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Abstract—Non-destructive testing (NDT) is an industrial
analysis technique used to evaluate the characteristics of a
material, component or structure without causing any type of
damage to it. In the petrochemical industry, one of the most
important NDT methods is magnetic flux leakage (MFL),
a method which uses the magnetic properties of pipes and
storage tanks to detect defects in them.

While the use of machine learning is not a new idea
in the field of MFL inspection, newer techniques such as
deep learning have only recently started being applied. This
approach is supported by the massive amounts of data that
is produced when MFL scans are performed. While the
method being used is the same for pipelines and storage
tanks, the resulting data is very different between the two
mediums, which means that the machine learning methods
used on one of them will not translate well to the other. At
the moment, most of the research done into using machine
learning technique focuses on pipelines alone, with little to
no effort being put into combining MFL inspection for tank
bottoms and deep learning.

Machine learning efforts are usually split into two parts
in such contexts: a detection algorithm and a classification
algorithm. ROSEN already has a detection algorithm and a
deep learning model deployed as part of its MFL scanning
tool, the TBIT, however the results obtained so far tend
to differ by a large margin from scan to scan. In this
case, the project has focused towards improving the second
component, the classification model.

For the purposes of this project, ROSEN has provided
135000 entries split over 20 datasets captured from 10
different storage tanks scanned over a number of years. This
thesis has a two-fold contribution: the first is to try to identify
the potential causes behind the discrepancy in the results of
the baseline deep learning classification model between the
different datasets, and the second is to test multiple gener-
alization techniques in order to decrease the generalization
error of the model. This thesis also proposes two new novel
generalization techniques. The first one is a new training
schema which combines attention-based algorithms such
as GRAD-CAM and HiRes-CAM and occlusion algorithms
during the training phase of a deep learning model, which
creates a new augmentation tool for datasets used in deep
learning problems. The other is a novelty approach to loss
functions, which attempts to improve already-existent loss
functions by adding two new parameters to them, a softening
margin and a stochastic variance parameter.

I. INTRODUCTION

Non-destructive testing (NDT) is the use of various
analysis techniques in order to evaluate the properties of
materials, components or systems of components in order
to find anomalies, differences or discontinuities without
harming the usability of the item being tested [1]. These
types of tests are advantageous for ensuring the integrity
and reliability of an item during and after fabrication or
while in service.

Non-destructive testing (NDT) is a very broad field,
which is subdivided into methods, each with a different
scientific principle behind it, that are themselves sub-
divided into techniques, different implementations of the
same principle. The most well-known and also the first
example of NDT is visual testing (VT). Other popular
methods are Magnetic Particle Testing (MT), Liquid Pen-
etrant Testing (PT), Ultrasonic Testing (UT), and Electro-
magnetic Testing (ET) [2].

The method used in this project is Electromagnetic
Testing, which is a measurement method for steel and
other ferromagnetic materials. It uses electric currents
and magnetic fields in order to create an electromagnetic
response which can then be measured. If there are fluctu-
ations in the measurements, it indicates that an anomaly
has been detected. The two MFL techniques used in this
project are Magnetic Flux Leakage detection (MFL) and
Eddy Current testing (ECT).

In the petrochemical industry, NDT techniques are used
to detect possible anomalies in the transport and storage in-
frastructure. Most commonly this type of analysis is done
on oil pipelines using specifically designed equipment.
Although not a recent development, the same techniques
have also been applied to storage tank floors with a high
degree of success [3]. However, there is still some delay
in the development of the technologies between the two
applications. In the last two decades, pipe inspection tools
have started being improved with the addition of machine
learning techniques to their process flows, which range
from classical methods, such as SVMs [4] to various types
of neural network architectures [5] [6]. For storage tank
bottoms, this type of framework is still very limited in
usage at the moment.

A. Problem

The usual way of approaching defect detection in mag-
netic flux leakage captures is to build a framework out
of a detection algorithm and a classification algorithm.
The detection algorithm is a technology that is already
established within ROSEN, and as such it is out of the
scope of this project. For the classification part, the com-
pany also already has a neural network model deployed,
which classifies the possible anomalies identified by the
detection algorithm into true positives (called “true calls”
for the purposes of this project) and false positives (also
called “false calls”). Its architecture can be seen in Figure
14. However, the problem with the current system is that
the model has a high generalization error rate, as it can be
seen in Figure 1. While for the validation phase, the model
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Figure 1: Performance of the baseline model during 20-
fold cross validation. The blue line shows the accuracy of
the model for each of the 20 validation datasets, the orange
line shows the accuracy on each of the test datasets. The
green line shows the FPR-95% recall rate for each of the
validation datasets, while the red line shows the FPR-95%
recall rate for each of the test datasets

is performing in a stable manner over all the datasets, the
results when applied on the training set vary by a large
margin.

B. Aim
The are two main goals for the thesis:

1) to identify the source of the discrepancy in the
performance of the model across various datasets
through root cause analysis, and

2) and to improve the existing model by testing a
number of generalization techniques, some of which
will be novel approaches

For the first goal, the research questions were the
following:

What are the main causes behind the discrepancy
in results between different datasets when the same
model is used?

How can the discrepancies in properties between the
datasets be minimized?

For the second goal, the research question is:

How can deep learning models trained on images
obtained of MFL scans be improved in order to
generalize better?

C. Method

For the first stated goal, the initial step is the identifi-
cation of the issues with the baseline approach, this thesis
used root cause analysis, a risk assessment method from
the field of industrial process management [7], in order
to identify the core issues that cause the discrepancies
presented earlier. The second step is then to propose
solutions that can fix them systematically, if such solutions
are feasible within the context of the project. The chosen
method for the first step was misclassification analysis,
in which the instances that were labeled wrongly by
the baseline model were checked for possible patterns.
After that, a licensed operator re-checked a number of

misclassified instance and then was asked to give an
opinion on a number of factors regarding potential issues
with the data.

The data that was used in the experiments was provided
by ROSEN, and was gathered by multiple field operators
over a number of years, using multiple MFL sensors on
10 storage tanks. For each of the tanks, the measurements
were done using two different calibration standards, which
resulted in 20 usable datasets. The resulting scans were
then checked by a licensed operator, which meant that
the data was of a high enough standard as to be used for
supervised deep learning.

The goal is then to use the results obtained from it as a
launching point for the second stated goal. The proposed
framework is to first try to identify the issues that affected
the results of the the baseline model, which will then guide
the implementation for the second stated goal, where a
variety of generalization methods for deep neural networks
applied to the field of magnetic flux leakage detection are
implemented and tested as an ablation study. A diagram
of the areas of the network where generalization methods
were applied can be seen in Figure 4. There were two
main areas that were the focus of the research: the data
and various ways to augment it, and improvements to the
model in use.

In the first area, two types of techniques were tested:
balancing techniques, in order to address the imbalances
on the type and amount of data between the datasets used
in this project, and data augmentation techniques, which
increase the amount of available data by generating new
data based on already-existing data.

For the second part, four types of methods were chosen.
The first one was previously proposed by [8]. Attention
based algorithms use various techniques to show how deep
learning models make decisions. In the experiments, the
algorithms were combined with occlusion algorithms. The
idea in this case is that by combining the two algorithms,
the decisions of the algorithm can be changed by first find-
ing out what the algorithm sees as important in an image,
and if the area of image the algorithm sees as important is
problematic, it gets occluded and the algorithm is trained
again, this time on the occluded image, in order to force
it to switch its focus to another part of the image. For the
visualization part, two algorithms were used: GRAD-CAM
[9] and HiRes-CAM [10].

Stochastic regularization is another generalization
method where multiple networks are simulated, each with
its own unique architecture, by randomly dropping a per-
centage of the weights in a network during each training
step. Two methods are used in this case: Dropout, which
randomly drops entire neurons from the network [11], and
dropConnect, which drops individual weights [12].

Soft labeling is a method through which the network can
reduce overfitting by asking it to draw a decision boundary
based on a label which has a probability label attached to
it [13]. This way, the network can gain some leeway when
drawing the boundaries between classes. This technique is
tested by itself in this thesis, but it is also combined with
loss functions in a novel manner.



D. Contributions of this work

This thesis has the following adds the contributions to
existing research:

« on the one hand it provides an analysis of the issues
that surround the application of deep learning tech-
niques to classifying MFL scans obtained from tank
bottoms,

o secondly, this thesis tested various generalization
techniques for convolutional neural networks that
train on images created by magnetic flux leakage
Sensors

o to that end, various generalization techniques are
applied and discussed and novel improvements to
those techniques were also proposed and tested

o the first one is a new training schema which uses
saliency maps obtained from attention-based algo-
rithms in order to change the areas of perceived
importance for the network by occluding the areas
of high importance with various types of noise

« the second one is a new type of loss function, which
integrates a softening margin inside the function
itself, instead of applying it to the labels of the data

E. Organization of the paper

Section II of this thesis describes the background knowl-
edge necessary for understanding the technologies and
the processes behind the data that is used in the project.
Section III presents related research. Section IV describes
the proposed methods used in the experiments. Section
V describes the datasets used in the project. Section VI
discusses the experiments run in relation to the first goal
of the project, root cause analysis. Section VII presents
the setup of the experiments, the metrics that were used
to measure their results, and tested alternatives to the
methods in section I'V. Section VIII presents the results of
the experiments. Section IX provides in-detail discussions
for a number of experiments. Section X presents the final
conclusions, and section XI presents directions for future
research.

II. BACKGROUND
A. Magnetic Flux Leakage

Magnetic flux leakage (MFL), also known as Transverse
Field Inspection (TFI), is an NDT method that detects
defects, such as corrosion. The field of application of these
inspection techniques is in pipelines most commonly, but
also in storage tanks. The method works by using a strong
permanent magnet, which induces an elliptical magnetic
field in the steel parts of the measured item. In the case of
storage tanks it is used on the plates forming the floor
of the tank. In the areas where the metal is damaged,
a distortion of the base magnetic field appears, which is
called a “leak”. Typically, the larger the size of the defect,
the bigger the leakage from the magnetic field will be.

MFL detection tools have two main components: a pow-
erful permanent magnet combination which magnetizes
the metal, and Hall-effect sensors between the poles of
the magnet which measure the amount of magnetic flux
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Figure 2: The principle of Magnetic Flux Leakage

leakage that comes from the to be inspected object. A
schema of how MFL tools can be seen in Figure 2.

The magnet in an MFL tool is designed to create a
uniform signal throughout the metal and to be powerful
enough to create a measurable amount of magnetic flux
leakage. The leakage happens when there is enough mag-
netic flux to produce magnetic saturation, that is, when
any further increase in the magnetization field applied
to an object no longer produces any significant further
increase in the magnetic flux density. The saturation point
for any given object depends on the material it consists
of and the thickness of the involved object [14]. The
magnetization and permeability curves for sheet steel, the
material typically used for tank bottoms, can be seen in
Figure 3.

A second important factor is the permeability p of the
material to be inspected, which is the ability of magnetic
flux to be induced into a material. Each material has its
own permeability curve. Typically, at 0 magnetization, the
curve starts linearly, but flattens quite significantly when
saturation occurs. When the magnetization level is high,
a metal loss defect (corrosion, cracks, holes, etc.) will
create a reduction in permeability, which along with a local
reduction in metal plate thickness, lowering the point of
saturation even further, will make the magnetic flux to
flow outside of the metal, which creates the magnetic flux
leakage phenomenon.

The Hall effect is a method of measuring magnetic
fields. It appears when electrical current flows through a
metal plate, and then a magnet is placed perpendicular
to the plate. The magnetic field then disturbs the flow of
the current, by separating the positive and the negative
current to opposite sides of the plate. This separation
creates a small voltage difference between the sides of the
plate which can then be measured. The appearance of this
voltage difference is what constitutes the Hall Effect. The
effect is measured in volts (V), but the effect is usually
very weak, so in practice it is measured in V.

B. Eddy Currents

One of the disadvantages of NDT techniques is that
they are indirect measurements. That means that specific
attributes of the defects or the relationships between them
cannot be identified only through those techniques. In the
field, this often results in the situation that, when using
MFL on anomalies, several object parameters have an
influence on the final measurements and some not at all,
but they all show up in the measurement of an object
[15]. One of the important parameters that suffers from
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Figure 3: Magnetization Curves for sheet steel, the most
common material for storage tanks

this issue is the localization in depth of an anomaly (i.e. is
the anomaly on the inside side of the object being scanned,
the outside, or inside the object itself in the case of stress
fractures). In order to solve this problem, Eddy current
sensors are used.

Eddy currents are circular electrical currents induced
within a coil of conductor wire when the coil becomes
excited with an alternating electrical current. This excita-
tion creates an alternating magnetic field around the coil.
When the coil gets close to a conductive material, in this
case the steel plates of a tank bottom, eddy currents are
induced in the material which, as per definition, rotate in
the opposite direction to those in the coil. Variations in the
electrical conductivity of the material being measured can
then be detected by Eddy Current sensors. Furthermore,
by looking at the phase and the amplitude, the distance to
the defect can be calculated, which can help to understand
whether the metal loss defect is on the inside or the outside
of the object being scanned.

C. Signal Analysis

In this subsection the signal analysis of both magnetic
flux leakage as well as the eddy current sensors is dis-
cussed. Within ROSEN , the combination of MFL and
EC techniques is used for defect detection in two closely-
related applications: in pipelines and in tank bottoms. The
principles are the same for both, the only major difference
is in the configuration of the equipment.

Generally, a defect identified by a MFL-EC detector
combination has three main significant properties: width,
length and metal loss percentage (ML %). There are many
other measurements that can be obtained, such as closeness
to other defects, orientation of defect in respect to the
magnetic field, etc.

The metal loss, also known as the depth, represents
the amount of lost material as a percentage of the total
thickness of the plate, and is the factor most closely related
to the amplitude of an MFL signal. It is measured as the
percentage of the depth of the defect over the normal
wall thickness. Thus, there is no universal measurement
of depth, and its effects differ from case to case. This

measurement is very important as higher metal depth
requires more attention.

The width and the length of the defect also affect
detection, defining here the width respectively the length
as the defect’s size orthogonal to respectively in line with
the applied main magnetic flux. When talking about the
width, the relationship between it and flux leakage is cor-
related, with less anomaly width resulting in less leakage.
However, for length the opposite holds true, which is one
of the biggest problems of the MFL technique. A lengthier
defect spreads the flux leakage along its entire length,
which leads to lower flux leakage values. This makes
classification tasks problematic and requires additional
processing in order to correct the effect.

The measurement tool used by ROSEN is the TBIT
[16], a device which uses both Hall sensors and Eddy
Current sensors. There are two types of detection related
service types employed by ROSEN for the TBIT, one
is called Standard and one called Ultra. Most of the
differences between the two standards are outside the
scope of this project. The only exception is the sensitivity
factor: the Standard method does not capture anomalies
that are under 20% metal loss, while the Ultra method
allows for captures at 10% metal loss and above.

The device is equipped with multiple sensors, each with
a different axial position in order to increase the chances
of anomaly detection as described above. The ones used in
this project are the horizontal hall sensor (abbreviated as
PHH) and the vertical hall sensor (abbreviated as PVH).
The horizontal sensor measures flux leakage as seen from
the surface of the steel plate, while the vertical sensor
measures the flux leakage as seen in the depth of the plate.

Plates are usually large in size and require multiple
partly overlapping runs in order to be properly inspected.
For that reason, the inspection of a plate is split into
multiple sections, which are called stripes in this context.

Next up, an algorithm takes the sensor data and detects
possible anomalies (peaks in the data above a certain
threshold) caused by flux leakage by looking at the signal
readings obtained from the sensors. Due to interactions
between the factors discussed above and others, false
positives and false negatives are a common problem in
MFL detecting systems. There are also anomalies that do
not threaten the integrity of the object in any way, but are
still detected by the sensors, such as welds, fluctuations in
the thickness of the metal or joints which connect metal
plates.

The anomalies found by the detected algorithm are then
sent to a trained specialist which labels them as either true
positives or true negatives. True positives, more commonly
known as true calls in these types of projects, are anoma-
lies identified by the sensors which are threatening to the
integrity of the object being scanned. The most common
types of true positives are metal loss features (such as
corrosion), dents, holes and gouges. False positives, also
called false calls, are detections by the algorithm which
come from either the non-threatening features described
above or from natural random fluctuations in the magnetic
fields that is being measured.

There are multiple ways to work with the captured
anomalies for classification purposes: most research is



done on working directly with the signals captured from
the anomalies and their data related properties, which
can be analyzed using various signal-based techniques.
However, this project normalizes the signals from the
regions highlighted by the detection algorithm, re-scales
the detected areas of interest to a standard size, and then
uses the obtained values as pixel intensity values, turning
them into images, where the values from each sensor
constitute a channel and where the values from several
channels of the same type form an image. Applying this
technique allows the project to also use image analysis
techniques in addition to more classical approaches.

III. RELATED WORKS

As discussed in the previous sections, there are two parts
to the analysis of MFL signals: the detection algorithm
and the classification algorithm. A large of the papers that
apply machine learning techniques focus most of their
research on the detection side [17] [18] [19] [6], while
only employing more traditional classifiers for the second
part. The other papers focus only on the classification part,
working with already processed data and employing more
complex machine learning methods.

On the classification side, three types of classifiers were
popular: neural networks [5] [4] [6] [20], support vector
machines (SVMs) [17] [18] and random forests [21] [19].

On the neural networks side, there were a multitude
of approaches. [4] investigated a number of training
functions, along with different network configurations,
on noiseless and noisy data obtained from a number of
pipelines using MFL signals. The optimum model found
that for both the noiseless and the highest level of noise
(10dB), a Polak-Ribiere Conjugate Gradient had the best
results, with an RMSE (Root Mean Score Error) of 1.39%
at 0 noise and 9.47% at 10dB noise level.

An approach by [20] used an ELM (Extreme Learning
Machines) Classifier, a technique where single/multiple
layers of hidden nodes have fixed parameters and only the
output weights are tuned during training. The technique
was applied on MFL signal data in order to classify signals
as benign or injurious, and had 95.63% average accuracy.

Another possible usage of machine learning in the
domain of MFL is the use of semi-supervised learning.
This type of research is important as MFL data is produced
in large quantities, but correctly labeling findings requires
human operators, which makes labeling a time-consuming
procedure. [5] used a novel design for a Fuzzy Min—Max
Neural Network (a type of semi-supervised neural net-
work) on a variety of types of data, among which was also
MFL data from pipeline scans. Their network obtained a
performance of over 85% with only 40% of the training
dataset being labeled.

Related to the issue of the large amount of data and
neural networks is an approach based on big data tech-
niques, as presented by [6], which used various machine
learning and big data techniques in their paper and tried
to detect defects in oil and gas pipelines and estimate the
depth and size of the defects.

Their paper also presented a discussion on activation
functions for neural networks, and the final results were

compared with those presented by ROSEN. At a 10% error
tolerance range, a dynamic FFNN (feed-forward neural
network) with a hyperbolic tangent sigmoid activation
function achieved an accuracy of 86%, compared to the
80% presented by ROSEN.

Regarding SVMs, [17] used SVR (SVMs for regression
tasks) for the prediction of both metal loss (severe and
non-severe) and malignancy (injurious and benign) in
several pipes with various wall thicknesses. The experi-
ment on an 8-inch pipeline had an SVR model with a
Gaussian kernel as the best performing model, at 97.81%
average performance, although an RLS model came close
at 97.69% average performance. The experiment on a
10-inch pipeline had again the SVR model as the top
performer at 97.09% average performance. Regarding the
experiment on metal loss severity, the best performance
was achieved by an SVR model again, but this time with
a polynomial kernel, with 98.28% average performance.

A different experiment was done by [18], who used
multiple SVMs in order to detect various types of defects
and classify. The paper used a separate SVM model for
each type of defect, and achieved an average accuracy of
96.6%, while the ROC curves show error rates of 5.3%
for dents, 3.6% for gouges and 1.3% for lakes.

Lastly, Random Forests were used by [19] for the
classification part of their project, and achieved results
of 92% recall and 86% accuracy. Another approach was
used by [21], who used TCA (transfer component analysis)
combined with a random forest model to classify defects
from a number of datasets, each obtained from a different
pipeline. The motivation for this project was the fact that
the data obtained from each individual pipeline has a
different distribution, and TCA is used to reduce those
differences. The final result was an average error of
15.38% for the random forest model, and 9.12% when
TCA was also used.

As it can be seen, there is no research published at the
moment regarding working with machine learning models
on magnetic flux leakage data obtained from storage tank
bottoms, as the research is focused on oil/gas pipelines.
While the principles behind the technologies which are
used are similar, they way they are applied in pipelines
and tank bottoms is different, which means that the results
obtained from one type of application cannot be compared
with the results from the other directly.

There are two workflows present in the literature for
approaching the issue of MFL anomaly detection using
machine learning techniques. The first one is about design-
ing an entire pipeline consisting of a detection algorithm
and then adding a classifier after it, in which case most
of the effort goes into the anomaly detector, which results
in less false positives, which means that a less complex
classifier can be used without issue. The second possibility
is the use of pre-produced data, where the detection
mechanism is outside of the scope of the project. In this
case, the added complexity in the data coming from the
independence of the two parts creates a requirement for
more complex classifiers. All the mentioned papers that
used the second data pipeline use some type of neural
network.

Another important point is that most of the research is



either focused on distinguishing between multiple types
of defects or tries to estimate the depth of the feature.
There is some literature present that tries to distinguish
between defects and benign captures, but a large portion
of it does this step during the detection process, not during
the classification as is the case for this project. Overall, the
largest number of experiments are performed using various
types of neural networks, although SVMs and Random
Forests are popular alternatives.

IV. PROPOSED METHOD

This section defines the methods that the thesis used for
its goal of improving the baseline model. Each subsection
describes a different method, and the variations in their
implementation. The areas where the methods are intro-
duced into the architecture of the network that is used in
the experiments can be seen in Fig. 4.

A. Network architecture

The detailed layer architecture of the neural network
used in this paper can be seen in Figure 14 in Appendix
A. It receives two types of inputs: one for the images, and
one for metadata. On the image input, the network uses
three groups of two convolutional layers and a pooling
layer which halves the size of the input after each group
and then sends it to the next group. The metadata consists
of an array of 8 metrics such as the coordinates of a
detection within a scan or its proximity to the edge of
the metal plate it is part of. This data is then fed into
a dense neural network with two fully-connected layers.
The outputs of the two networks are then concatenated
and fed into another dense layer, which then goes through
batch normalization and dropout, if the latter operation is
enabled for the experiment.

B. Data Augmentation

1) Mixed element data augmentation: Proposed in a
paper by C. Summers and M.J. Dinneen [22], mixed
element augmentations are non-linear augmentation tech-
niques which also alter the labels of the images they
augment. The proposed techniques are presented in Table
L. In the table, all A values are drawn from a Beta(a, «)
distribution with o = 1.

C. Class Activation Maps-based algorithms

High Resolution Class Activation Mapping, better
known as HiRes-CAM [10], is a visual explanation tech-
nique for Convolutional Neural Network models. In this
thesis, the algorithm is slightly modified in order to be
used as a data augmentation tool.

The first step in the algorithm is computing the gradient
of the output of the neural network with respect to the
feature map activations A* of a chosen convolutional layer,
i.e. Oy°/OAF. The resulting gradients are then averaged
over the height and the width of the filter maps, which
results in a single value «f, which is the weight of the
neuron on the overall activation, i.e.

o1 e
of =7 2> par 0
i g

Lastly, a ReLU activation function is used on the
weighted product of the activation feature maps A*
oy°

“I . Ak). )

LS. = ReLU
HiRes—CAM e (k DAF

The resulting heatmap is then up-scaled to the size of
the original input, which shows which parts of the original
image were important for the classifier when computing
the output.

After the heatmap is calculated, its maximum value
point is multiplied by a parameter 6, which sets the
threshold for occlusion. If a point in the heatmap has a
higher value than the threshold, then the corresponding
point in the original image gets replaced by a chosen value,
which can be either be static (e.g. 0, 1, -1) or taken from
any continuous distribution.

1) Training schemes for CAM-based algorithms: Two
different approaches were considered for the application
of the CAM-based algorithms:

Algorithm 1 CAM-based algorithm applied before the
training step

Require: trainingSet, model, p, ©
for batch in trainingSet do
convolutionOutput, gradients <— model
r < random(0, 1)
if r < p then
heatmap <— CAM(batch, lastConvLayer, gradi-
ents)
batch < occlusion(heatmap, ©)
end if
train(model, batch)
end for

Algorithm 1 was utilized previously by [8]. In this case,
the CAM-based algorithm is applied before the training
step for a batch. A p value is chosen, between 0 and 1,
and then, during each step, a random value r is taken
from the [0, 1] interval. If the r is smaller than the p value,
then the batch is augmented with a CAM-based algorithm.
The occluded area is determined by the © parameter. If a
pixel in the heatmap has a value over 255 * O, the area
corresponding to the pixel in the original image will be
occluded. The model is then trained on the batch of 128
augmented images. For all the experiments performed with
this algorithm, the chosen value for p is 0.25.

Algorithm 2 CAM-based algorithm applied after the
training step

Require: trainingSet, model, p, ©

for batch in trainingSet do
train(model, batch)
misclassBatch < batch[label # prediction]
heatmap < CAM(misclassBatch, lastConvLayer,

gradients)
misclassBatch < occlusion(heatmap, ©)
train(model, misclassBatch)

end for

For the second algorithm is a proposed novel approach,
the CAM-based algorithms are applied after the training



c) Balancing

techniques

Metadata
a) Dense NN

[23.65, 188.3, ..., 4.44]

Labels

[10]
Convolutional

NN
Images

)
Augmentation
techniques

d) Attention
algorithms

f) Label

smoothing

Neural Network

g) Loss
functions

Dense NN

e) Stochastic

regularization
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step for a batch. First the model is trained on a batch,
the misclassified instances are fed into the CAM-based
algorithm, and then the model is trained again, this time on
the misclassified and augmented instances from the initial
batch.

The difference between the two algorithms is that in
the first one, the CAM-based algorithm is computing the
heatmap before the weights are updated from training on
the batch, while the second algorithm uses the weights
which were updated by training on the batch. This means
that the second algorithm is guaranteed to work with
convolutional layer weights which went through at least
one training step, while the first one may create a saliency
map which is computed with random weights during the
first training steps, which can cause issues in the initial
stages of training.

The second difference is that the second algorithm
updates the weights twice in one step, while the first only
updates them once.

D. DropConnect

DropConnect is also a stochastic regularization tech-
nique, similar to dropout, but which removes individual
weights from the neurons at random, instead of entire
neurons [12]. Overall, it is more flexible than dropout,
because the adjustments the network has to make have the
possibility to create a larger number configurations during
each step when singular weights are omitted than when
entire neurons are dropped out.

E. Label smoothing

Hard labeling is a binary method of labeling data: if
the instance is a member of a class it receives a certain
label, otherwise it is assigned the other possible label.
One-hot encoding is such an application of the method,
where the class the instance is a part is labeled with one,
while all the others are labeled with zero. The problem
with such a technique is that it forces the model to draw
hard decision boundaries between concepts, which makes
models prone to over-fitting. One technique for solving
such a problem is label smoothing [23], which works by
attaching a probability score ¢ to the label, thus leading to
softer decision boundaries, and thus better regularization.

The formula used for soft labeling in this paper is:

Ls=[L-(1=¢)]+(¢/s), 3)

where L is the softened label array, L is the original
label array, ¢ is the softening factor and s is the length of
the label array.

F. Loss Functions

1) Added margin L2-distance loss: Loss functions try
to optimize the neural network such that the value of the
loss over the training examples tends towards a value k,
which is usually 0. However, trying to get as close as
possible to that value can lead to over-fitting. By adding
a margin m, the network will instead try to come close
to m + k rather than k, which should in theory reduce
the overfitting. Of course, if the value of m is too large,
the network will not train properly, due to the distance
between the margin and the optimal value being too large



Table I: Mixed-element data augmentation techniques used in this thesis

. . . The formula for the aug-
Technique Description The formula for the augmented image mented label
. . i <
Vertical Takes the top A rows from one image and | Z(r,c) = (re)if r < /\H where H is the
Concatena- concatenates them to the bottom 1 — \ rows z1(r, ¢), otherwise 7=y1 + (1 — Ny2
tion of the second image height of the image, r is the row coordinate and c is
the column coordinate of the pixel
. . i <
Horizontal Takes the top A columns from one image Z(r,c) = 1(rye),if ¢ < )\W where W is the
Concatena- and concatenates them to the bottom 1 — A ) a1(r, c), otherwise ) S g=E2u 4+ (L= Ny
tion columns of the second image width of the image, r is the row coordinate and c is
the column coordinate of the pixel
. . ,c), if (r < AH and ¢ < A\W
Two boundaries determined by A1, A2, - _ oi(r c))\}_[(r d ;11/1[/ ¢ )
Mixed Con- which splits the image into 4 areas, with the Z(r,c) = q or (r> and ¢ > ) 7= A2+ (1-X1)(1-
catenation main diagonal corners belonging to image ) @ (r, C)v otherw1§e ) ) M)y + (A (1= A2) +
1, and the secondary diagonal belonging to | where H is the height of the image, W is the width (1= A1)A2)y2
image 2 of the image, r is the row coordinate and c is the
column coordinate of the pixel
1 1 it 1 1 = U = *
Random 2x2 Theh image is sl;zht into 4 quﬁrter.s, and then (q) = z1(q), %f p=1  for each section g of yl 1/;1 the nur;lber of
concatena- f:ac part 15. taken from f.blt er 1mage. 1 or 9 (q), ifp=2 se e(;te quarters xr1 +
tion image 2,. Wlth. thef selection done using a | (he image, where p is a value taken from a Binomial 1/4 * (1 - the number of
Bernoulli distribution distribution with Pr = 0.5 selected quarters) * o
z1(r, ¢), if (r>X2 and ¢>A3) and
(r <A2 + A1 and ¢>)\3) and
Z(rye) = ¢ (r <A2 + A1 and c<A3 + A1) and
Random A square area within image is replaced .
square b ;lu W Tmase P (r >A2 and <Az + A1) 7=v1(1— A1) +y2M1
q ¥ *2 x2(r, ¢), otherwise
where A is the length of the square, Az is the start
coordinate of the square on the x-axis, and A3 is the
start coordinate of the square on the y-axis
- _Jxa(r,c), if > Ap and r < A1+ A2
Random A selected' interval of rows from zp is &(r,c) = x1(r, €), otherwise ’ G=y1(1— A1)+ y2ht
Row Interval | replaced with rows from x2 where A1 is the starting row for the interval, and
Ao is the size of the interval
if ¢ > <
Random _ . Fr,c) = IQ(T,C),lfC_%\1 and ¢ < A1 + A2 ’
Column A selected‘mterval of columns from z1 is x1(r, €), otherwise G=y1(1— A1)+ y2ht
Interval replaced with columns from z2 where A1 is the starting row for the interval, and
Ao is the size of the interval
Random A random number of rows from xz; are | 7 = z1(r,c) if r ¢ I‘ , where I is the set of | ~ _ 1-2X B
Rows replaced with rows from zo x2(r, ¢), otherwise g=y(l =) +y2h
A selected random rows
Random A random number of columns from x1 are | 7 = w1(rc) if c ¢ I_ , where I is the set of §=y1(1— A1) +yaX
Columns replaced with columns from z xa(r, ¢), otherwise y=u 1) T Y2A2
A selected random columns
Random Pix- | A random number of pixels from x; are | Z = @1(r,¢) if (r,c) §E I , where I is the set of | -~ _ 1—2x \
els replaced with columns from zo x2(r, ¢), otherwise g=p(1 =) +y2h
A selected random pixel coordinates

for the decision boundary to be properly drawn. This
approach is similar to soft labeling, however the margin
is added to the loss function directly instead of applying
it to the ground truth labels.

2) L2-distance based stochastic loss: Another proposed
loss is the L2-distance based stochastic loss, which uses
an additional parameter 6. This parameter is taken from a
two-point distribution as follows:

05,ifr =k

P(X =) =
X =2) =9 05.ifr = &

; “4)

where k is the variance scaling factor of the parameter,
k € R. The expected value of the parameter is:

E[f] = z1p1 + x2(1 — p1)
— k054 (—k)- 0.5 5)
=0,

and its variance is:

V0] = pi(1 = p1) (21 — z2)?
=0.5-05-(k— (—k))?
=0.25-4k>
= k?

The expectation in this case is that the neural network
will still minimize its gradients towards the same optimum
as before, while the added variance will keep the network
from drawing over-fitted boundaries.

3) Stochastic softmax cross entropy loss: This proposed
loss function uses the same principle as the one discussed

above, but uses the softmax cross-entropy loss function
instead of the L2 distance as its basis.

(6)

V. DATASET

20 datasets were available for use in the project. Out
of those, 18 contained real captures obtained through
scans of various tank bottoms with TBIT devices, and



2 contained data captured in a testing environment using
metal plates with holes of varying depth drilled in them.
10 of the datasets were created by scans using the Standard
calibration method, while the other 10 used the Ultra
method.

The entries in the datasets were part of 2 main classes:
true calls and false calls, with 5 sub-classes for each,
representing by the metal loss percentage of the captures
(10-20%, 20-30%, 30-40%, 40-60% and 60-100% metal
loss). The distribution of the data can be seen in Figure
5. Even though false calls do not present any actual
metal loss, the detected depth is still shown for symmetry
purposes with the true calls.

As it can be seen, there is a large imbalance between the
number of captures in each class, for both the individual
datasets and for the data as a whole. In order to solve
the issue, all the datasets have been balanced using the
following scheme:

— For each dataset, the data is split into 20 sub-
categories: one for each of the two classes combined
with the metal loss percentage, taken at intervals of
10% (e.g. 10-20%, 20-30%, etc.)

— For each dataset, the number of instances from the
most populated sub-category is chosen

— All the other sub-categories from the dataset are
stochastically up-sampled to the number of instances
of the most populated one. If a sub-category contains
0 instances, then it remains O after up-sampling.

The distribution of the data after the procedure de-
scribed above can be seen in Figure 6.

VI. ROOT CAUSE ANALYSIS

This section discusses the techniques used for the first
goal of the thesis, identifying the core issues behind
the uneven performance of the baseline model over the
20 provided datasets. The first three sections deal with
misclassification analysis and present initial observations.
These findings were then discussed with operators which
resulted in additional insights. The next part of the section
deal with analysing the possibility of a suspected domain
shift present in the datasets. The last section presents
final observations and discusses how the results of these
experiments can be used in the next set of experiments.

Solving the stated issue, the large generalization error of
the classifier, requires a deeper look into the methodology
that creates the datasets that just exploring the datasets
themselves. As such, a framework that work looks into the
methodology of an entire industrial process is required.
Root cause analysis (RCA) is a risk assessment method
used in industrial process engineering for identifying the
root causes of failures or problems in a system [7] in order
to prevent further re-occurrences. The basic steps of the
method are:

« the identification of the problem,

« gathering data and evidence from previous failures,

o performing structured analysis in order to determine
the root cause,

¢ proposing solutions and making recommendations,

« implementing the proposed solutions and recommen-
dations,

« evaluating the proposed solutions.

Root Cause Analysis is the framework of choice in
this context as it requires only the data obtained from
the failure as input, and then through the analysis steps
described above, creates the following outputs:

o documentation of the gathered evidence, of the anal-
ysis of the process and of the possible hypothesis
tested,

« conclusions about the most likely causes for failure,

« implementations for possible solutions.

A. Visual Analysis

From an initial visual analysis, the following observa-
tions could be made:

— There was a significant amount of Poisson noise
present in the patches. This type of noise appears
due to the discrete nature of the magnetic fields that
were measured in order to create the patches

— The true calls presented a very high intensity peak
and a very low intensity background, which can be
explained by the normalization technique which was
used to create the patches

— If an anomaly was captured very close to the edge of
a scan, the part that was extracted when building the
patch which is outside of the scan will have very low
intensity values, while the part that is on the scan has
very high intensity

— There are occasional patches that suffer from gener-
ation glitches throughout the datasets, due to missing
readings from some of the sensors or corrupted data,
and there is a very specific type of glitch that only
appears in the calibration plates datasets, due to tests
on the equipment. Examples of such entries can be
seen in Figure 13

B. Misclassification Analysis

Misclassification analysis is an error measurement tech-
nique used in root cause analysis. It works by identifying
patterns in the misclassified instances and can reveal biases
or configuration errors in classifiers and / or data quality
issues. For this, three possible types of issues were initially
identified:

— Instance mislabeled by operator error - Type 1 error
— Instance misclassified by the classifier - Type 2 error
— Instance inconclusive due to noise - Type 3 error

For type 1, the error came from the specialist that
created the ground truth table. Human errors are always a
possibility, but the analysis is about trying to find out the
severity of the issue. The analysis of this type of error can
indicate either biases, if one type of mislabeling happens
repeatedly, data quality issues, or identification method
issues, if the labeling method is proven to create a large
number of mislabeled instances.

For type 2, there are multiple possible causes: data
quality issues, classifier bias or configuration error. These
issues can lead to two scenarios: non-differential misclassi-
fication, where the probability of error between the classes
is equal, or differential, where the probability differs
between the classes. The first one indicates the classifier
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Dataset (10, 20} TC](20, 20) 7€ |(20, 40) TC(40, 50) TC {(60, 100) TC|Total TC |(10, 20) FC (20, 30) Fcl(30, 40) Fcf(40, 60) Fcis0, 100) FC |Total FC [Total
Standard 0 0 38 12 6 4 60 0 78 25 11 2 116 176
Standard 1 0 2 4 4 13 23 0 104 103 74 22 303 326
Standard calibration plates 0 19 34 67 157 277 0 20 5 12 5 a2 319
Standard 3 0 97 34 24 36 191 0 44 25 14 6 39 280
Standard 4 0 88 33 8 7 136 0 100 53 29 2 184 320
Standard 5 0 19 14 4 1 38 0 90 95 73 27 285 323
Standard & 0 8 5 4 3 20 0 145 90 45 23 303 323
Standard 7 0 4 7 13 14 38 0 52 56 105 70 283 321
Standard 8 0 9 1 0 0 10 0 232 62 16 1 311 321
Standard 9 0 3 1 8 15 27 0 46 43 92 113 204 321
Ultra 0 1856 262 65 29 7 2219 2093 95 29 13 2 2232 4451
Ultra 1l 0 4 0 0 0 4 0 3135 1501 1898 729 7263 7267
Ultra calibration plates 625 588 530 726 1620 4089 6924 2366 1260 626 368 11544 15633
Ultra 3 675 268 105 69 138 1255 2231 630 220 250 300 3631 4386
Ultra 4 4282 473 83 28 9 4875 6028 306 66 35 23 6458 11333
Ultra 5 954 37 6 4l 2 1040 8522 1821 325 989 482 12139 13179
Ultra 6 6 2 0 0 0 8 10531 4302 1582 822 60 17297 17305
Ultra 7 1419 897 283 242 112 2953 7766 2854 1308 860 143 12931 15884
Ultra 8 3082 773 36 13 0 3904 26663 2096 413 96 10 20278 33182
Ultra g 1197 366 136 548 185 2432 4699 1439 770 159 12 7079 9511
Total 14096 3957 1389 1834 2323 23599 75457 19955 8031 6219 2400 112062 | 135661
Figure 5: The distribution of the entries in the initial 20 unbalanced datasets
Dataset (10, 20) TC |{20, 30) TC |{30, 40) TC |{40, 60) TC (50, 100) TC |Total TC (10, 20) F (20, 30) Fc |(30, 40) Fc |40, 60) FC ](60, 100) FC|Total FC |Total
Standard 0 0 79 77 154 156 466 0 73 78 156 156 468 934
Standard 1 0 104 104 209 418 835 0 104 103 202 415 824 1659
Standard calibration plates 0 40 42 81 162 325 0 40 40 79 120 279 604
Standard 3 0 97 98 194 350 779 0 99 98 193 292 682 1461
Standard 4 0 100 100 200 400 300 0 100 101 201 100 502 1302
Standard 5 0 95 94 190 95 474 0 97 95 188 380 760 1234
Standard 6 0 145 145 291 290 871 0 145 136 285 582 1148 2019
Standard 7 0 56 56 111 224 a47 0 56 56 113 220 445 892
Standard 8 0 233 232 0 0 465 0 232 233 466 232 1163 1628
Standard 9 0 47 47 93 188 375 0 48 43 95 188 380 755
Ultra 0 2082 2092 2093 4186 6279 16732 2093 2092 2091 4187 2092 12555 29287
Ultra 1 0 3135 0 0 0 3135 0 3135 3122 6286 12549 25092 28227
Ultra calibration plates 6917 6928 6919 13832 27681 62277 6924 6934 6923 13849 276594 62324 124601
Ultra 3 2241 2231 2230 4466 8925 20093 2231 2229 2233 4465 8922 20080 40173
Ultra 4 5990 6012 6031 12055 24111 54199 6028 6005 6030 12056 24110 54229 108428
Ultra 5 8528 8522 8520 17043 17044 59657 8522 8504 8521 17033 34098 76678 136335
Ultra 6 10531 10532 0 0 0 21063 10531 10560 10519 21041 31594 84245 105308
Ultra 7 7757 7790 7760 15521 31062 69890 7766 7783 7766 15529 31060 69904 139794
Ultra 8 26692 26656 26667 53327 0 133342 26663 26676 26645 53329 53327 186640 319982
Ultra 9 4696 4698 4709 9389 18792 422384 4699 4685 4703 9400 18798 42285 84569
Total 75434 79592 65924 131342 136217 488509 75457 79602 79542 159153 246929 640683 1129192

Figure 6: The distribution of the entries in the datasets after stochastic balancing

is not fit for the given problem, while the second can have
multiple explanations, all dependent on the scenario in
which they appear.

In the case of type 3, due to various issues, such
as sensor faulty calibration or problems caused by the
environment, the noise level present in the data is too
strong for the operator to clearly identify possible issues.
If so, then the classifier also cannot be expected to classify
the instance properly.

Types 1 and 3 indicate issues in the quality of the
ground truth. If such issues are present and significant in
the data, possible avenues for addressing the issue include
increasing the robustness of the classifier by modifying
its configuration or by creating simulated data that can be
used in place of the original captures. There already exists
a tool within ROSEN that can generate simulated data, but
using techniques such as Generative Adversarial Networks
(GAN) is also possible.

Since the quantity of data is large, having all entries
re-checked by an operator is unfeasible. Therefore, an
experiment was set up, where 10 random misclassified
instances were taken from each test set, for a total of 200
entries. Since the experiment uses ’leave-one-out’ k-fold
cross-validation, each test set is equivalent to one dataset,
and as such any notable differences between the batches

of misclassified may indicate a domain shift in the data.

C. Initial observations
D. Operator investigation
E. Domain shift analysis

As discussed above, one of the sources of data, the cal-
ibration plates used to test the sensors, had 6 misclassified
instances of true calls with high percentage of metal loss
in the Standard calibration and 2 in the Ultra calibration,
which constitute together 66% of all such entries. Such
behaviour from the model might indicate that a domain
shift is present in those datasets.

Domain shift is the phenomenon that appears when
the distributions of the testing and training datasets are
different. Important for the model, when cross-validation
is performed, and the issue of domain shift is present, the
cross-validation will be biased towards the domain of the
training data, which will result in a weaker performance
when the model is deployed on previous unseen data [24].

In order to confirm such an issue, PCA (principal
component analysis) [25] has been used to reduce the
data to 2 or 3 dimensions which could be plotted in
order to obtain visual confirmation of the phenomenon. In
this case, principal component analysis (PCA) was chosen



because the technique preserves the global structure of the
data, which is required here in order to properly visualize
the structural difference between the distributions of the
datasets. There were other possible techniques, such as t-
SNE or other related manifold techniques, however those
do not preserve the global structure of the data.

The PCA implementation was used on a sample of 150
entries taken randomly from each dataset. The results can
be seen in Figure 16. For 2 dimensions, the remaining
variance was 26%, and for 3 dimensions 38%, both of
which are low values, but which is to be expected when
the dimensionality reduction is drastic (from 2048 to 2
or 3 dimensions). In the figure, each color represents a
different dataset, the circles represent false calls and the
triangles represent true calls.

As it was difficult to visualize each individual dataset,
another one-vs-rest visualization was created for the cal-
ibration plates - standard settings dataset, which can be
seen in Figure 17.

As it can be seen from Figure 17, the true positive en-
tries from the calibration plates — standard settings dataset
tend to cluster at the extremes of the true positive clusters.
As discussed before, this dataset contains a large number
of entries with high metal loss, which when combined with
these visual observations shows that true calls with high
metal loss have a slightly different distribution from lower
loss calls. As such, when this dataset is removed from the
training dataset, the distribution domain for training cannot
extend to this specific type of high metal loss true calls.

Figure 20 shows the distribution of the two classes
throughout the datasets (false calls in green, true calls in
red). There are two clusters of true calls on the extreme left
and right of the distribution. As shown with the calibration
plates standard dataset above, the further away from the
origin of the plane the points are situated, the higher the
metal loss. This was to be expected, the normalization
of the signal when transformed into an image results
in stronger contrasts than usual between the intensity
values of the pixels for high metal loss true calls, as the
amplitudes of the signals in the affected area are also
higher than for lower metal loss anomalies.

F. Final observations

There is a domain shift issue present in a number of
datasets, and it is most pronounced in the calibration plates
- standard dataset. This shift can be seen from Fig. 17,
where the instances from dataset are presented in coral
pink, to other datasets, such as the ones from Fig. 18 or
Fig. 19. While the latter two datasets present a random
distribution of their instances, it is quite clear that the
calibration plates datasets has its instances concentrated at
the very edges of the distribution, which indicates some
degree of domain shift.

Another points that supports this hypothesis is the fact
that when the dataset is used as for testing in the k-
fold cross-validation, the classifier loses the ability to
properly classify true calls with high metal loss. The
calibration plates dataset contains most of the high metal
loss detections, as it can be seen in Fig. 5. In such a case, it
is expected that the model would not be able to extend its
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domain to such instances, since they are not in training set.
This is consistent with the results obtained by the baseline
model, giving further proof to the hypothesis.

Initial analysis pointed towards the metal loss being
the main reason behind the issue. However, after further
discussions with operators, the more plausible explanation
was that the difference could actually came from a differ-
ence in shape of the anomalies, as drilled holes create
a different distortion in magnetic fields than corrosion.
Such a hypothesis would be consistent with the results
of other studies which looked at defect geometries, such
as [26] [18]. Nevertheless, a more in-depth analysis should
be done in the future regarding the geometry of different
types of defects in the context of image analysis.

Another problematic issue is high intra-class variation
and low inter-class variation between the true and the false
calls in the overall distribution of the dataset, as shown
by the PCA in Figure 20. One possibility for addressing
the issue, additional pre-processing techniques could be
applied on the images in order to increase the distinction
between the classes.

There is a possible data quality issue stemming from the
fact that the sensors that measure magnetic flux leakage
can gather more information in the central section of a
scan than on the exteriors. These distortions lead to false
calls being virtually indistinguishable from true calls at
the edges of the scans. This issue does not affect true
calls in a meaningful way because the distortion would
make the instance seem to have more metal loss than
normal. As said, this does not present an issue for false
calls in a binary classification setting, but it is expected to
cause issues in a multi-class classification setting, where
the intensity of the metal loss is important.

There is also a label quality issue which comes from
the fact that different parts of the process of identify-
ing anomalies have different methodologies. Due to this,
datasets such as the ones used in this project will have
an inherent level of label noise in them. Fortunately, the
level of noise is not high enough to interfere with the
training process of the model used in the other experiments
performed in this paper.

Going into the next section, three of the identified issues
are pertinent for experiments on generalization techniques:

1) Label noise is an inherent feature of the methodology
that creates the datasets, and as such a solution to it is
out of the scope of the project. There is however the
possibility of using techniques that have integrated
mechanisms against label noise

2) High intra-class and low inter-class variance means
that feature identification and extraction need to be
given significant attention

3) Some datasets present domain shift, which is part of
the reason behind the discrepancy between the results
on the 20 datasets. Multiple methods can be used for
extending the domain space of the model, such as
data augmentation or adding new data

VII. EXPERIMENTS

This section presents the experiments performed in
this thesis and presents their results. The section first



lists the methods used in the experiments of this thesis,
then presents the theory part behind alternative methods
tested along with those presented in section IV - proposed
method. After that, the setup for the experiments and
the metrics on which the experiments are measured are
listed. Lastly, the results are presented along with a short
discussion on them. The experiments where the results
are marked with an ”X” could not be completed, but the
discussion around why they failed to yield results is still
important.

A. Exploratory analysis

The following areas have been tested in the experiments
of this paper, as described in Fig. 4:

a) Different network architectures, one with image-only
input, one with image and metadata input

b) The images coming from the MFL scans that constitute
the input, on which augmentation techniques has been
applied

c) Dataset balancing techniques applied to the datasets,
namely balancing the datasets by class, balancing them
around both class and dataset size, and lastly com-
paring them to the results obtained on the original
unbalanced datasets

d) Attention-based that have been applied to the final
convolutional layer of the network, namely GRAD-
CAM [9] and HiRes-CAM [10]. The first experiments
were performed using GRAD-CAM, in order to find
the ideal configuration for further experiments. Those
experiments were concerned with the type of occlusion
to be used and the classes to which the input should
apply. After that, experiments were performed with for
both algorithms, to find out which training schema and
which occlusion threshold bring better results

e) Stochastic regularization techniques that have been
applied to the second to last dense layer of the network
(the last one being the output layer)

f) Label smoothing, where multiple values for the soften-
ing factor were tested

g) Various loss functions, starting with the Softmax and
Sigmoid loss functions. After that, experiments were
performed with the L2 loss function, first by itself, then
followed by experiments where a margin parameter
was added to create an effect similar to label softening.
Lastly, an parameter that added extra variance to the
function was added. The same experiments were then
performed using instead the Softmax Loss function.

B. Background of exploratory analysis

1) Network architectures: An alternative to the baseline
network can be seen in Fig. 15, which only uses the images
as input. Since the network does not use metadata input,
there is no bias towards false detections at the borders of
the scans, unlike the previous architecture.

2) Class Activation Maps-based algorithms: Gradient
Weighted Class Activation Mapping, or GRAD-CAM [10],
is an alternative to HiRes-CAM, which proposes that
instead of directly multiplying the gradients of the output
with respect to the selected convolutional layer, the gra-
dients of the activation maps should instead be averaged,
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Table II: Basic data augmentation techniques

Method Description

Rotation | Rotate the image at a chosen angle o

Shifting Each pixel pf the image is moved to a new location
along an axis

Zooming | Expand the pixels from a certain part of the image

Flipping | Flip the image along an axis

which results in a single value, which is then multiplied
with the filter maps. The formula for the heatmap then
becomes
c
LYiges—can = ReLU( : Ak)~ 7

3) Dropout: An alternative to dropConnect is dropout,
which is a regularization method where a number of
neurons chosen at random in a neural network are not
considered during a particular forward or backward pass
[11]. The technique helps reduce the generalization error
of a network by reducing the possibility of co-adaptation
on training data in the layers of the network, a phenomena
in which the neurons develop excessive co-dependencies
with each other, which leads to overfitting.

4) Data augmentation:
Basic data augmentation Basic data augmentation refers
to a number of non-linear image transformation tech-
niques, which generate new images based on the original
ones. The list of techniques used in this paper can be seen
in Table II.

Linear MixUp Linear MixUp [27] is a linear data aug-
mentation technique that augments the data by combining
two images into one using the formula

z=xx; +(1—Naxj, (8)

where x; and x; are the raw input vectors and A is a
value sampled from a Beta(a, «) distribution, with o =
1.

The label of the new image is

¥=yi + (1= Ny;. €))

Overall, the technique is expected to counteract the
memorization problem of neural networks by providing
convex inputs and labels, which encourages robustness for
the network.

5) Loss functions: Table III presents all the loss func-
tions used in experiments in this thesis.

Softmax cross entropy loss The cross entropy is a met-
ric which measures the difference between the probability
distribution predicted by a machine learning model and the
actual distribution of the data. The loss function associated
with it tries to optimize the model such that the value of
the metric gets close to a given margin m, which is usually
0, which means that the 2 probability distributions are
identical. In front of the cross entropy loss is the softmax
activation function, which calculates the probability of
each target class over all the possible classes, which means
that all the probabilities will be shifted to the range [0,
1], and the sum of all probabilities will be equal to 1.
The two functions are used together, first the outputs of



Table III: Proposed loss functions and their formulas
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Loss function

Formula

Softmax Cross Entropy Loss

T @

L(y, P(ylz)) = SAECK
J

corresponding to the classes y and j

—logP(y|z), where P(ylz) = fy(x) and f;(x) are the outputs

Sigmoid Cross Entropy Loss

—log(o(si)), if y =1,
L(y, P =
W PO =\ Liog(1 — o(s0)). ify # 1
corresponding to the given class

, where o(s;) = and ¢ is the output

1
14+e—f(@)°

L2 Loss

L(y,9) = \/(outputzl — labelz1)? + (outputzo — label;2)?, where x1 and z2 are the two dimen-
sions of the one-hot encoded label, y is the actual label, and g is the probability prediction of of the
model

Margin-Based L2 Loss

L(y,9) = (d — m)2, where d is the L2 distance as described above, and m is the margin parameter

Stochastic L2 Loss

L(y,9) = (d — m + 6)2, where d is the L2 distance as described above, m is the margin parameter,
and 0 is taken from a Bernoulli distribution with Pr(X =1) = % and then multiplied by a factor of k

Stochastic Softmax Cross Entropy
Loss

L(y, P(y|z)) = (—=logP(y|z) —m+0)Z, where P(y|z) is the same as described for the Softmax Cross
Entropy, m is the margin and 6 is taken from a two-point distribution with Pr(X = k) = %, where k

is the variance scaling factor, with £ € R

Batch Stochastic Softmax Cross

L(y, P(ylo)) = (v
Entropy Loss

f\fil —logP(y;|x)) —m + 0)?, the same method as for the Stochastic Softmax
Cross Entropy Loss, but the m and 6 parameters are added at the batch level, instead of for every sample

the model are normalized via the softmax, then the loss
function helps optimize the model.

Sigmoid cross entropy loss In the case of binary
classification, an alternative to the softmax function is the
sigmoid activation function, which also normalizes the
outputs of the network to the [0, 1] range, but uses a
different method for doing so, as it can be seen in Table
111

L2-distance loss function The L2-loss function, also
known as the squared error loss function is the squared
difference between the prediction output of a network
and the actual label of the data. The function provides
an alternative way of calculating the error rate of classi-
fication. Instead of using probabilities like the previous
loss functions, this function uses the squared distance
between the output of the network and the label of the
given instance.

L2 —loss = (yactual - ypredicted)2 (10)

The function is widely used in various machine learning
tasks due to its sensitivity to outliers. This can also be a
disadvantage however, as the resulting predictions of the
function will be heavily skewed by outliers due to the
squaring factor.

When averaged over a batch, the function is called the
Mean Squared Error function, where:

n

1
MSE = E Z(yactual - ypTediCted)Q

i=1

(1)

C. Validation metrics

1) Accuracy: The accuracy is the metric that measures
the percentage of correct predictions of a model among
all the entries. Its formula is

TP+TN

;o (12
TP+FP+TN+FN

Accuracy =

where T'P is the true positive rate, TN is the true
negative rate, F'P is the false positive rate, and F'N is
the false negative rate.

2) ROC-AUC curve: The Area under the Receiver
Operating Characteristic curve (ROC-AUC) is a measure
that shows how good a model is at distinguishing between
classes by showing the relationship between the TPR and
the FPR. By its definition, the larger the area under the
curve, the better the results.

3) False positive rate at k recall (FPR-k TPR): The
false positive rate at k true positive rate (also known as
the false positive rate at k recall) is the probability that
a negative (out-of-distribution) example is misclassified
as positive (in-distribution) when the true positive rate is
k. In this paper, the threshold k=95% is used in all the
experiments, which means a high degree of sensitivity is
expected from any model being tested.

D. Experimental setup

The experiments described in this thesis were all im-
plemented using Python 3.8 and Tensorflow 2.6, and were
performed using a machine running Linux, with 64GB
RAM and accelerated using a NVIDIA RTX 3090, with
26GB VRAM.

Training was performed using batches of 128 entries.
A variant of early stopping was implemented by testing
the model on the validation dataset every 1000 batches. If
the performance of the model was better than the current
best, the model would be saved to an external file. Due
to the fact that data balancing techniques were used, the
number of epochs was kept low, at 3 epochs per training
fold. For each fold, the training would be done in 3 runs,
each one with a different random initialization. At the end
of the training phase, meaning at the end of all the training
epochs for all runs for each cross-validation fold, the best
performing model would be restored and tested on the test
dataset. This way, if the model were to overfit and lose
performance, the over-fitting would not affect the final
result. Thus, the results shown in the tables of Section
VI show the results obtained using the best parameter
configuration on the validation dataset over 3 runs, and
then evaluated on the test dataset.

For all experiments the hyper-parameters of the network
were kept the same, with any changes being mentioned
in the results section. The architecture of the network on
which all the experiments were conducted, except those



on alternative architectures, can be seen in Figure 14. All
the weights of the network are randomly initialized. All
the dense layers of the network use the ReLU activation
function, except for the last one, which uses the Softmax
activation function. The network learns using stochastic
gradient descent, with a learning rate 0.005 and no decay.
The usual number of training epochs is 3 per fold. Beta
regularization is applied by default to all weights after
a training step. Dropout/DropConnect is set to 0 for all
experiments, except for those on stochastic regularization.
All the experiments used the Softmax loss function except
for the ones on loss functions.

VIII. RESULTS
A. Network Architecture

The two architectures described before were tested on
the same setup, the results can be seen in Table IV. Even
though the image-only input network has a slightly better
results regarding false positives, as it can be seen from the
AUC-ROC, the accuracy and the FPR at 95% TPR results
are significantly worse than the two-input architecture.

Table IV: Comparison between results of architectures, no
changes from the experimental setup presented in section
Vil

Architecture FPR at 95% TPR  AUC-ROC Acc.
Image-input only 44 .47 89.57 77.42
Image -+ meta- 39.54 8935  78.62
data input

B. Dataset balancing techniques

In order to understand the effect balancing techniques
had on the training of the model, three experiments were
performed. In the first one the baselines model, as seen in
Figure 14 was trained on the original datasets, as seen in
Figure 5. In this experiment, since the entries do not repeat
in any way, a higher number of epochs was required

In the second one, the same model was trained on the
stochastically balanced datasets, the ones seen in Figure
6, in order to see if balancing between classes could help
the model.

In the third one, the balancing was first done as in the
previous experiment, and then the datasets were stochais-
tically balanced again, this time with respect to their
number of instances. As the difference between the sizes of
different datasets is significant, this experiment was done
in order to check whether the model could suffer from
overfitting to the datasets with larger numbers of instances.

In all the other experiments presented in this thesis,
the model was trained on the dataset which was balanced
around the two classes, and the result obtained from this
experiment when using only the two-input architecture
presented in Figure 14 serves as the baseline result.

The results of the experiments on balancing techniques
can be found in Table V. The best results were achieved
in the experiment where the balancing was done only
around the two classes. In the case of the unbalanced
datasets, as expected the imbalance between the two
classes affected the performance of the model, as the
accuracy had marginally lower results, but the AUROC
suffered significantly more.
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Table V: Comparison between dataset balancing tech-
niques, the experiment on unbalanced data uses 25 epochs
of training instead of the standard 3, for the other tech-
niques there are no changes from the experimental setup
presented in section VII

Technique FPR at 95% TPR  AUC-ROC  Acc.
Unbalanced datasets 48.46 82.77 77.60
Balanced classes 39.54 89.35 78.62
Balanceq classes and 4401 86.54 78.36
dataset sizes

C. Data augmentation

Three experiments were performed using data augmen-
tation, each using a different set of techniques. The first
one used the techniques used in Table II, the second one
uses all the non-linear techniques from Table VI together,
and the third one uses only linear mixup. The results of the
three experiments can be seen in Figure VI. The strongest
results were obtained by the techniques presented by [22],
however, none of the presented techniques improved over
the provided baseline configuration.

Table VI: Data Augmentation Techniques, no changes
from the experimental setup presented in section VII

Technique FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
Classical 41.27 88.12 77.56
Mixed-Element 40.57 88.53 77.15
Linear Mixup 44.95 87.99 77.28

D. Stochastic Regularization

For both techniques, three experiments were performed,
with 20%, 30% and 40% of the weights/neurons being
dropped. The results can be seen in Table VII.

Between the two techniques, the difference was notable.
The experiments that used DropConnect were more suc-
cessful than the baseline, while the results for dropout
were significantly lower on all metrics. Additionally, in
the case of dropout, values higher than 20% caused the
network does not train to be unable to reach convergence.

Table VII: Stochastic Regularization, in this set of exper-
iments the Dropout/DropConnect layer is activated and
given the values seen in the table

Technique FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
Dropout - 20% 48.82 86.57 77.81
Dropout - 30% X X X
DropConnect - 20% 40.10 89.58 78.70
DropConnect - 30% 39.90 89.44 79.13
DropConnect - 40% 42.28 89.98 77.71

E. Soft labeling

Soft labeling was used in multiple experiments with
different values for the softening factor in the range 0.2
to 0.4 in order to find the optimal value. The results can
be seen in Table VIII. In all the experiments involving
soft-labeling, the accuracy increased significantly when
compared to the baseline, but the AUC-ROC decreased,
which indicates that soft labeling improved the overall



model, but the number of false positives increased, which
in this case meant more false calls identified as true calls.

Table VIII: Table of results for soft labeling, no changes
from the experimental setup presented in section VII

Softening factor ~ FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
0.2 41.34 88.22 79.59

0.3 41.35 88.05 79.13

0.4 37.97 88.67 79.21

FE. Attention-based algorithms

1) Occlusion types: Multiple experiments were per-
formed in order to determine the optimal way to occlude
the high attention areas. All the experiments performed for
this purpose used Algorithm 1 and an occlusion threshold
of 0.8. Three values were chosen: -1, 0 and 1. The results
for these experiments can be seen in Table IX. However,
none of the values proved to improve on the baseline.

Table IX: Types of occlusion in GRAD-CAM (6 = 0.8),
algorithm 1 integrated in the last convolutional layer of
the network, a learning rate of 0.0025 was used, training
used 5 epochs per cross-validation fold

Technique FPR at 95% TPR  AUC-ROC  Acc.
Baseline 39.54 89.35 78.62

-1 occlusion 4433 82.77 77.07
1 occlusion 57.11 78.52 74.03
0 occlusion 60.39 74.97 71.04
GN occlusion 40.61 89.55 79.44

The solution for this issue was to have an occlusion
mechanism that takes values from a Gaussian distribution
with the mean and standard deviation equal with that of the
pixel value distribution of the image to be occluded. The
experiment which used this type of occlusion mask had a
higher accuracy and a lower FPR at 95% recall compared
to the baseline, but had a weaker result on the AUC-ROC
metric. Nevertheless, this type of occlusion was chosen
for usage in all the other experiments regarding attention-
based algorithms.

All the experiments in this subsection used training
algorithm 1, and an occlusion threshold of 0.8.

2) Training algorithms: Another question besides the
problem of the type of occlusion was whether the network
would benefit more from training on the entire batch, or on
just one of the classes. The results of the three experiments
can be seen in Table X. The best results were achieved
when only the false calls were augmented. In the other two
experiments, the network could not reach convergence,
therefore the results are weaker than the baseline.

Table X: Classes used in occlusion, GRAD-CAM - algo-
rithm 1 integrated in the last convolutional layer of the
network, a learning rate of 0.0025 was used, training used
5 epochs per cross-validation fold

Technique FPR at 95% TPR  AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
False calls only 40.61 89.55 79.44
True calls only 47.09 83.70 77.71
Both classes 4433 82.77 77.07
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After the optimal occlusion pattern and training schema
were found, the two attention-based algorithms, GRAD-
CAM [9] and HiRes-CAM [10], were tested using the two
proposed training algorithms: 1 and 2. For this, values for
the occlusion threshold ranging from 0.7 to 0.85 were used
with both GRAD-CAM and HiRes-CAM. The results for
Algorithm 1 and GRAD-CAM can be seen in Table XII,
while the results for HiRes-CAM can be seen in Table XI.
The results results for Algorithm 2 and GRAD-CAM can
be seen in Table XIII, while the results for HiRes-CAM
can be seen in Table XIV.

Table XI: HiRes-CAM - Thresholds # for false positives
only, algorithm 1 integrated in the last convolutional layer
of the network, a learning rate of 0.0025 was used, training
used 5 epochs per cross-validation fold

Technique  FPR at 95% TPR  AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
0=07 38.89 88.95 78.81
0 =0.75 37.36 88.93 79.12
0=038 36.00 89.35 79.52
0 =0.85 37.67 89.00 78.32

Table XII: GRAD-CAM - Thresholds @ for false positives
only, algorithm 1 integrated in the last convolutional layer
of the network, a learning rate of 0.0025 was used, training
used 5 epochs per cross-validation fold

Technique ~ FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
0 =07 40.06 87.94 77.80
0 =0.75 40.57 88.45 79.20
0 =08 40.61 89.55 79.44
0 =0.85 41.40 88.37 78.04

Using the training algorithm 1 with HiRes-CAM, the
optimum value was at an occlusion threshold of 0.8, where
all the metrics were higher or equal to the baseline. Also,
in this case, all the values had a better FPR at 95%
recall and almost all of the had a better accuracy than
the baseline.

The same training algorithm combined with GRAD-
CAM offered overall worse results, but still above the
baseline. Again, the occlusion threshold of 0.8 had the
best results.

Table XIII: Results for GRAD-CAM applied only on
misclassified false positives, algorithm 2 integrated in the
last convolutional layer of the network, a learning rate
of 0.0025 was used, training used 5 epochs per cross-
validation fold

Technique  FPR at 95% TPR  AUC-ROC  Accuracy
Baseline 39.54 89.35 78.62
0=0.7 39.68 89.76 78.42
0 =0.75 35.15 90.92 78.42
0 =08 34.48 90.76 79.56
0 =0.85 40.78 89.70 79.19

Training algorithm 2 had a similar pattern of results,
with the optimum occlusion threshold again at 0.8, for
both GRAD-CAM and HiRes-CAM, and with the latter
outperforming the first one.

The algorithm 2 outperformed algorithm 1 by a sig-
nificant margin on all metrics. Additionally, HiRes-CAM



Table XIV: Results for HiRes-CAM applied only on
misclassified false positives, algorithm 2 integrated in the
last convolutional layer of the network, a learning rate
of 0.0025 was used, training used 5 epochs per cross-
validation fold

Technique  FPR at 95% TPR ~ AUC-ROC  Accuracy
Baseline 39.54 89.35 78.62
0 =07 38.31 90.28 80.26
0 =0.75 36.90 89.87 79.45
0=038 32.37 91.57 79.76
0 =0.85 36.50 90.21 80.62
Stoch. 6 37.33 89.75 79.57

and an occlusion threshold of 0.8 obtained the best result
out of all the experiments on the with a result of 32.37%
FPR-95% TPR and an AUROC of 91.57%. The same
experiment configuration, but with a threshold of 0.85 had
the highest registered accuracy out of all the experiments
at 80.62%.

G. Loss functions

The first two experiments on loss functions were per-
formed using the softmax and the sigmoid cross entropy
loss functions. The results can be seen in Table XV. Here,
the softmax cross entropy had better results on all metrics,
due to the fact that the softmax function assumes mutual
exclusivity between the probabilities of the outputs of the
network, which is the case in this project.

Table XV: Table of results for the Sigmoid loss function,
no changes from the experimental setup presented in
section VII

Margin m  FPR at 95% TPR  AUC-ROC  Acc.
Softmax 39.54 89.35 78.62
Sigmoid 41.10 89.22 78.25

After that, an experiment was performed using the L2
loss function. The result can be seen in Table XVI. For the
margin added L2-loss function, multiple experiments were
conducted in order to find the best optimum value for the
margin value m, ranging from 0.1 to 0.5, which can be
seen in Table XVII. Looking at the FPR-95% recall, all
the chosen values improved the model, with an optimum
value at 0.25. Looking at the AUC-ROC, the best result
was achieved at a margin of 0.1, which was also the only
one to have a higher value than the baseline. Regarding the
accuracy, all the tested values had better results than the
baseline. Overall, notably, there is a clear drop in results
for margin values over 0.3 in all metrics, which indicates
that if the margin is too large, the network will not be able
to train properly.

Table XVI: Table of results for the L2 loss function, no
changes from the experimental setup presented in section
vl

Margin m  FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
L2 55.23 84.74 78.38

The most promising margin values were chosen from
the previous set of experiments were tested using the
stochastic L2-loss function. The value 0 was chosen to see
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Table XVII: Table of results for the values of the margin
added to the L2 loss function, no changes from the
experimental setup presented in section VII

Margin m  FPR at 95% TPR  AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
0.1 36.86 89.52 79.61
0.2 35.08 88.39 79.49
0.25 33.71 88.88 79.40
0.3 36.80 88.96 79.61
0.4 37.73 87.17 78.77
0.5 37.37 87.75 78.98

FPR-95% TPR for the margin-added L2 loss function
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Figure 7: FPR-95% TPR for the values given to the margin
added to the L2 loss function presenting the trend towards
the optimum value of 0.2

the effect of using the added variance without interference
from the added margin. The 0.1 had the highest accuracy
and AUC-ROC value, and the 0.25 had the lowest FPR at
95% recall, while the 0.5 was chosen just as a large value
comparison. Each of the values was tested with an added
variance of 0.25 and 0.5. The results can be seen in table
XVIIL

Table XVIII: Table of results for the combinations of
margin and variance values added to the L2 loss function,
no changes from the experimental setup presented in
section VII

Margin m  Variance &  FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline - 39.54 89.35 78.62
0 + 0.25 46.96 87.37 79.09
0 £+ 0.5 41.23 88.34 78.00
0 + 1 X X X
0.1 + 0.25 43.60 87.58 78.14
0.1 + 0.5 42.64 86.99 79.26
0.1 +1 X X X
0.25 + 0.25 38.72 87.42 77.87
0.25 + 0.5 36.10 89.10 79.33
0.25 + 1 X X X
0.5 + 0.25 41.40 88.73 78.04
0.5 + 0.5 42.68 87.41 78.01
0.5 + 1 X X X

Unfortunately, the added variance did not improve any
of the previously obtained results. All of the results were
overall worse than the baseline, with the exception of the
results obtained at an added margin of 0.25. The results,
however, were weaker than those with just the margin.

The experiments done on the L2-loss based function



FPR-95% TPR for the margin-added L2 loss function
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Figure 8: FPR-95% TPR for the margin values added to
the Softmax Loss function presenting the trend towards
the optimum value of 0.25

were repeated using the Softmax function, with the results
shown in Table XIX. Overall, the behaviour of the network
was similar to the previous experiments. There is an
optimum point for the the margin at 0.2 when looking at
the FPR at 95% recall metric and the AUC-ROC, and the
values of the margins follow a curve on this metric. The
accuracy also followed a similar pattern, with the highest
value at a margin of 0.4, although the margin of 0.3 had
a similar result as well.

Table XIX: Table of results for the margin values added
to the Softmax Loss function, no changes from the exper-
imental setup presented in section VII

Margin m  FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
0.1 40.45 89.27 77.88
0.15 37.14 89.43 78.62
0.2 34.40 90.03 78.69
0.25 35.74 88.90 78.84
0.3 36.01 89.25 79.00
0.4 37.89 89.15 79.01
0.5 39.26 88.36 77.71

Table XX: Table of results for the combinations of margin
and variance values added to the Softmax loss function, no
changes from the experimental setup presented in section
viI

Margin m  Variance § FPR at 95% TPR ~ AUC-ROC  Acc.
Baseline - 39.54 89.35 78.62
0 + 0.25 35.18 90.29 78.95
0 + 0.5 39.17 89.44 77.88
0 +1 X X X
0.1 + 0.25 41.48 88.94 77.22
0.1 + 0.5 41.35 88.04 80.05
0.1 +1 X X X
0.2 + 0.25 36.68 89.46 78.59
0.2 + 0.5 39.46 89.78 79.63
0.2 +1 X X X
0.25 + 0.25 39.06 89.31 78.71
0.25 + 0.5 36.31 89.78 79.34
0.25 +1 X X X
0.5 + 0.25 39.71 88.44 78.36
0.5 + 0.5 41.29 88.35 77.30
0.5 + 1 X X X
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When the additional variance is added to the Softmax
loss function, the results improved overall regarding the
accuracy but decreased on the FPR at 95% TPR, with
one notable exception. At a margin of 0 and variance of
0.25, the model had the highest AUC-ROC result out of all
the tested loss function configurations, along with better
results on all the metrics when compared to the baseline.
Overall, in this case, the addition of the § parameter seems
to benefit the network, but the difference is not significant.

Table XXI: Table of results for the combination of margin
and variance values added batch stochastic Softmax cross
entropy loss function, no changes from the experimental
setup presented in section VII

Margin m  Variance §  FPR at 95% TPR ~ AUC-ROC  Acc.

Baseline - 39.54 89.35 78.62
0.15 0 43.88 88.76 78.30
0.20 0 40.39 89.51 78.62
0.25 0 46.07 87.99 76.77
0.15 0.15 X X X
0.20 0.15 X X X
0.25 0.15 X X X

The last loss function that was tested was the batch
stochastic Softmax loss function. The results for this
function can be seen in Table XXI. Again, a value of
0.2 for the margin had a positive effect on the network.
Only three values are present in table, as the other values
would cause the network to crash during training. As the
margin and the variance would be added at the batch level,
instead of individually, values for the margin larger than
0.2 destabilized the network. Also, any value used for 6
other than O had the same effect.

H. Combined Approaches

The three most successful approaches overall were the
use of attention-based algorithms, the loss functions and
the dropConnect stochastic regularization. The final round
of experiments focused on combining the approaches in
order to see if further improvements were possible.

The first round focused on combining HiRes-CAM /
GRAD-CAM with the proposed loss functions. Unfortu-
nately, the two approaches could not be combined, as using
them together would cause the code of the network to
crash during training, due the values of the loss function
causing overflow.

The second round tried to combine HiRes-CAM /
GRAD-CAM with DropConnect. For this, the same pa-
rameters were chosen as the most successful experiment
on attention-based algorithms, and multiple values for
DropConnect were used. The results can be seen in Table
XXII. Unfortunately, the combinations did not improve the
results obtained by the individual experiments.

Table XXII: Table of results for HiRes-CAM with an oc-
clusion threshold of 0.8 and using Algorithm 2 combined
with DropConnect, learning rate 0.25

Technique FPR at 95% TPR  AUC-ROC  Acc.
Baseline 39.54 89.35 78.62
DropConnect - 20% 38.10 90.45 78.88
DropConnect - 30% 37.19 89.73 79.17
DropConnect - 40% 35.18 90.29 78.95




IX. DISCUSSION

This section is dedicated to discussing observations
made during or after performing the experiments described
in the previous section, for some of the methods which
required a more detailed discussion.

A. Data Augmentation

All the tested methods had worse results than the
baseline. This result is due to the fact that the domains of
the augmented data and the original data occupy different
areas in the domain space, with the issue mostly relating
to the physical properties of magnetic flux leakage.

The issue with data augmentation in the context of MFL
captures come from the the fact that it is not possible to
obtain real captures that have the same properties as the
augmented samples. Rotating an anomaly by « degrees
will not result in a capture that is also rotated by o degrees.
Instead, the rotation will cause the magnetic fields to flow
in a different manner around the anomaly, which will
modify the way the information is received in the PHH
and PVH channels, and thus create a completely different
image from the initial capture. Flipping also suffers from
the same type of issue, as an image flipped along one
of its axes would only be possible if the direction of
the magnetic field was inverted compared to the original
direction used by the measurement tool.

Shifting suffers from a different issue than the other
techniques. It is most useful when the areas of importance
are in different locations in the images in the dataset.
However, in this project, the detection algorithm used
before the classification algorithm creates bounding boxes
which centre around the possible anomalies, thus the
important areas will be approximately in the same area
most of the time.

Augmentation using the non-linear mixed-element tech-
niques described in Table VI had a marginally better result
on the AUC-ROC and on the FPR - 95% recall, but had
an overall lower accuracy. While the results indicate better
generalization than classical augmentation, the augmented
data domain the techniques create is still too different from
domain of the original images to improve generalization,
and thus the results are worse than the baseline.

B. Stochastic Regularization

For all the values chosen for DropConnect, the AUROC
results were higher than the baseline, which showed a
decrease in the number of false positives, translating
directly to a decrease in the number of misclassified
true calls. Regarding the accuracy, the results were again
as expected. At 20% and 30% weight drop values, the
technique increased the accuracy, while the higher values
started decreasing it, due to the network losing too many
weights to be able to learn enough features.

Overall, DropConnect proved to only be partly success-
ful. The results indicate that when the technique is used,
the AUROC values improve, while the accuracy suffers,
which means that the model becomes better at correctly
predicting true calls while losing on the ability to correctly
predict for false calls when DropConnect is used. This is
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Figure 9: Accuracy on training batches for an entire run
(augmented batches in red, non-augmented batches in
blue, the yellow line represents the mean of the altered
patches, the green line represents the mean of the unaltered
patches)

consistent with the other findings of the paper, as false
calls present a high degree of intra-class variation, and
with less learning parameters the model leads to the model
predicting more instances to be true calls.

Dropout proved to be rigid of a technique for the
network. Even at the lower end value of 20% neuron
dropout, the model already decreased significantly in its
performance, and at over 30% the network did not con-
verge.

C. Class Activation Maps-based Algorithms

1) Occlusion types: All the experiments that used a
set value during the occlusion steps had weaker results
than the baseline. The issue with using fixed values when
occluding an image is that they alter the distribution of
the original images. This causes overfitting to the altered
patches, which in turn causes the accuracy of the model on
the normal patches during the training phase to decrease.
This behaviour can be seen in Fig. 9, where the average
accuracy on the GRAD-CAM augmented batches is higher
than the average accuracy on the non-augmented batches.

2) Visual Analysis of CAM algorithms: After looking
through a number of augmented patches, some of which
can be seen in Figure 21, the conclusions were as follows:

— Most patches containing true calls only have one im-
portant element in the capture. Occluding the element
as the network finds it important leaves nothing but
noise inside the image, which will not lead to correct
predictions

— False calls can have a multitude of reasons for being
detected: they can be true calls which were disabled
for various reasons or they are noise picked up
by the MFL sensors, in which case attention-based
occlusion will most probably help, or they can be
benign features such as metal plate welds, in which
case attention-based occlusion might not be the ideal
solution

— Opverall, problematic areas for network in the case
of false calls can be corrected, but attention-based
occlusion is not a good answer for problematic areas
in true calls, as they risk leaving nothing but noise in
the image



3) Training instability: An interesting behaviour hap-
pened while experimenting with Algorithm 2. While the
performance of the model increased when that training
algorithm was used, the model became unstable, as a
number of runs would not result in convergence for the
network. An example of such behaviour can be seen in
Figure 10.

A possible explanation for the phenomenon had to do
with the domain spaces of the augmented patches. Since
the occluded patches are part of a different domain than the
original domain, the network tries to draw a class boundary
that separates the classes by looking at both domains at
the same time. If the domains of the two types of patches
differ too much, the resulting total domain could be too
far from the domain of the original patches, which would
cause the algorithm to treat the original patches as outliers,
and cause over-fitting towards the modified patches. Such
a behaviour would be in line with the fact that in the runs
where the network did not achieve convergence, the loss
values for the unmodified training batches are consistently
high, which indicates that the network might be over-fitting
to the augmented patches.

Another argument towards the over-fitting theory is that,
as it can be seen from Figure 10, the behaviour of the
runs is the same for the first few hundred batches, after
which it diverges. This indicates that while the gradient
descent is performed in the same manner throughout all
the runs, different initializations can cause the model to
over-fit towards the augmented patches. In such case, it
would mean that further experimentation with initialization
techniques would be a possibility for solving the issue.

4) Fixed vs stochastic occlusion threshold: A separate
issue was whether a fixed occlusion threshold would be
the best choice for the model. As the results showed, the
results keep improving until reaching the optimum occlu-
sion threshold of 0.8. Such behaviour can be explained as
follows: in theory, if the threshold is too low, such a large
part of the images would be occluded that the resulting
domain of the augmentations would be too different from
the original domain to help the model generalize better. If
the threshold is too high however, the two domain would
simply overlap, which would again not help the model.
However, between the two there should be an optimum
point where the domain of the augmented and the original
patches overlap each other in a way that would be useful
for the model. The idea is then that a stochastic occlusion
threshold, where each batch would have its misclassified
instances occluded with a different threshold between 0.7
and 0.9, the resulting domain would occupy as much space
as possible, and help the model generalize better. As such,
an experiment using HiRes-CAM, training algorithm 2 and
a stochastic occlusion threshold was set up. The result of
this experiment can be seen in Table XIV. The idea proved
unsuccessful however, as the result was overall worse than
the experiments which used a fixed threshold.

D. Loss functions

1) L2-loss: The L2 loss had the weaker results than the
baseline for all metrics, as it can be seen in Table XVI. As
discussed before, the function works best when presented
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with infrequent large outliers. The poor performance in-
dicates two possible causes: either the datasets contain
a large number of frequent large outliers, or frequent
small errors are present. This, combined with the analysis
from the earlier experiments on domain shift shows that
the dataset contained a large number of small outliers.
This could also be seen through the difference created by
adding even a small margin of 0.1, which was impressive,
as even such a small margin lead to a decrease of almost
20% in the FPR-95% TPR rate. Even though the other
metrics did not improve significantly, the FPR-95% TPR
is a very sensitive metric, and its improvement shows that
there is a large number of small outliers present in the
dataset.

2) Added variance parameter : When discussing the 0
parameter, a specific pattern emerged. When experiments
using the 6 parameter with the values -1, 1 were done,
the network could no longer train properly, as the values
computed by the loss function would spiral out of control
during training. If the error on a given batch was already
high, probably due to outliers, the added variance would
cause the network to adjust the gradient descent by a lot in
a single training step, which would cause the next batch to
seem full of outliers. As such, the next batch would cause
the network to adjust even more, and within a few steps
the loss would reach values out of the storage capacity
of the variable (in this case, 23!). Therefore, the added
variance through the 6 parameter can only be as large as
the maximum difference between the output of the network
and the label, which in this case is 1.

X. CONCLUSIONS

The nature of the images used in this project created
a number of unique challenges. The fact that the captures
usually contain only a single feature meant that modifying
the attention mechanism of the network via occlusion
was only possible in certain cases, otherwise the image
would only consist of noise. Another issue was the fact
that the capture process would make most types of data
augmentation create images which would be impossible to
reproduce in a real setting. In conclusion, even though the
signals coming from MFL sensors can be used as images,
doing so creates images with a very specific topology and
set of features.

Three of the issues identified through root cause analysis
affected the generalization performance of the algorithm:
the presence of label noise, high intra-class and low inter-
class variance and lastly, domain data shift for some
datasets. In this case, attention-based algorithms helped
alleviate this issue by occluding the main features of the
images which were mislabelled. The same approach also
partially helped with the variance issue, although a larger
part of the work was dedicated to solving the issue by
using the proposed loss functions.

Overall, multiple approaches wielded positive results
in terms of improving the generalization of the network.
Attention-based algorithms proved the most effective,
where a network using the algorithm 2 and HiRes-CAM,
along with an occlusion threshold of 0.8 had an accuracy
of 79.76, and an AUROC of 91.57, while the same



20

00 woi00 15350 20008 25000
dex

Figure 10: Loss values for training batches over five runs when Algorithm 2 was used. Runs 1 and 5 resulted in the
model training successfully, runs 2, 3 and 4 resulted in the model not training properly, with the loss function not

being able to optimize the weights during the process

algorithm configuration which used a threshold of 0.85
had the highest registered accuracy at 80.62.

The use of the novelty loss functions also yielded
positive results, when compared to their already-existent
counterparts. Adding a softening margin to the Softmax
cross entropy and to the L2-loss function improved the
results of the model on the accuracy and FPR-95% recall,
although a constant decrease could be seen on the AUROC
metric. Overall, an amount of softening around 0.2 to
0.25 offered the best results on the FPR-95% recall, while
a softening factor of 0.3 offered the highest accuracy
for both types of loss functions. Unfortunately, adding
variance via the 6 parameter to the loss functions worsened
the results on all metrics.

Unfortunately, while the presented approaches obtained
positive results, combining the more successful ones did
not yield compounded improvements. Some of the ap-
proaches interfered with each other, which resulted in
worse overall results, while others caused problems during
the training phase, which made obtaining results not
possible.

In the end, ROSEN decided to adopt the above-
mentioned HiRes-CAM configuration into its project.
Some examples of patches that were misclassified by the
initial entry, but were correctly classified by the chosen
HiRes-CAM augmented model can be seen in Figure 22.
The most common types of improvements came from two
types of patches: entries generated by sensors with high
levels of noise and entries which were mislabeled by the
operators, as described in the experiment on mislabeling.

XI. FUTURE WORK

The attention-based algorithm 2 proposed in this paper
obtained the best results on all metrics for the experiments
in this paper. There are however issues that still need to be
solved regarding the algorithm. The most important issue
is the initialization of the weights of the network. All the
experiments using the algorithm used random initialization
for the weights of the model. This resulted in the network
not reaching convergence in 3 out of 5 runs on average for
every fold. As such, future experiments should focus on
the initialization techniques for the deep neural networks,
such as He or Xavier normalization.

Not enough attention could be given to how combina-
tions of the presented approaches could work together and
whether they could improve the model further. Although
combinations of the proposed loss functions and attention-
based algorithms and combinations of stochastic regres-
sion and attention-based algorithms were tested, none of
them proved successful in improving over their results
when taken individually, with the former combination
causing the network to crash during training. However,
with the large number of possible combinations of configu-
rations, there is potential in increasing the results obtained
in this paper.
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Figure 11: Examples of entries which are false positives - called "false calls” within the context of the project - of the
detection algorithm

Figure 12: Examples of entries which are true positives - called "true calls” within the context of the project - of the
detection algorithm

Figure 13: Examples of anomalous entries present due to various sensor issues
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Figure 14: The baseline architecture of the neural network utilized in this project
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Figure 15: The alternative architecture proposed for the neural network utilized in this project
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Figure 21: Examples of patches augmented using GRAD-CAM, the first one shows a false positive being modified,
the second one shows a true positive being modified
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Figure 22: Examples of entries which were mislabelled by the baseline model, but were correctly classified by the

improved model
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