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Abstract

Time-series forecasting is an area of machine learning that can be applied to many

real-life problems. It is used in areas such as water level forecasting, which aims to

help people evacuate on time for floods. This thesis aims to contribute to the research

area of time-series forecasting, by introducing a simple but novel ensemble model:

Force Linear to Exponential (FLEX). A FLEX ensemble first forecasts points that

are exponentially further into the forecasting horizon. After this, the gaps between

forecasted points are produced from said forecasted points, as well as the entire data

history. This simple model is able to outperform all base models considered in this

thesis, even when having the same amount of parameters to tune.

Keywords

machine learning; time-series forecasting; water level forecasting; time-series

transformers; recurrent neural networks
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Sammanfattning

Tidsserieprognoser är ett område för maskininlärning som kan tillämpas på många

verkliga problem. Det används i områden som vattenståndsprognoser, som syftar

till att hjälpa människor att evakuera i tid för översvämningar. Denna uppsats

syftar till att bidra till forskningsområdet tidsserieprognoser genom att introducera

en enkel men ny ensemblemodell: Force Linear to Exponential (FLEX). En

FLEX-ensemble prognostiserar först punkter som ligger exponentiellt längre in i

prognoshorisonten. Efter detta produceras gapen mellan prognostiserade punkter

från nämnda prognostiserade punkter, såväl som hela datahistoriken. Denna enkla

modell kan överträffa alla basmodeller som behandlas i denna uppsats, även när den

har samma mängd parametrar att ställa in.

Nyckelord

maskininlärning; tidsserieprognoser; vattenståndsprognoser;

tidsserietransformatorer; återkopplade neurala nätverk
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Chapter 1

Introduction

Time Series Forecasting (TSF) is a field of research within Machine Learning (ML).

For problems within this field, ML models are expected to predict future data points

from present and (usually) past data points. This is also more formally known as TSF.

This form of ML has a fundamental issue: the engineer needs to balance accuracy and

the forecast length. This issue is discussed inmore detail in Section 1.2. Solutions have

been proposed that aim to tackle this fundamental issue. However, there are still many

options to consider. This thesis proposes an ensemble model that works together with

existing TSF models, and is able to improve its effectiveness of forecasting time series.

Using the aformentioned ensemble model results in both better accuracy and forecast

length. The ensemble model will be specifically compared to models in the field of

water level prediction (univariate and multivariate). For more information about this,

refer to Section 1.5.

In this thesis, water level forecasting will be the main area of focus.1 In this field,

algorithms and models are proposed that attempt to forecast the level of water over

time in water bodies. This thesis proposes an approach to createmodel ensembles that

can perform as well as State-Of-The-Art (SOTA)models, while at the same time having

fewer trainable parameters. Fewer parameters would have a few upsides. For example,

the model would be smaller in memory. In addition, if two models are similar, the one

with fewer parameters will usually train faster and have shorter inference times.

1Water level forecasting is also called hydrological level forecasting or even just hydrological
forecasting. In this thesis, the termwater level forecasting is used.
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CHAPTER 1. INTRODUCTION

1.1 Background

Time series forecasting is a well-established field of research and has many good

resources on existing algorithms and approaches [9, 14]. However, as ML models

are becoming the norm in the field, new approaches are attempted and proposed

continually [37].

The time frame in which a TSF model aims to predict future data is called the horizon.

The horizon of a TSF model can be short-term or long-term, the choice for which is

usually defined by the problem and field. However, TSF models have a fundamental

issue: the results are more accurate if the model has to predict less data points [49,

51]. This means a model forecasting with a smaller horizon will usually perform

better than the same model predicting a larger horizon. The reason for this is the

following. If a model has the same size as another model, but has to forecast fewer

points in the horizon, it will in general forecast those points better than the other

model. A question could be rasied here: can this knowledge gain be used by a very

small network to improve forecasts in general? In addition to this, if the forecaster

is a recurrent neural network, having a larger horizon means the model will have to

take more recurrent steps, which quickly results in vanishing gradients [27]. It has

been shown that horizon size has an impact on the accuracy of forecastingmodels [49].

There have been proposed TSFmodels that forecastmultiple different horizons at once

[4]. These models have shown better results on smaller horizons, and therefore the

authors proposed forecasting a few small horizons, instead of one large horizon. To add

to this, there have beenmany proposed time series forecasting models that are trained

on different ’resolutions’ of the input data [5, 20, 53]. This enabled the models to

more accurately forecast future trends at different scales, andmade themboth accurate

with smaller (high resolution) horizons, and with larger (low resolution) horizons. The

approach that is proposed in this thesis is highly inspired by these results: if horizons

of lower resolution are easier to forecast, could this be used tomake TSFmodels scale?

Additionally, predicting fewer data points per time steps2 also consistently yields better

results [51]. This alsomeans amodel can forecast far into the future (as long as enough

- historical - input data is provided) more accurately than another model that would

forecast a much shorter horizon but with a higher data point density.

2Ergo, fewer total data points per forecast horizon will make TSF models perform better in general,
as there are less points of prediction needed

2



CHAPTER 1. INTRODUCTION

In Figure 1.1.1 below, you can see different types ofways a horizon can be defined. From

the information given above, we can transform a horizon in a few ways to decrease

the number of data points (read: increase average model performance). Firstly, we

can simply sample down the horizon, and forecast less. This is also called clipping.

However, this comes at the cost of forecasting less far into the future. The second

option is to reduce the resolution of the forecast horizon. This allows the model to

forecast the same amount of time into the future as the base model. However, it comes

at the cost of having more time between forecasted points. The third thing that could

be done is something that has not been well tested in literature, which is to forecast

at irregular intervals into the future. In this case, an example would be to forecast

further into the future, depending on the data point index within the horizon. The

latter approach is the fundamental idea behind the Force Linear to Exponential (FLEX)

approach.

Figure 1.1.1: Different ways a horizon can be defined for a TSF model. Blue boxes are
data points in history, which is the TSF model’s input. Orange boxes are forecasted
data points: the horizon. This figure includes a) A normal horizon of some given size;
b) a downscaled horizon; c) a downsampled horizon; d) the proposed method.

Note that the proposed method above is only forecasting exponentially indexed data

points on the horizon. There needs to be another (separate) model which takes these

forecasted points and constructs the data points in between, to provide a full forecast.

Such a model (first forecasting a part of the horizon and then constructing remaining

points) is called a Two-stage model (TSM).

There are many SOTAmodels within TSF. Manymodels are optimised (and therefoer:

3



CHAPTER 1. INTRODUCTION

SOTA) in a specific area of TSF. In this thesis, when referring to ”SOTA TSF” models,

what is meant is the list of the following models:

• Long-Short Term Memory Models (LSTMs)

• Gated Recurrent Unit Models (GRUs)

• Temporal Convolutional Networks (TCNs)

• Time Series Transformers (TSTs)

• InceptionTime models (ITs)

• Explainable Convolutional Networks (XCMs)

These models are explained in Chapter 2.

1.2 Problem

As stated in Section 1.1, it is difficult to make existing models generalize to perform

well in both high-density, near future and low-density, far-future scenarios. This is

mentioned in ”Forecasting: Principles & practice”. [43] In some TSF scenarios, this

is important for a model to forecast. For example, with water level prediction [33],

energy prediction [1] and financial prediction (stock price, sales, etc.) [44]. In these

areas, it is important to forecast at high accuracy and high resolution in the near future,

as well as forecast with good accuracy with low resolution in the far future.

An option that would come to mind is to train a large ensemble of models, which

are each optimised for a different horizon (specifically: a horizon with an altered

resolution). However, such an ensemblewould quickly become very large for far-future

horizons. In addition to this, such an ensemble would still have trouble accurately

describing at a high resolution for far-future data points.

In short, the literature outlines the following two main problems:

• For long-term horizons, models need to either become very large, or need to

forecast at a lower resolution.

• Short-term horizons are predicted well by SOTA models, but obviously often do

not provide enough forecasting points to give valuable insights.

4



CHAPTER 1. INTRODUCTION

1.3 Purpose

The main purpose of this thesis is to answer the following research question:

Research question

Can a two-stage model - which first forecasts exponentially indexed

data points; and secondly predicts the points in between the

forecasted data points - perform as well as state-of-the-art time

series forecasting models? The state-of-the-art time series

forecasting models are: Long-Short Term Memory Models; Gated

Recurrent Unit Models; Temporal Convolutional Networks; Time

Series Transformers; InceptionTime models; and Explainable

Convolutional Networks.

An additional purpose of this thesis is to outline a proposed TSF model and discuss its

value in applications in the real world. The proposed model’s results are compared to

the SOTA within the field and similar models on the same problem.

Lastly, this thesis discusses future improvements on themodel, andwhether themodel

looks to be a promising advancement for TSF.

1.4 Objectives

To answer the research question given in Section 1.3, a list of objectives needs to be

defined. This thesis has the following:

• First, define a general TSF ensemble, with a new model/ML structure.

• Second, train the defined ensemble and a list of existing SOTA TSF models on

the same dataset.

• Following this, test all trained models and provide the results.

• Next, publish the code of the ensemble (make code open-source), so future work

can build upon it.

• Lastly, provide a good base to build future work.

5



CHAPTER 1. INTRODUCTION

1.4.1 Benefits, Ethics and Sustainability

For every degree project, there are possible upsides and downsides. These can be

during the execution of the project, but can also arise much later, as developed

technology has impact on real-world systems.

This degree project will contribute towards the TSF research field. Therefore, this

research field will benefit from the project. However, there are examples of greatly

beneficial ML technologies being used for mass surveillance and infringements on

human rights at large scale [21]. Furthermore, any form of ML technology can be (or

become) biased and can therefore even impair people with activities in their daily lives

[10].

The technological advancements of TSF can be used to forecast any series of data that

evolves over time. Every use case in this large field will have ethical implications and

issues. For example:

• If a bank were to be able to accurately forecast a person’s spending for the next

ten years, would it be ethical to use this to influence their decision on handing

said person a mortgage?

• If forecasting the stock market would be possible to an extreme accuracy, but

doing so required billions of dollars worth in equipment, couldn’t this result in

an extreme wealth gap?

• If TSF would be used to forecast flows of people through an area, wouldn’t it

be unforgivable when this technology is used by some external entity that wants

to maximize loss of live in some sort of attack? Think of war crimes, but also

terrorist attacks.

These are all issues that have to keep being examined and weighed against the possible

benefits. However, in this thesis TSF is applied to water level forecasting, which aims

to benefit flood prediction systems and aid countries with their disaster evacuations

and economic repairs.

Floods are the most common natural disaster in the world. In addition, it has caused

the most deaths of any natural disaster and (especially in developing countries) one

of the most economically damaging natural disasters [24, 54]. When expressing the

damage in terms of GDP of a country in which the disaster takes place, floods are by

6



CHAPTER 1. INTRODUCTION

far the most economically damaging natural disaster in the world3. Most research into

the impact of these natural disasters does not even include environmental and societal

impact, which is also considered to be more considerable for floods in comparison to

other natural disasters [2].

Predicting floods earlier and more accurately, paired with a structural management

approach can significantly contribute to reducing economic damages and loss of life

[30]. This thesis aims to contribute to this. Since flooding is such a large issue in

the world, this likely will weigh up against the possible downsides of improving the

technology.

1.5 Research methodology

During this project, a combination of a deductive and abductive approach will be used

[25]. The proposed system will be compared to similar models using experiments and

quantitative analyses of the results of those experiments. However, the model will also

specifically be applied to the problem of water level forecasting, which is considered as

a small case study during this project.

To answer the research question, the following steps will be taken:

• First, data is gathered from water basins in Italy. This data is cleaned and

prepared for use with the proposed ML model.

• The proposed ML model is implemented and trained using the gathered and

prepared data set.

• Existing models are trained using the gather and prepared data set.

• All trained models are evaluated on the same testing set. This is a sub-set from

the prepared data set.

1.6 Delimitations

There are factors that could not be investigated in the time frame of this thesis. To

describe the proposed approach within all contexts including all factors would take

3For clarification, floods cause approximately as much damage as climatological, geophysical and
meteorological disasters. However, floods happen more frequently in developing countries and
therefore destroy a larger percentage of economies.

7



CHAPTER 1. INTRODUCTION

a large number of experiments, which would not be properly ran and finished in

time.

This thesis focuses on time series forecasting in the field of water level forecasting.

This can affect results, as time series forecastingmodels can have significantly different

results on different datasets [3, 56]. To bemore specific: although themodel proposed

in this thesis might be applicable inmany different fields of TSF, application to no field

other than water level forecasting will be discussed.

In addition to this, the water level data and precipitation data that is used for training

is gathered from an open portal for Italianwater body data. As water level is influenced

by many different factors, which can even be different depending on the location, this

might also have a significant impact on the model’s generalization capabilities [17, 29,

41, 57]. This thesis will not discuss applicability or accuracy outside this geographic

region.

Lastly, only a subset of temporal models will be investigated. Models of many different

types are examined. However, there are fundamental models that are not examined.

The models that are examined are outlined in Section 3.2. Some models that are not

included are gated temporal models such as GatedTabTransformers (GTTs) and Gated

MLPs (gMLPs) [11, 38]. Besides this, some notable (newer) temporal transformer-

basedmodels like SpaceTimeFormers (STFs) and Google AI’s relatively new Temporal

Fusion Transformers (TFTs) [22, 36]. Lastly, Fully Convolutional Networks (FCNs)

were also not investigated, as there was no clear indication from literature that they

would perform well within a FLEX system [32].

1.7 Outline

Chapter 2 will discuss the related literature in more detail (in contrast on Section 1.1.

This section will also mention the specific related works that this thesis’s proposed

system will be compared to.

After this, Chapter 3 will discuss the theory behind the used methodologies. These

choice of methodologies will be explained. Lastly, the setup of the experiments will be

explained. In addition, this chapter will discuss the work that was performed during

the degree project. More specifically, the chapter will discuss the gathering of data; the

processing of this data; how the proposedmodel was set up and how experiments were

8



CHAPTER 1. INTRODUCTION

run.

Chapter 4 outlines the proposed model and its implementation.

Following this, Chapter 5 will display the results of the mentioned experiments. After

this, the chapter discusses and analyses the results and prepares for the conclusions

that can be made from the results.

Lastly, Chapter 6 conclusions drawn from the aforementioned discussion chapter. In

addition to this, possible directions for future work are discussed.

9



Chapter 2

Theoretical background

Neural networkMLwas originally done using feed-forward neural networks. However,

these networks did not perform very well on temporal data, as they lacked temporal

context. To solve this, many different types of ML models were introduced. This

chapter outlines some of the models that were introduced, and explains how they help

shape the solution proposed in this thesis.

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were the first real temporal ML model that was

introduced which performed significantly better on temporal data than other model

types. These models would perform operations in order and use previous output of

itself to calculate future outputs [31, 45].

2.2 Long-Short Term Memory Models

Long-Short-Term Memory (LSTM) models are a very basic type of RNN [28]. They

have seen very wide-spread use and also are SOTA in water level forecasting [34].

Gated Recurrent Units (GRUs) aim to improve on LSTMs [12]. GRUs have been shown

to sometimes perform better on data sets with fewer data points [13, 23].

10



CHAPTER 2. THEORETICAL BACKGROUND

2.3 Temporal Convolutional Networks

There are Temporal Convolutional Network (TCN) models, which use exponentially

dilated convolutional layers to train faster on temporal data. Certain operations for

later time steps in the input data do not need to be done after earlier time steps have

been completed (like with RNNs), so training is usually much faster (as training can

be parallelized better) [6].

2.4 Time Series Transformers

Time-Series-Transformer (TST) models are attention-based temporal networks [58].

TSTs are inspired by Google Deepmind’s transformers, which popularized fully

attention-based models [50]. TSTs are really helpful within this thesis, as they are

not recurrent, and therefore can have temporal outputs and handle temporal inputs,

but also make use of extra input data. They are a key ingredient in the FLEX

approach.

2.5 InceptionTime

An InceptionTime (IT) model is a model that uses inception blocks [19]. These blocks

are recurrent blocks that attempt to output the entire output after every block. Because

of residual connections between blocks, and because every block is trying to output the

exact same, IT models usually learn very fast.

2.6 Explainable Convolutional Networks

Explainable Convolutional Models (XCMs) are simply convolutional networks (N

dimensional) that have smaller sub-networks which make it more explainable [18].

It has not been SOTA in many areas, but has seen wide use due to the explainability

feature.

11



CHAPTER 2. THEORETICAL BACKGROUND

2.7 One-Cycle training policy

In this thesis, Smith’s 1-cycle (alternatively: one-cycle) training policy is used as the

main training approach. Because of this, it is important to know how this policy works

[46].

The 1-cycle policy that is used in this thesis specifically has the following three

steps:1

• We progressively increase our learning rate from lr_max / div_factor to lr_max

and at the same time we progressively decrease our momentum from mom_max to

mom_min.

• We do the exact opposite: we progressively decrease our learning rate from

lr_max to lr_max / div_factor and at the same time we progressively increase

our momentum from mom_min to mom_max.

• We further decrease our learning rate from lr_max / div_factor to lr_max /

(div_factor × 100) and we keep momentum steady at mom_max.

In the steps above, lr_max, div_factor, mom_min, and mom_max are parameters given

when training. The exact values for these parameters that were used in this paper are

outlined in Section 3.2.3.

Using the 1-cycle policy, models can be trained much faster. This improvement in

convergence time is so large, that the 1-cycle policy training can be considered ”super-

convergence” [46, 47].

2.8 Statistical testing

From two sets ofmetrics (one set from two differentmodels, for example), it is possible

to calculate whether the two sets are statistically significantly different. Usually, this

is done by providing some value for the parameter p, which states how certain one can

be that two series are significantly different. A value of p < 0.05 is considered as the

maximum value that signifies statistical significance. Usually, statistical tests are done

with a given value for p. However, it is also possible to calculate p from two series [39]

1These steps are taken from: https://fastai1.fast.ai/callbacks.one_cycle.html

12
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CHAPTER 2. THEORETICAL BACKGROUND

using a t-test.2 In this case, we specifically use a paired t-test.

To calculate p, the first step is to calculate the pooled standard deviation σ:

σ =

 
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2
(2.1)

where σ1 and σ2 are the standard deviations of the two samples with sample sizes n1

and n2.

After this, the standard error se is calculated:

se(x1 − x2) = σ

 
1

n1

+
1

n2

(2.2)

Where xi is the mean of the data series xi, and ni is the sample size of the data series

xi. The p-value can then be calculated with a t-test, where the distribution for t is as

follows:

t =
x1 − x2

se(x1 − x2)
(2.3)

From this distribution, the p-value is the area of the t distributionwithn1+n2−2degrees

of freedom, that falls outside ±t.

2.9 Evaluation metrics

The main evaluation metric that will be used is the Mean Absolute Error (MAE). This

is defined as:

MMAE =
1

N

N∑
i=1

|yi − ŷi| (2.4)

InEquation 2.4, yi is any given actual output, and ŷi is the predicted output for the same

input. In the equation above, and the equations below,N is the number of predictions

2Please note that performing a simple t-test such as described in this section may lead to a type-I
error as described by Bengio et. al. (2003) [7]. This means that the resulting p-value can be a strong
indicator of statistical significance, but should not be considered fully truthy without more tests being
done. The exact assumptions that are made for this thesis will be discussed in Section 3.2.5.
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CHAPTER 2. THEORETICAL BACKGROUND

done.

However, for the analysis of TSF models, it is interesting to see the error over the

horizon: depending on how far into the future the model is predicting, what is the

MAE for all predictions x time steps into the future? In this thesis, ametric will be used

that will be called MAE-Over-Horizon. This is the MAE over horizon as the model is

predicting points further into the future and is defined as follows:

MMAEOH = {MMAEOH,h|h ∈ H} (2.5)

In Equation 2.5, H is the list of all horizon indices. For this set, H ⊂ Z. MMAEOH,h is

the MAE of all predictions h time steps into the horizon. It will be defined as:

MMAEOH,h =
1

N

N∑
i=1

∣∣∣Yh,i − Ŷh,i

∣∣∣ (2.6)

In Equation 2.6, Yh,i is the actual output at h time steps in the horizon for some input,

and Ŷh,i is the predicted output h time steps in the horizon for the same input.

Lastly, the Nash-Sutcliffe Coefficient of Efficiency (NSE) was used as a metric to

quantitatively evaluate models. The computation of the metric is similar to the Mean

Squared Error (MSE)metric. However, it is normalized depending on how the entropy

in the dataset. The NSE is computed as follows:

NSE = 1−

∑N
i=1

(
yi − ŷi

)2

∑N
i=1

(
ŷi − ŷi

)2 (2.7)
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Chapter 3

Methods

The methodologies presented in this thesis are based upon the portal of research

methods proposed by Håkansson in 2013 [25].

3.1 Choice of research method

In the choice of methodology for this thesis, replicability is important, as any reader

should be able to validate the results and claims presented in this thesis. The

method of Design Science will be used. Design Science is a methodology spanning

many specific methodologies [52]. However, the fundamental objective is to create

abstract knowledge and systems which can be used by professionals in industries to

create solutions. As this thesis is done in collaboration with a geological data-driven

consultancy, such a methodology is highly valuable, as the knowledge is validated and

presented in a way it can be easily applied in a solution.

The proposedmodel, FLEX, is compared against other models. These baseline models

will be implemented during this thesis in the same software library. All models are

then in a set of experiments. Metrics are gathered from eachmodel and based on these

metrics, the results will be compiled and analysed. The baseline models that will be

analyzed are listed in Section 1.1. However, to reiterate, the baseline models that will

be implemented are: LSTM, GRU, TCN, TST, IT, XCM.

This thesis will have a short qualitative analysis of the results, as this is also highly

valuable. Because this thesis proposes a newmodel, it is important to understandwhat

outputs the model can generate: it becomes important to create an understanding of
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CHAPTER 3. METHODS

the newly proposed model. This is why this is also done in addition to the quantitative

method, which investigates how the model performs overall and on average.

As stated before, replicability and credibility of the results of the proposedmodel is very

important. Therefore, focus was relieved from performing a case study of the model

within a field. Such a case study was performed: the model was trained and tested

within a specific region of Italy. However, the case study does not significantly add

upon the knowledge gained within the thesis, and therefore was not used within the

analysis of the results. Of course, the fact that the model was applied in a case study

does have an influence on the delimitation of this work.

3.2 Application of research method

3.2.1 Area of study

For this thesis, a specific area of research within the field of TSF was chosen. The area

was chosen to have highly available data; a have lot of existing SOTA research; and to

be in line with the mission fo the company this thesis was done at. The chosen area is

water level forecasting.

Water level forecasting is a type of time series forecasting which aims to accurately

predict water level in any water body. The SOTA model for this is heavily dependent

for the type of water body in which the water level is forecasted. For example, coastal

prediction and lake prediction have two very different models for the SOTA, even

though both are water bodies [35, 55]. The current SOTA approach for water level

forecasting in rivers is Google Deepmind’s Hydronets [40]. These models first use ML

to first describe a state of the water body, and then use fluid simulation to forecast

water level and potential floods.

3.2.2 Data gathering and processing

First of, the data was gathered from the Dext3r portal from Arpae [15]. The data types

that were requested were water level and cumulative precipitation over an hour. This

means that every data point in the dataset has a timestamp, the water level at that

timestamp and the total amount of rainfall in the hour preceding the timestamp. The

resolution of data points was one point per hour, and the total dataset was just over
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CHAPTER 3. METHODS

seven years of data, which brings the total amount of data points to just over 61,300

points. These points were gathered from two locations: Parma River, and Casalecchio

Canal in Italy. These were chosen because existing research also often looks at these

areas. This was split into training, testing and validation sets. The training set took

up 60% of the data, the validation set took up 20% and the testing set took up the

remaining 20%. K-fold cross validation was used for training and validation (with

k = 4). The testing set was kept constant. The data splits for different folds is shown

in Figure 3.2.1, below.

For every training entry in the dataset calculating the MAE and NSE, a history size of

672 was taken, which is exactly 4 weeks of data every hour. A horizon size of 168 was

taken, which is exactly one week of data every hour.

For investigating the individual horizons, a history size of 336 (two weeks, every hour)

was taken, and a horizon size of 96 (4 days, every hour) was taken.

Figure 3.2.1: Splits of training / validation / test sets for different folds. Every
row is a different fold. Colors show what indices of the data is dedicated to what
(training, validation or testing). Testing data is always the same data, while training
and validation data for training is shuffled.

3.2.3 Model training

After pre-processing the data, and defining theMLmodel, themodel has to be trained.

Firstly, a pre-training method will be used where the model will first be trained with a

loss function with a exponentially indexed mask. Literature suggest that pre-training

can end up not adding any significant improvements to results. Therefore, a different

training approach will be employed. The model will be trained in one pass, but the

gradients are stopped on the connections from the base model to the reconstruction

model. Thismeans specific indexes of the loss vector for every predictionwill be used to

train the basemodel, and the remaining indexeswill be used to train the reconstruction

model. Because of the gradient cut, the base model is not adjusted with the error on

remaining indexes. This alsomeans that the basemodel learns solely the exponentially

indexed points, and not some hidden representation of the forecast.
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CHAPTER 3. METHODS

The parameters that are used for the one-cycle training (explained in Section 2.7) are:

div_factor = 25, mom_min = 0.85, and mom_max = 0.95. The value for lr_max is inferred

automatically by using a learning rate finding algorithm first described by Leslie Smith

[48].

3.2.4 Experiment setup

As mentioned in Section 1.5, there will be a set of experiments set up to verify the

proposed system. These experiments are set up for the assurance of replicability. In

addition to this, some results from the experiments will be inspected qualitatively.

These inspections and discussion thereof are to discover the validity of the quantitative

results and to provide insight into how the proposed system would influence

performance of models in the real world.

Experiment Setup

Test the proposed model with different arch-types and compare it

with standalone models of that arch-type. The comparisons are done

based on MAE and NSE. The two models should have a similar size

(parameter count), or the standalone model should be much larger.

The arch-types that will be considered are:

• A TCN model [6].

• A TST model [58].

• An IT model [19].

• An XCM [18].

• A LSTMmodel [28].

• A GRU model [12].

These models will be evaluated quantitatively on a water level dataset. Their MAE

will be calculated. In addition to this, the average MAE is also averaged over many

runs. The NSE is calculated and averaged the same way. The results will be discussed

qualitatively by also providing average error over horizon per forecast. The loss will

evolve in different ways over the horizon size. The loss will increase for all models, but

this increase might be at different speeds and accelerations. Then, this will be verified

quantitatively on all forecasts (average derivative of loss function). The exact way the

MAE is calculated for average forecasts, is explained in Section 2.9.
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3.2.5 Statistical analysis assumptions

A t-test (as described in Section 2.8) makes a few assumptions. Some assumptions,

in the case of this thesis, are more trustworthy than others. Below, a list with the

assumptions (bolded) and a short discussion on why this assumption was made and

its credibility [8].

1. The scale of measurement applied to the data collected follows a

continuous or ordinal scale, such as the scores for an IQ test: This is

the case for this thesis.

2. The data is collected from a representative, randomly selected

portionof the total population: This is not the case for this thesis. On the one

hand, the data that is collected are trained models with a random initialization

of parameters. However, there is a problem that makes this assumption

untrustworthy: a lot of measurements will follow from cross-validation, which

means that the results are not unbiased or independent. This means the

outcomes of the results are only indicators and the statistical test should be

treated as a heuristic in this thesis.

3. The data, when plotted, results in a normal distribution: This is not

necessarily the case for all metrics, but existing work has shown that machine

learning models’ evaluation does follow a normal distribution if the metric is

positively correlated with its accuracy: for example the MAE used for this thesis

[16, 26].

4. Areasonably large sample size is used. A larger sample sizemeans the

distribution of results should approach a normal bell-shaped curve:

This assumption could easily be refuted. The sample size is only 20, which

also follow from k-fold cross validation. Therefore, a larger sample should be

considered to give more convincing and credible results.

5. Homogeneous, or equal, variance exists when the standard

deviations of samples are approximately equal: This assumption is only

needed for unpaired t-tests. However, as stated in Section 2.8, this thesis makes

use of a paired t-test. Therefore, the two distributions’ variances do not need to

be the same (which likely also is not the case).
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Chapter 4

Proposed model

The ensemble model that is proposed in this thesis is one of the outcomes of the thesis.

This chapter explains how this model works.

4.1 General architecture

The model was created using the PyTorch library [42]. The model has two general

components:

• The base model is the base architecture that outputs the initial forecast. This

forecast, whereas it would usually be linear, is an exponential forecast. This is

what the name ”FLEX” thanks its name to.

• The reconstruction model is a light-weight model which is responsible for

outputting the final forecast. It takes the initial input data, and the exponential

forecast of the base model.

4.2 Model rationale

The exponential forecast points assist the reconstruction model to have relatively low-

loss forecast points to base the final forecast on. This of coursewill onlywork if the base

model trying to forecast a very small forecast has a better loss than the light-weight

reconstruction model. This is not always the case, in which case the forecasting error

at the exponential indexeswill jumpup relative to the overall loss curve over an average

forecast. These cases are shown in Chapter 5 and discussed in Chapter 6.
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CHAPTER 4. PROPOSEDMODEL

The idea behind the architecture is that the two individualmodules in the overallmodel

are solving simpler problems. This allows them to be much smaller. So small in fact,

that the sum of parameter counts of the two models can be much smaller than the

architecture it is comparing against. In addition to this, even though it is smaller and

usually reaches a similar performance, it also can reach an even better performance

even though the model it is comparing against (of the same base architecture) is twice

as large. These results are shown and discussed in Chapter 5.

Figure 4.2.1: Architecture of the proposed model. The series of lines from the base
architecture (”Arch” in the figure) are the exponentially indexed outputs. These
outputs are fed to the reconstruction model after a gradient cut.

4.3 Indexing definitions

The indexes of the forecast points of the base model are determined by a hyper-

parameter called the base exponent (referred to as χ in this thesis). The relationship

between the indexes to the base exponent are defined in Equation 4.1:

I =

{
i|i = χk − 1 ∀ k ∈

[[
0..

⌈
logχ

(
|H|

)⌉]]}
(4.1)
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In Equation 4.1, I is the set of all indexes that the base model will forecast and pass

to the reconstruction model, for some base exponent χ > 1. H is the horizon that is

being predicted by themodel, and therefore |H| is the number of time steps themodel is

forecasting into the future. The formula above has no conditions, but ismathematically

actually equivalent to the (arguably simpler) formula below:

I =

ß
i|i = χk − 1, if χk < |H| − 1 ∀ k ∈

[[
0.. |H|

]]™
(4.2)
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Experimental results

5.1 Errors over horizon

First, theMMAEOH was calculated for all models mentioned in Section 3.2. The results

are shown in the figures below. The figure always contains two graphs: an orange and

a blue graph. The orange graph shows the base architecture and the blue line shows

the FLEX approach using that same base architecture for the base model (explained in

Chapter 4).
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Figure 5.1.1: Results over horizon time of TST arch-type

Figure 5.1.2: Results over horizon time of IT arch-type
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Figure 5.1.3: Results over horizon time of XCM arch-type

Figure 5.1.4: Results over horizon time of LSTM arch-type
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Figure 5.1.5: Results over horizon time of GRU arch-type

26



CHAPTER 5. EXPERIMENTAL RESULTS

5.2 Compiled results

After this, a table was computed with aggregate data over all runs and all data points.

The results can be seen in Table 5.2.1, below.

Model name Parameters µ± σ Minimum

TCN 235K 0.0574 ± 0.0011 0.0551

FLEX (TCN, χ = 1.1) 119K 0.0531 ± 0.0014 0.0520

TST2 197K 0.0534 ± 0.0017 0.0506

TST 98K 0.0527 ± 0.0005 0.0514

FLEX (TST, χ = 1.1)2 99K 0.0521 ± 0.0009 0.0503

IT3 10.6M 0.0610 ± 0.0010 0.0597

FLEX (IT, χ = 1.1)3 6.7M 0.0570 ± 0.0032 0.0541

XCM4 6.6M 0.0561 ± 0.0014 0.0528

FLEX (XCM, χ = 1.1)4 3.3M 0.0549 ± 0.0021 0.0514

LSTM5 4.9M 0.0736 ± 0.0046 0.0667

FLEX (LSTM, χ = 1.1)5 2.5M 0.0540 ± 0.0007 0.0530

GRU6 4.9M 0.0634 ± 0.0066 0.0581

FLEX (GRU, χ = 1.1)6 2.5M 0.0514 ± 0.0012 0.0495

Table 5.2.1: Compiled results fromall experiments. All values are aggregates
over 20 model evaluations (5 runs × 4 folds). Showing (in order) model
name, total parameter count, mean (µ), standard deviation of MAE across
models and folds (σ), and minimum value. Best scores are bolded.

2 Shown in figure 5.1.1.
3 Shown in figure 5.1.2.
4 Shown in figure 5.1.3.
5 Shown in figure 5.1.4.
6 Shown in figure 5.1.5.

As can be seen in the table above, it can be seen that the best performingmodel is FLEX

(GRU, χ = 1.1). In addition, please note that all base architectures are approximately

twice the size (two times the parameter count) of the FLEX-basedmodel with the same

architecture. This has one exception: the TST architecture was tested twice with two

parameter totals. This is because the reconstruction model (explained in Chapter 4)

is a TST. Therefore, FLEX models outperforming the base model could have been

explained because TSTs lend themselves well to this problem. Therefore, some extra
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TST models were tested, to show the true impact the FLEX approach specifically has

on the performance.

5.3 Statistical tests

The values for p were computed as explained in Section 2.8 and are as follows:

Model 1 Params Model 2 Params p

TCN 235K FLEX (TCN, χ = 1.1) 119K < 0.0001

TST 197K FLEX (TST, χ = 1.1) 99K 0.0045

TST 98K FLEX (TST, χ = 1.1) 99K 0.0130

IT 10.6M FLEX (IT, χ = 1.1) 6.7M < 0.0001

XCM 6.6M FLEX (XCM, χ = 1.1) 3.3M 0.0400

LSTM 4.9M FLEX (LSTM, χ = 1.1) 2.5M < 0.0001

GRU 4.9M FLEX (GRU, χ = 1.1) 2.5M < 0.0001

FLEX (TST, χ = 1.1) 99K FLEX (GRU, χ = 1.1) 2.5M 0.0436

XCM 6.6M FLEX (GRU, χ = 1.1) 2.5M < 0.0001

Table 5.3.1: Table showing the statistical significance of the difference in results of
Model 1 andModel 2. In this table,Model 2 is the better model (read: lower mean in
results), and the p-value is for the hypothesis testH0 : x2 < x1, where xi is the mean of
the results ofModel i.

5.4 Analysis

As can be seen in Table 5.2.1, the GRU model performs the best on the water level

forecasting problem. Something else that can be seen is that the FLEX models always

outperform the base models of the same architecture. However, the FLEX models

always have a submodel which is a TST. Therefore, the improved performance for

most of the models in the table can be explained with the fact that a small TSTs might

just be better at learning this problem than most of the other models.

To verify whether the FLEX approach actually improves the model, it needs to be

compared to the TST architecture directly. In this case, the FLEX approach uses two

smaller TSTs and is compared to one larger TST. Even in this case, FLEX is still slightly

better. However, the performance of the models is within 1% of each other. This is

why the statistical tests were done. Between the FLEX TST model and the best (98K
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parameters) baseline TST model, the p-value is 0.0130. This still suggests the models’

results differences are statistically significant.

Lastly, it is uncertain whether these results will carry over to other fields of TSF, for

example the field of finance, briefly introduced in section 1.2. For now these results

remain proven only in the context of water level forecasting.
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Concluding remarks

From the analysis, some conclusions can be made. The conclusions are outlined in

Section 6.1. Ideas and recommendations to better explore issues brought up in the

discussion are found in Section 6.2.

6.1 Conclusions

The results and discussion reveal some conclusions that can be made. These

conclusions are summed up below.

• The FLEX model consistently outperforms its base counterpart, whether the

counterpart is the same size or even much larger, in both the metrics MAE and

NSE. This means FLEX is able to improve TSF models by simply extending an

existing model.

• Although improving results, FLEX is not always able to extend any model such

that it performs better than any other model. The TSTs, for example, are only

ever beaten by the FLEX model for TST and for GRU.

• The FLEX model using a base architecture of GRU is statistically significantly

(p = 0.0436 at worst) the best model. However, the statistical significance is

slim, assuming a threshold of p = 0.05.1

• An exponentially indexed model (as described in Section ?? performs better on

1Kindly note that (as described in Section 3.2.5, there is an incorrect assumption in this thesis about
the bias in the sampling of the results. Therefore, this conclusion should be seen as likely, but not proven
statistically.
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its indexes than a model that is not indexed would on those indexes. This means

TSF models can become better, and the limiting factor currently is horizon size.

To reiterative the research question: ” Can a two-stage model - which first forecasts

exponentially indexed data points; and secondly predicts the points in between the

forecasted data points - perform as well as state-of-the-art time series forecasting

models? The state-of-the-art time series forecasting models are: Long-Short Term

Memory Models; Gated Recurrent Unit Models; Temporal Convolutional Networks;

Time Series Transformers; InceptionTime models; and Explainable Convolutional

Networks. ”. The answer to this question is: yes, most likely. First, the context in

which it would outperform other SOTA models is important, and has not been fully

described yet. However, in water level forecasting specifically, the research question

can be easily be answered. In addition, many factors that influence the exact context

in which this claim holds true have not all been investigated. Therefore, more research

would have to be done into this approach to prove its value to the TSF field.

Existing literature has shown that shorter horizons lead to better model performance,

even for large models. This thesis has shown that it is indeed possible to also forecast

far into the future, using a horizonwith steps that are exponentially far apart from each

other. After this, a reconstruction model (for which TSTs are perfectly suited) can use

this information to provide a better final forecast.

6.2 Future work

The results of the experiments are promising. However, there are many areas in which

the FLEX approach has to be verified.

Firstly, the experiments should be run and the results verified on a dataset from a

different field. The financial field (share price forecasting, sales forecasting, customer

forecasting) would be ideal for this, as itmakes up for a large part of the TSF field.

Secondly, the FLEX approach should be run for many different exponents. It is

possible the optimal exponent is linked to the horizon size, in which case this

correlation should be investigated and preferably described. As a continuation, it

would be important to see if a hyperparameter-optimized FLEX model outperforms

a hyperparameter-optimized base architecture model.
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Lastly, all the above future work and given experiments in this thesis should be

run without using k-fold cross validation to retrieve the results of the statistical

tests (t-tests). This will result to a sound metric that can have FLEX be properly

evaluated.

6.3 Final Words

In this thesis, a simple ensemble was introduced that had a novel approach to TSF.

The model was able to outperform all considered baseline models. Therefore, the

proposed approach proves to be useful in at least the given research area of water

level forecasting. Although there remains some future work to be done on the exact

effectiveness of the approach (in what areas it is useful, etc.), this could be a good step

into a new family of TSF models.
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