make the comparison
on the non-linear operator more legitimate to make.

27

3.4 SSIM

SSIM stands for structural similarity index measurement. This was a new type
of measurement to compare the similarity of images. It was developed in 2002
by Zhou Wang, & A. Bovik [34]. the main method to compare similarity of
images at that point was to use mean squared error, which was not satisfying as
was shown by them [34]. Instead of looking at a summation of the errors they
proposed to look at a combination of three factors, namely: loss of correlation,
luminescence distortion and contrast distortion. This is all captured into one
formula which is as follows:

Let x = {xi|i = 1, 2, ..., N} and y = {yi|i = 1, 2, ..., N} corresponding to the
pixels of the image on which the SSIM score Q is going to be calculated. Then
the quality index is de�ned as:

Q =
4σxyx̄ȳ

(σ2
x + σ2

y)(x̄
2 + ȳ2)

where

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi

σ2
x =

1

N − 1

N∑
i=1

(xi − x̄)2, σ2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2

σxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ)

The range of Q is [−1, 1], where the best value is 1 and consequently the
worst is −1. To see how the three factors are integrated into Q the formula is
going to be split up. This results into:

Q =
σxy
σxσy

· 2x̄ȳ

x̄2 + ȳ2
· 2σxσy
σ2
x + σ2

y

The �rst component is the correlation coe�cient between x and y. The
second component measures how close the mean luminescence is between x and
y and the third component measures how similar the contrasts of the images
are.

It was shown that this method outperformed mean squared error by a large
margin in its relation to subjective image assessment [34]. Up to this day SSIM
is one of the most used measuring tools on images and is also very useful in
image reconstructions. Therefore this will be one of the methods which will be
used to compare the results on.

28

3.5 Radon transformation

The Radon transform is an integral transformation, which takes a function that
is de�ned on a plane, to a function de�ned on the space of lines. This can be
extended to higher dimensions, but that is not necessary in this case. The value
at a particular line is equal to the line integral over the function over that line.
To understand this easier, there is the next illustration:

Figure 6: Visualization of the Radon transformation [6]

Let f : R2 → R, its Radon transform de�ned as:

Rf(α, s) =

∞�

−∞

f(x(z), y(z))dz (33)

Where the coordinates can be expressed as: (x(z), y(z)) = ((z sin(α) +
s cos(α)), (−z cos(α) + s sin(α))). Here is s the distance from the origin to the
line and z the parameterization of the line. This means that for a �xed angle
there are in�nite amount of lines going through f(x, y), just like an X-ray from
one side would be. This happens for all angles which is how a CT-scan works.
The Radon transformation is a linear operator because it is an integral. This is
the operator that will be used to compare the performances of TV-regularization
with the fractional Laplacian. The domain on which the radon transform will
work is Ω ⊂ R2 and is a compact set. This means that the Radon transform is
also a compact operator with:

R : L2(Ω) → L2
(
[0, π]×

(
R+ ∪ {0}

))
It can even be stated that R(L2(Ω)) ⊂ H

1
2 [27]. This means in particular

that R is compact and that its inversion is ill-posed. The singular values, which

29

are the eigenvalues of A∗A, that is self-adjoint and compact, will decay to zero
meaning that noise can have a big impact as was seen in chapter 2.2.

Now that the Radon transform has been de�ned it would also be useful to
get back. Therefore the backprojection of the Radon transform will be de�ned
next. Let h : R2 → R, its backprojection is de�ned as:

Bh(x, y) =
1

π

� π

0

h(α, s)dα =
1

π

� π

0

h(α, x cos(α) + y sin(α))dα (34)

The backprojection is necessary for the implementation of the adjoint of the
Radon transform.

3.6 Autoconvolution

Autoconvolution is a non-linear operator with practical applications in stochas-
tics and spectroscopy, which follows from the references of [22]. Using this oper-
ator the reconstruction performance of the fractional Laplacian will be shown.
To do that �rst the theoretical backing of this autoconvolution needs to be
established. Let X = Y = L2[0, 1], further de�ne

D(A) :=

{
f ∈ L2

[
0,

1

2

]
such that f(t) ≥ 0 ∀t ∈ [0, 1]

}
.

Now D(A) ⊂ X holds. Now de�ne A : D(A) ⊂ X → Y through the operation
[3]:

A(f(t)) = (f ∗ f)(t) =
t�

0

f(t− τ)f(τ)dτ (35)

with t ∈ [0, 1]. This is the autoconvolution, which is the convolution of a
function with itself. Through the choice of D, the operator is weakly continuous
and weakly closed in L2[0, 1] [3]. in Now the Fréchet derivative A′(f) and its
adjoint (A′(f))∗ needs to be determined. The Fréchet derivative is de�ned as
follows:

Let E,F be normed spaces with U ⊂ E, which is an open subset of E. The
functional ϕ : U → F is Fréchet di�erentiable at f ∈ U if and only if there exists
an ϕ′ such that for all ϵ > 0, there exists a δ > 0:

∥h∥ ≤ δ

a+ h ∈ U

∥ϕ(a+ h)− ϕ(a)− ϕ′(h)∥ ≤ ϵ ∥h∥

The de�nition can be found in [1] along with other properties of it. With
this de�nition it follows that the Fréchet derivative A′(f) : X → X is:

[A′(f)h](t) = 2

t�

0

f(t− τ)h(τ)dτ (36)

30

Given that τ ∈ [0, 1]. This derivative is a bounded, linear operator. From
this the adjoint can be constructed using the inner product de�nition of the
adjoint. So take f, h, v ∈ X and take the L2[0, 1] inner product:

⟨A′(f)v, h⟩ =
1�

0

2

t�

0

f(t− τ)v(τ)dτh(t)dt

=

1�

0

v(τ)

1�

τ

2f(t− τ)h(t)dtdτ

= ⟨v,A′(f)∗h⟩

using this inner product and the substitution h̃(t) = h(1− t) it is possible to
rewrite the found inner product a little bit more acquiring the following result:

(A′(f)∗h)(τ) = 2

1�

τ

f(t− τ)h(t)dτ

= 2

1−τ�

0

f(t)h̃((1− τ)− t)dt

= 2(f ∗ h̃)(1− τ) = 2
˜

(f ∗ h̃)(t)

It is important to rewrite it in this way, because this also needs to be im-
plemented in Python. Therefore it needs to be written in a way that can be
implemented.

31

4 Computational approach

The computational side of this research has been done in Python. Here, the
most important functions will be discussed in the order that the scripts are
built up. First the linear operator, the Radon transform, will be discussed and
in the second part the non-linear operator which is the auto convolution.

4.1 The Radon transform

The Radon transformation is not a di�cult operator to implement. In the code
below there is the discrete version of the Radon transform.

Algorithm 1 Discrete Radon Transformation

def discrete_radon_transform (image , s t ep s) :
R = np . z e r o s ((s teps , len (image)) , dtype=' f l o a t 6 4 ')
for s in range (s t ep s) :

r o t a t i on = ro ta t e (image , =s *180/ s t ep s) . astype (' f l o a t 6 4 ')
R[: , s] = sum(r o t a t i on)

R = R/ len (image)
return R

What is most important to observe is that instead of rotating the lines over
which to integrate, the image gets rotated. This amounts to the same result.
Furthermore every line is a row of a matrix, so the line integral is equivalent
to the sum of the row. This works because an image is in a computer nothing
more than a matrix. The input steps allows anyone to determine how fast the
rotation happens. In the results it can be seen that the images have been kept
square.

The adjoint of the Radon transformation is a backprojection algorithm. This
code is given below:

Algorithm 2 Discrete Radon adjoint transformation

def discrete_radon_adjoint_transform (image , s t ep s) :
R = np . z e r o s ((s teps , len (image)) , dtype=' f l o a t 6 4 ')
Z = image .T
for i in range (s t ep s) :

r o t a t i on = np . z e r o s ((s teps , len (image)) , dtype=' f l o a t 6 4 ')
for j in range (len (Z)) :
p = Z [i] [j] / len (image)
r o t a t i on [: , j] += p

ro t a t i on = ro ta t e (ro ta t i on , i *180/ s t ep s) . astype (' f l o a t 6 4 ')
R = R+ro ta t i on
return R

32

Every pixel is divided equally over a row according to the indexing that is
shown in the code. This happens while rotating the matrix. This ensures that
the value from the line integral, gets put back under the same angle as the angle
under which the line integral was taken. Additionally, when comparing both
algorithms it is visible that one turns the matrix clockwise and the other turns
it counter clockwise. This is also important to get the angles correct.

These operators can now be implemented into the optimization algorithms.
This is not shown here, because the implementation of the optimization will
be shown in the non-linear section and they are the same. The operators can
be swapped out for one another. This is in order to avoid discussing the same
implementation twice. Another part that will not be discussed is the imple-
mentation of the TV-regularization. This is because the implementation for
TV-regularization used the primal-dual code of [9, 21], in which the operators
have been swapped with ours to maintain consistency with the fractional Lapla-
cian method. There are some minor adjustments which are that the operators
are swapped out with the ones that are coded here.

4.2 The auto convolution

In the Autoconvolution it is necessary to have a basis. Therefore, the basis of
Haar wavelets will be created �rst.

4.2.1 Computation of the Haar wavelets

In the next two code fragments the starting point of the Haar wavelets can
be found. The Haar wavelets are wavelets that are meant to approximate any
function in the interval [0, 1]. The function Psi is the constant function and is
over the entire interval the value 1.

Algorithm 3 Psi

def Psi (t) :
i f 0<=t<=1:
phi = 1

else :
phi = 0

return phi

The function Phi is the implementation of (30).

33

Algorithm 4 Phi

def Phi (t) :
i f 0<=t <0.5:

p s i = 1
e l i f 0.5<=t<=1:

p s i = =1
else :

p s i = 0
return p s i

Both these functions take an input t, which simply corresponds to an x-value
on the x-axis. In the next function, called Haar, all the possible translations
are coded. This function takes three inputs J, K and Length. Here the length
corresponds to the interval on which the speci�c wavelet is being plotted. Fur-
thermore, the J controls the width and the height of the wavelet, while the K
shifts it over the x-axis.

Algorithm 5 Haar wavelets

def Haar (J ,K, l ength) :
output =[]
for i in l ength :

i f J == 0 :
output . append (Phi (i))

else :
output . append (Phi(=K+i *2**J) * 2**(J /2))

return output

From the three aforementioned functions all the Haar wavelets can be created
and this will be used in the next function. In the function uppertrianglematrix
a Haar wavelet matrix will be build. A Haar wavelet matrix is a N ×N matrix
with in every row a single Haar wavelet plotted on N points. The input is J
which corresponds to a power of 2. Meaning that if an input of 4 is done into
this function a matrix of 16× 16 will come out. This function always produces
2J wavelets, contained in a single matrix.

34

Algorithm 6 Haar matrix

def upper t r i ang l emat r ix (J) :
Haarmatrix = []
p s i = []
t = np . l i n s p a c e (0 ,1 ,2** J)
P = np . l i n s p a c e (0 , J=1,J)
P = P. t o l i s t ()
P = [int (P) for P in P]
for z in t :

p s i . append (Psi (z))
Haar matrix . append (p s i)
for i in P:
K = (2** i)=1
K = np . l i n s p a c e (0 ,K,K+1)
K = K. t o l i s t ()
K = [int (K) for K in K]

for j in K:
H = Haar (i , j , t)
Haar matrix . append (H)

return Haar matrix

As mentioned in the theoretical backing of the Haar wavelets the K is de-
pendent on the J, which can also be seen in the code fragment. P is the list of
all the values that J can be which are all integer values from 0 to J-1. Then for
every value that is in P a separate linspace of integers of K is made. Meaning
that for a higher value of J there are more integers that K can be. This is logi-
cal as the wavelet gets compressed for a higher J meaning that more horizontal
shifts are possible until the domain of [0, 1] is �lled. Using this Haar matrix it is
possible to calculate the Haar coe�cients for any function on the interval [0, 1]
or in other words go from space domain to Haar domain.

4.2.2 Setup of the autoconvolution

To go from the space domain to the Haar domain a couple of preliminary settings
need to in place. These settings can be found in the next code fragment.

n = 8
N = 2**n
a = 0
b = 1
x = np . l i n s p a c e (a , b ,N)
func t i on = eval (" parabool (x) ")
H = upper t r i ang l emat r ix (n)

These settings are adjustable, but necessary to get everything to run. The
n is corresponding to the big J that was mentioned in 4.1. It indicates which

35

power of 2 is going to be used as can be seen with N. The a and b are the borders
of the domain on which the functions will work. These are usually set to a = 0
and b = 1 which is the same as the interval that was seen before [0, 1]. This
can be adjusted but then the basis needs to be taken into account. The x is the
discretization of the interval that is chosen with a and b into N points. Function
is the discretization of any function that gets put into the eval function. This
can be a self coded Python function as well as an already existing function in
packages like Numpy. Lastly H is the Haar matrix. This needs to be in the
memory, because it will be used multiple times and recalculating it every time
would be computationally more expensive. With this setup done it is possible
to get the Haar coe�cients. This is done in the next code fragment.

Algorithm 7 Haar wavelet transform

def xlambda (func t i on) :
xlambda = []
f unc t i on = np . array (func t i on)
for i in range (len (func t i on)) :

xlambda . append (np . dot (funct ion ,H[i]) /N)
return xlambda

This function calculates the Haar coe�cients corresponding to the function
that gets put in. The autoconvolution and some other calculations will be done
with the Haar coe�cients. This transformation can be mathematically de�ned
as follows:

φλ =

{
ψ λ = 1

φj,k λ = (j, k)
(37)

for ∀λ ∈ Λ as de�ned in (30). Now xλ = ⟨f, φλ⟩, where xλ is the Haar
coe�cients corresponding to the Haar wavelet φλ [3].

The end result should again be in the space domain. Therefor the next
function is the transform back from Haar coe�cients to the function or the
coe�cients of the space domain.

Algorithm 8 inverse Haar transformation

def r e c on s t ru c t i on (yeta) :
recon = np . z e r o s (N)
for i in range (len (yeta)) :

Y= [x*yeta [i] for x in H[i]]
recon = recon +Y
return recon

36

This can also be mathematically written in the form:

f =
∑
λ∈Λ

xλφλ (38)

In preparation of the autoconvolution and other necessary functions the
next two matrices are made. Starting with the function "kappa". This function
creates a N ×N ×N matrix consisting of all the convolutions of all of the Haar
wavelets.

Algorithm 9 Convolution of Haar wavelets

def kappa () :
K = []
for i in range (len (H [0])) :
P = []
for j in range (len (H [0])) :
T = np . convolve (np . array (H[i]) , np . array (H[j]) , mode=' f u l l ')/N
T = T [:N]
P. append (T)

K. append (P)
return K

K = kappa ()

This function "kappa" will allow for a quick calculations of the autoconvo-
lution of any function. The elements however of the matrix that this function
creates are still in the space domain. Therefore, the next function transforms
the matrix from space domain into Haar wavelet domain. This function is "kap-
paeta".

Algorithm 10 Kappaeta

def kappaeta () :
Keta = []
for i in range (len (H [0])) :
P = []
for j in range (len (H [0])) :
T = np . matmul (K[i] ,H[j])
P . append (T)

Keta . append (P)
return Keta

keta = kappaeta ()

With these functions in place the autoconvolution can take place, hence
the following function. The autoconvolution takes three inputs. The a and b

37

input correspond to the borders of the domain on which the autoconvolution
takes place. The x input is the discretization of the function that needs to
be autoconvolved. As can be seen from the script the Haar coe�cients are
calculated for the input function and together with the Haar convolution matrix
K, the autoconvolution is performed.

Algorithm 11 Discrete autoconvolution

def d i s c r e t e au to convo l v e (a , b , x) :
auto =np . z e ro s (N)
xlam =xlambda (x)
for i in range (len (xlam)) :

for j in range (len (xlam)) :
T = K[i] [j]
p = xlam [i]* xlam [j]*T*(b=a)
auto = auto+p

return auto

To understand why the autoconvolution can be done this way the mathe-
matical explanation will be given now. This will also show why the functions
"kappa" and "kappaeta" are nice to have in place. Starting of with the operator,
there was:

A(f(t)) =

t�

0

f(t− τ)f(τ)dτ

This operator is going to be reformulated to make its computer implemen-
tation practical. In other words it is going to be rewritten such that it would
work on sequences in l2. This is done in the following steps:

A(f(t)) = A

(∑
λ∈Λ

xλφλ(t)

)

=

t�

0

∑
λ∈Λ

xλφλ(t− τ)
∑
µ∈Λ

xµφµ(τ)dτ

=
∑
λ∈Λ

∑
µ∈Λ

xλxµ [φλ ∗ φµ] (t)

It is easy to see that the function "kappa" creates the matrix that comes
forth from the convolution of φλ∗φµ. What should be noted additionally is that
the output of the operator is in the space domain and not in the Haar domain.
To get it into the Haardomain the following calculation is done:

yη = ⟨A(f), φη⟩ =
∑
λ∈Λ

∑
µ∈Λ

xλxµ ⟨φλ ∗ φµ, φη⟩

38

The function "kappaeta" creates the matrix that corresponds to the inner-
product ⟨φλ ∗ φµ, φη⟩. This should hold for ∀η ∈ Λ. In the function "kappaeta"
this calculation is done ∀η and therefore produces a matrix of size N ×N ×N .
This has as bene�t that when calculating xTKx, where K is the aformentioned
matrix, the result will be all the Haarcoe�cients or Haarvector of the autocon-
volution.

4.2.3 The adjoint of the Autoconvolution

To use any of the optimization methods with a basis in least squares the adjoint
of the operator is a necessary part. In this case the derivative of the adjoint is
necessary, because of the non-linear operator. This can however be computed
quite simply, but some shifting of the vectors is in order. Therefore there is the
following code fragment.

Algorithm 12 zconstruct

def z cons t ruc t (h) :
p e r tu rba t i onvec to r = []
p s i = []
t = np . l i n s p a c e (0 , 1 ,N)
P = np . l i n s p a c e (0 , n=1,n)
P = P. t o l i s t ()
P = [int (P) for P in P]
for z in t :

p s i . append (Psi (z))
z1 = np . dot (h , p s i)/N
pe r tu rba t i onvec to r . append (z1)

for i in P:
K = (2** i)=1
K = np . l i n s p a c e (0 ,K,K+1)
K = K[: : = 1]
K = K. t o l i s t ()
K = [int (K) for K in K]
for j in K:
H = Haar (i , j , t)
H = np . array (H)
z t i l t = np . dot (h,=1*H)/N
per tu rba t i onvec to r . append (z t i l t)

return pe r tu rba t i onvec to r

This "zconstruct" is very similar to the creation of the Haar matrix that was
seen earlier. The main di�erence is that the Haar wavelets are being ordered
di�erently. Furthermore instead of creating the entire matrix the inner product

39

Algorithm 13 Adjoint of Fréchet derivative

def FPadjoint (z , x) :
product = []
xlam = xlambda (x)
for i in range (len (xlam)) :
T = np . matmul (keta [i] , z)/N
product . append (T)

output = 2*np . matmul (xlam , product)
ad j o i n t = r e c on s t r u c t i on (output)
ad j o i n t = ad jo i n t [: : = 1]
return ad j o i n t

is immediately taken with the input vector h. This h corresponds to the per-
turbationvector that can be seen in the Fréchet derivative. The output of this
function is again a vector, which is used in the next code fragment to create the
adjoint.

In "FPadjoint", the adjoint is created based on the input function. The
input function gets put in through the variable x, while the perturbationvector
corresponds to the input z. With some simple multiplications, the adjoint is
created. One important detail is at the end of the function, namely once it is
put back into spacedomain, the adjoint needs to be �ipped. It could also have
been done in the Haar domain but then the vector needed to be inversed by
making all the shifts back that were made in "zconstruct". This is more di�cult
then �ipping the entire vector backwards in spacedomain, therefore it is being
done in spacedomain.

These function are again made such that the Fréchet derivative can be rep-
resented in l2. Therefore, the mathematical explanation also follows from the
derivation of the Fréchet derivative and its adjoint. Starting of with what is
already known, the adjoint of the Fréchet derivative is as follows:

(A′(f)∗h)(τ) = 2
˜

(f ∗ h̃)(t)

where h̃(t) = h(1− t). This would be the same as writting it as follows:

(A′(f)∗h)(τ) = 2
˜∑

λ∈Λ

∑
µ∈Λ

xλg̃µφλ ∗ φµ

where g̃µ =
〈
h̃, φµ

〉
. This can then again be adapted such that the output

is in the Haardomain creating:

⟨A′(f)∗h, φη⟩ = 2
˜∑

λ∈Λ

∑
µ∈Λ

xλg̃µ < φλ ∗ φµ, φη >

40

This can be shortened into:

⟨A′(f)∗h, φη⟩ = 2(x̃TKηg̃)

The last question remaining is how the shifting impacts the Haardomain.

Looking at g̃µ =
〈
h̃, φµ

〉
, this can be divided into two cases:

g̃1 =
〈
h̃, ψ

〉
g̃j,k =

〈
h̃, φj,k

〉
Starting with the �rst case and remembering that h̃(t) = h(1 − t) on the

domain [0, 1]. This means that

g̃1 =
〈
h̃, ψ

〉
=
〈
h, ψ̃

〉
= ⟨h, ψ⟩ = g1

This can be done because the inner product between two sequence from
which one is backwards is the same as when the other vector would have been
backwards. This however does not matter for ψ, because it is the constants
function with a value of 1. Flipping that backwards is the same as not �ipping
it. Going to the second case the �rst step of which function is put backwards
stays the same, in an inner product it does not matter.

g̃j,k =
〈
h̃, φj,k

〉
= ⟨h, φ̃j,k⟩

However for the other Haar wavelets it does matter that they are �ipped,
so the same steps will not hold. However when looking at φ̃j,k it can be seen
that it is the same as another wavelet that is multiplied with −1, but with
another index. The result of this observations leads to the following index:
(j, k)′ = (j, 2j −1−k). With this index, it creates the equality: φ̃j,k = −φ(j,k)′ .
With this result the next steps hold:

g̃j,k =
〈
h̃, φj,k

〉
= ⟨h, φ̃j,k⟩ =

〈
h,−φ(j,k)′

〉
= −g(j,k)′

The function "zconstruct" creates this indexing and makes the vector that
corresponds to g̃. With this as input the function FPadjoint calculates: y =

2(x̃TKg̃) and puts it back into the spacedomain.

4.2.4 Optimization algorithms

Everything has now been setup so that FISTA and the fractional Laplacian can
work. First the standard FISTA will be shown:

41

Algorithm 14 FISTA

def AutoFista (B, alpha , i t e r a t i o n s , t o l) :
x = func t i on *1
L = 2
y=x
t=1
i=0
t e l l e r = 0
for i in range (i t e r a t i o n s) :

x0=x
t0=t
h = zcons t ruc t ((B = d i s c r e t e au to convo l v e (a , b , x)))
y = y + FPadjoint (h , x)/L
y = xlambda (y)
x= shr inkage_operator (y , alpha)
x = r e c on s t r u c t i on (x)
y = r e c on s t r u c t i on (y)
i f np .max(np . abs (x=x0))< t o l :
print (t e l l e r)
return x

t=(1.+np . sq r t (1 .+4 .* t **2)) /2 .
y=x+((t0 =1.)/ t)* (x=x0)
t e l l e r +=1

return x

In this implementation of FISTA their are a couple of details that need to
be discussed. The solution to a least squares problem would look like something
along the lines of A∗(Ax−b). This is exactly what happens in this function, it is
only a little bit hidden. What happens is that Ax− b is the perturbationvector
used in "zconstruct" to calculate the adjoint. So the adjoint is based on the
input of Ax − b. Furthermore there is the "shrinkage_operator". This is the
function that does the soft thresholding as described in how FISTA works. The
implementation is seen in the next code fragment. The soft threshold is done
on the Haar coe�cients as can be seen from the functions used in the FISTA
implementation.

Algorithm 15 Soft thresholding

def shr inkage_operator (x , alpha) :
Shr = np . s i gn (x)*np .maximum(np . abs (x)=alpha , 0 .)
return Shr

The Shrinkage operator �attens the values that are within the domain of

42

(−α, α). The implementation of the fractional Laplacian is almost the same.
The main di�erence is that instead of the soft threshold there is a function that
enforces the fractional Laplacian.

Algorithm 16 Fractional Laplacian regularized inverse autoconvolution

def AutoLaplace (B, s , alpha , i t e r a t i o n s , t o l) :
x = func t i on *1
L = 2
y=x
t=1
i=0
t e l l e r = 0
for i in range (i t e r a t i o n s) :

x0=x
t0=t
h = zcons t ruc t ((B = d i s c r e t e au to convo l v e (a , b , x)))
y = y + FPadjoint (h , x)/L
x= Laplacerecover1d (y , s , alpha)

i f np .max(np . abs (x=x0))< t o l :
print (t e l l e r)
return x

t=(1.+np . sq r t (1 .+4 .* t **2)) /2 .
y=x+((t0 =1.)/ t)* (x=x0)
t e l l e r +=1

return x

To perform the fractional Laplacian fast the input gets transformed to the
fourier domain as can be seen below. Furthermore the input is shifted such that
the zero frequency is in the middle. The input s is the fraction that can be put
in causing the derivative to be a fractional derivative in Fourier space. This
is possible because in Fourier space the derivative of a function is equal to the
following: f̂ ′(t) = iwf̂(t). This makes calculating the fractional Laplacian very

easy since it equates to: (−△)
s
2 f̂(t) = |w|sf̂(t). The output then gets shifted

back and inverse Fourier transformed. A small residual for very small frequencies
is removed from the output that gets there due to computational inaccuracy.
This has to be removed because it messes up the rest of the algorithm.

43

Algorithm 17 Proximal of fractional Laplacian regularizer

def Laplacerecover1d (A, s , alpha) :
V = f f t (A)
V = np . f f t . f f t s h i f t (V)
L = np . z e ro s ((len (V)) , dtype = ' complex_ ')
for j in range (len (V)) :
R = ((j=len (V)/2)**2)** s
uhat = V[j]/(1+ alpha *R)
L [j] += uhat

L = np . f f t . i f f t s h i f t (L)
output = i f f t (L)
output = output . r e a l
return output

The only thing that now remains is to run the optimization functions.

44

5 Results

Just as in the computational approach this section will be divided into the re-
sults for the linear operator and the non-linear operator. Therefore it starts
with a comparison between TV-regularization and the fractional Laplacian reg-
ularization on the Radon transform, and in the second part of the results the
non-linear operator will be discussed.

5.1 Results for the linear operator

The comparison between the fractional Laplacian and TV-regularization will be
done on the Shepp-Logan phantom. This phantom looks like this:

Figure 7: Shepp-Logan phantom

This image is often used for X-rays and computerized tomography. This is
the image that both algorithms will try to reconstruct. The Phantom and its
Radon transform that are used in the algorithm contain 160× 160 pixels. The
Radon transform applied to this phantom creates the following sinogram (8):

45

Figure 8: Sinogram of the Shepp-Logan phantom

This sinogram with added noise is the input for both algorithms. The noise
that is added, will be based on a Gaussian with as standard deviation 5% of the
maximum value of the pixels of the sinogram and a mean of zero. This level of
noise will be used on all the examples that are shown. In the fractional Laplacian
the fractional index will be set to s = 0.49. This will be used throughout the
results. How much the regularization term contributes depends on the α. It is
therefore necessary to determine a suitable α in advance for the reconstructions.
This is visible in the following two diagrams (9).

(a) Reconstruction scores based on SSIM and
the value of α for TV-regularization

(b) Reconstruction scores based on SSIM and
the value of α for the fractional Laplacian reg-
ularization

Figure 9: The SSIM scores are plotted against the value of α for both types of
regularization

The α that is used is always an approximation however this should be close
enough to the optimal value.

To start the comparison between the regularization methods let us �rst show

46

the TV-regularization computed using primal-dual [9]. The reconstruction that
it made, is accompanied by its reconstruction error:

(a) Reconstruction of the
Shepp-Logan phantom using
TV-regularization

(b) Error plot of the reconstruction in compar-
ison to the original

Figure 10: Results of the reconstruction using TV-regularization. The recon-
struction has an SSIM score of 0.913 and a MSE of 0.005, using the best α based
on the SSIM scores from �gure (9)

The running time of the algorithm to make this reconstruction was 315
seconds rounded to whole seconds. This is equal to 5 minutes and 15 seconds.
Now the reconstruction using a fractional Laplacian as regularizer will be shown.

(a) Reconstruction of the Shepp-
Logan phantom using a fractional
Laplacian as regularizer

(b) Error plot of the reconstruction in com-
parison to the original

Figure 11: Results of the reconstruction using a fractional Laplacian as regular-
izer. The reconstruction has an SSIM score of 0.804 and a MSE of 0.008, using
the best α based on the SSIM scores from �gure (9) and s = 0.49

47

The running time for this algorithm was 91 seconds or 1 minute and 31 sec-
onds. Looking at the scores of both reconstructions it is easily seen that they
score quite comparable. Both in the SSIM score and the mean-squared error
(MSE) there is a bit of a di�erence The TV-regularization scores a little bit
better on the MSE, but the biggest di�erence is the SSIM score. It is clear that
the TV-regularization has a reconstruction that is a bit better. However, the
biggest di�erence is in the computation time. The optimization based on the
fractional Laplacian is more then 3 times as fast as the TV-regularization with
not a bad reconstruction either. When looking at the reconstruction it is also
possible to see slight di�erences. The TV-regularization has some staircasing
issues while the fractional Laplacian has been smoothed out. From the recon-
struction errors it is however clearly visible that both methods are quite good
at reconstructing the edges. Another point that needs to be made is that in
both cases the reconstruction times seem somewhat long. This is because of
the operator and our simple implementation of it. If it was strictly a denoising
problem without an operator A, both algorithms would be much faster. How-
ever this is not the case so for every iteration both algorithms need to run the
operator and its adjoint, causing the longer reconstruction times. In both cases
the reconstruction algorithm ran for a 1000 iterations and each iteration only
had one instance of the operator and its adjoint. It is not the case that one of
the algorithms has to use the operator more than the other algorithm.

To get a better grasp on the performance of the optimization method two
more reconstruction have been done. The �rst one is on a paraboloid. This is a
continuous function resulting in the following reconstructions:

Figure 12: Reconstruction of a paraboloid using TV-regularization

On the left there is the original image of the paraboloid. On the right there
is the reconstruction using TV-regularization. Now this reconstruction is com-
pared to the reconstruction made with the fractional Laplacian as regularizer.

48

Figure 13: Reconstruction of a paraboloid using a fractional Laplacian as regu-
larizer

What is clearly visible from the comparison is that the fractional Laplacian
is much more smooth than the reconstruction from the TV-regularizer. The
staircasing e�ect is quite visible in the reconstruction from the TV-regularizer.
The fractional Laplacian outperforms the TV-regularization in this kind of in-
stance by a great margin. Now an instance with a big discontinuity is used.
Both algorithm will try to reconstruct a square with value 1, while everything
outside of the square has a value of zero. This is what the reconstructions look
like:

Figure 14: Reconstruction of a square with TV regularization

Now the same square is reconstructed using the fractional Laplacian.

49

Figure 15: Reconstruction of a square with a fractional Laplacian as regularizer

A clear circle can be seen around the square in both cases which is caused
by the operator that is currently being used. However in this case the TV-
regularization performs better, there is no noise in the separate areas of the
picture. The edges seem to be quite distinct in both cases.

50

5.2 Results for the non-linear operator

First a suitable α will be determined for the rest of these results. The choice
of α is important for it signi�cantly in�uences the reconstruction. This can be
seen in the following �gures:

(a) MSE: 0.0045 & SSIM: 0.854 (b) MSE: 0.0077 & SSIM: 0.881

(c) MSE: 0.0097 & SSIM: 0.864 (d) MSE: 0.0113 & SSIM: 0.842

(e) MSE: 0.0128 & SSIM: 0.821

Figure 16

The choice of α has a lot of in�uence on how the reconstructions look like.
With very small increases the reconstructions become more and more smooth.
These approximations have also been made for the upcoming comparisons for
both FISTA and the fractional Laplacian. The α changes per function that

51

is being reconstructed. Furthermore, to give more insight into this the Mean-
Squared error (MSE) and the SSIM scores have also been calculated. The MSE
keeps increasing with increasing α. The SSIM score however seems to have a
optimum somewhere around α = 2 · 10−5. Therefore both the SSIM and the
MSE have been plotted for increasing α in the following plots:

(a) Progression of the Mean-Squared Error (b) Progression of the SSIM score

Figure 17

From these calculations, the conclusion follows that α = 1, 5 · 10−5 should
be approximately the optimal α. The same approximation is also done for the
other functions that are shown, however �gures like (17) will not be shown every
time. The reconstruction with this α looks as follows:

Figure 18: Optimal reconstruction

Continuing with the next step, the reconstruction algorithm will be com-
pared to an already existing algorithm called FISTA. They are going to be
compared on the reconstruction depending on the amount of Haar wavelets
used. The amount of Haar wavelets is important because that corresponds to
the amount of plotting points that are present. Starting at sixteen Haar wavelets
and with steps of factor two the results look like this:

52

(a) (b)

Figure 19: Resolution of MSE and SSIM scores with increasing amount of Haar
wavelets

As can be seen from the graphs, for every power of two, FISTA is getting
outperformed. The MSE is lower while the SSIM is higher for the new optimiza-
tion method. This is however still on a relatively simple function. Therefore the
following comparisons will be on a continuous function and a more di�cult dis-
continuous function. This di�culty will lie in the fact that the function will have
more jumps. The continuous function that will be used is f(x) = 0.5 sin(4πx).
This function makes a complete cycle in the domain [0; 0, 5]. Below the compar-
ison can be seen between the more di�cult non-continuous function and their
respective reconstructions.

(a) MSE: 0.065 & SSIM: 0.376 (b) MSE: 0.011 & SSIM: 0.701

Figure 20: Comparison of the reconstructions on a more di�cult non-continuous
function

As can be seen from the comparison both algorithms have a varying degree
of success with the reconstruction of this more di�cult discontinuous function.
The reconstruction of FISTA has really nice square waves as the original signal
does, but fails to locate the exact jumps up and down. Even more so, it does not

53

locate the correct height of the horizontal parts of the non-continuous function.
In comparison, the minimization based on a fractional Laplacian is far more
accurate with the timing of the jumps, but they are not completely vertical as
FISTA does have. Nonetheless it does locate the heights of the jumps very well,
but is incapable of making a horizontal line. During the horizontal parts there
are some oscillation, which were to be expected. When looking at the MSE
and the SSIM scores, it is visible that the fractional Laplacian performs better
overall. Now the same comparison is made on the sinusoid.

(a) MSE: 0.022 & SSIM: 0.686 (b) MSE: 0.003 & SSIM: 0.963

Figure 21: Comparison of the reconstructions on a more di�cult continuous
function

Again, when looking at the MSE and the SSIM scores the fractional Lapla-
cian outperforms FISTA. The reconstruction made by the Laplacian is very
smooth while the reconstruction of FISTA is very square like. This is because
of how the regularization works in combination with the Haar wavelet basis. It
looks as if the new optimization method is outperforming FISTA in every recon-
struction. Unfortunately there are some cases in which the new optimization
method struggles. In the next example, a parabola is being reconstructed.

(a) MSE: 6.45e-07 & SSIM: 0.9998 (b) MSE: 1.85e-05 & SSIM: 0.991

Figure 22: Comparison of the reconstruction of a parabola

54

As can be seen from the scores, the reconstruction of FISTA is slightly
better. When looking closely at the reconstruction of FISTA it is visible that
the reconstruction is not completely smooth, but it is obvious when compared
to the reconstruction of based on the fractional Laplacian, that it is closer. The
di�erence however is small.

55

6 Conclusion

Although the code could be more thoroughly optimized, it is easy to see that
there is a big discrepancy in the reconstruction times. This discrepancy would
not change if the code is better optimized since both algorithms are running
on the same language, libraries and implementation of operators to be in-
verted. This indicates that the fractional Laplacian operator as a regularizer is
faster then the TV-regularization as was expected. The reconstructions how-
ever are not the same, based on the SSIM score it can be concluded that the
TV-regularization is better. This however does not mean that the fractional
Laplacian operator is bad, it still reconstructs at an SSIM score of around 0.8
with relatively sharp edges and some fuzziness throughout its reconstruction
and it behaves better for very smooth regions. A general convergence analysis
of the fractional Laplacian operator is not given. This is because of the simple
nature of the algorithm. Its analysis is almost completely the same as other op-
timization problems that get solved through forward-backward splitting. The
only step that is a bit di�erent is the proximal step, but a very easy expression
is already given for that, making the analysis very similar to already existing
convergence analysis. Because of its easy proximal the fractional Laplacian can
also be used on a non-linear operator quite easily. The results from this were
compared to FISTA in Haar basis and it shows that the fractional Laplacian
has some good reconstructions even with a non-linear operator. In the case
of discontinuous functions and periodic functions the fractional Laplacian re-
constructed them signi�cantly better than FISTA did. The one instance that
FISTA did better was a non-periodic continuous function and even there the
fractional Laplacian did not score much worse than FISTA did. One comment
that could be made, is that the initialization with a scaled version of the sought
after solution is not realistic for applications. This is a fair comment, but only
holds for the non-linear case where it was used to avoid local minima. In the
linear case it was initialized from all zeros. However even for the non-linear case
it is not too relevant as this was a showcase of the potential of the fractional
Laplacian. FISTA had the same advantages, but their respective reconstructions
look very di�erent and shows the potential of the fractional Laplacian.

To summarize this all, the fractional Laplacian is a computationally cheap
way to get regularization that can �nd edges. It does not give the best re-
construction quality compared to TV-regularization, however it is certainly not
bad. For large problems the fractional Laplacian could o�er a solution if peak
resolution is not demanded and computation time is an issue. Furthermore, the
fractional Laplacian can also be easily used on non-linear inverse problems with
a decent reconstruction.

56

References

[1] Al-Mohy, A. H., Higham, N. J., & Relton, S. D. (2013). Computing the
Fréchet Derivative of the Matrix Logarithm and Estimating the Condi-
tion Number. SIAM Journal on Scienti�c Computing, 35(4), C394�C410.
https://doi.org/10.1137/120885991

[2] Antil, H., & Bartels, S. (2017). Spectral Approximation of Fractional PDEs
in Image Processing and Phase Field Modeling. Computational Methods
in Applied Mathematics, 17(4), 661�678. https://doi.org/10.1515/cmam-
2017-0039

[3] Anzengruber, S. W., & Ramlau, R. (2009). Morozov's discrepancy principle
for Tikhonov-type functionals with nonlinear operators. Inverse Problems,
26(2), 025001. https://doi.org/10.1088/0266-5611/26/2/025001

[4] Ambrosio, L., Fusco, N., & Pallara, D. (2000). Functions of Bounded Varia-
tion and Free Discontinuity Problems (Oxford Mathematical Monographs)
(1st ed.). Oxford University Press.

[5] Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences,
2(1), 183�202. https://doi.org/10.1137/080716542

[6] Begemotv2718. (2005, October 30). Radon transform. Wikipedia.
https://commons.wikimedia.org/wiki/File:Radon_transform.png

[7] Boyd, S. P., Boyd, S. P., Vandenberghe, L., & Cambridge University Press.
(2004). Convex Optimization. Cambridge University Press.

[8] Cai, J. F., Dong, B., Osher, S., & Shen, Z. (2012). Image restoration: Total
variation, wavelet frames, and beyond. Journal of the American Mathemat-
ical Society, 25(4), 1033�1089. https://doi.org/10.1090/s0894-0347-2012-
00740-1

[9] Chambolle, A., & Pock, T. (2011). A �rst-order primal-dual algorithm for
convex problems with applications to imaging. Journal of Mathematical
Imaging and Vision, 40(1), 120�145. https://doi.org/10.1007/s10851-010-
0251-1

[10] Chen, W. (2006, June). A speculative study of 2/3-order fractional
Laplacian modeling of turbulence: Some thoughts and conjectures.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(2), 023126.
https://doi.org/10.1063/1.2208452

[11] Clason, C. (2020). Introduction to Functional Analysis (Compact Text-
books in Mathematics) (1st ed. 2020). Birkhäuser.

[12] Clason, C. (2021). Regularization of inverse problems. Lecture notes.
https://doi.org/10.48550/arXiv.2001.00617

57

[13] Dabkowski, M. (2011). Eventual Regularity of the Solutions to the Super-
critical Dissipative Quasi-Geostrophic Equation. Geometric and Functional
Analysis, 21(1), 1�13. https://doi.org/10.1007/s00039-011-0108-9

[14] Defrise, M., & Gullberg, G. T. (2006). Image reconstruction. Physics in
Medicine and Biology, 51(13), R139�R154. https://doi.org/10.1088/0031-
9155/51/13/r09

[15] del-Castillo-Negrete, D., Carreras, B. A., & Lynch, V. E. (2004, August).
Fractional di�usion in plasma turbulence. Physics of Plasmas, 11(8), 3854�
3864. https://doi.org/10.1063/1.1767097

[16] Demoment, G. (1989). Image reconstruction and restoration: overview
of common estimation structures and problems. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 37(12), 2024�2036.
https://doi.org/10.1109/29.45551

[17] Di Nezza, E., Palatucci, G., & Valdinoci, E. (2012). Hitchhiker's guide to
the fractional Sobolev spaces. Bulletin Des Sciences Mathématiques, 136(5),
521�573. https://doi.org/10.1016/j.bulsci.2011.12.004

[18] Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of Inverse
Problems (Mathematics and Its Applications, 375) (1996th ed.). Springer.

[19] Friedberg, S., Insel, A., & Spence, L. (2018, September 7). Linear Algebra
(5th ed.). Pearson.

[20] Ge, J., Everett, M. E., & Weiss, C. J. (2015, May 1). Frac-
tional di�usion analysis of the electromagnetic �eld in fractured me-
dia � Part 2: 3D approach. GEOPHYSICS, 80(3), E175�E185.
https://doi.org/10.1190/geo2014-0333.1

[21] GitHub - pierrepaleo/ChambollePock: A Python implementation
of the Chambolle-Pock algorithm for image processing applications
examples. (n.d.). GitHub. Retrieved September 10, 2022, from
https://github.com/pierrepaleo/ChambollePock

[22] Goren�o, R., & Hofmann, B. (1994). On autoconvolution and regular-
ization. Inverse Problems, 10(2), 353�373. https://doi.org/10.1088/0266-
5611/10/2/011

[23] Gull, S., & Daniell, G. (1978). Image reconstruction from incomplete and
noisy data. Nature, 272(5655), 686�690. https://doi.org/10.1038/272686a0

[24] Kirsch, A. (2022). An Introduction to the Mathematical Theory of Inverse
Problems (Applied Mathematical Sciences) (3rd ed. 2021). Springer.

[25] Korolev, Y., & Latz, J. (2021). inverse Problems. Lec-
ture notes, Michaelmas term 2020, University of Cambridge.
http://www.damtp.cam.ac.uk/research/cia/inverse-problems-michaelmas-
2020

58

[26] Parikh, N., & Boyd, S. (2013). Proximal Algorithms (Foundations and
Trends(r) in Optimization). Now Publishers Inc.

[27] Natterer, F. (2001). The Mathematics of Computerized Tomography (Clas-
sics in Applied Mathematics, Series Number 32). SIAM: Society for Indus-
trial and Applied Mathematics.

[28] Romberg., J., Egerstedt, M. B., & Davenport, M. A. (2021).
Convex Optimization. ECE 6270: Convex Optimization Spring
2021. https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/10-
subgradients.pdf

[29] Roncal, L., & Stinga, P. R. (2015). Fractional Laplacian on the torus.
Commun. Contemp. Math, 18(3), 26.

[30] Rudin, L. I., Osher, S., & Fatemi, E. (1992, November). Nonlinear total
variation based noise removal algorithms. Physica D: Nonlinear Phenom-
ena, 60(1�4), 259�268. https://doi.org/10.1016/0167-2789(92)90242-f

[31] Snieder, R., & Trampert, J. (1999). Inverse Problems in Geo-
physics. CISM International Centre for Mechanical Sciences, 119�190.
https://doi.org/10.1007/978-3-7091-2486-4_3

[32] Stankovic, R. S., & Falkowski, B. J. (2003). The Haar wavelet transform:
its status and achievements. Computers and Electrical Engineering, 29(1),
25�44. https://www.elsevier.com/locate/compeleceng

[33] Zhang, L., Zhang, Z., & Guan, C. (2021). Accelerating privacy-
preserving momentum federated learning for industrial cyber-physical
systems. Complex &Amp; Intelligent Systems, 7(6), 3289�3301.
https://doi.org/10.1007/s40747-021-00519-2

[34] Zhou Wang, & Bovik, A. (2002, March). A universal image
quality index. IEEE Signal Processing Letters, 9(3), 81�84.
https://doi.org/10.1109/97.995823

59

