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Area-Optimized RISC-V-Based Control System for
22nm FDSOI Analog and Mixed-Signal Test Chips

Timon Kruiper, Computer Architecture for Embedded System, University of Twente, Enschede

Abstract—This paper presents the work on a RISC-V
control system labeled UTRISCY. This design is an area-
optimized, modular and reusable system designed for on-
chip control to accelerate the testing by the ICD group
on analog and mixed-signal CMOS designs. The system
consists of several building blocks that communicate using
standard bus interfaces, and can be configured to use one
or two memory components depending on the performance
needs. A comprehensive search for open-source RISC-V
cores has been done, and the open-source SCR1 core is
shown to be the most suitable for use in this system.
A standard JTAG interface allows a debug probe con-
nected to a host PC to program the memories of the
UTRISCY control system, while also providing general
communication capabilities. A voltage-controlled oscillator,
the calibration of which is performed by UTRISCY, has
been used as a typical use case. To verify the system, a
comprehensive verification setup is provided that simu-
lates the complete system, including the emulation of a
connected debug probe using the OpenOCD debugger.
Finally, the several components of the UTRISCY control
system have been synthesized and placed-and-routed for
the Globalfoundries’ 22nm FDSOI technology (22FDX®),
which results in an area usage of 57283 µm2 including
six bondpads, and two 4KB memories, with a maximum
operating frequency of 156MHZ at 0.8V. It has been shown
that this area can be reduced to 36710 µm2 by using the
smallest configuration of the SCR1 core and only including
a single 2KB memory.

I. INTRODUCTION

Today’s process nodes are becoming smaller and
smaller. This is beneficial for digital designs, since it
allows for more transistors to be placed on the same
die area. However, traditional analog/RF designs often
do not benefit from this scaling, and the designs may
even get worse due to the reduced supply headroom [1].
Besides that, smaller process nodes also make it harder
to match two or more transistors to, for example, get
equal bias currents, because the smaller manufacturing
processes causes on-chip variations to increase [2]. Dig-
ital techniques can come to the rescue to compensate
or even cancel these variations. This can be done by,
for example, using off-chip or on-chip calibrations using
mixed-signal feedback and digital signal processing.

As of today the Integrated Circuit Design (ICD) group
of the University of Twente has a general solution for
doing the calibrations off-chip. Fig. 1 shows how these
off-chip calibrations are typically set up. The device-
under-test (DUT) is the analog and mixed-signal CMOS
design being researched by the ICD group. Examples of
these devices are analog-to-digital converters (ADCs),
filters, oscillators etc. The one or more outputs of the
DUT are typically analog signals, which are analyzed
using specialized measurement equipment off-chip. To
be able to change various parameters of the DUT, the
UTCONTROL component is used. It is a simple shift-
register-based design, that receives off-chip data serially
using a SPI-like interface, and outputs it in parallel using
double buffers to ensure that the intermediate state of the
shift-register is not visible to the DUT [3]. A host PC can
use the data of the measurement equipment to change the
parameters of the DUT and transfers them onto the chip
using UTCONTROL. This allows the analog designer to
calibrate and characterize the DUT using a calibration
algorithm that runs on the host PC.

For a DUT with a few parameters, such as the one
shown in Fig. 1, UTCONTROL provides a viable so-
lution to calibrate the parameters of the device. How-
ever, when a more complex design must be tested or
calibrated, there are several problems/shortcomings that
arise when UTCONTROL is used. The problems are
listed below:

• The current version of UTCONTROL does not
provide a way to inspect the digital state of the
system. The interface is uni-directional, and for
more complex system it is necessary to be able to
inspect this state.

• The update rate of the parameters of the DUT is lim-
ited by the throughput provided by the interface of
UTCONTROL. To control more complex systems,
it is required to update the parameters at a higher
rate than is currently possible with UTCONTROL.

Both of these problems could be solved by modifying
UTCONTROL to use a bidirectional high-speed inter-
face, instead of the slow serial interface that is currently
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Fig. 1. Typical test setup of a research chip from the ICD group. The
device-under-test (DUT) in this test setup is an analog and mixed-
signal design being researched by the ICD group. The component
used to control the parameters of the DUT is UTCONTROL. More
information about the exact operation of UTCONTROL can be found
on the ICDWiki [3]. The outputs of the DUT are analyzed off-chip
using measurement equipment, which is then fed to the host PC,
forming a control-loop.

used, however that comes with its own problems and
challenges. Instead, this paper solves the shortcomings of
UTCONTROL, by moving the control system on-chip.
This means that test data could be generated on-chip,
therefore skipping the need to use the slower interface
to the outside world. Additionally, the analysis of the
analog output signal of the DUT, could also be done
on-chip using mixed-signal feedback and digital signal
processing. In general, such a system provides the ICD
group with a lot of flexibility. One important aspect is
that the on-chip control system cannot use a lot of area
on chip, because in general the analog and mixed-signal
designs occupy a large chip area. Furthermore, more chip
area means more expensive chips, so it is important for
the on-chip control system to be area-optimized.

The on-chip control system should be configurable,
and the configurability can be designed in a few ways.
The first options is to make a configurable digital state-
machine, designed for some use-cases specified by the
ICD group. This has the advantage of resulting in a
very small design, however it is also limited by the use-
cases specified. For the most amount of configurabil-
ity a processor is very useful. This has the following
advantages: it allows the tester/analog design engineer
to write the test-code in C/C++, instead of having
to design their own system in a hardware description
language (HDL). Because of being able to write in
C/C++, the test schemes can be more elaborate, and

more importantly can be changed after the chip has been
taped-out. Additionally, this processor could be used for
other purposes, such as decoding Bluetooth packets on-
chip if the analog design is something like a wireless
transceiver. The processor will be based on the Reduced
Instruction Set Computer - Five (RISC-V) Instruction
Set Architecture (ISA), because the use of the RISC-
V ISA requires no fees. This ISA was introduced by
the University of Berkeley in 2016 [4], and since then
a lot of open-source implementations of RISC-V core
in hardware description languages (HDLs) have been
designed. Because of that, this project will determine
which one of these open-source RISC-V cores is most
suitable for the control system.

A. System requirements

Based on the needs by the ICD group as explained
before, this paper presents the work on an on-chip RISC-
V control system. For the design of the system the
following requirements are used:

• Minimize the required area. The target area is
250 µm by 250 µm (62500 µm²) for the system
implemented in the Globalfoundries’ 22nm FDSOI
technology (22FDX®).

• Minimize the number of bondpads needed for the
interface between the control system and the host
PC.

• Modular and easily configurable to support small
single component to complex multi-component ana-
log and mixed-signal designs.

• Support digital signal processing (DSP) applica-
tions.

• Easy to use and integrate for the analog design
engineer.

To guide the design process and to verify that the
RISC-V control system works according to the require-
ments defined above, an example application is used. The
high level overview of this system can be seen in Fig. 2.
The DUT in the example system is a voltage-controlled
oscillator (VCO). This is an analog oscillator design
that can change its oscillating frequency by changing
two parameters (α and β). α and β must be calibrated
to make the output of the VCO (yvco) oscillate at a
specific frequency. Instead of using UTCONTROL to
do this calibration, the proposed on-chip RISC-V control
system is used. The calibration can be done in two ways,
either completely on-chip or using an external spectrum
analyzer to measure the frequency of the VCO. These
are the two use-cases shown in Fig. 2:
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Fig. 2. High level overview of the system used for verification of the
RISC-V control system. The on-chip analog component is a voltage-
controlled oscillator (VCO), of which the parameters are controlled
by the RISC-V control system. Two ways are used to determine the
output frequency of the VCO: (a) uses an on-chip counter connected
to the VCO, and (b) determines the frequency by using a off-chip
spectrum analyzer.

(a) The frequency of the VCO is fully calibrated on-
chip. This is accomplished by using mixed-signal
feedback, using an added on-chip counter, which
increments its value on each oscillation of the
VCO. The RISC-V control system can readout this
value periodically and determine the frequency of
the VCO accordingly. Based on this frequency, the
parameters (α and β) are calibrated.

(b) For more complex systems it might not be possible
to use a simple counter to measure the frequency,
so for that reason an off-chip spectrum analyzer
must be used to determine the frequency of the
VCO. This means the RISC-V control system must
use the external digital interface to communicate
with the host PC to determine the frequency. Based
on this frequency, the parameters (α and β) are
calibrated.

B. Research questions

To have a proper structured approach to the design of
the RISC-V control system, a main research question is
defined, from which several sub-questions are derived.
These research questions will be answered throughout
the paper, and analysis will be done to support the
findings. Based on the requirements given in the previous
section, the main research question is: Which design of
an on-chip RISC-V-based control system is optimized

for area and meets the requirements for calibration and
control of analog and mixed-signal components?

In the time budget of the project it is infeasible
to completely design a RISC-V processor core from
scratch, so an open-source RISC-V core will be used,
which leads to the first sub-question: Which open-source
RISC-V core is most suitable for an area-optimized
design?

To be able to inspect the state of the RISC-V-based
control system, some kind of interface to communicate
with the outside world is necessary. This is what the
next sub-question is about: Which interface between the
RISC-V control system and the host PC minimizes the
number of bondpads and enables bidirectional commu-
nication?

A RISC-V core by itself is not very useful, and
needs at least some memory to execute instructions
and to store its results. Connecting these memories and
analog peripherals to the RISC-V core can be achieved
using different architectures and bus protocols, with each
of them having its own advantages and disadvantages.
This leads to the next sub-question: Which on-chip bus-
protocol and memory architecture are most suitable for
the RISC-V control system, such that it is easy for the
analog design engineer to interact with the system?

C. Main contributions

This work mainly focuses on the practical aspect of
the design of the RISC-V control system, since the goal
of the project is to design and implement a control
system that the analog and mixed-signal designers of
the ICD group can actually use. To summarize, the main
contributions of this work are listed below:

• A reusable and modular design of the RISC-V con-
trol system, which is easily extendable and provides
an easy-to-use interface for the analog and mixed-
signal design engineers.

• A complete verification setup to simulate the RISC-
V control system, including simulation of a debug
probe using the OpenOCD debugger.

• A fully placed and routed RISC-V control system
using a custom designed digital EDA flow for
Globalfoundries’ 22nm FDSOI technology, includ-
ing clock tree synthesis, and timing verification.

D. Paper structure

First, Section II will show some of related work
available in research and open-source communities. Sec-
tion III then focuses on the RISC-V core of the con-
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trol system, and contains a study of different open-
source RISC-V cores. It also explains the various design
decisions made for the different configurations of the
RISC-V core. Next, Section V will explain how the
RISC-V core is integrated with the memories and the
rest of the control system, and show how the different
components fit together to form a modular and reusable
control system. In addition to that, Section VI explains
how the complete RISC-V control system is tested and
validated, and finally Section VII shows the results of
the implemented design on Globalfoundries’ 22FDX®

platform.

II. RELATED WORK

This section presents some existing RISC-V control
systems and the the possibility of reusing (parts) of
these designs is discussed. Two different type of systems
are looked into, systems designed by research groups,
and open-source implementations of RISC-V control
systems.

The PULP (Parallel Ultra-Low-Power) team, which is
a collaboration between the ETH Zürich and University
of Bologna, has contributed a lot of research to the
different RISC-V cores and systems. Their focus is
mainly on energy efficient multicore IoT devices [5],
however there have also been efforts from the PULP
team to build smaller systems using their RISC-V cores.
Once such example is the PULPissimo system, which
consists of a single RISC-V core with a complex memory
system. The effective area reported in [6] is 1.22 mm2,
which uses the same technology as the work in this
paper. This area is too big to be considered for this
work, as the target of this design is to fit in 250 µm
by 250 µm, so it is not possible to reuse the complete
system. Another smaller RISC-V system from the PULP
team is the PULPino system (2016) [7]. This system uses
a custom debug protocol for its communication, because
at the time when this system was designed, the RISC-V
Debug Specification [8] was not standardized yet. New
systems benefit from using this standard, since it means
that debug hardware outside the chip does not need to
be redesigned.

Recently, Google started investing in open-source sil-
icon, where there is now the OpenMPW (Open Multi
Project Wafer) project that allows for anybody to design
their own chip, as long as the design is completely open-
source [9]. To do this, Skywater released their 130nm
PDK to the public, and the Efabless company provides
the tooling to make this happen. For the submission it
is required to use the provided design template, which

is called the Caravel design, that also contains a small
RISC-V management core [10]. This design however,
is very specific to this project, and contains all kind
of functionality such as a flash controller and logic
analyzer that are not needed for the work in this paper.
Additionally, there are open-source RISC-V designs that
make use of the OpenMPW to submit their projects,
one of them is the RISCDUINO project [11]. Similar to
the other options, this project is also pretty sophisticated
and includes lots of functionality to the system. For the
design in this paper, it is important to start with a small
area-optimized design, and build on top of that. So, for
that reason it is not possible to reuse these projects.

III. RISC-V CORE

In this section, the design decisions related to the
RISC-V core in the control system are discussed. It
starts by looking at the different requirements needed
for the RISC-V core. Based on these requirements,
four different RISC-V cores are selected, and different
aspects of these cores are compared to each other. From
this comparison, the most suitable RISC-V core for the
control system is selected. In the last subsection, the
different configuration options of this core are discussed.

A. Requirements

The RISC-V specification is divided into two different
volumes, Volume I: Unprivileged ISA [12], and Volume
II: Privileged Architecture [13]. Volume I specifies the
encoding of the different instruction sets and its ex-
tensions, and Volume II covers the different privilege
modes that a RISC-V core can implement. First, the
requirements based on the ISA specification (Volume I)
are discussed.

The RISC-V ISA is built as a modular design, where
one base integer instruction set is combined with one
or more extensions. The base set provides the mini-
mum number of instructions needed to implement a
processor, such as load/store, branching and arithmetic
instructions. Table I shows an overview of the different
base instruction sets and the available extensions. One
of the requirements for the control system is to use as
little area as possible. For this reason, the RV32E base
variant is especially useful, since it reduces the number
of registers from 32 to 16. However, at this point in time,
the specification for RV32E is not yet ratified. Although
it is not very likely to change much, to make sure the
control system is future-proof, the decision is made to
use the RV32I variant as the base integer instruction set.
In addition to the base instruction set, extensions can be
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added to provide additional functionality. One extension
which in particular is useful for an area-optimized device
is the extension for compressed instructions (C). This
extension adds the ability to encode common instructions
as 16 bits, instead of 32 bits. According to [14], on
average, 60% of the RISC-V instructions in an embedded
program can be replaced with compressed instructions,
resulting in a 30% static code-size reduction. This sig-
nificantly reduces the size needed for the instruction
memory, thus reducing the area of the control system.
Additionally, one of the requirements is to support digital
signal processing (DSP) applications. According to [15],
the extension for integer multiplication and division (M)
improves the performance by 1.5-1.7x, and also reduces
the code-size by 3%-6%, on a test-suite specifically
designed for embedded systems. Based on this claim,
and the fact the DSP algorithms use a lot of multiply
operations, the RISC-V core should also support the M-
extension to have the benefits of the improved perfor-
mance, despite the fact that it will increase the area of the
core. Section III-C contains some analysis on this trade-
off. To summarize, the RISC-V core used in the control
system should support the RV32IMC specifications.

As previously mentioned, the second part of the RISC-
V specification is Volume II: Privileged Architecture.
This part of the specification covers the 3 different
privilege modes that a RISC-V core can implement,
the machine-mode (M), supervisor-mode (S) and user-
mode (U). These different modes provide different mem-
ory protections and different views to the underlying
hardware. Every RISC-V core must implement the M-
mode, which provides unrestricted access to all the
hardware. The U-mode can be added to provide memory
protection, which allows the system to be protected from
(malicious) application code. In addition to that, the S-
mode implements the typical features needed to support
a full-fledged operating system. For the RISC-V core
in the control system, the application code can always
be trusted, and there is no need for operating-system-like
functionality, so the RISC-V core should only implement
the machine-mode (M). The machine-mode part of the
specification already specifies support for at least a single
interrupt line, so there is no need to define an extra
requirement for interrupt support. However, the system
should support more than one peripheral, so it would be
an additional benefit if the RISC-V core included support
for handling more than one interrupt line. This way, there
is no need to design custom logic to merge the multiple
interrupt lines, however it is not a strict requirement to
have this.

Another requirement is the ability to inspect the state

TABLE I
RISC-V BASE INSTRUCTION SET ARCHITECTURE AND

EXTENSIONS [12]

Name Description Version Status Count

Base

RV32I Base Integer Instruction
Set, 32-bit

2.1 Ratified 40

RV32E Base Integer Instruction
Set (embedded), 32-bit,
16 registers

1.9 Draft 40

RV64I Base Integer Instruction
Set, 64-bit

2.1 Ratified 15

Extension

M Standard Extension for
Integer Multiplication
and Division

2.0 Ratified 8

A Standard Extension for
Atomic Instructions

2.1 Ratified 11

F Standard Extension
for Single-Precision
Floating-Point

2.2 Ratified 26

Zicsr Control and Status Reg-
ister (CSR)

2.0 Ratified 6

C Standard Extension
for Compressed
Instructions

2.0 Ratified 40

B Standard Extension for
Bit Manipulation

0.0 Draft 43

V Standard Extension for
Vector Operations

0.7 Draft 187

of the RISC-V core. While during simulation all possible
states of the core can be inspected, when the design is
taped-out this is no longer possible. Because of that, is
it important for the RISC-V core to include a debug
system. The designers of the RISC-V architecture were
aware of this, and specifically designed the RISC-V
External Debug Support specification for this [8]. The
specification defines a protocol which allows an external
debugger to i.e. inspect the state, set breakpoints, or
access memory and peripherals while the core is held
in a debug state. The physical interface used to transfer
this protocol is not specified, and it is up to the designer
to select the appropriate interface. Section IV will go
into more detail about the physical interface. So, for
the selection of the RISC-V core it is important that
the core supports the RISC-V External Debug Support
specification.

Additionally, is it important for the RISV-V core to
be silicon proven. That ensures that the RTL is designed
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with ASICs in mind, such that, for example, clock and
reset synchronizers are added to the design. Finally, it
is important that the RISC-V core is extensively verified
by the authors, such that there will be confidence that
the core also correctly handles all the corner cases of
the RISC-V ISA. This is checked by consulting the
documentation of the core. To summarize, the RISC-V
core should:

• support at least the RV32IMC specification;
• support only the machine-mode operation;
• support the RISC-V External Debug specification;
• be silicon proven; and
• be extensively verified.

B. Comparison of different RISC-V cores

To select the most suitable RISC-V core for the
control system, an extensive search for open-source
RISC-V cores is performed. The main source is the
list provided by the RISC-V Foundation itself. They
maintain a list of both open-source and industrial RISC-
V cores on their website, which contains 182 number
of different cores [20]. Additionally, the code sharing
platform Github is also used as a source, by searching
for cores on their search engine [21]. Work-in-progress
cores are not added to this list. To reduce this list of
RISC-V cores, the requirements listed in the previous
section are used. RISC-V cores that do not meet the
requirements are removed. This removes a lot of cores,
as they do not implement the debug features, or they
support more privileges modes, which removes all the
bigger operating-system-like cores. From this reduction,
only four different RISC-V cores are left that meet all
the requirements.

Two of these open-source cores are designed by
research groups, and the other two are designed by
companies. The two cores designed by research groups
are the Ibex [16] and the CV32E40P [17] core. Both
of these cores originate from the PULP research team,
but are now further developed and maintained by the
non-profit parties lowRISC and the OpenHW Group
respectively. Both of these cores require the open-source
PULP RISC-V Debug Module [22] for a functional
debug system, so the area numbers reported include this
module. The other two cores in the comparison are the
SCR1 core by Syntacore [18] and the SweRV EL2 core
by Western Digital [19]. Both of these companies are
part of the founding members of the RISC-V Foundation,
so they are well-established in the area. To select the
most suitable core for the control system, several aspects
of the cores are compared to each other. Table II

shows the comparison summarized in a table. The RTL
quality is determined by manually scanning the source
code and comparing the code-style used. Similarly, the
quality of the documentation is also determined by
comparing them to each other. For the area comparison,
each core has been synthesized for the Globalfoundries’
22nm FDSOI technology with a 8-track standard cell
library characterized at 0.8V using a timing constraint
of 100MHz. Each core has several configuration options
to tweak the performance and area requirements, but
for the comparison each of the cores is configured
for the RV32IMC ISA specification as defined by the
requirements.

Based on the comparison shown in Table II, the
SCR1 core is most suitable for the control system. First,
the documentation and RTL quality of this core are
very good. The documentation covers all the aspects of
the core, and includes various diagrams that are very
useful. The RTL code is also very straightforward to
understand, and includes a lot of comments to help the
reader understand the code better. The SweRV EL2 core
has similar RTL and documentation quality, however
the area is to big compared to the other cores. As
an additional benefit, the SCR1 core has supports for
the open-standard ARM Advanced Microcontroller Bus
Architecture (AMBA). This makes the integration of the
core more straightforward, compared to the OBI bus
interface of the Ibex and CV32E40P cores, because a
lot of open-source IP also supports the AMBA interfaces.
Note that, the Ibex core is 6% smaller than the SCR1
core, however the bigger area does not out-weight the
other aspects of the core.

C. Syntacore SCR1

In this section, the structure and various subsystems
of the SCR1 core are explained. Additionally, the area of
the core is analyzed, and from this the final configuration
of the core is determined.

Fig. 3 shows a diagram of the different components in
the SCR1 core. The core is divided into two major parts,
the pipeline and the debug part. The pipeline is responsi-
ble for the actual execution of the RISC-V instructions,
and consists of 4 main components: the instruction fetch
unit (IFU), instruction decoder unit (IDU), the execution
unit (EXU) and the load-store unit (LSU). This split of
components is to allow the core to break-up the execution
of an instruction into multiple steps, which allows the
core to process multiple instructions simultaneously. This
concept is called pipelining, and the number of pipeline
stages of the SCR1 core is configurable from 2 till 4
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TABLE II
RISC-V CORES COMPARISON

RISC-V Core Ibex [16] CV32E40P [17] SCR1 [18] SweRV EL2 [19]

Designed by lowRISC OpenHW Group Syntacore Western Digital
Pipeline stages 2 4 2-4 4

RISC-V ISA support RV32I/E[MB]C RV32IMC[F] RV32I/E[MC] RV32IMC+Zbb+Zbs
Memory interface 32-bit OBI 32-bit OBI 32-bit AXI4/AHB-Lite 64-bit AXI4/AHB-Lite

CoreMark (per MHz) 2.47 3.19 2.43 3.6
Documentation quality – +/- ++ +++

RTL quality +/- +/- +++ +++
Area in GF22 (µm2) 11055 16422 11791 33483

fmax (MHz) 188 164 152 116

stages. Additionally, the pipeline part of the SCR1 core
also contains the multi port register file (MPRF) and
the control status registers (CSR) to manipulate the state
of the core by executing specific CSR instructions. The
other part of the SCR1 core is the debug part, which
is used to inspect the state of the pipeline from outside
using a JTAG interface. The SCR1 core implements all
the debug functionally according to the RISC-V External
Debug Support specification, so for the exact operation
the specification can be consulted [8]. But most impor-
tantly, by halting the SCR1 core, the hart debug unit
(HDU) can use the LSU to access memory. Likewise,
the trigger debug unit (TDU) is responsible for providing
breakpoint support, such that the core will halt when a
certain address is executed. The remaining components
of the SCR1 core are the integrated programmable inter-
rupt controller (IPIC) and the system control unit (SCU).
The IPIC provides the core with 16 different interrupt
lines, and can be programmed with an arbitrary mask
to disable interrupts. Finally, the SCU is responsible for
the different resets in the core. For example, only the
pipeline can be reset while keeping the state of the debug
part of the core. The documentation of the SCR1 core
[18] provides a lot of additional information about these
components.

The SCR1 core can be optimized for area, perfor-
mance or power, since the core is highly configurable.
Three different recommended configurations are pro-
vided: the minimum, base and max configuration. The
difference is mainly in the RISC-V instruction set and
the number of pipeline stages that each configuration
implements. The minimum variant implements a 2 stage
pipeline RV32EC core, the base a 3 stage pipeline
RV32IC core and the max configuration a 4 stage
pipeline RV32IMC core. Additionally, when the M-
extension is added to the core, the number of cycles
to execute a multiply instruction can be configured. This
adds three additional configurations: base-slowM, which

SCR1 core

System Control Unit
Debug
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Debug
Module
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Control Status
Registers

Execution
Unit

Load-Store
Unit
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Debug
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Instruction
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Multi Port
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Interrupt Controller

JTAGIRQ

Pipeline

AHB-Lite AHB-Lite

Debug

Fig. 3. Overview of SCR1 core. The core is split into two major
components, the pipeline and the debug system. Arrows show the
different communication channels between the various components.
The core uses two different AHB-Lite interfaces to fetch instructions
and access memory respectively.

uses a 32 cycle multiplier, base-3M, which uses a 3 cycle
multiplier, and base-fastM, which uses a single cycle
multiplier. Fig. 4 shows the area breakdown of all these
different configurations. The area previously reported in
Table II corresponds to the max configuration, as the
requirement is to support the RV32IMC ISA variant.
However, based on the results shown in Fig. 4, this
is not the optimal configuration for an area-optimized
design, and instead the base-3M configuration is used.
This configuration reduces the area by 10%, and provides
a good trade-off between area and performance.

The SCR1 core optionally supports a tightly-coupled
memory (TCM) inside the SCR1 cluster. The size of the
TCM is up to 64kB, and it allows the SCR1 core to fetch
instructions or load/store data with single-cycle latency.
To support this, it needs a dual-port SRAM, which at
this point in time is not available in the ICD group.
Furthermore, there is no interface available to access this
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Fig. 4. Area distribution of different configurations of the SCR1 core. The minimum, base and maximum configurations are shown, as well
as three modified base variants. The difference is the type of multiplier that is used, slowM has a 32 cycle multiplier, 3M a 3 cycle multiplier,
and fastM a single cycle multiplier.

memory from outside the core, and when the size of this
memory is changed, it would require to redo the physical
implementation of the core, which does not result in
a modular and reusable system. Because of this, the
optional TCM is not included in the final configuration
of the core used in the control system. Additionally, the
SCR1 cluster provides an instruction and data memory
bridge to convert the core specific interface to either the
Advanced eXtensible Interface (AXI) 4 or the Advanced
High-performance Lite Bus (AHB-Lite). Both are part
of the open-standard ARM Advanced Microcontroller
Bus Architecture (AMBA) and provide a standard way
to connect on-chip components. For an area-optimized
device the AHB-Lite bus is more suitable because it
uses fewer signals compared to the AXI4 bus, which will
result in the various bus components using less area.

IV. EXTERNAL DIGITAL INTERFACE

In this section, the external digital interface used
to communicate with the control system is discussed.
First, the requirements for this interface are explained,
following with an description about the actual interface
that is used in the system.

Based on the use-cases explained in the introduction,
the external digital interface should:

• allow the host PC to debug the RISC-V core;
• provide the host PC access to the memories to

program them;
• provide general bidirectional communication capa-

bilities between the host PC and the control system;
and

• minimize the number of bondpads needed.

Allowing the host PC to debug the RISC-V core is
important, because there needs to be a way to verify
if the code running on the RISC-V core behaves as
expected. This is only possible by being able to single-
step programs, set breakpoints or show the register state
of the core. As explained before in Section III-A, the
SCR1 core supports the RISC-V External Debug Support
specification, however the physical interface that must
be used is not specified. There are two different options:
use a standard interface, or design/use a custom one.
The ICD group already designed a custom two wire
debug interface called UTwo, [23], so this could be
modified to support the RISC-V debug specification.
However, the problem with a custom interface is that it
also requires a custom hardware/software stack outside
the chip to be able to communicate with the device,
which complicates the design. Alternatively, by using a
standard interface, it is possible to use existing off-the-
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shelf debug hardware to debug the RISC-V core. The
de facto standard used for any chip with a processor
on it, is the IEEE 1149.1 standard developed by the
Joint Test Action Group (JTAG), also known as the
JTAG interface. This interface requires a minimum of
four wires to be able to use it, and the SCR1 core
already contains the required logic, such as the TAP
controller, to use this interface. However, four bondpads
is still quite a lot. The need to use fewer bondpads was
also known to the JTAG group, which developed an
extension to the standard called IEEE 1149.7, or in short
the compact JTAG (cJTAG) interface. Compared to the
original standard, the new cJTAG standard is much more
complex and supports various ways of interfacing. One
of these ways is the mode where the three JTAG signals
(TDI, TDO, TMS) are serialized onto a single pin. This
way only two bondpads have to be used. Unfortunately,
there is not a lot of adoption of this new standard yet, and
only a single unfinished open-source IP was found that
implements a cJTAG to JTAG bridge [24]. So for now
the regular four wire JTAG interface is used to provide
debugging capabilities to the system.

In the RISC-V control system, the memories are
integrated on-chip, so to be able to program them,
the host PC must be able to access these memories
from outside the chip. For this reason, the host PC
is the master and the control system is the slave of
the communication system. Additionally, the interface
should also provide general bidirectional communication
capabilities between the host PC and the control system,
or more specifically the firmware running on the RISC-V
core. In this situation, there is only one possible way to
achieve bidirectional communication, and that is using a
shared component that both the host PC and the RISC-V
core can access. The shared component in this system is
the memory, because both the host PC and the RISC-V
core must be able to access the memory. Communication
from the host PC to the control system works by using
the host PC to write to a memory location, and the RISC-
V core read the same memory location to check if new
data arrived. For communication the other way exactly
the opposite happens. So, for both the programming of
the memories, and the bidirectional communication, the
external digital interface should provide a way for the
host PC to access the memories. Fig. 5 shows three
possible ways in which this can be done. When the SCR1
core is executing instructions, it is using the LSU to
access memory and peripherals. (a) shows that the debug
module can take over the LSU to access the memory.
In this situation the core must be halted first, because
the debug module and the core itself cannot use the

Off-chip

On-chip

RAM

LSU

JTAG SPI

Debug
Module

SPI2AHB-
Lite

Interconnect(a)

(b)

(c)

Pipeline

SBA
Debug

SCR1

Fig. 5. Three possible ways of accessing on-chip memory. (a) uses
the LSU port of the SCR1 core to access the memory. This requires
the core to halt while the debug module is in control. (b) access the
memory via the optional System Bus Access port, and (c) uses an
extra SPI to AHB-Lite converter to access the memory.

LSU simultaneously. Situation (b) allows access to the
memory via an extra system-bus-access (SBA) port. The
SBA is an optional part of the RISC-V External Debug
Support specification, and allows the debug module to
interact with the memories without needing to halt the
core. This part of the specification is not implemented for
the SCR1 core. The third option (c) shows that a SPI (or
any other serial interface) to AHB-Lite bus converter can
also be used to provide access to the memories. However,
this option requires to design of such a component from
scratch.

Option (a) is used for the external digital interface, as
it allows to reuse the JTAG interface. If the SPI interface
would be used, more bondpads would be required, as
the JTAG interface must also be provided to allow the
host to have debugging capabilities. One downside of
this approach is that it requires the core to halt whenever
the host PC wants access to the memories. This could
be solved in the future, by implementing the SBA part
of the RISC-V External Debug Support specification.
Alternatively, option (c) could be used if there was no
need to inspect the state of the RISC-V core. So that
means the external digital interface in the current version
of the system uses the four JTAG wires.

Additionally, some more signals are required to be
able to have a working system. First of all, the SCR1 core
needs a core clock that drives the sequential logic of the
core. For simplicity of the design this core clock will be
generated off-chip. Besides the core clock signal, there
also needs to be a way to set the initial state of the logic,
which is why a power-up reset signal is needed. Note
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that this signal resets all the digital logic, including the
debug state of the core, so if only the SCR1 core needs
a reset trigger, to for example re-run a test, the internal
reset line can be triggered using JTAG commands. To
summarize, the external digital interface for the current
design of the system needs 8 bondpads, 4 wires for the
JTAG interface, the core clock input, the power-up reset
signal, and power and ground to supply the chip. Power
and ground may be shared with other digital logic part
of the analog and mixed signal design. In the future, this
can be reduced to 6 bondpads when a cJTAG bridge is
available.

V. SYSTEM DESCRIPTION

The RISC-V core by itself does not provide a lot of
functionality yet, and requires additional components,
such as memories and peripherals to actually function
as a complete control system. The main idea is to have
separate components/building blocks that communicate
with each other via standard bus interfaces. This way
the physical implementation of each component can be
done separately, which makes the system modular and
reusable.

Fig. 6 shows an overview of the UTRISCY system.
The main component is the UTRISCY core component,
which wraps the SCR1 core, and provides several stan-
dard AHB-Lite bus interfaces. AHB-Lite is used as the
SCR1 core uses this interface for its instruction and
data busses. The core component provides the memory-
mapped input-output (MMIO) AHB-Lite slave interface
for analog peripherals to connect to. Via this interface the
RISC-V core can communicate with analog peripherals.
Additionally, a direct memory access (DMA) AHB-
Lite master interface is provided which allows analog
peripherals to transfer data directly to the memories.
For example, this could be used by an ADC to di-
rectly transfer the samples to the memory. Additionally,
there are two separate AHB-Lite slave interfaces for the
instruction and data memories. Section V-A explains
why two instead of one. The component responsible
for wrapping the static random-access memory (SRAM)
is the UTRISCY memory component, which will be
explained in more detail in Section V-B. Furthermore,
is it up to the analog designer to choose whether to
interface directly with the UTRISCY core component,
or to use the provided UTRISCY AHB-Lite to APB
bridge. In an analog and mixed-signal design the analog
component could be placed far from the digital logic,
and by not tying the core clock to the clock for the
analog peripherals, the maximum operating frequency
of the core is not limited by the analog peripherals.
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CORE
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UTRISCY 
AHB-LITE TO
APB BRIDGE

1 or more  
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Fig. 6. Overview of UTRISCY system. The system consists of 4 dif-
ferent components, UTRISCY core, UTRISCY memory, UTRISCY
AHB to APB bridge, and the UTRISCY analog component. The
communication between the different components happens through
standard bus interfaces part of ARM Advanced Microcontroller Bus
Architecture (AMBA).

The UTRISCY AHB-Lite to APB bridge provides this
separation. The design decisions regarding each sub-
component are explained in more detail in the next
subsections.

A. UTRISCY core

Fig. 7 shows the architecture of the UTRISCY core
subsystem. It consists of two components, the SCR1
core and an AHB-Lite Interconnect. The interconnect
is the open-source AHB-Lite Multi-layer Interconnect
Switch provided by RoaLogic [25]. The IP is fully
parameterized, and allows multiple masters to connect
to multiple slaves with configurable address and data
bus widths. The IP contains logic for round-robin ar-
bitration when multiple masters try to access the same
slave simultaneously, and optionally allow the user to
specify priority for a given master port. When two or
more master ports access different slaves, the IP allows
these separate channels to transfer data simultaneously.
Additionally, an AHB-Lite slave port has a base address
and mask to specify which address range it belongs to.
The IP then, for a certain transaction from a master
port, routes the transaction to the correct slave. If it is
outside any address range the IP will generate a bus
error. The interconnect is used in the UTRISCY core
because there are several different interfaces that have to
be interconnected. First, the SCR1 core has two different
AHB-Lite master ports, the IFU and LSU, that need
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to access the memories. For the memory access there
are two different slave ports, the IMEM and DMEM
ports. The next paragraph will explain why two different
memory interfaces are supported. Additionally, a third
master port is added to support applications where direct
access from outside the core to the memories is needed.
This is the direct-memory-access (DMA) port. Lastly, to
connect the SCR1 core to the analog peripherals, there
is an AHB-Lite slave port, which is called the memory-
mapped input/output (MMIO) port.

To explain why the design supports two different
memory ports, the architecture of the SCR1 core is
discussed. As explained in Section III-C, the SCR1
core is implemented as a Harvard architecture, and also
contains three pipeline stages. This means that the core
will fetch instructions via the IFU and access data via
the LSU simultaneously. Connecting these two buses to a
single-port SRAM will result in bus contention and thus
performance degradation when the core uses the LSU,
because the IFU is continuously fetching instructions
from the memory while it is executing. To quantify
how worse the performance will be when only a single
memory is used, a fixed-point FIR filter benchmark [26]
with 20 coefficients and 10 samples has been run. This
resulted in the benchmark running 23.7% faster when
two separate memories are used. Additionally, if only
a single memory would have been supported, using
the DMA port would reduce the performance of the
core even more, since there will be three master ports
accessing a single memory at the same time. So, to give
the designers the most flexibility, the UTRISCY core
component supports two separate memories, but if the
area-overhead is too big, it is still possible to run the
system using a single memory.

B. UTRISCY Memory

The memory compiler used to generate the SRAM
for the Globalfoundries’ 22nm technology is the High
Density Single-Port SRAM, Ultra-Low-Power Periphery
(S1DU) Compiler provided by Synopsys [27]. The com-
piler is highly configurable, and allows to select the size
and type of the SRAM to be generated. Two types are
possible, a pipeline version that includes registers at the
output of the SRAM, and a flow-through version which
does not have these output registers. Additionally, the
compiler has a configuration option to select how many
SRAM cells per bitline are generated. For this system,
the smallest variant of the C256 density options is used,
which has a memory size of 4160 bytes. To convert the
AHB-Lite interface to the single-port SRAM, the open-
source AHB-Lite Memory IP provided by RoaLogic [28]

SCR1 core

32 bit AHB-Lite

IFU

32 bit AHB-Lite

LSU

20 bit AHB-Lite 20 bit AHB-Lite
24 bit AHB-Lite

IMEM DMEM

MMIO

JTAG

IRQ
16 interrupt lines

Clock Reset

UTRISCY CORE

AHB-Lite
Interconnect

32 bit AHB-Lite
DMA

Master Master Master

Slave Slave Slave

Fig. 7. Overview of the UTRISCY core component. The component
wraps the SCR1 core and also contains an AHB-Lite Interconnect to
connect the IFU and LSU of the SCR1 core to the IMEM, DMEM,
MMIO and DMA port.

is used. This IP is modified to be compatible with the
SRAM generated by the Globalfoundries’ 22nm memory
compiler, and is parameterizable for the size and type
of the specific SRAM that is used. Additionally, the IP
is modified to generate a bus error when a transaction
requests an address outside the range of the size of the
SRAM. The bus error causes the RISC-V core to execute
an exception handler, such that the firmware is aware that
the core tried to execute or access memory outside the
SRAM. Previously, it would silently truncate the address
bits of the transaction to the size of the memory, and
return the data at that location.

C. UTRISCY AHB-Lite to APB bridge

This component is responsible for converting the
AHB-Lite bus into the simpler Advanced Peripheral Bus
(APB). By using this component, the AHB-Lite clock,
which is the core clock, is split from the clock that is
used for the analog peripherals. This has the advantage
that the clock to the analog peripherals can run at a
lower clock speed, compared to the operating frequency
of UTRISCY core. Additionally, the APB bus is also
simpler compared to the AHB bus, which means that the
analog peripherals are easier to implement for the analog
designer. Fig. 8 shows the architecture of the UTRISCY
AHB-Lite to APB bridge. The component consists of
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three sub-components, an AHB-Lite interconnect, an
AHB-Lite clock divider and the actual AHB-Lite to APB
bridge. The AHB-Lite interconnect is the same IP as
the interconnect used in the UTRISCY core component,
and is used as a simple simple bus divider to split the
incoming AHB-Lite bus into 2 separate AHB-Lite buses.
One of the buses goes to the AHB-Lite clock divider and
the other to the actual bridge. The IP for the AHB-Lite to
APB bridge is the open-source AHB-Lite APB4 Bridge
by RoaLogic [29]. It supports fully asynchronous clocks
on both sides of the bridge, so it includes logic for the
proper clock domain crossing.

To generate the slower APB clock from the AHB-
Lite clock, the AHB-Lite clock divider component is
used. Fig. 8 also shows the architecture of the AHB-Lite
clock divider in more detail. This component consists of
a clock divider and a clock mux to select the appropriate
clock. The clock divider is a 7 bit counter increment-
ing its value every core clock cycle. This results in a
2n clock divider. These 7 different clocks are muxed
together using special clock multiplexer cells from the
Globalfoundries’ 22nm standard cell library. A clock
gate is added to make sure that the clock can be disabled
while switching to a different clock. Configuring the
clock multiplexer and clock gate is done by writing to the
control register, which is connected to the AHB-Lite bus.
The highest bit of the control register controls the clock
gate and the lowest 3 bits select which clock is used.
The reset value of the control register has the highest bit
set to one, and the rest of the bits are zero. This means
that after reset the clock gate is enabled, and the selected
clock is not divided. To make sure there are no glitches
while switching the clock it is important to first disable
the clock gate, then switch the clock, then enable the
clock gate again. This is not enforced in the hardware,
so the software is responsible for correctly doing this.

D. Analog peripherals

The idea is to have a separate analog peripheral per
function. That way the peripheral can be designed once,
and reused by other designs in the ICD group. For
example, a trimming peripheral, that is responsible for
trimming certain currents on chip could be designed.
For certain designs it might be better to have a single
peripheral that is completely custom designed for the
needs of the analog and mixed-signal design. For the
example design in this paper, a specific VCO peripheral
is designed to show the functionality of the complete
system. Fig. 9 shows a detailed diagram of the VCO
peripheral. The left side shows how the analog designer
could design the digital logic that is needed to interface
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Fig. 8. AHB-Lite to APB bridge architecture for the RISC-V control
system. The component consists of an AHB-Lite interconnect, which
splits the AHB-Lite bus into two buses. One connects to the AHB-
Lite clock divider and the other to the APB bridge. The AHB-Lite
clock divider divides the core clock by a configurable number of
cycles. The clock output of the AHB-Lite clock divider is used as a
clock for the APB bus. This way the APB clock can be changed at
run-time.

with the APB bus. The design contains four registers that
can be read and written by the RISC-V core via the APB
bus. The capacitance register contains the value for the
capacitance of a capacitor in the VCO design, the current
register contains the value for the current source, the
counter register can only be read via the APB interface,
and contains the value of the counter in the VCO. The
last register is the interrupt register which can be used
to trigger an interrupt on the IRQ line, by comparing
the interrupt value to the value in the counter register.
The output of the registers are fed to the analog VCO
design. Changing these values will change the oscillation
frequency of the VCO. Using the APB interface the VCO
can be calibrated.

VI. VERIFICATION

This section explains how the design of the RISC-
V control system is verified. First, the testbench is
explained, including the use of the OpenOCD debugger.
The testbench is simulated using the Questasim simulator
from Siemens EDA (previously Mentor Graphics). It is
used for the initial RTL simulation, but also for the post-
synthesis and post-layout simulations. This section also



14

CMOS Voltage Controlled Oscillator
(VCO)

VCOcapacitance

VCOcurrent

Vss

Vdd

8b
DQ

VCOcounter

1 +8b
D Q

en

PRDATA[7:0]

sel
0 1 2 3

Current
register

8b
D Q

en

Counter
register

8b
D Q

en

Interrupt
register

8b
D Q

en

/8

/8

PWDATA[7:0]
/8

/8

/8

/8

PCLK

>

/8

/8

IRQ

Write
address
decoder

cs en0

en1

en2

en3

PADDR[1:0]

/2

PWRITE

PENABLEPSEL

VCOcounter

addr

PADDR [1:0]

Capacitance register

APB Read Transfer

APB Write Transfer

Fig. 9. Detailed overview of the UTRISCY VCO analog peripheral. The design consists of two parts: the left side shows the digital logic
needed to interface with the APB interface. It contains four register that can be read-out using the APB bus. The right side shows the
analog VCO design. Two parameters of the analog VCO can be changed, the capacitance value and the current delivered by the current
source. Changing these values will change the oscillating frequency of the VCO. The output of the VCO is connected to the clock input of
a flip-flop, thus incrementing its value on each oscillation of the VCO. This value is fed to the counter register. The waveforms show how
the APB protocol works [30].

explains the functionality of the verification scenarios
that are designed for this system.

The verification setup consists of a SystemVerilog
testbench in which multiple components are instantiated,
Fig. 10 shows an overview of the verification setup. The
VCO Control Chip is an example module that consists
of the UTRISCY component, in the configuration as
shown in Fig. 6, which include two separate memories
and the UTRISCY AHB to APB bridge. From the use-
case defined in the introduction of this paper, the VCO
peripheral is added, which is responsible for controlling
the simulated VCO. The output of the simulated VCO is
routed to the VCO peripheral, where a counter is used
to measure the frequency. This corresponds to use-case
a. The output of the VCO is also routed to the host
PC to simulate use-case b, where a spectrum analyzer is
used to measure the VCOs frequency. This verification
setup contains a simple simulated spectrum analyzer that
measures the frequency of the VCO and sends it to the
OpenOCD debugger via the TCL RPC interface [31].
Next, to be able to run the core, a simulated clock and
reset generator is instantiated in the testbench. This will

make sure the reset line is properly toggled, and will
provide the clock for the UTRISCY component. The next
paragraph will explain how the simulated JTAG master
is able to control the UTRISCY core component.

To verify the system, one possibility is to design
a JTAG master in SystemVerilog that implements the
RISC-V External Debug Support specification, and man-
ually send commands this way. However, there is no
such open-source IP available, and it also does not
represent a typical verification setup, because in real-
life some physical debug probe will be responsible for
controlling the device. Fig. 10 shows the solution that is
used in this system. The verification setup implements
a simulated JTAG Master that uses the SystemVerilog
Direct Programming Interface (DPI) to talk to a C file.
The DPI interface allows SystemVerilog to call into C
code that is attached to the simulation, and in that way
the C code is able to manipulate the JTAG signals in
the SystemVerilog simulation. The sim jtag.c file then
sets up a server which listens for connections using the
Remote Bitbang protocol [32]. This is a protocol defined
by the open-source debugger OpenOCD, and allows the
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Fig. 10. Overview of the verification setup of the UTRISCY system. It is based on the use-cases explained in the introduction of the paper,
and allows the complete system to be verified by using a simulated debug probe using the OpenOCD software running on the host PC. To
simulate the spectrum analyzer for the second use-case, a simple design in SystemVerilog has been made. This sends the measured frequency
to the OpenOCD debugger via the TCL RPC connection, which OpenOCD then sends back to the control system. A simple behaviour model
of a VCO is used to simulate the behaviour of a VCO.

debugger to connect to a JTAG probe over TCP. The
OpenOCD debugger implements the RISC-V External
Debug Support specification and knows how to talk to
the RISC-V Core. In this way the OpenOCD debugger
is able to control the simulated RISC-V Control chip,
representing a real-world verification-setup. This verifi-
cation setup allows the design to be tested at all stages
of the design process. First of all, it is used to test the
initial behavioural RTL simulation. But after synthesis
and layout the same test is used to make sure the design
still behaves the same. Once the chip is taped-out the
exact same setup can be used with a physical Segger
J-Link Debug probe, instead of the OpenOCD debugger.

A script is designed that automatically runs all the
required programs for the verification setup. This starts
with the compilation of the test program, for which
a standard RISC-V GCC toolchain is used [33]. The
verification setup downloads the toolchain from SiFive,
however any other RISC-V GCC toolchain should work
the same. A Makefile is added to the verification setup
that runs the necessary steps for compilation. After that
Questasim is launched, and the OpenOCD debugger is
attached to the running simulation. The debugger is then
instructed to upload a test program to the memory of the
UTRISCY component, to reset the core, and to start the
execution of the test program.

The test program consists of three different parts. The
first part is a general test that verifies for example that the
UTRISCY memory component correctly fires a bus error
when a transaction outside its memory size is done. The
two other parts of the test program are the two different
verification scenarios that calibrate the VCO. The first
scenario calibrates the VCO completely on-chip, and the
second scenarios uses the simulated spectrum analyzer
to know the frequency of the VCO and also calibrate
the VCO that way. The VCO is calibrate using a simple
control loop, where the target frequency is programmed,
and the RISC-V control system executes a proportional
integral (PI) control loop to change the parameters of
the VCO. Fig. 11 shows the different waveforms that
make up the test program, including the output of the
OpenOCD debugger on the host PC.

VII. RESULTS

This section shows the results of the UTRISCY system
implemented in Globalfoundries’ 22nm FDSOI technol-
ogy. It will start by explaining the tools that have been
used to achieve this, following with the the synthesis
results. For the initial physical implementation of the
design, the VCO control chip as shown in Fig. 10 has
been implemented. There was no time left to do the
physical implementation of each component separately.
The results, such as the floorplan and the final area usage
are discussed at the end.
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(A)

(B)

(C)

(D)

Fig. 11. Various waveforms of the verification setup. (a) shows the simulation of the AHB-Lite to APB bridge. (b) shows the AHB-Lite
clock divider, and it can be seen that the frequency of the output clock is changed. (c) shows the JTAG probe reading memory to achieve
the bidirectional communication. (d) shows a screenshot of the OpenOCD communication.

TABLE III
SYNTHESIS AREA USAGE PER COMPONENT

Component Subcomponent Non-flattened area (µm²) Flattened area (µm²) Difference (%)

UTRISCY core 12518 10371 17.1
SCR1 core 10702

AHB-Lite Interconnect 1814

UTRISCY bridge 1179 882 25.2
AHB-Lite to APB bridge 647
AHB-Lite Interconnect 350
AHB-Lite clock divider 181

UTRISCY mem 4160 F 7981 7880 1.3
IN22FDX S1DU 4160 SRAM 7794 7794 0.0

UTRISCY VCO 487 464 4.6

VCO control chip 30144 27478 8.8
VCO control chip

excluding memories 14183 11717 17.4

The digital EDA flow that is designed for the system,
uses the Synopsys DC compiler for the synthesis of the
RTL to the standard cells of the Globalfoundries’ 22nm
FDSOI technology. For the physical design of the chip
the tools from Cadence are used. Specifically, Innovus is
used for the placement and routing, including clock-tree
synthesis.

A. Synthesis

To optimize the design for the smallest possible area,
the 8-track standard cells are used. Compared to, for
example, 12-track, the 8-track standard cells use less
area, but that also makes them slower. Additionally, a

relaxed timing constraint of 100MHz for the core clock
is used. This constraint is a good trade-off between area
and performance, as it does not increase the area of the
design. The constraint for the JTAG clock is 12 times
slower than the core clock, because that is the require-
ment for the SCR1 core. Table III shows the area usage
of the different components of the UTRISCY control
system. The area for both the non-flattened and flattened
components are shown. This shows that flattening the
design saves 17% for the UTRISCY core, and 25%
for the UTRISCY bridge. The savings for UTRISCY
memory components are not that big, as most of the
area of the UTRISCY memory is the SRAM macro. In
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Fig. 12. Overview of the layout of the VCO control chip. The complete layout is shown in the middle, and the UTRISCY part is shown
in more detail.

this design, two 4160 byte memories are used, which
contribute to 47% of the total area. As can be seen in
the table, the total synthesis area of the flattened VCO
control chip is 27478 µm2.

B. Placement-and-routing

The flattened VCO control chip netlist is used for the
final implementation of the design on Globalfoundries’
22nm FDSOI technology. This netlist does have separate
modules for each component, such that they can also be
placed as separate components. To start the design of
the VCO control chip, a floorplan of 600 µm by 600 µm
was used. This was done to allow the UTRISCY VCO
component to be placed ’far’ away from the UTRISCY
core component. For the VCO a simple block macro
was used to be able to place it in the design. For
each component the utilization was set to 70%, as the
placer needs some margin to be able to place all the
standard cells. Fig. 12 shows the final layout of the VCO
control chip. The UTRISCY core, two times UTRISCY
mem 4160 and the UTRISCY bridge have been placed
together in the left corner, and occupy an area of 211 µm
by 193 µm (40723 µm2). The UTRISCY core component
occupies 74 µm by 193 µm (14282 µm2). This is 37%
bigger than the area as reported by the synthesis tool. The
UTRISCY bridge needs 58 µm by 27 µm (1566 µm2),
and the UTRISCY VCO component has an area of 41 µm
by 20 µm. The UTRISCY memory (4160 bytes) needs
10615 µm2. For the implementation of the design three
different process corners have been used: min (0.72V,
-40C), typical (0.8V, 25C), and max (0.88V, 125C). The
setup timing slack at the typical corner is 3594 ps, which
means the design can run at 156MHz at 0.8V. To solve

the hold violations the max corner has been used, so at
all these three corners there are no hold violations in the
circuit. The area of an IO cell for GF22 is 2760 µm2, and
this design requires 6 bondpads, excluding the power and
ground as they can be shared with other digital logic, so
that adds another 16560 µm2 to the design, so the total
required area for the design is 57283 µm2.

VIII. DISCUSSION

The results show that the currently implemented de-
sign requires 57283 µm2 including bondpads for an
implementation in Globalfoundries’ 22nm FDSOI tech-
nology. This is just within the 62500 µm2 and is consider
to be quite big after a discussion with analog design
engineers at the ICD group during a chiptalk.

During this design several trade-offs were made that
actually increased the area of the design. For example,
the requirement of being able to debug the software
running on the RISC-V core, made it such that the JTAG
interface had to be used, instead of using something like
SPI, UART or I2C for the bidirectional communication,
and no cJTAG to JTAG bridge was available at the time.
This means the total number of bondpads could have
been four, two for the serial interface, and a clock and
reset, which would have saved 5520 µm2. Additionally,
the implemented design consists of two 4160 bytes
memories, where one small 2KB memory could have
been used instead, but because of the performance trade-
off the two memories were included. One extra point
where area could have been saved was the configuration
of the SCR1 core, as the configuration used in this design
was not the smallest, again because of the requirement
for digital signal processing for example. To give an idea
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what the area would have been if the performance trade-
offs were not made, the following configuration of the
system is used: smallest SCR1 configuration (RV32EC),
one 2KB memory, including the JTAG interface. The
JTAG interface is included in this configuration, as
it requires more work to use a different interface,
but changing the configuration of the SCR1 core, and
memory size would only require to redo the physical
implementation. The synthesis area of UTRISCY core
would be 9051 µm2, flattening that would probably lower
the area by 10%, so 8151 µm2. The area of UTRISCY
bridge and UTRISCY VCO peripheral would be the
same. The UTRISCY memory 2KB would be something
like 5500 µm2. This would make the total synthesis area
of the UTRISCY control system around 15500 µm2.
Placement and routing would add another 30%, making
it 20150 µm2. With the six bondpads added, this would
end up with an area of 36710 µm2, which is significantly
lower that what is presented in this work.

During the discussion with the analog design engi-
neers from the ICD group, the question came up why
there was even a need for a RISC-V control system,
instead of using a simpler control system. The step
from UTCONTROL (basically a small shift-register)
to UTRISCY (this design) seemed quite a huge step,
because for most of their design adding such as RISC-
V control system to their designs would not have a
lot of benefit. As explained in the introduction, using a
processor has several advantages, but at the same point
does it also increase the complexity for the analog design
engineer as they can’t just include this system in their
analog simulations. Adding UTRISCY would need the
analog designers to do a mixed-signal simulation, which
would complicate things. Additionally, if the smallest
version of this design would have been used, it would
still add 36710 µm2 to the design. Something like a
system where the configurability would not be achieved
by using a processor, but instead used some simpler
configurable arrangement would already be much better
than the current solution of UTCONTROL. One thing
to look into, would be to use of the TAP controller of
JTAG as an improvement over UTCONTROL, because
JTAG is basically a shift-register with some additional
state.

IX. CONCLUSION

This work has shown that the UTRISCY system
can be used as a modular and reusable control system
for the analog and mixed-signal test chips of the ICD
group. Which answers the main question of the work:
Which design of an on-chip RISC-V-based control sys-

tem is optimized for area and meets the requirements
for calibration and control of analog and mixed-signal
components?. The UTRISCY design presented in this
work resulted in an on-chip area of 57283 µm2. Some
trade-offs had to be made for the digital signal processing
requirement, which resulted in a design that was not
fully area-optimized. However, in the discussion the area
for a design where performance was not needed was
calculated to be 36710 µm2.

First, the processing subsystem has been analyzed, and
a study on different RISC-V cores had been done, to
answer the first sub-question: Which open-source RISC-V
core is most suitable for an area-optimized design?. This
work show that the the SCR1 core is the most suitable
for the RISC-V control system.

Next, the interface to the outside world has been ana-
lyzed, to answer the next sub-question: Which interface
between the RISC-V control system and the host PC min-
imizes the number of bondpads and enables bidirectional
communication? This work has shown that the compact
JTAG interface is the optimal solution for this system.
However, there is no open-source IP available for this,
so for the current system the normal JTAG interface is
used.

Finally, the architecture of the UTRISCY system is
analyzed, and a system is designed that allows for the
flexibility of the analog designer to include different
components. Additionally, the AHB-Lite and APB bus
interfaces were used, as the APB bus results in easy
to design analog peripherals for the analog design en-
gineers. Which answers the last sub-question: Which
on-chip bus-protocol and memory architecture are most
suitable for the RISC-V control system, such that it is
easy for the analog design engineer to interact with the
system?

A. Recommendations

During this work, several ideas and future optimiza-
tions were discovered, and this section will explain them.

First, the single compact JTAG to JTAG bridge open-
source IP was not ready to be used in this system, and
the recommendation is to start with that IP and modify
it to use it in this system.

There were several part of the SCR1 core that could
be improved, such as a register file optimization. The
current version is flip-flop based, but generally a latch
based implementation results in a smaller area. For the
debug part of the SCR1 core it would be an additional



19

benefit if the System Bus Access port, part of the RISC-
V debug specification would have been implemented,
because the current version needs to halt the core for the
host PC to access the memories, which is not optimal.

An additional recommendation is to implement a
DMA peripheral, such that analog and mixed-signal
designs could directly store results into memory, without
the need of the RISC-V core to copy it to the memory.
Also there is currently a latency of three clock-cycles in
the AHB-lite to APB bridge, because it supports fully
asynchronous clocks, however in this design the clocks
are actually synchronous, so the IP could be modified to
remove this extra latency.

Finally, the physical implementation of the design has
to be separate into a separate layout per component.
This would make it easier to change for example the
memory size needed. The implemented digital EDA flow
contains code that makes this almost possible, but some
improvements have to be done to completely support it.

ACKNOWLEDGMENT

I would like to thank Mark and Sabih for the opportu-
nity for this work. I learned a lot, and can now continue
my career as a digital design engineer, because I was
able to use the tools and learn a lot about them during
this thesis. I would also like to thank Shubham for the
weekly meetings that kept me sharp and motivated for
this work. As a final acknowledgement, I want to thank
my parents as they also kept me focused on the work.

REFERENCES

[1] S. Yan and E. Sanchez-Sinencio, “Low voltage analog cir-
cuit design techniques: A tutorial,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. 83, no. 2, pp. 179–196, 2000.

[2] J. K. Lorenz, A. Asenov, E. Baer, S. Barraud, F. Kluepfel,
C. Millar, and M. Nedjalkov, “Process Variability for Devices
at and beyond the 7 nm Node,” ECS Journal of Solid State
Science and Technology, vol. 7, no. 11, p. P595, 2018.

[3] ICDWiki. UTCONTROL. [Accessed 11-10-2022]. [Online].
Available: https://icejive.ewi.utwente.nl/icdwiki/doku.php?id=
hdl design:utcontrol

[4] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The
RISC-V Instruction Set Manual,” 2016.

[5] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini,
“Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low
Power SoC for IoT Edge Processing,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 7, pp. 1970–1981, 2019.

[6] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti,
and L. Benini, “Quentin: an Ultra-Low-Power PULPissimo SoC
in 22nm FDX,” in 2018 IEEE SOI-3D-Subthreshold Microelec-
tronics Technology Unified Conference (S3S), 2018, pp. 1–3.

[7] A. Traber, F. Zaruba, S. Stucki, A. Pullini, G. Haugou, E. Fla-
mand, F. K. Gurkaynak, and L. Benini, “PULPino: A small
single-core RISC-V SoC,” in 3rd RISCV Workshop, 2016.

[8] RISC-V External Debug Support, RISC-V Std., Rev. 0.13.2,
Mar. 2019. [Online]. Available: https://riscv.org/wp-content/
uploads/2019/03/riscv-debug-release.pdf

[9] G. EFabLess and Skywater. Openmpw. [Online]. Available:
https://efabless.com/open shuttle program

[10] EFabLess. Caravel harness. [Online]. Available: https://github.
com/efabless/caravel

[11] D. Annayya. Riscduino. [Online]. Available: https://github.
com/dineshannayya/riscduino

[12] The RISC-V Instruction Set Manual - Volume I: Unprivileged
ISA, RISC-V Std., Rev. 20191213, Dec. 2019. [Online].
Available: https://github.com/riscv/riscv-isa-manual/releases/
download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

[13] Volume II: Privileged Architecture, RISC-V
Std., Rev. 20211203, Dec. 2021. [Online].
Available: https://github.com/riscv/riscv-isa-manual/releases/
download/Priv-v1.12/riscv-privileged-20211203.pdf

[14] P. Li, “Reduce Static Code Size and Improve RISC-V
Compression,” no. UCB/EECS-2019-107, Jun 2019. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/
EECS-2019-107.html

[15] D. Patterson, J. Bennett, P. Dabbelt, C. Garlati, and O. Shinaar.
(2019, dec) Initial Evaluation of Multiple RISC ISAs using
the Embench™ Benchmark Suite. What is the Cost of
Simplicity? [Accessed on 29-11-2022]. [Online]. Available:
https://riscv.org/wp-content/uploads/2019/12/12.10-12.
50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%
E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-\
Simplicity.pdf

[16] lowRISC. Ibex RISC-V Core. [Online]. Available: https:
//github.com/lowrisc/ibex

[17] O. Group. OpenHW Group CORE-V CV32E40P RISC-V IP.
[Online]. Available: https://github.com/openhwgroup/cv32e40p

[18] Syntacore. (2022, Apr.) SCR1 RISC-V Core.
[Online]. Available: https://github.com/syntacore/scr1/tree/
d8ba8e50ecce3bfdd47e0422a9c024384f73df60

[19] W. Digital. EL2 SweRV RISC-V CoreTM 1.4. [Online].
Available: https://github.com/chipsalliance/Cores-SweRV-EL2

[20] R.-V. International. RISC-V Exchange. [Accessed on 10-06-
2022]. [Online]. Available: https://riscv.org/exchange

[21] Microsoft. Github Search RISC-V. [Accessed on 16-06-2022].
[Online]. Available: https://github.com/search?q=risc-v

[22] PULP team. RISC-V Debug Support for PULP Cores. [Online].
Available: https://github.com/pulp-platform/riscv-dbg

[23] ICDWiki. UTwo. [Accessed 2-11-2022]. [Online]. Avail-
able: https://icejive.ewi.utwente.nl/icdwiki/doku.php?id=hdl
design:utwo

[24] Stephan Nolting. (2021, Dec.) Compact-JTAG to 4-Wire JTAG
Bridge. [Online]. Available: https://github.com/stnolting/cjtag
bridge

https://icejive.ewi.utwente.nl/icdwiki/doku.php?id=hdl_design:utcontrol
https://icejive.ewi.utwente.nl/icdwiki/doku.php?id=hdl_design:utcontrol
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://efabless.com/open_shuttle_program
https://github.com/efabless/caravel
https://github.com/efabless/caravel
https://github.com/dineshannayya/riscduino
https://github.com/dineshannayya/riscduino
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-107.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-107.html
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-\Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-\Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-\Simplicity.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-12.50a-Code-Size-of-RISC-V-versus-ARM-using-the-Embench%E2%84%A2-0.5-Benchmark-Suite-What-is-the-Cost-of-ISA-\Simplicity.pdf
https://github.com/lowrisc/ibex
https://github.com/lowrisc/ibex
https://github.com/openhwgroup/cv32e40p
https://github.com/syntacore/scr1/tree/d8ba8e50ecce3bfdd47e0422a9c024384f73df60
https://github.com/syntacore/scr1/tree/d8ba8e50ecce3bfdd47e0422a9c024384f73df60
https://github.com/chipsalliance/Cores-SweRV-EL2
https://riscv.org/exchange
https://github.com/search?q=risc-v
https://github.com/pulp-platform/riscv-dbg
https://icejive.ewi.utwente.nl/icdwiki/doku.php?id=hdl_design:utwo
https://icejive.ewi.utwente.nl/icdwiki/doku.php?id=hdl_design:utwo
https://github.com/stnolting/cjtag_bridge
https://github.com/stnolting/cjtag_bridge


20

[25] Roa Logic. (2022, Feb.) AHB-Lite Multi-
layer Interconnect Switch. [Online]. Avail-
able: https://github.com/RoaLogic/ahb3lite interconnect/tree/
ce8fff67a31863436baf80125662e940edd1bb6d

[26] S. Stevenson. Implementation of FIR Filter-
ing in C (Part 2). [Accessed on 5-10-
2022]. [Online]. Available: https://sestevenson.wordpress.com/
implementation-of-fir-filtering-in-c-part-2/

[27] Synopsys. High Density Single-Port SRAM, Ultra-Low-Power
Periphery (S1DU) Compiler. [Accessed on 28-11-2022].
[Online]. Available: https://www.synopsys.com/dw/ipdir.php?
c=dwc comp in gf22fdx s1du

[28] Roa Logic. (2021, Nov.) AHB-Lite Memory. [Online].
Available: https://github.com/RoaLogic/ahb3lite memory/tree/
a749e73bf010e93d26df9356b6d4f81d36305ff4

[29] Roa Logic. (2021, Oct.) AHB-Lite APB4 Bridge.
[Online]. Available: https://github.com/RoaLogic/ahb3lite apb
bridge/tree/18d9aee1a3f5e97a7ab404067b02ca5286caf344

[30] AMBA® APB Protocol, ARM Std., Rev. 1.0. [Online].
Available: https://developer.arm.com/documentation/ihi0024/c

[31] OpenOCD. Tcl scripting api. [Accessed on 10-12-
2022]. [Online]. Available: https://openocd.org/doc/html/
Tcl-Scripting-API.html

[32] OpenOCD. remote bitbang.txt. [Accessed on 10-12-2022].
[Online]. Available: https://github.com/openocd-org/openocd/
blob/master/doc/manual/jtag/drivers/remote bitbang.txt

[33] SiFive. SiFive GCC toolchain. [Online]. Available: https:
//github.com/sifive/freedom-tools/releases

https://github.com/RoaLogic/ahb3lite_interconnect/tree/ce8fff67a31863436baf80125662e940edd1bb6d
https://github.com/RoaLogic/ahb3lite_interconnect/tree/ce8fff67a31863436baf80125662e940edd1bb6d
https://sestevenson.wordpress.com/implementation-of-fir-filtering-in-c-part-2/
https://sestevenson.wordpress.com/implementation-of-fir-filtering-in-c-part-2/
https://www.synopsys.com/dw/ipdir.php?c=dwc_comp_in_gf22fdx_s1du
https://www.synopsys.com/dw/ipdir.php?c=dwc_comp_in_gf22fdx_s1du
https://github.com/RoaLogic/ahb3lite_memory/tree/a749e73bf010e93d26df9356b6d4f81d36305ff4
https://github.com/RoaLogic/ahb3lite_memory/tree/a749e73bf010e93d26df9356b6d4f81d36305ff4
https://github.com/RoaLogic/ahb3lite_apb_bridge/tree/18d9aee1a3f5e97a7ab404067b02ca5286caf344
https://github.com/RoaLogic/ahb3lite_apb_bridge/tree/18d9aee1a3f5e97a7ab404067b02ca5286caf344
https://developer.arm.com/documentation/ihi0024/c
https://openocd.org/doc/html/Tcl-Scripting-API.html
https://openocd.org/doc/html/Tcl-Scripting-API.html
https://github.com/openocd-org/openocd/blob/master/doc/manual/jtag/drivers/remote_bitbang.txt
https://github.com/openocd-org/openocd/blob/master/doc/manual/jtag/drivers/remote_bitbang.txt
https://github.com/sifive/freedom-tools/releases
https://github.com/sifive/freedom-tools/releases

	Introduction
	System requirements
	Research questions
	Main contributions
	Paper structure

	Related work
	RISC-V Core
	Requirements
	Comparison of different RISC-V cores
	Syntacore SCR1

	External Digital Interface
	System description
	UTRISCY core
	UTRISCY Memory
	UTRISCY AHB-Lite to APB bridge
	Analog peripherals

	Verification
	Results
	Synthesis
	Placement-and-routing

	Discussion
	Conclusion
	Recommendations

	References

