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Abstract 
Background Neurological outcome prediction after cardiac arrest is possible in only 28-47% of 
patients. Ultrasonographic measurements of the optic nerve sheath diameter (ONSD) may contribute 
to neurological outcome prediction. Our first objective was to evaluate the predictive value of 
ultrasonographic ONSD measurements, in addition to continuous electroencephalography (EEG) 
measurements, somatosensory evoked potentials (SSEP), and pupillary light reflexes (PLR) for 
neurological outcome in comatose patients after cardiac arrest. Our second objective was to develop 
and test a method to semi-automatically measure the ONSD from transorbital sonograms of comatose 
patients after cardiac arrest.  

Methods We performed a prospective observational cohort study in adult comatose patients after 
cardiac arrest. ONSD was measured on days 1 to 3 using ultrasound. Continuous EEG, SSEP, and PLR 
were collected as part of standard care. Neurological outcome was classified using the Cerebral 
Performance Category (CPC) at 6 months (CPC 1-2 = good, CPC 3-5 = poor). For estimation of the 
additional predictive value of ONSD measurements, logistic regression models predicting neurological 
outcome were created based on EEG and SSEP, with and without ONSD. The additional predictive value 
of ONSD measurements was assessed by the increase in sensitivities for a poor (at 100% specificity) 
and good (at 90% specificity) neurological outcome. Semi-automatic ONSD measurements were 
performed using an active contour model. Agreement between manual and automatic ONSD 
measurements was assessed by visual inspection of segmentations, correlation, and Bland-Altman 

plots. Manual measurements were considered the gold standard. 
 

Results We included 95 patients, of whom 41 (43.2%) died due to post-anoxic encephalopathy. ONSD 
measured on day 1 was larger in patients with a poor neurological outcome (6.40 [6.15 – 6.88] mm) 
than in those with a good neurological outcome (6.25 [5.68 – 6.63] mm) (p = 0.023). When adding 
ONSD measurements to predictions, sensitivity for a poor neurological outcome increased from 25% 
(95% confidence interval (CI): 0% – 50%) to 45% (95% CI: 25% – 65%) at 100% specificity. Sensitivity for 
a good neurological outcome raised from 8% (95% CI: 0 % – 23%) to 18% (95% CI: 5% – 36%) at 100% 
specificity. The PLR was not included as a predictor because of the low incidence of an absent PLR after 
72 hours. The active contour model had a mean square error of 4.15 mm2 and feasibility of 86.1%. A 
good estimation of the ONSD with an absolute error of ≤ 0.5 mm between manual and automatic ONSD 
measurements was obtained in 16.7% of sonograms. Bland-Altman plots showed a bias of -0.267 mm 
and 95% limits agreements between -4.230 and 3.696 mm. Manual and automatic ONSD 
measurements did not correlate.   

Conclusion Ultrasonographic ONSD measurements on days 1 to 3 after cardiac arrest hold the 
potential to add predictive value in neurological outcome prediction in addition to EEG and SSEP 
recordings. Our semi-automatic method based on active contours is not suited for automatic ONSD 
measurements.  
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List of Abbreviations 
 

AUC      Area under the curve 

CI      Confidence interval 

CPC      Cerebral performance category 

CPR      Cardiopulmonary resuscitation 

EEG      Electroencephalography 

ICU      Intensive care unit 

MSE      Mean square error 

PLR      Pupillary light reflex 

OHCA      Out-of-hospital cardiac arrest 

ONSD      Optic nerve sheath diameter 

OR      Odds ratio 

pAUC      Partial area under the curve 

ROC      Receiver operating characteristic 

ROSC      Return of spontaneous circulation 

SSEP      Somatosensory evoked potentials 

WLST      Withdrawal of life-sustaining therapy 
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1. Introduction 
Every year, 67-170 per 100,000 Europeans have an out-of-hospital cardiac arrest, of whom ± 8% survive 
till hospital discharge [1]. Post-anoxic encephalopathy is the main cause of death and long-term 
disability among patients who are successfully resuscitated from cardiac arrest [2]. The majority of 
deaths follow the withdrawal of life-sustaining therapy (WLST) when a poor neurological outcome is 
predicted [3]. Accurate neurological outcome prediction is essential to prevent inappropriate WLST in 
patients with chances of neurological recovery and futile treatment in patients with no chance of 
neurologically meaningful survival, and to provide correct information to relatives [4]. Neurological 
outcome prediction is currently a multimodal approach of clinical examination (ocular reflexes, motor 
response, and presence of myoclonus), neurophysiology (somatosensory evoked potentials (SSEP) and 
electroencephalography (EEG)), biomarkers (neuron-specific enolase), and brain imaging (CT and MRI), 
as no single predictor is 100% accurate [5]. Based on these methods, a reliable prediction of a poor 
neurological outcome is possible in approximately 28-47% of patients [6–9]. Up to 64% of patients with 
an indeterminate outcome may have good recovery [7], which highlights the need for novel methods 
to aid in the prediction of neurological outcome in post-anoxic encephalopathy. 

Ultrasonographic measurements of the optic nerve sheath diameter 
(ONSD) (Figure 1) are reported as a non-invasive and bedside tool to 
predict neurological outcome in comatose patients after cardiac arrest 
[10–17]. The optic nerve is surrounded by a sheath consisting of three 
meningeal layers, and its subarachnoid space is continuous with that 
of the central nervous system [18]. Therefore, elevations of 
intracranial pressure are transmitted along the optic nerve, dilating 
the optic nerve sheath [18]. Various studies demonstrated a good 
correlation between invasive intracranial pressure measurements and 
ultrasonographic measurements of the ONSD [10,18–25]. Patients 
with post-anoxic encephalopathy may develop intracranial 
hypertension as a result of cerebral oedema [26], which is associated 
with a poor neurological outcome [11–17]. Therefore, 
ultrasonographic measurements of the ONSD might contribute to 
neurologic outcome prediction in comatose patients after cardiac 
arrest.  

The predictive value of the ONSD in addition to established predictors 
of neurological outcome in post-anoxic encephalopathy is still unclear. 
Therefore, the first objective of this thesis was to evaluate the 
predictive value of ultrasonographic ONSD measurements, in addition 
to continuous EEG measurements, SSEP recordings, and the pupillary 
light reflex (PLR) for neurological outcome in comatose patients after 
cardiac arrest.  

Considering the small diameter of the optic nerve and its sheath, ranging between 3 to 8 mm, and that 
a small difference in ONSD can significantly change its interpretation, ONSD measurements need to be 
precise [27]. Studies on the intra- and interobserver reliability of ultrasonographic ONSD 
measurements are conflicting [27–34], with intraclass coefficients reported between 0.44 [27] and 
0.84 [30]. This emphasizes the need for standardized methods. Automated methods to segment the 
optic nerve and its sheath from transorbital sonograms have already been reported [35–39], but these 
methods were tested in only small datasets of a few dozen sonograms. Therefore, the second objective 
of this thesis was to develop and test a method to semi-automatically measure the ONSD from 
transorbital sonograms of comatose patients after cardiac arrest, using a large dataset of hundreds of 
sonograms. 

Figure 1: A transorbital 
sonogram showing the 
ultrasound probe, the eye 
globe and the optic nerve 
with the optic nerve sheath 
diameter (ONSD) [18]. 
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2. Methods 
2.1 Study Design  
We performed a prospective observational cohort study on the intensive care unit (ICU) of Rijnstate 
Hospital, The Netherlands. Subsequent comatose patients after cardiac arrest were included for 
ultrasonographic ONSD measurements on days 1 to 3 after cardiac arrest and followed for six months. 
Patients were included from December 2019 to October 2021 (Cohort 1) and from May 2022 to 
October 2022 (Cohort 2). This study was conducted according to the principles of the Declaration of 
Helsinki. The medical ethics committee Arnhem-Nijmegen approved the study protocol (2019-5586) 
and waived the need for informed consent before inclusion. In case of patient survival for up to 3 days, 
consent was obtained from the patient and/or relatives.  

2.2 Study Population 
Subsequent comatose (Glasgow Coma Scale ≤ 8 at admission) adult patients who were admitted to the 
ICU after an in-hospital or out-of-hospital cardiac arrest were included. Exclusion criteria were 
pregnancy, traumatic brain injury, previous relevant eye surgery, pre-existing dependency in daily 
living (Cerebral Performance Categories (CPC) 3 or 4), and any known progressive brain illness.  

2.3 Standard of Care 
Patients were monitored and treated according to local guidelines, which were in line with European 
guidelines for comatose patients after cardiac arrest [5], including targeted temperature management 
at 36°C for 24 hours, and normothermia for 72 hours. Patients generally received a combination of 
propofol, midazolam, and morphine for sedation and analgesia. Decisions on WLST were made 
according to European guidelines [5]. WLST was considered ≥ 72 hours after cardiac arrest during 
normothermia, and off-sedation. Treating physicians were blinded to the ultrasonographic ONSD 
measurements.  

2.4 Outcome 
Neurological outcome was expressed as the CPC at 6 months after cardiac arrest, which was assessed 
by a standardized telephone interview by the researchers. The CPC at 6 months is the most common 
scale to quantify the neurological outcome after cardiac arrest [2]. CPC 1 and 2 (no and moderate 
neurological disability, respectively) were dichotomised as good and CPC 3 – 5 (severe neurologic 
disability, persistent vegetative state, and (brain) death, respectively) as a poor neurological outcome. 
In the case of CPC 5, the cause of death was classified as neurological or non-neurological. 

2.5 Data Acquisition  

2.5.1 EEG, SSEP and PLR Measurements 
Continuous EEG recordings were started in all patients as soon as possible after arrival at the ICU, 
always within 24 hours after cardiac arrest, and continued for at least three days or until the patient’s 
decease or awakening, as part of standard care. Twenty-one electrodes were placed on the scalp 
according to the international 10-20 system. EEG recordings were performed using a Nihon Kohden 
system (VCM Medical, The Netherlands) from the start of our study to March 2021 and a BrainRT 
system (OSG, Belgium) from April 2021 onwards. Two reviewers independently classified EEG epochs 
at 6, 12, 24, 36, 48, and 72 hours after cardiac arrest, blinded to the timing of the epochs, the patient’s 
clinical status, medication, and neurological outcome. In case of disagreement, a consensus was 
obtained by consulting a third reviewer. EEG patterns were classified as suppressed with or without 
superimposed synchronous activity, continuous, or other patterns (Table A1 in Appendix A) [8]. SSEP 
recordings were performed using a Nicolet EDX system (Natus Medical Inc., USA) as part of standard 
care at the treating physician’s request, in case a patient remained comatose after 48 hours and had a 
motor score ≤ 3 when targeted temperature management and sedation were ceased. The presence of 
the PLR was tested daily by treating physicians as part of standard care.  
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2.5.2 Ultrasonographic ONSD Measurements 
Trained investigators performed ultrasonographic ONSD measurements on days 1 (0 – 24 hours), 2 (24 
– 48 hours) and 3 (48 – 72 hours) after cardiac arrest, or until the patient regained consciousness or 
died. Three consecutive measurements were performed per eye each day. Sonograms were obtained 
using the Affinity 70C Ultrasound system equipped with a linear probe with a frequency range of 3-12 
MHz (Philips, the Netherlands). Ultrasound gel was applied to the probe and a probe cover was placed 
over it, preventing the gel from touching the eye. The probe was placed transversally on the superior-
lateral part of the closed upper eyelid, angled caudally and medially with the patient’s head 30° tilted. 
No pressure was asserted on the eye. The field depth was set to 4 cm. The optimal view of the optic 
nerve was sought. The ONSD was measured 3 mm posterior to the retina, as this is the site of maximal 
pressure changes along the optic nerve [40] (Figure 2). The markers were placed at the transition from 
the hyperechoic retrobulbar fat to the hypoechoic line, in the presence of hyperechoic striped bands, 
or at the transition from the hyperechoic retrobulbar fat to the hypoechoic region of the optic nerve, 
in absence of striped bands. These marker placements presumably both correspond to the outer edges 
of the dura mater [41]. Transorbital sonograms were exported from IntelliSpace Cardiovascular 
(version 5.1, Philips, The Netherlands) as anonymised DICOM files.   

 
Figure 2. Left panel: Transorbital sonogram showing the optic nerve sheath and surrounding tissues. D1 denotes 
the distance (3 mm) from the retina to the reference point of the ONSD measurement. D2 denotes the measured 
ONSD. Right panel: The corresponding image, labelling the anatomical components of the eye for direct 
comparison with the transorbital sonogram  [42].  
 

2.6 Data Analysis 

2.6.1 Objective 1: Additional Predictive Value of ONSD  
The first objective of this thesis was to evaluate the predictive value of the ultrasonographic ONSD 
measurements in addition to established predictors for neurological outcome in comatose patients 
after cardiac arrest. The additional predictive value of ONSD measurements was assessed by creating 
two logistic regression models, one predicting neurological outcome solely based on established 
predictors, and one when also adding ONSD measurements. For our primary analysis, we excluded 
patients with a non-neurological cause of death. A secondary analysis including all patients is 
presented in Appendix B. 

2.6.1.1 Outcome and Predictor Variables 
The outcome variable was a good (CPC 1-2) or poor (CPC 3-5) neurological outcome. Predictor variables 
were the EEG, SSEP, PLR, and ONSD on days 1-3. Continuous EEG recordings were categorised as 1) 
continuous within 12 hours, 2) suppressed with or without superimposed synchronous activity after 
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24 hours, or 3) other [8] (Table A1 in Appendix A). SSEP were categorised as 1) bilaterally absent N20 
responses or 2) present N20 responses or unavailable, as an absent N20 response is a highly-specific 
predictor of a poor neurological outcome, but no predictions about neurological outcome can be done 
in case of a present N20 response [5]. The PLR was categorised as 1) present or 2) bilaterally absent 
after 72 hours [5]. The six ONSD measurements obtained per day were averaged to one binocular 
ONSD. 

2.6.1.2 Feature Selection 
Predictor variables were selected by a filter feature selection method, which selected features by their 
statistical relevance to the outcome variable. Thereafter, multicollinearity between ONSD on days 1 to 
3 and selected established predictors was measured by the variance inflation factors (VIF). A VIF > 5 
indicated high collinearity [43].  
 

2.6.1.3 Mixed-Effects Logistic Regression  
To investigate the additional predictive value of ONSD measurements, we trained and validated a 
logistic regression model, based on the selected established predictors, and a mixed-effects logistic 
regression model, also including ONSD, in R (version 4.2.2). Patients were split into a training (70% of 
data) and validation set (30% of data) randomly. Mean binocular ONSD was normalised to z-scores. 
The mixed-effects logistic regression model with a random intercept was fitted using the BOBYQA 
optimiser. A random slope or a random intercept and slope model were not achievable due to many 
missing ONSD measurements. Fixed effects were the selected established predictors, mean binocular 
ONSD, and a categorical time variable (day 1, 2, or 3). Patient ID was used as a random effect. Predictive 
values of the models were evaluated using receiver operating characteristics (ROC): area under the 
curve (AUC), partial area under the curve (pAUC), sensitivity to predict a poor neurological outcome at 
100% specificity, and sensitivity to predict a good neurological outcome at > 90% specificity. The pAUC 
for predicting a poor neurological outcome was calculated as the AUC where specificity was > 99% and 
the pAUC for predicting a good neurological outcome as the AUC where specificity was > 90%. A 100% 
specificity for poor neurological outcome prediction was required to prevent WLST in patients with 
chances of neurological recovery [2]. The additional predictive value of ONSD measurements was 
quantified as the increase in sensitivity for a poor and good neurological outcome.  
 

2.6.2 Objective 2: Semi-Automatic ONSD Measurement 
The second objective of this thesis was to develop and test a method to semi-automatically measure 
the ONSD from transorbital sonograms of comatose patients after cardiac arrest. This method 
consisted of two substeps: a semi-automatic segmentation model and an algorithm that automatically 
calculated the ONSD from the obtained segmentations (Figure 3), which were both developed in 
MATLAB (version R2021b, The MathWorks, Inc., Natick, MA, USA). 

 

Figure 3: Visualisation of the two substeps for semi-automatic measurement of the optic nerve sheath diameter 
(ONSD) from transorbital sonograms. The optic nerve and its sheath were segmented from the transorbital 
sonograms (left panel) by a segmentation algorithm (middle panel) and the ONSD was calculated from the 
segmentations (right panel).  



10 
 

2.6.2.1 Semi-Automatic Segmentation   
Three segmentation methods were developed and tested to segment the optic nerve and its sheath 
from transorbital sonograms, being the region-growing algorithm, edge detection, and an active 
contour model. The active contour model [44], also known as ‘snakes’, was found most suitable to 
segment the optic nerve and its sheath, when visually inspecting segmentations (Appendix C). 
Therefore, the active contour model was chosen as the algorithm to proceed with. Active contour 
models are energy-minimising curves that deform to align with image features [44]. The contour 
deforms over a series of iterations from an initial contour as its energy is affected by internal, image, 
and external constraint forces (Appendix D). These forces are controlled by hyperparameters, that 
were optimised by performing a grid search.  

Transorbital sonograms of cohort 1 were split into a dataset for the grid search (75%) and validation 
(25%). Transorbital sonograms were split randomly, but the six transorbital sonograms measured 
successively at one day in one patient were kept together, to prevent bias and maintain enough 
variability within the grid search set. Cohort 2 was intended as a test set, but due to poor grid search 
results, validation and testing were disregarded.  

The transorbital sonograms were pre-processed to increase the contrast between the hyperechoic 
optic nerve sheath and the hyperechoic retrobulbar fat by performing standard deviation-based image 
stretching [45]. This stretching was done by linearly mapping pixel intensity values x of each sonogram 
between 0 and mean(𝐱) + 𝑛 std (𝐱) to new intensity values between 0 and 1, and setting intensity 
values >  mean(𝐱) + 𝑛 std (𝐱) to 1, where an 𝑛 of 3 gave the best enhanced image (Figure E1 in 
Appendix E). Intensity values near 0 were not mapped to new intensity values, as the black pixels were 
already dominant in the transorbital sonograms.  

An active contour model [46] was adapted to segment the optic nerve and its sheath. The initial 
position of the active contour was set by manually selecting five to eight points inside the optic nerve 
and interpolating between these points using a lowpass interpolating filter [47] (Figure 4). The initial 
contour was positioned inside the optic nerve, as a visual inspection revealed that more accurate 
segmentations were obtained when the contour was grown outwards instead of shrinking towards the 
optic nerve. The behaviour of the active contour model was affected by fifteen hyperparameters 
(Table 1). Values of ten hyperparameters were tuned by educated guesses. A grid search was 
performed to tune the other five hyperparameters: the attraction to edges (wedge) and lines (wlines), 

the stiffness (α), the balloon force (δ), and the timestep (τ). The grid search was run on the AM High 
Performance Computing Cluster of the University of Twente. Jobs were sent to the Simple Linux Utility 
for Resource Management scheduler from Windows PowerShell. Data transfer from the local 
computer to the cluster was executed using FileZilla 3.60.2 using the Secure File Transfer Protocol. The 
1024 hyperparameter combinations were evaluated based on the combined results of the active 
contour model and the algorithm that automatically calculated the ONSD from the segmentations. 

2.6.2.2 Automatic Calculation of the ONSD  
An algorithm to automatically calculate the ONSD from the segmentations obtained by the active 
contour model was developed next (Figure 5). The algorithm consisted of five steps. First, the centroid 
of the largest segmented area was calculated (Step 1). Thereafter, a reference point within the eye 
globe was marked halfway between the ultrasound probe and the centroid (Step 2). The retina was 
detected from this reference point by selecting the first pixel with an intensity value larger than 0.1 
moving vertically (Step 3). The threshold value of > 0.1 was chosen by evaluating the intensity values 
of the hyperechoic retrobulbar fat in one hundred randomly selected transorbital sonograms of the 
grid search dataset. One pixel of the retrobulbar fat was selected in one hundred images. The pixel 
was chosen such that it was representative of the surrounding tissue. A pixel value of 1 (white) was 
most present (19%), and the other pixels were evenly spread in the range of 0.14 – 0.99 (Figure E2 in 
Appendix E). As the eye globe was black (intensity value 0) in absence of noise, a threshold of > 0.1 
was chosen. If the retina was detected, a second reference point was selected 3 mm behind the retina 
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(Step 4). The number of pixels was related to anatomical distance by retrieving the pixel size from the 
metadata of the DICOM file. From this second reference point, the left and right boundaries of the 
segmentation area were detected by moving horizontally (Step 5), from which the ONSD was 
calculated.  

 

Figure 4: Example of a transorbital sonogram where the initial contour of the active contour model (dark blue 
contour) was positioned inside the optic nerve by first selecting six points (light blue stars) and thereafter 
interpolating between these points.  

 

 

Figure 5: Visualisation of the five consecutive steps to automatically measure the optic nerve sheath diameter 
(ONSD) from the segmented area of the transorbital sonograms. Step 1: the centroid of the largest segmented 
area was calculated. Step 2: a reference point within the eye globe was selected halfway between the ultrasound 
probe and the centroid. Step 3: the retina was searched from this reference point by moving vertically. Step 4: a 
second reference point was selected 3 mm behind the retina. Step 5: the left and right boundaries of the 
segmented area were detected by moving horizontally, from which the ONSD was calculated.  
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Table 1: Hyperparameters of the active contour model.  

Grid search 

Parameter Description Grid 

𝒘𝐞𝐝𝐠𝐞𝐬 Attraction to edges [1 2 3 4] 
Too large values resulted in a collapse within a local 
minimum. 

𝒘𝐥𝐢𝐧𝐞𝐬 Attraction to lines 
 

[-0.08 -0.06 -0.04 -0.02] 
Negative values attracted the model towards dark 
lines.  

𝜶 Stiffness [0.02 0.04 0.06 0.08] 
Penalized changes in distances between contour 
points. 

𝜹 Balloon force [0.05 0.10 0.15 0.20] 
Inflated the active contour. 

𝜸 Time step [0.05 0.2 0.5 1] 
Weighed the influence of the current contour 
position and the image forces on the contour 
movement. Large γ increased the weight of the 
current contour position.  

Constant values 

Parameter Description Value 

𝒏 Number of contour points 100 
Enough detail was assumed to be obtained with 100 
contour points. 

𝒊 Number of iterations 500 
Segmentations did not change largely after 500 
iterations.  

𝜷 Smoothness 0.2 
Penalized oscillations in the contour. Segmentations 
did not change largely when changing 𝛽. 

𝝈𝟏 Sigma to calculate energy functional 
for attracting lines using a Gaussian 
filter  

20  
Determined the kernel size of the Gaussian filter and 
thereby affected the amount of detail [48]. 𝜎 was 
kept unaltered from the original MATLAB script.  

𝝈𝟐 Sigma to calculate the gradient of 
snake energy using a Gaussian filter 

20 
Unaltered from the original MATLAB script. 

𝝈𝟑 Sigma to calculate the Laplacian in 
gradient vector flow. 

1  
Unaltered from the original MATLAB script, as a 
good vector field was assumed to be obtained with 
σ = 1. 

𝒘𝐭𝐞𝐫𝐦 Attraction to terminations of lines 0 
No line terminations or corners had to be detected.   

𝜿 Weight of external image force 2 
Trained indirectly by varying the other parameters. 

𝝁 Regularisation term 0.2 
A well-smoothed vector field was assumed to be 
obtained with a μ of 0.2.  

𝑮𝑰𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 Number of gradient vector flow 
iterations 

200 
A good vector field was assumed to be obtained 
with 200 iterations.  

Attraction to edges (𝑤edges) and lines (𝑤lines), the stiffness of the contour (α), the balloon force (δ), and the 

timestep (τ) were tuned by performing a grid search. The other ten hyperparameters were set by educated 
guesses. 
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2.6.2.3 Hyperparameter Tuning  
The performances of the 1024 hyperparameter combinations were quantified in terms of the mean 
square error (MSE) between the manually and semi-automatically measured ONSD, and the feasibility, 
defined as the percentage of transorbital sonograms from which the algorithm was able to calculate 
an ONSD. The hyperparameter combination with the smallest MSE was chosen as the best one and 
used for further analysis. We chose to not evaluate the performance of the hyperparameter 
combinations in terms of segment maps, as the boundaries of the posterior part were often unsharp 
and only accurate segmentations of the anterior part of the optic nerve were required to calculate the 
ONSD.  

2.6.2.4 Agreement between Manual and Automatic Measurements 
The hyperparameter combination with the smallest MSE was thus chosen for further agreement 

analysis, where the manual ONSD measurements were considered the gold standard. First, a visual 
inspection of segmentations was done to assess the general performance of the semi-automatic 
method. Thereafter, the agreement between manual and automatic ONSD measurements was 
investigated with correlation and Bland-Altman plots. We set a priori acceptable limits of agreement 
of ± 0.5 mm.  

2.6.2.5 Contrast and Histograms 
We compared the contrast and histograms between three categories of transorbital sonograms: those 
in which the ONSD was estimated with an absolute error of ≤ 0.5 mm, underestimated by > 0.5 mm, 
or overestimated by > 0.5 mm. As only the image regions showing the optic nerve and its surroundings 
were of interest, we automatically positioned boxes around the optic nerve (Figure 6). The box 
positions were derived from the initial contours. The upper boundary of the box was positioned at the 
most anterior point of the initial contour, which prevented including the black eye globe within the 
region. The lower boundary of the box was set as the posterior edge of the ultrasound image, which 
was the same in sonograms of equal size. The left and right boundaries of the box were set such that 
the box had a width of 25% of the sonogram and was centred around the centroid of the initial contour. 
The contrast within the box was calculated by subtracting the average intensity value of the 10% 
darkest pixels from the average intensity value of the 10% brightest pixels. Moreover, a histogram was 
calculated for each box. The average histograms were calculated by stacking the individual histograms 
of each category and dividing them by the number of histograms within each category. 

2.7 Statistical Analyses 
Statistical analysis was performed using SPSS (version 28, IBM SPSS Statistics, IBM, Armonk, New York, 
USA), R (version 4.2.2), and MATLAB (version R2021b, The MathWorks, Inc., Natick, MA, USA). 
Normality was assessed using histograms and Q-Q plots. Data were presented as medians with 
interquartile ranges, as our data were not normally distributed. Differences between continuous 
variables were assessed using Mann-Whitney U tests. In the case of three groups, differences between 
continuous variables were measured with a Friedman test. Differences in categorical variables were 
tested by Chi-squared or Fishers’s exact test in case expected frequencies were below five. Correlation 
coefficients were calculated using Spearman’s rank correlation coefficient. Violin plots were drawn as 
probability density plots based on a normal kernel function with an optimised bandwidth [49]. Boxplots 
were drawn according to Tukey’s method. Differences between histograms were assessed with Chi-
squared tests. Values below p < 0.05 were considered statistically significant.  
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Figure 6: Transorbital sonogram in which the initial contour (blue line), the centroid of the initial contour (blue 
pentagram), and a region surrounding the optic nerve (white box) are highlighted. The upper boundary was 
positioned at the most anterior point of the initial contour. The lower boundary was set as the posterior edge of 
the ultrasound image. The left and right boundaries were set such that the region had a width of 25% of the 
sonogram and was centred around the centroid of the initial contour. 
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3. Results 
3.1 Study Population 
In total, 171 patients who were admitted to the ICU after a cardiac arrest were screened, of whom 95 
(56%) were included in this study (Figure 7). Baseline characteristics are presented in Table 2. A poor 
outcome was observed in 53 (56%) patients, of whom 41 (77%) died due to post-anoxic 
encephalopathy. Patients with a good outcome were younger, more frequently had a shockable first 
cardiac rhythm, and had a shorter time from collapse to the return of spontaneous circulation (ROSC). 
A continuous EEG pattern within 12 hours (suggestive of a good neurological outcome) was observed 
in eleven (26%) patients with a good outcome and three (6%) patients with a poor outcome [8]. Two 
of the patients with poor outcomes and continuous EEG patterns died because of non-neurological 
causes. Of the patients with a poor outcome, five (9%) had a suppressed EEG pattern with or without 
superimposed synchronous activity after 24 hours, seven (13%) a bilaterally absent SSEP N20 response 
after 48 hours, and one (2%) an absent PLR after 72 hours (all suggestive of a poor neurological 
outcome) [5,8].   

 

Figure 7: STROBE (Strengthening the Reporting of Observational studies in Epidemiology) flowchart of patient 
inclusion. GSC: Glasgow Coma Scale, CPC: Cerebral Performance Category.  

3.2 Available Data 
Transorbital sonography was performed in 72 (75.8%) patients on day 1, 57 (60.0%) patients on day 2, 
and 39 (41.1%) patients on day 3 (Table 3). The most important reasons for missing measurements 
were regaining consciousness in patients with a good outcome, and decease in patients with a poor 
outcome. In cohort 1, 858 transorbital sonograms were obtained, whereof 811 (94.5%) were available 
in IntelliSpace Cardiovascular. Of these sonograms, 612 (75%) were included in the grid search.  
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Table 2: Baseline characteristics of included patients with a good and poor outcome six months after cardiac 
arrest. 

Characteristic Good outcome (n = 42) Poor outcome (n = 53) p-value 

Age (years) 60.0 [52.5 – 67.3] 70.0 [63.5 – 75.5] p < 0.001* 

Female (n) 11 (26%) 16 (30%) p = 0.668 

Bystander CPR (n) 23 (55%) 25 (47%) p = 0.537 

OHCA (n) 42 (100%) 50 (94%) p = 0.252 

Shockable first rhythm (n) 42 (100%) 36 (68%) p < 0.001* 

Cardiac cause (n) 40 (95%) 46 (87%) p = 0.428 

Time from collapse to ROSC (min) 15 [10 – 20] 19 [15 – 32] p = 0.002* 

EEG (n) 
Continuous < 12 hours 
Suppressed > 24 hours 
Inconclusive 

 
11 (26%) 
0 (0%) 
31 (74%) 

 
3 (6%) 
5 (9%) 
45 (85%) 

p = 0.003* 

SSEP (n) 
Present N20  
Absent N20  
Not tested 

 
2 (5%) 
0 (0%) 
40 (95%) 

 
20 (38%) 
7 (13%) 
26 (50%) 

p < 0.001* 

Absent PLR > 72 hours (n) 0 (0%) 1 (2%) p > 0.999 

CPC at 6 months (n) 
1 – No disability  
2 – Moderate disability  
3 – Severe disability  
4 – Vegetative state 
5 – (Brain) death 

• Post-anoxic encephalopathy  

• Other 

 
32 (76%) 
10 (24%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 

 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 
53 (100%) 
41 (77%) 
12 (23%) 

- 

Dichotomous variables are listed as n (%). Continuous variables are listed as median [interquartile range]. 
Significant differences are indicated by *. CPR: cardiopulmonary resuscitation, OHCA: out-of-hospital cardiac 
arrest, ROSC: the return of spontaneous circulation, EEG: electroencephalogram, SSEP: somatosensory evoked 
potentials, PLR: pupillary light reflex, CPC: cerebral performance category. 

Table 3: Available ultrasonographic measurements of the optic nerve sheath diameter (ONSD) on days 1-3 after 
cardiac arrest in patients with a good and poor outcome.  

Outcome Day 1 Day 2 Day 3 

Good (n = 42) 33 24 15 

Poor (n = 53) 

• Post-anoxic encephalopathy (n = 41) 

• Other (n = 12) 

39 
29 
10 

33 
26 
7 

24 
21 
3 

Total (n = 95) 72 (75.8%) 57 (60.0%) 39 (41.1%) 

 

3.3 Objective 1: Additional Predictive Value of ONSD   

3.3.1 ONSD in Good and Poor Neurological Outcome 
Mean binocular ONSD measured on day 1 was larger in patients with a poor neurological outcome 
(6.40 [6.15 – 6.88] mm) than in those with a good neurological outcome (6.25 [5.68 – 6.63] mm) (p = 
0.023) (Figure 8 and Table A2 in Appendix A). Mean binocular ONSD measured on days 2 (6.32 [5.84 
– 5.56] mm versus 6.51 [6.06 – 6.88] mm, p = 0.130) and 3 (6.45 [5.76 – 6.89] mm versus 6.67 [6.37 – 
6.92] mm, p = 0.490) did not differ between patients with good and poor neurological outcomes, 
respectively. 
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Figure 8: Violin plots of the mean binocular optic nerve sheath diameter (ONSD) measured at day 1 (n = 62), 2 (n 
= 50), and 3 (n = 36) in patients with a good (in green) and poor (in red) neurological outcome. ONSD on day 1 
was larger in patients with a poor neurological outcome (6.40 [6.15 – 6.88] mm) than in those with a good 
neurological outcome (6.25 [5.68 – 6.63] mm) (p = 0.023). ONSD on days 2 and 3 did not differ between patients 
with good and poor neurological outcomes. Significant differences are indicated by *. 
 

3.3.2 Feature Selection 
Of the established predictors of neurological outcome, EEG pattern and SSEP results were associated 
with neurological outcome (both p < 0.001), and PLR was not (p > 0.999). Only one (2%) patient with a 
poor neurological outcome had an absent PLR after 72 hours. Therefore, we chose to only include the 
EEG and SSEP as predictor variables. The VIFs between ONSD on days 1 to 3 and EEG and SSEP were 
1.14, 1.15, and 1.14 respectively, indicating low collinearity.   

3.3.3 Predictive Values 
When predicting neurological outcomes with a logistic regression model based on EEG and SSEP, a 
continuous EEG pattern was significantly associated with lower odds of a poor neurological outcome 
(odds ratio (OR) =  0.100, 95% confidence interval (CI): 5.19e-03 - 0.599, p = 0.029) (Table 4). Similarly, 
a continuous EEG pattern was significantly associated with lower odds of a poor neurological outcome 
(OR = 0.159, 95% CI: 0.0305 - 0.833, p = 0.029) when predicting neurological outcomes with a mixed-
effects logistic regression model based on ONSD, EEG and SSEP (Table 5). A suppressed EEG pattern (p 
= 0.995), an absent SSEP (p = 0.994), and ONSD measurements (p = 0.356) were not significantly 
associated with neurological outcome.  

Table 4: Summary of a logistic regression model predicting neurological outcome using EEG and SSEP results.  

Predictor Estimated 
coefficient 

Odds ratio 95% CI for odds ratio p-value 

Lower Upper 

Intercept 5.12e-16 1.00 0.527 1.90 p > 0.999 

Suppressed EEG 18.6 1.16e+08 1.16e-154 ∞ p = 0.995 

Continuous EEG -2.30 0.100 5.19e-03 0.599 p = 0.036* 

Absent SSEP 18.6 1.16e+08 7.688342e-124 ∞ p = 0.995 

EEG: electroencephalography, SSEP: somatosensory evoked potentials, CI: Confidence interval. Significance is 
indicated by *. 
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Table 5: Summary of a mixed-effects logistic regression model predicting neurological outcome using EEG pattern, 
SSEP results and ONSD measurements.  

Predictor Estimated 
coefficient 

Odds ratio 95% CI for odds ratio p-value 

Lower Upper 

Intercept -0.0834 0.920 0.405 2.09 p = 0.842 

Suppressed EEG 17.3 3.39e+07 0.000 ∞ p = 0.995 

Continuous EEG -1.84 0.159 0.0305 0.833 p = 0.029* 

Absent SSEP 17.6 4.51e+07 0.000 ∞ p = 0.994 

ONSD (mm) 0.273 1.31 0.736 2.34 p = 0.356 

Day 2 0.0887 1.09 0.355 3.37 p = 0.877 

Day 3 0.465 1.59 0.475 5.34 p = 0.451  

EEG: electroencephalography, SSEP: somatosensory evoked potentials, ONSD: optic nerve sheath diameter, CI: 
Confidence interval. Significance is indicated by *. 

Performance measures of the mixed-effects logistic regression and logistic regression are listed in 
Table 5. ROC curves are given in Figures 9 and 10 for the mixed-effects logistic regression model and 
the logistic regression model, respectively. When adding ONSD measurements to neurological 
outcome predictions, sensitivity for a poor neurological outcome increased from 25% (95% CI: 0% – 
50%) to 45% (95% CI: 25% – 65%). Sensitivity for a good neurological outcome raised from 7.7% (95% 
CI: 0% – 23%) to 18% (95% CI: 4.5% – 36%). AUC increased from 0.65 (95% CI: 0.52 – 0.79) to 0.76 (95% 
CI: 0.62 – 0.92). The pAUC for predicting a poor neurological outcome with a specificity > 99% increased 
from 0.0025 (95% CI: 0.000059 – 0.005) to 0.0045 (95% CI: 0.0025 – 0.0075), proportional to the 
sensitivity for poor neurological outcome. The pAUC curve for predicting a good neurological outcome 
with a specificity > 90% increased from 0.014 (95% CI: 0.0055 – 0.029) to 0.018 (95% CI: 0.0045 – 
0.048). 

Table 5: Performance measures of the logistic regression model, predicting neurological outcome based on EEG 
pattern and SSEP results, and the mixed-effects logistic regression model, predicting neurological outcome based 
on EEG pattern, SSEP results, and ONSD on days 1-3. When adding ONSD measurements to neurological outcome 
predictions, (p)AUC and sensitivity for both a good and poor neurological outcome increased. 

 EEG + SSEP EEG + SSEP + ONSD 

AUC  0.65 (0.52 – 0.79) 0.76 (0.62 – 0.92) 

Poor outcome 

Sensitivity (%) 25 (0 – 50) 45 (25 – 65) 

Specificity (%) 100 (100 – 100) 100 (100 – 100) 

pAUC 0.0025 (0.000059 – 0.005) 0.0045 (0.0025 – 0.0075) 

Good outcome 

Sensitivity (%) 7.7 (0.0 – 23) 18 (4.5 – 36) 

Specificity (%) 100 (100 – 100) 100 (100 – 100) 

pAUC 0.014 (0.0055 – 0.029) 0.018 (0.0045 – 0.048) 

Performance measures are presented with 95% confidence intervals. EEG: electroencephalography, SSEP: 
somatosensory evoked potentials, ONSD: optic nerve sheath diameter, AUC: area under the curve, pAUC: partial 
area under the curve. 
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Figure 9: ROC curve of the logistic regression model 
predicting neurological outcomes by the 
electroencephalography (EEG) pattern and 
somatosensory evoked potentials (SSEP) results. The red 
point marks the probability threshold for predicting a 
poor neurological outcome. The green point marks the 
probability threshold for predicting a good neurological 
outcome. The red area is the pAUC for predicting poor 
outcome with a specificity > 99%, and the green area the 
pAUC for predicting a good neurological outcome with a 
specificity > 90%. 

Figure 10: ROC curve of the mixed-effects logistic 
regression model predicting neurological outcome 
by electroencephalography (EEG) pattern, 
somatosensory evoked potentials (SSEP) results 
and optic nerve sheath diameter (ONSD) 
measurements. The red point marks the probability 
threshold for predicting a poor neurological 
outcome. The green point marks the probability 
threshold for predicting a good neurological 
outcome. The red area is the pAUC for predicting 
poor outcome with a specificity > 99%, and the 
green area the pAUC for predicting a good 
neurological outcome with a specificity > 90%. 

 

3.4 Objective 2: Semi-automatic ONSD Measurements  

3.4.1 Optimal Hyperparameter Combination  
The hyperparameter combination of the active contour model α = 0.08, γ = 1, δ = 0.05, wlines = -0.02, 
and wedges = 1 gave the smallest MSE of 4.15 mm2 and had a feasibility of 86.1% (Figure E3 in Appendix 
E). When applying this hyperparameter combination, a good estimation of the ONSD with an absolute 
error of ≤ 0.5 mm was obtained in 17% of sonograms. An over- or underestimation of the ONSD by 
>0.5 mm occurred in 46% and 23% of sonograms, respectively. In 14% of sonograms, the method was 
not able to measure any ONSD from the segmentations. 

3.4.2 Visual Inspection of Segmentations and Automatic ONSD Measurements 
When visually inspecting the sonograms with an absolute error ≤ 0.5 mm, the ONSD was measured 
correctly in about 50% of sonograms (Figure 7, panel A), but in the other 50%, the segmentation did 
not overlap well with the optic nerve and its sheath, for example in the case of a horizontal shifting 
(Figure 7, panel B). An underestimation was in most cases caused by: (1) inaccurate detection of the 
retina because of hyperechoic structures within the hypoechoic eye globe, which led to ONSD 
measurements too anteriorly, (2) attraction towards retrobulbar fat instead of the optic nerve sheath 
(Figure 7, panel C), resulting in too small segmentations, and (3) insufficient inflation of the contour 
towards the optic nerve sheath (Figure 7, panel D). An overestimation occurred mostly when the 
contour grew outside the edges between the optic nerve sheath and the retrobulbar fat (Figure 7, 
panels E and F). No estimation of the ONSD was available when the retina was detected too anteriorly, 



20 
 

for example in case of noise (Figure 7, panel G), artefacts (Figure 7, panel H), or text at the position of 
the eye globe.    

3.3.3 Agreement between Manual and Automatic ONSD Measurements 
We found no correlation between the manual and automatic ONSD measurements (rs = -0.029, p = 
0.514) (Figure 8). The Bland-Altman plots showed a bias of -0.267 mm and 95% limits agreements 
between -4.230 and 3.696 mm (Figure 9). A negative trend was evident along the Bland-Altman plot 
(y = 9.05 – 1.42x, R2 = 0.49, F(1,611) = 507, p < 0.001). Figure E4 in Appendix E gives a supplementary 
Bland-Altman plot with the manual ONSD measurements on the horizontal axis.    

3.3.4 Contrast and Histograms 
On visual inspection, violin plots of contrast and average histograms did not differ between the 
transorbital sonograms in which the ONSD was estimated automatically with an absolute error ≤ 0.5 
mm, and sonograms in which the ONSD was under- or overestimated by > 0.5 mm. Appendix F 
presents a statistical analysis. 

 

 
Figure 8: Scatter plot of the manual versus automatic 
ONSD measurements obtained with the 
hyperparameter combination of the active contour 
model (α = 0.08, γ = 1, δ = 0.05, wlines = -0.02, and wedges 
= 1) giving the smallest mean square error (4.15 mm2). 
There was no correlation between manual and 
automatic ONSD measurements (rs = -0.029, p = 
0.514).  

Figure 9: Bland-Altman plots for the manual and 
automatic ONSD measurements. The grey line 
represents the regression line (y = 9.05 (8.23 to 9.88) 
– 1.42 (± 0.12) x). It shows a bias of -0.267 mm and 
95% limits agreements between -4.230 and 3.696 
mm. 
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Figure 7: Examples of transorbital sonograms where the ONSD was estimated relatively well with an absolute 

error of ≤ 0.5 mm (green, A and B), underestimated by > 0.5 mm (yellow, C and D), overestimated by > 0.5 mm 

(orange, E and F), and no ONSD was estimated (red, G and H).   
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4. Discussion 
4.1 Objective 1: Additional Predictive Value of ONSD  
In our cohort of comatose patients after cardiac arrest, we found that sensitivity for a poor neurological 
outcome increased from 25% to 45% and sensitivity for a good neurological outcome from 8% to 18% 
when adding ultrasonographic ONSD measurements to continuous EEG and SSEP recordings. Thus, 
ONSD measurements hold potential to have an additional value in neurological outcome prediction in 
comatose patients after cardiac arrest. 

Our logistic regression model based on established predictors predicted a good neurological outcome 
with an unexpectedly low sensitivity of 8%, while 26% of all patients with a good neurological outcome 
had a continuous EEG pattern within 12 hours. This discrepancy was caused by the low incidence of 
8% of a continuous EEG pattern in patients with a good neurological outcome within our validation 
set, despite shuffling our data before splitting data into a training and validation set. The logistic 
regression model predicted a poor neurological outcome with a sensitivity of 25%, which was 
comparable with the 29% incidence of an absent SSEP N20 response and a suppressed EEG pattern 
after 24 hours in all our patients with a poor neurological outcome.  

The ONSD measurements were not significantly associated with the odds of a good or poor 
neurological outcome. Only a continuous EEG pattern was significantly associated with lower odds of 
a poor neurological outcome in both the logistic regression model and mixed-effects logistic regression 
model. We expect this to be the result of too little statistical power, as we found significantly larger 
ONSD in patients with a poor neurological outcome than in those with a good neurological outcome.  

As far as we know, this is the first study to investigate the predictive value of ultrasonographic ONSD 
patients in addition to established predictors in comatose patients after cardiac arrest. Previous 
studies focused on the predictive value of ONSD measurements alone or in combination with 
predictors not included in current guidelines [11–15]. These studies reported mean ultrasonographic 
ONSD measurements between 3.8 and 6.5 mm in patients with a good neurological outcome, and 
between 5.2 and 7.2 mm in those with a poor neurological outcome. We report median ONSD values 
of 6.25 and 6.40 mm in patients with good and poor neurological outcome, respectively, at day 1 after 
cardiac arrest. These ONSD values are comparable with other studies, although our ONSD values were 
rather large. An explanation for this discrepancy might be differences in ultrasound marker placement 
between studies [41]. A systematic review reported a pooled sensitivity for poor neurological outcome 
of 60% (95% CI: 45-73%), and a specificity of 94% (95% CI: 83–98%) [17]. This would imply that ONSD 
measurements solely can reach higher predictive values than the values that we found by combining 
ONSD measurements with EEG and SSEP recordings. As our sensitivity increased by 20%, we presume 
the pooled sensitivity to be an overestimation. We accepted no false positive predictions of a poor 
neurological outcome, which might have lowered our sensitivity. Furthermore, the sample size within 
these studies was small, making their results less reliable.  

The potential additional predictive value of ONSD measurements can be explained from a 
pathophysiological perspective. EEG rhythm and SSEP responses reflect synaptic functioning [50]. On 
the other hand, the ONSD is an indirect measure of intracranial pressure [10,18–25], which is mostly 
caused by cerebral oedema, which arises within hours after cardiac arrest and is most prominent after 
approximately 3 to 5 days [51,52]. However, we only found significant differences in ONSD between 
patients with a good and poor neurological outcome at day 1. An explanation for this finding might be 
a lack of statistical power, as our primary analysis included 62 patients on day 1, but only 50 and 36 
patients on days 2 and 3, respectively. These ONSD measurements were most often missing because 
patients with a good neurological outcome regained consciousness, and those with a poor outcome 
had died. As a result, the group size was larger and the range of severity of post-anoxic encephalopathy 
was probably wider on day 1 compared to days 2 and 3. 
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4.2 Objective 2: Semi-automatic ONSD Measurements  
Our semi-automatic measurements of the ONSD based on active contours did not have good 
agreement with the manual ONSD measurements. A good estimation of the ONSD was obtained in 
only a minor portion (17%) of transorbital sonograms. Moreover, the correlation plot revealed a lack 
of correlation between manual and automatic measurements. This was confirmed by the Bland-
Altman plot, which showed wide limits of agreements of approximately ± 4 mm, severely exceeding 
our a priori set acceptable limits of ± 0.5 mm. So, our semi-automatic method based on active contours 
is not suited for automatic ONSD measurements. 

Besides wide limits of agreements, the Bland-Altman plot also exhibited a noteworthy negative trend. 
This trend can be explained by the poor performance of the semi-automatic method: overestimated 
ONSD (ONSDautomatic > ONSDmanual) tended to have a higher mean of the manual and automatic 
measurements and underestimated ONSD (ONSDautomatic < ONSDmanual) tended to have a lower mean of 
the manual and automatic measurements. 

Our semi-automatic methods might not be appropriate for segmenting the optic nerve and its sheath 
due to the two different echoic appearances typical for transorbital sonograms. A part of our 
sonograms displayed the optic nerve as a linear hypoechoic structure surrounded by retrobulbar fat 
(Figure 7B), the other part shows hyperechoic striped bands within the hypoechoic region, which are 
presumably the subarachnoid space, and a hypoechoic line in between the retrobulbar fat and these 
bands, most likely being the dura mater (Figure 7A) [41]. The aetiology of the presence or absence of 
these bands is still unclear [41]. In our large dataset, we observed both echoic appearances. These 
different characteristics might have complicated the grid search to find an optimal hyperparameter 
combination, as the two types of appearances might require different hyperparameter settings. This 
idea is supported by the observation that a good segmentation could be obtained when manually 
adjusting the hyperparameter combinations for individual sonograms.  

To the best of our knowledge, five studies have been published on fully-automated algorithms for 
ultrasonographic ONSD measurements implementing different segmentation methods [35–39]. 
Stevens et al. [35] developed an algorithm which estimated the ONSD in 39 of 42 sonograms with a 
mean difference of only −0.08 ± 0.45 and −0.05 ± 0.41 mm in two observers. Their algorithm detected 
edges between the optic nerve sheath using signed asymmetry features [53], after which they used an 
active contour model to segment the optic nerve and its sheath. Meiburger et al. [36] implemented a 
dual snake model, where the mean error between manual and automatic measurements was  0.06  ± 
0.52 mm in 71 sonograms. Rajajee et al. [39] used an intensity-based clustering approach to segment 
the optic nerve and its sheath and obtained a mean difference between manual and automatic 
measurements of 0.012 ± 0.046 mm in 88 sonograms. Moore et al. [38] segmented the optic nerve 
and its sheath of an ocular phantom using the watershed algorithm. They reported absolute errors of 
maximally 1 mm. Gerber et al. [37] used a binary thresholding algorithm on 23 sonograms, that gave 
correlations of 0.85. To conclude, these authors reported good agreement between manual and 
automatic ONSD measurements, in contrast to our results. However, their algorithms were tested in 
only a few dozen sonograms, which might have resulted in less variability within their datasets. 
Moreover, these studies might have encountered only one type of echoic appearance due to their 
smaller datasets, hampering the generalisability of their methods to larger datasets including the two 
types of echoic behaviours. The algorithm proposed by Stevens et al. [35] might be able to overcome 
the challenges of two different echoic appearances of the optic nerve and its sheath. Their search for 
edges within the signed asymmetry features could be adapted, for example by starting the search for 
edges in the retrobulbar fat instead of the middle of the cropped sonogram.  
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4.3 Limitations and Strengths 
Strengths of our study include its prospective design and the broad selection of comatose patients 
after cardiac arrest, ensuring generalisability to a broad range of clinical settings. Furthermore, we 
measured ONSD on three consecutive days after cardiac arrest, while most other studies performed 
measurements only once on day 1. As cerebral oedema typically peaks on day 3 after cardiac arrest 
[51], testing later measurements seems appropriate.  

We acknowledge some limitations. First, even though we included 95 patients, our sample size, on day 
3 especially, is small (n = 36). As a result, our CI are wide, making confident conclusions about the 
additional predictive value of ONSD measurements impossible. Second, the wide time range of 
measurements for each day (e.g., 2 or 23 hours after cardiac arrest) could have influenced our results, 
because of the strong time-dependency of cerebral oedema during the first days after cardiac arrest 
[52]. Third, transorbital sonography was performed by nine sonographers. Despite careful training, 
underestimations of the ONSD were observed during a visual inspection, especially within the first 
included patients. This is most likely because of the steep learning curve of ONSD measurements [54]. 
We did not exclude these inaccurate measurements because of time constraints. As these incorrect 
measurements were underestimations of the ONSD, they would not lead to false positive predictions 
of a poor neurological outcome. Fourth, the influence of a self-fulfilling prophecy cannot be fully 
excluded, which plagues literature on neurological outcome prediction after cardiac arrest in general. 
However, ONSD measurements were never taken into account in decisions on WLST. Fifth, manual 
ONSD measurements were considered the ground truth for tuning the active contour model, but the 
true anatomical ONSD in these patients was obviously unknown. Sixth, we selected predictors that had 
non-statistically significant coefficients for the logistic regression models, which would generally lead 
to overfitting. We however decided to still include these predictors, as the relationship between a 
suppressed EEG pattern and an absent SSEP and a poor neurological outcome is straightforward. The 
logistic regression model based on these established predictors predicted neurological outcome as 
would be done by current guidelines [5]. 

4.4 Future Perspectives 
ONSD measurements hold potential to add predictive value to neurological outcome predictions in 
comatose patients after cardiac arrest. We recommend increasing the sample size for the validation 
of our results. Our research group aims to include another 65 patients. Cut-off ONSD values for 
predicting a poor (at 100% specificity) and good (at 90% specificity) neurological outcome should be 
defined and validated in an external dataset. As of now, cut-off values between 5.11 and 5.75 mm [11–
15] are reported, but these were calculated in only small datasets and would lead to many false 
positive predictions of a poor neurological outcome in our study population. Due to the possibly low 
intra- and interobserver reliability of ultrasonographic ONSD measurements [27–34], we recommend 
further developing a fully-automated method to measure the ONSD from transorbital sonograms to 
eliminate human error. We suggest adapting the asymmetry features-based algorithm developed by 
Stevens et al. [35] such that it would be applicable to the two different echoic appearances of the optic 
nerve and its sheath. If testing their algorithm on our dataset, we recommend removing the sonograms 
with incorrect manual ONSD measurements, which were mentioned before, and cropping sonograms 
in which the field depth was not set at 4 cm properly. It would also be convenient for clinical 
applications to incorporate such an automated algorithm in ultrasound machines while performing 
transorbital sonography, which would require the involvement of manufacturers. If these hurdles are 
overcome, more patients with poor and good neurological outcome could be identified using a readily 
available, non-invasive, bedside, fast, inexpensive, and radiation-free tool for intracranial pressure. In 
this way, the intensity of care in cases of delayed awakening or multi-organ failure can be guided in 
more comatose patients after cardiac arrest and more relatives can be provided with correct 
information. Needless to say, even when ONSD measurement would prove to have an additional 
predictive value, sensitivities of multimodal prediction of neurological outcome after cardiac arrest 
would remain low. This highlights the ongoing need for the development of additional prognostic tools.  
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5. Conclusion  
In conclusion, ultrasonographic ONSD measurements on days 1 to 3 after cardiac arrest provide a fast 
and bedside method that holds potential to add predictive value for neurological outcome in addition 
to EEG and SSEP recordings. Our semi-automatic method based on active contours is not suited for 
automatic ONSD measurements.  
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Appendix A: Tables 
Table A1: EEG categories classified at 6, 12, 24, 36, 48, and 72 hours after cardiac arrest. EEG patterns were 
classified as suppressed with or without superimposed synchronous activity (associated with poor neurological 
outcome > 24 hours after cardiac arrest), continuous (associated with good neurological outcome < 12 hours after 
cardiac arrest), or other patterns (association with neurological outcome unclear).  

Electroencephalography patterns 

Suppressed with or without superimposed synchronous activity 
- Suppressed (maximum amplitude < 10 µV) 
- Burst-suppression (synchronous) with generalized, abrupt-onset bursts or identical bursts with suppressed 
background activity 
- Generalized periodic discharges with suppressed background activity 

Continuous or nearly continuous activity: maximum amplitude ≥ 20 µV, < 10% suppressions* 
- Delta (dominant frequency < 4 Hz) 
- Theta (dominant frequency 4-8 Hz) 
- Alpha (dominant frequency > 8 Hz) 

Other patterns 
- Low-voltage (maximum amplitude 10-20 µV) 
- Epileptiform on other background 
- Burst-suppression (heterogeneous, ≥ 50% suppressions*) 
- Discontinuous (10-49% suppressions*) 

* Suppressions are defined as segments with amplitude < 10 µV, or segments with amplitude ≥ 10 µV, but <50% 

of background/burst voltage.  

Table A2: Mean binocular optic nerve sheath diameters (ONSD) measured at days 1,2, and 3 in comatose patients 
after cardiac arrest with a good and poor neurological outcome. Data are presented as median with lower and 
upper quartiles.  

 Good neurological outcome (n = 42) Poor neurological outcome (n = 41) p-value 

ONSDDay1 (mm) 6.25 [5.68 – 6.63] 6.40 [6.15 – 6.88] p = 0.023* 

ONSDDay2 (mm) 6.32 [5.84 – 5.56] 6.51 [6.06 – 6.88] p = 0.130 

ONSDDay3 (mm) 6.45 [5.76 – 6.89] 6.67 [6.37 – 6.92] p = 0.490 
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Appendix B: Secondary Analysis Including All Patients 
Mean binocular optic nerve sheath diameter (ONSD) measured on day 1 (6.25 [5.68 – 6.63] mm) versus 
6.26 [6.10 – 6.87], p = 0.092), day 2 (6.32 [5.84 – 5.56] mm versus 6.50 [6.04 – 6.84] mm, p = 0.169) 
and 3 (6.45 [5.76 – 6.89] mm versus 6.56 [6.16 – 6.90] mm, p = 0.862) did not differ between patients 
with good and poor outcomes, respectively (Table B1 and Figure B1). 

Table B1: Mean binocular optic nerve sheath diameters (ONSD) measured at days 1,2, and 3 in comatose patients 
after cardiac arrest who had a good and poor outcome. Data are presented as median with lower and upper 
quartiles.  

 Good outcome (n = 42) Poor outcome (n = 53) p-value 

ONSDDay1 (mm) 6.25 [5.68 – 6.63] 6.26 [6.10 – 6.87] p = 0.092 

ONSDDay2 (mm) 6.32 [5.84 – 5.56] 6.50 [6.04 – 6.84] p = 0.169 

ONSDDay3 (mm) 6.45 [5.76 – 6.89] 6.56 [6.16 – 6.90] p = 0.862 

 

Figure B1: Violin plots of the mean binocular optic nerve sheath diameter (ONSD) measured at day 1 (n = 72), 2 
(n = 57), and 3 (n = 39) in patients with a good (in green) and poor (in red) outcome after cardiac arrest. ONSD on 
days 1, 2 and 3 did not differ between patients with good and poor neurological outcomes. Boxplots were drawn 
according to Tukey’s method.  
 

Of the established predictors of neurological outcome, electroencephalography (EEG) pattern and 
somatosensory evoked potentials (SSEP) results were associated with outcome (both p < 0.001), and 
the pupillary light reflex (PLR) was not (p > 0.999). The variance inflation factors (VIF) between ONSD 
on days 1 to 3 and EEG and SSEP were 1.08, 1.11, and 1.22 respectively, indicating low collinearity.   
 
When predicting outcomes using the EEG pattern and SSEP recordings with a logistic regression model, 
a continuous EEG pattern was significantly associated with lower odds of a poor outcome (odds ratio 
(OR) =  0.146, 95% confidence interval (CI): 0.0208 - 0.634, p = 0.021) (Table B2). Similarly, a continuous 
EEG pattern was significantly associated with lower odds of a poor outcome (OR = 0.196, 95% CI: 
0.0480 - 0.800, p = 0.023) when predicting outcomes with a mixed-effects logistic regression model 
using the ONSD measurements on days 1 to 3, EEG pattern and SSEP recordings (Table B3). A 
suppressed EEG (p = 0.995), an absent N20 response (p = 0.994), and ONSD measurements (p = 0.740) 
were not significantly associated with outcome.  
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Table B2: Summary of logistic regression model predicting outcome using EEG pattern and SSEP results.  

Predictor Estimated 
coefficient 

Odds ratio 95% CI for odds ratio p-value 

Lower Upper 

Intercept 0.314 1.36 0.761 2.50 0.299 

Suppressed EEG 18.3 8.45e+7 7.62e-155 NA 0.995 

Continuous EEG -1.92 0.146 0.0208 0.634 0.021* 

Absent SSEP 18.3 8.45e+7 5.09e-124 NA 0.995 

EEG: electroencephalography, SSEP: somatosensory evoked potentials, CI: Confidence interval. Significance is 
indicated by *. 

Table B3: Summary of mixed-effects logistic regression model predicting outcome using EEG pattern, SSEP results 
and ONSD measurements on days 1 to 3.  

Predictor Estimated 
coefficient 

Odds ratio 95% CI for odds ratio p-value 

Lower Upper 

Intercept 0.234 1.26 0.609 2.62 0.530 

Suppressed EEG 17.1 2.65e+7 0 ∞ 0.995 

Continuous EEG -1.63 0.196 0.0480 0.800 0.023* 

Absent SSEP 17.2 2.95e+7 0 ∞ 0.994 

Day 2 0.114 1.12 0.480 3.08 0.826 

Day 3 0.443 1.56 0.505 4.81 0.441 

ONSD (mm) 0.0939 1.10 0.631 1.91 0.740 

EEG: electroencephalography, SSEP: somatosensory evoked potentials, CI: Confidence interval. Significance is 
indicated by *. 

Performance measures of the mixed-effects logistic regression and logistic regression are listed in 
Table B4. ROC curves are given in Figures B2 and B3. When adding ONSD measurements to 
neurological outcome predictions, sensitivity for a poor outcome increased from 19% (95% CI: 0% – 
38%) to 27% (95% CI: 11% – 46%). Sensitivity for a good outcome raised from 7.6% (95% CI: 0%– 23%) 
to 14% (95% CI: 0% – 29%). AUC did not change by adding ONSD measurements. The pAUC for 
predicting a poor neurological outcome with a specificity > 99% increased from 0.0019 (95% CI: 0.0005 
– 0.0037) to 0.0027 (95% CI: 0.0012 – 0.0046), proportional to the sensitivity for poor neurological 
outcome. The pAUC curve for predicting a good neurological outcome with a specificity > 90% 
increased from 0.0061 (95% CI: 0 – 0.027) to 0.011 (95% CI: 0 – 0.029). As expected, sensitivities and 
(p)AUCs were overall higher when excluding patients who died because of non-neurological causes. 

Table B4: Performance measures of the logistic regression model, predicting outcome based on EEG pattern and 
SSEP results, and the mixed-effects logistic regression model, predicting outcome based on EEG pattern, SSEP 
results, and ONSD on days 1-3. When adding ONSD measurements to outcome predictions, AUC and sensitivity 
for both a good and poor outcome increased. 

 EEG + SSEP EEG + SSEP + ONSD 

AUC  0.59 (0.46 – 0.72) 0.59 (0.43 – 0.76) 

Poor outcome 

pAUC 0.0019 (0.0005 – 0.0037) 0.0027 (0.0012 – 0.0046) 

Sensitivity (%) 19 (0 – 38) 27 (11 – 46) 

Specificity (%) 100 (100 – 100) 100 (100 – 100) 

Good outcome 

pAUC 0.0061 (0 – 0.027) 0.011 (0 – 0.029) 

Sensitivity (%) 7.6 (0 – 23) 14 (0 – 29) 

Specificity (%) 94 (81 – 100) 92 (81 – 100) 

Performance measures are presented with 95% confidence intervals. EEG: electroencephalography, SSEP: 
somatosensory evoked potentials, ONSD: optic nerve sheath diameter, AUC: area under curve. 
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Figure B2: ROC curve of the logistic regression model 
predicting neurological outcomes by the 
electroencephalography (EEG) pattern and 
somatosensory evoked potentials (SSEP) results. The 
red point marks the threshold for predicting a poor 
neurological outcome. The green point marks the 
threshold for predicting a good neurological outcome. 
The red area is the pAUC for predicting poor outcome 
with a specificity > 99%, and the green area the pAUC 
for predicting a good neurological outcome with a 
specificity > 90%. 

Figure B3: ROC curve of the mixed-effects logistic 
regression model predicting neurological outcome 
by electroencephalography (EEG) pattern, 
somatosensory evoked potentials (SSEP) results and 
optic nerve sheath diameter (ONSD) measurements. 
The red point marks the threshold for predicting a 
poor neurological outcome. The green point marks 
the threshold for predicting a good neurological 
outcome. The red area is the pAUC for predicting 
poor outcome with a specificity > 99%, and the green 
area the pAUC for predicting a good neurological 
outcome with a specificity > 90%. 
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Appendix C: Excluded segmentation algorithms 
Besides the active contour models, two other segmentation algorithms were developed and evaluated, 
being the region growing and edge detection methods.  

C1. Region-Growing 
A region-growing algorithm was downloaded and adapted from MATLAB Central File Exchange [56]. 
The region-growing algorithm performed segmentation from a single seed point, which was manually 
placed inside the optic nerve. The region was iteratively grown by comparing the intensity values of 
the unallocated neighbouring pixels to the mean intensity of the region and adding the pixel with the 
smallest difference. The iterative process stopped when the intensity difference between the mean 
intensity of the region and a new neighbouring pixel was larger than a set threshold. The region-
growing algorithm was evaluated on four transorbital sonograms. The stopping criterion was varied to 
study its effect on segmentation.  
 
An example of the segmentation results obtained using the region-growing algorithm is shown in 
Figure C1. The optic nerve and its sheath were separated from the surrounding tissues, but the region 
had grown outwards towards the eye globe and other surrounding black structures. When the stopping 
criterion was lowered, the optic nerve and its sheath are not segmented properly. Similar results were 
obtained for the other three sonograms. Further analysis of the segmented region to ultimately 
measure the ONSD would thus be difficult and was therefore not initiated.  

 

Figure C1: Results of the region growing algorithm performed on a transorbital sonogram. The region 
has grown outwards towards the eye globe and other surrounding black structures. 
 

C2. Edge Detection 
Edge detection using Canny’s method was applied to four sonograms. Canny’s method finds edges by 
searching for the local maxima of the image gradient and applies two thresholds to detect strong and 
weak edges [57]. The result of the application of Canny’s method to a transorbital sonogram is shown 
in Figure C2. Canny’s approach was not sensitive enough to detect the boundaries between the optic 
nerve sheath and the retrobulbar fat, as the contrast and therefore the image gradient between these 
tissues was too low. The method was able to detect the boundaries in the other three sonograms. 
However, the edge detection method was discarded due to its low sensitivity. 
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Figure C2: Results of edge detection using Canny’s approach performed on a transorbital sonogram.  Canny’s 
approach was not sensitive enough to detect the boundaries between the optic nerve sheath and the retrobulbar 
fat. 
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Appendix D: Active Contour Models 
Active contour models, also called ‘snakes’, are energy-minimising curves that deform to align with  
image features [41]. Each element x along the contour depend on two parameters: 

𝒙(𝑠, 𝑡) =  {
 𝑠 = space parameter
𝑡 = time parameter

  

The contour deforms over a series of iterations and its energy is affected by internal, image, and 
external constraint forces: 

𝐸snake  =  ∫ 𝐸internal(𝒙)𝑑𝑠 + ∫ 𝐸external (𝒙) 𝑑𝑠 
1

0
+ 𝜅 ∫ 𝐸image(𝒙) 𝑑𝑠

1

0

1

0
,    

where 𝐸snake, 𝐸internal, 𝐸external, and 𝐸image are the snake energy, the internal and external energy 

and the image energy respectively. 𝜅 affects the weight given to the image force.  

The internal forces control the shape of the model. The internal energy of the snake is defined as: 

𝐸internal (𝒙) =  𝛼 |𝒙′(𝒔)|
2

+ 𝛽 |𝒙′′(𝑠)|2, 

where dashes indicate derivates.  

The internal energy contains a first-order term controlled by 𝛼(𝑠) and a second-order term controlled 
by 𝛽(𝑠). The first-order term gives the snake tension, making it contract. The second-order term 
creates stiffness, producing a snake smooth in outline.  

The model is driven towards features of interest by the image forces. These image forces are generated 
by processing the image, for example by convolving the image with a Gaussian filter. The image energy  
is a weighted combination of three energy functionals: 

𝐸image  =  𝑤lines𝐸line +  𝑤edges𝐸edge + 𝑤term𝐸term.       

The energy functional for attracting towards lines can be set as: 

𝐸𝑙𝑖𝑛𝑒  =  𝐼(𝒙),            

where 𝐼(𝒙) is the image intensity. Depending on the sign of 𝑤𝑙𝑖𝑛𝑒𝑠, the snake will attract to light or 
dark lines. Edges can be found by the following energy functional:  

𝐸𝑒𝑑𝑔𝑒 =  −|∇𝐼(𝒙)|2,           

Terminations of line segments and corners are found using: 

𝐸𝑡𝑒𝑟𝑚  =  
𝐶𝑦𝑦𝐶𝑥

2− 2𝐶𝑥𝑦𝐶𝑥𝐶𝑦+ 𝐶𝑥𝑥𝐶𝑦
2

(𝐶𝑥
2+𝐶𝑥

2)3/2 
 ,        

where 𝐶(𝒙)  =  𝐺σ(𝒙)  ∗  𝐼(𝒙) with 𝐺𝜎(𝒙) the Gaussian with standard deviation 𝜎.  

Snakes need to be initialised at a starting position. These external constraints come from high-level 
sources, such as human operators or automatic initialisation procedures. 

The nearest local minimum of the snake energy is found using gradient descent, by moving along the 
negative gradient of the snakes energy with a controlled step size 𝛾: 

𝒙 ←  𝒙 −  𝛾 ∇𝐸snake(𝒙),          

Gradient vector flow is applied to encourage convergence to concave boundaries by extending the 
gradient vectors of the image forces throughout the total image [48].   
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Appendix E: Figures 

 

Figure E1: Enhanced transorbital sonograms by performing standard deviation based image stretching using 
different values of n when mapping intensity values between 0 and mean(𝑰) + 𝑛 std(𝑰) to 0 and 1.   

 

 
Figure E2: Intensity values of the retrobulbar fat in one hundred randomly selected transorbital sonograms, when 
a pixel representing the surrounding tissue was selected.  
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Figure E3: Mean square error (MSE) and feasibility of the 1024 hyperparameter combinations to automatically 
measure the optic nerve sheath diameter (ONSD) in transorbital sonograms. The x-axis is plotted on a base-10 
logarithmic scale. The hyperparameter combination α = 0.08, γ = 1, δ = 0.05, wlines = -0.02, and wedges = 1 with the 
smallest error (4.15 mm2) and feasibility of 90.2% is highlighted as the filled circle. 

 
 
Figure E4: Bland-Altman plot for the manual and automatic ONSD measurements, with the manual ONSD 
measurements on the x-axis. It shows a bias of -0.267 mm and 95% limits agreements between -4.230 and 3.696 
mm. 
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Appendix F: Contrast and Histograms of Sonograms 
Sonograms in which the ONSD was overestimated had significantly higher contrast (0.47 [0.36 – 0.62]) 
than sonograms with an absolute error ≤ 0.5 mm, which had a contrast of 0.40 [0.28 – 0.61], (p = 
0.006), and than sonograms in which the ONSD was underestimated (0.44 [0.28 – 0.59]) (p = 0.012) 
(Figure F1). Average histograms of sonograms with an absolute error ≤ 0.5 mm between manual and 
automatic ONSD measurements, sonograms in which the ONSD was under- or overestimated by >0.5 
mm were dissimilar (p < 0.001) (Figure F2). Visual inspection of the violin plots and average histograms 
however showed similar distributions.  

 

Figure F1: Violin plots of contrast in sonograms with an absolute error ≤ 0.5 mm between manual and automatic 

ONSD measurements (green), sonograms in which the ONSD was underestimated by > 0.5 mm (yellow), and 
overestimated by > 0.5 mm (orange). Sonograms in which the ONSD was overestimated had higher contrast (0.47 
[0.36 – 0.62]) in comparison with sonograms with an absolute error ≤ 0.5 mm, which had a contrast of 0.40 [0.28 
– 0.61], (p = 0.006), and in comparison with sonograms in which the ONSD was underestimated (0.44 [0.28 – 
0.59]) (p = 0.012). Significant differences are indicated by *. 

 

Figure F2: Average histograms of sonograms with an absolute error ≤ 0.5 mm between manual and automatic 

ONSD measurements (green), sonograms in which the ONSD was underestimated by > 0.5 mm (yellow), and 
overestimated by > 0.5 mm (orange).  


