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Abstract—Face Recognition Systems are popular and widely
used, however their performance on challenging cases can still
be improved. One of the challenges are lookalikes, which are
subjects who look similar, but have a different identity. In this
research the dependence of the score computation of an existing
Face Recognition System on face regions will be analyzed. By
occluding parts of the face and visualizing the change in score as
heatmaps, the cases of mated, (random) non-mated and lookalike
pairs can be compared. The heatmaps show that the regions of
the eye(brows) and nose are important for mated and lookalike
pairs. The next step is to investigate whether the performance
of the Face Recognition System can be improved by fusing its
output with forensic features. The idea is to force the whole
system to pay attention to details in important facial regions.
A methodology is presented to automatically retrieve forensic
features from an image. Several fusing strategies are compared
with a focus on the case of lookalikes. Results show that, although
overall performance is not significantly improved, comparable
results with a face recognition system are reached and several
fused systems show potential on individual lookalike cases.

I. INTRODUCTION

In the recent past, the performance of facial recognition
has made giant steps, especially with the implementation of
deep neural networks [1]. However, when the system is robust
against ageing, make-up and other variations within subjects,
it may be vulnerable against imposters [2], [3]. An imposter
is a subject a different identity as the target, but has a very
similar appearance, such as lookalikes.

A. Lookalikes

There are two types of lookalikes: related and unrelated
lookalikes. Related lookalikes can be twins, which pose a se-
rious challenge for face recognition systems [4], [5]. Unrelated
lookalikes often share demographic and facial properties with
a person [2], [3], [6] and are also known as doppelgängers. The
effect of lookalikes on the performance of a Face Recognition
System (FRS) can be seen in Figure 1. In this figure random
non-mated pairs (which in the context of [3] were called
random zero-effort imposters) are shown on the left, and
on the right are sets of lookalikes. It is visible that in the
situation of the random pairs, the non-mated and mated scores
can be separated. On the contrary the non-mated and mated
scores of the lookalikes overlap, meaning that high non-mated
comparison scores may be falsely matched if they surpass the
threshold t [3]. The researchers of [6] have shown that not only

Fig. 1: On the left are random zero-effort impostors shown and
their corresponding comparison scores (non-mated). On the
right are doppelgangers shown, again with comparison scores
(non-mated). The image is copied from [3].

face recognition systems struggle with correctly discriminating
between lookalikes, but humans too do not reach high accuracy
scores. They reported that face shape, eyes, nose and lips
play an important role in decision making for humans in the
situation of recognizing lookalikes [6].

The researchers of [7] created a new dataset with images
that are perceptually similar (not only faces, see example
Figure 2). They extract facial features with a deep neural net-
work designed for face recognition and showed that machine-
extracted representations perform very poorly in terms of
reproducing the matching of image pairs as done by humans.
On the contrary, the humans were consistent in choosing
image pairs. This indicates that human can point to the
(facial) features in which images resemble one another and
the machine cannot in this situation [7].

The authors of [8] examined the difference between the
performance of forensic facial examiners and deep convo-
lutional neural networks based on a challenging database
(lookalike images). Forensic facial examiners are trained in
recognizing faces by using standardized procedures, mainly
by the Facial Identification Scientific Working Group (FISWG)
[8]. Contrary to the comparison with human performance by
[6] and [7], which was done with untrained humans, [8]
found that only the newest network at that time was able



Fig. 2: Two examples from the Totally-Looks-Like dataset from
[7].

to outperform the trained humans and, more interestingly,
when they combined the results of the facial examiners and
the algorithms, they could achieve even higher recognition
accuracy.

B. Intentional lookalikes

A unnatural cause of lookalikes is plastic surgery, as a sub-
ject changes its facial features. The subject looks less similar
to their original face and becomes a “lookalike” of themselves.
Furthermore, popular choices in plastic surgery (large lips,
celebrity looks, etc.) can cause people that underwent surgery
to become lookalikes of each other. Rathgeb et al. recently
published a new database with “before” and “after” plastic
surgery images [9], which they use to evaluate the performance
of face recognition systems. They found that these systems
are robust to facial alterations and most plastic surgeries do
not cause significant errors. They showed that facial bones
corrections have the most impact, followed by eyebrow cor-
rections. This shows that differences between facial structures
and eyebrows might be important for differentiating between
mated and lookalike subjects.

Another technique to create “unnatural” lookalikes is mor-
phing. This is an image manipulation technique that combines
biometric information of two (or more) inputs into one image.
This morphed image will match with various probe images
from both subjects in the comparison, which shows the flaws
in the current facial recognition algorithms [10]–[12]. The
researchers of [13] explain that “in face images, intrinsic fea-
ture relations exist between different semantic parsing regions
and we find that face forgery algorithms always change such
relations”. Semantic features can be defined as features to
which humans can give meaning, are visibly prevalent and
can be described in words. They mention that semantic facial
regions are crucial in face forgery detection [13] and they
propose a rather successful method to detect such forgeries.
The researchers of [14] state that “fake face images are
generally of high quality, but they still have tiny defects in the
details.”. They explain that these defects are closely related to

semantic features, as they appear in regions that contain key
information in face images: the eyes, nose and mouth.

C. Research Questions

A downside of using deep networks for face recognition is
that the system is a black box, meaning it is unclear exactly
what information is used to determine the outcome [15]–[17].
It was found that the regions around the eyes, eyebrows, nose
and mouth are important in the decision making for humans
regarding recognizing lookalikes [6], [7]. These regions also
seem to play a role in the classification problems in plastic
surgery and morphing context, [9], [13], [14]. The focus of
this research will be to investigate the differences between
mated, (random) non-mated and lookalike pairs concerning
these regions. An existing face recognition system will be
analyzed to find what information is important for the different
types of pairs. This leads to the first research question:

Research question 1. To which extend does the score
calculation of a Face Recognition System depend on

facial regions, with an explicit emphasis on examining
lookalike sets?

There are multiple researchers who investigated the influ-
ence of facial regions on the output score of the FRS by
occluding regions in the face [15]–[17]. The first step of
this research question is to evaluate what is known based on
literature. An investigation will be conducted on the effect that
occlusions of facial regions have on the performance of an FRS
with an explicit emphasis on lookalikes compared to mated
and (random) non-mated image pairs. The main contributions
of this research within this topic are:

• Implementation of different occlusion strategies, based
on literature, to analyze the dependence of the score
calculation of an FRS on facial regions.

• The analysis of the dependence of the score calculation
of an FRS on facial regions on the specific target group of
lookalikes compared to mated and (random) non-mated
subjects.

As mentioned before, a combination of forensic classifica-
tion (done by humans) and the one done with a neural network
improved the total classification performance [8]. In the second
part of this research we are interested in using forensic features
to improve the performance of a face recognition system on
a dataset containing images of lookalikes. This results in the
second research question:

Research question 2. Can the performance of an existing
Face Recognition System on a lookalike dataset be

improved by fusing the output with features based on
forensic features?

To ensure the use of forensic features, descriptors from
the facial image comparison feature list for morphological
analysis by the FISWG will be used [18]. This list describes
facial features in detail. The goal is to investigate whether a
gain in performance can be achieved by fusing an FRS with
forensic features. The fusing can be done at feature level, score
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level or decision level [19]. However, as most commercial
face recognition systems do not allow for feature fusion [19],
only the outcomes of the networks, either at score level or
decision level fusion, will be used. The results of several
fusion strategies will be compared. The main contributions
of this research concerning the second research question can
be summarized as:

• A methodology to automatically extract features based on
the FISWG [18] list from an image.

• A comparison of several fusion strategies where the
forensic features are combined with the output of an FRS.
Special attention is given to the performance of the fusion
strategies on lookalike subjects.

In Section II an overview of related work will be presented.
After which the methodology of both research questions will
be explained in Section III. The results are presented in
Section IV and discussed in Section V. Lastly the conclusions
will be given in Section VI.

II. RELATED WORK

A. Dependence of score calculation of an FRS on facial
regions

Visualization of the influence of facial regions on the output
score of an FRS is not a new research topic. The researchers of
[20] propose a visualization method that gives insight into the
differences of lookalikes found by deep convolutional neural
networks. By systematically occluding rectangular regions of
the input face pair and monitoring the fluctuation of the
distance between the score relative to the original score, they
show the importance of each region to the similarity of the
face pair [20]. In order to visualize the results, they create
heatmaps to show the discriminative areas [20], where each
heatmap is created from one pair of images.

The researchers of [17] compared six different techniques
for computing a network attention map, which identifies influ-
ential local features in a network. They show that the network
mainly focuses on the area around the eyes and nose, less on
the chin, cheeks and mouth, and ignores the background of
the image.

In [16] a work is presented about exploring features com-
puted by neurons in the network, in order to visualize the
features. They find that the early layers of the used network
(VGGFace) correspond to low level features (edge and color),
mid leavel features correspond to similar shapes and higher
level layers extract high level features which are more com-
plex, such as baldness [16]. They used patch occlusion on
specific features (eyes, nose and mouth) and a random patch
to occlude parts of the face to highlight and investigate the
influence of these facial parts. Important to note is that these
high level features are often so complex that a human cannot
describe them using a few words [16].

In the research of [21] a method is proposed where different
parts of the face are removed and aggregated to measure the
contributions of these parts individually and in-collaboration.
In an iterative process the most relevant parts of the probe

image are removed and similarly the least relevant parts of an
image are removed. These adapted images are fed to the FRS
and a saliency map can be produced and are presented as a
contour map instead of a heatmap.

The researchers of [22] use a triplet loss based system to
create an explainable FRS. Triplet loss means that a known
mate and non-mate gallery image are simultaneously presented
to the system in combination with a probe image. They
occlude parts of the probe image using a prior density to
determine the locations of the occlusions, which is based on
research that the eyes and nose are the most important areas
in the face. They believe that “the triplet of (probe, mate
and non-mate) provides a deeper explanation beyond facial
class activation maps for the relative importance of facial
regions.” - [22]. The masks are filled with a blurred version
of the image. After this they propose an inpainting game,
where the features of a mated probe are blended with features
of another identity to increasingly adapt the image until the
mated image is identified as a non-mate. This strategy allows
for a quantitative evaluation of the influence of facial features.
This is a promising method and they created a benchmark for
explainable face recognition.

An overview of the occlusion methods in aforementioned
research is given in Table I. In this research a similar strategy
as proposed by [20] will be used. This is: occluding different
regions of the face and monitoring fluctuations in the score
of an FRS. Several occlusion strategies will be used, not only
rectangles, but also circles and feature specific occlusions as
used by [16], [21]. The researchers of [20] occluded both
gallery and probe image, contrary to the approach of [21]
where only occlusions were applied to the probe image. The
idea of only adapting the probe will be kept, to create more
insight into where the exact change in score is originating
from. This research will use heatmaps to visualize the score
changes, similar to [20]. Instead of deriving heatmaps from
a single pair, as done by [20], the heatmaps will be derived
from the whole group of pairs (lookalikes, mated and non-
mated). This way, differences between groups can be analyzed.
Although the researchers of [22] proposed a benchmark for
explainable face recognition, it was meant for triplet loss,
where three images are presented simultaneously, and the
system used in this research will be based on a standard two
image gallery-probe input. This means that triplet loss is not
suited for this research.

B. Fusing FRS with forensic features

As mentioned before, there exists a list of standardized
facial features created by FISWG [18]. The researchers of [23]
showed that the FISWG eyebrow feature set can be considered
state-of-the-art in a semi-automatic setting. It was also found
that combining the result of an FRS with the analysis of
trained humans using the list of FISWG, results in a higher
recognition accuracy than the individual performance rates.
[8]. In [24] the researchers showed that in the situation of
forensic use, they could find FISWG characteristic descriptors
that had a moderate to low discriminating power. However,
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TABLE I: Overview occlusion methods in literature

Research Occlusion method Occlusion shape Occlusion fill Presentation
[20] Patch-by-patch Rectangular Mean value whole database Heatmaps
[16] Per feature / random Rectangular Grey Consistency of difference
[17] Replace pixels Pixels Zeros/Mean Color Heatmap
[21] Patch-by-patch Circular Black Contour map
[22] Based on a non-uniform prior Circular / Gaussian and features Blurred version of original Heatmap

in most situations a commercial automatic FRS outperformed
the characteristic descriptors [24]. The aim of this research is
to combine the FRS with features based on the FISWG list.
The researchers of [15] describe an ideal forensic model as
an open-source automatic feature-based model. However, they
also show the downsides of feature based models, for example
the influence of optical distortion on feature proportions. As
this system is not yet solely determined for forensic use cases,
one can use a semi-blackbox neural network (although it is
open source, it is hard to pinpoint what features are used by the
network, which will be analyzed in the first research question).
Based upon the resesarch by [8] we believe that combining the
FRS with forensic features such as the features described by
FISWG can improve the performance. As the system will not
solely be based on facial features, the system might be more
robust against the problems as shown by [15]. The features
will be automatically retrieved and [23] already showed that
semi-automatic retrieved FISWG features can be considered
state-of-the-art.

III. METHOD

A. Dependence of score calculation of an FRS on facial
regions

In order to analyze the dependence of the score calculation
of an FRS on facial regions, parts of images are occluded
while keeping track of the change in scores, based on the
literature review shown in Section II-A. The focus of this
project is on lookalikes, so these are analyzed separately from
mated and (random) non-mated pairs. The change in score due
to the occlusion is visualized in heatmaps. A more elaborate
description of the occlusion methods will be given below. First,
a description of the FRS and the database will be provided.

1) Face Recognition System
The FRS used in this research is FaceNet, which is an open

source convolutional neural network “that maps face images
to a compact Euclidean space” [25]. The network is ported
via the Face Toolbox Keras, available on [26]. It is trained on
the VGGFace2 dataset, which consists of 3.3M faces [25],
[26]. The score is computed as a cosine distance between the
two facial embeddings returned by the network [26].

2) Dataset
The HDA-doppelganger database [27] was used as it con-

tains lookalike pairs. This database consists of 200 pairs
of lookalikes for male and female individuals (800 images
in total). The pairs are divided in original (gallery) and
lookalike (probe) images. The subjects are mainly celebrities.
By combining the images of different individuals, non-mated
pairs are made. In this experiment one non-mated probe per

Fig. 3: An example of a gallery image with corresponding
probes. The gallery image and the lookalike and non-mated
probe images are from the original HDA-doppelganger dataset
[27], the mated probe image is added in this research.

Fig. 4: Example of the segmentation of the facial parts. Image
is copied from [29].

gallery image is used. In order to get mated probe images,
the unknown identities of the subjects in the gallery had to
be retrieved, which was done by using Google Image Search.
The identities of 107 of the 200 female individuals were found
and 150 of the 200 male individuals. An example of a gallery
image with corresponding probes (lookalike, non-mated and
mated) is shown in Figure 3.

3) Preprocessing
Before the occlusion methods are applied, all faces are

aligned using the outer corners of the eyes, that were found
using dlib landmarks [28]. The images are resized to 768 by
576 pixels. A segmentation map of the face is made using
a BiSeNet from the Face Toolbox Keras, available via [26]
and ported from [29]. An example of the parsing is shown in
Figure 4.

4) Occlusion methods
An overview of the whole system is shown in Figure 5 and

will be explained below. An overview of the used occlusion
methods is shown in Table II. All pixels in an occlusion will
be replaced with the average skin color of the subject, which
is determined by the segmentation map of the skin. This is
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Fig. 5: Summary of applying occlusion.

visible in Figure 4 as the large blue area.

Rectangles One of the used occlusion masks in literature
is the rectangular mask [20], that is shifted over the
image. Since each position requires a new evaluation
by the FRS, it was decided not to shift over the whole
image, as this is a time consuming procedure. Therefore
the mask is placed within the face at random positions.
The rectangular masks are placed at 42 different starting
positions and are then increased 10 times in size, meaning
that for each image pair 42·11+1 = 463 FRS evaluations
have to be carried out. The sizes are based on the average
areas of the features and all approximate areas of {3500,
4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 10000,
12500} pixels.

Circles Besides a rectangular shape, a circle is used to occlude
parts of the face. It is expected that the shape of the
occlusion could have an effect on the result, due to the
rectangular filters of convolutional neural networks and
the organic shapes of facial features. The methodology
is the same as for the rectangle, again 42 different
starting positions will be used for 11 different sizes of
the occlusions. The diameters are chosen in such a way
that the areas of the circles are equivalent to those used
with the rectangles.

Features Similar as is done in [16] whole facial features
will be occluded. The left and right eyebrows, left and
right eye, nose, upper lip and lower lip will be occluded
and the initial occlusion of each feature is based on its
segmentation map (see Figure 4). After which the size of
the shape is increased using dilation. This is repeated 12
times.

Pixels As a baseline experiment random pixels are occluded.
11 different numbers of occluded pixels will be used and
the pixels will be initiated 42 ∗ 11 times. Again, only
pixels within the face are changed.

After each occlusion is applied, the change in score (compared

to the situation without occlusion) is divided by the number of
changed pixels (see the mask in Figure 5). The change in score
is computed as described in Equation (1). For each instance
the moving average of the change per pixel is updated in a
heatmap.

Change per pixel =
score occlusion − score original

number of occluded pixels
(1)

B. Fusing FRS with forensic features

To fuse the FRS with forensic features several steps have
to be taken. Starting with preprocessing the image pair, after
which the feature extraction happens. These features are scored
by a trained model, which are then fused together with
the score of the FRS resulting in a final classification. As
mentioned in Section I-C two types of fusion will be applied:
score and decision level. An overview of the whole system
for score and decision level fusion are shown in Figure 7
and Figure 8 respectively. For training the model and certain
aspects of the fusion algorithms, a separate dataset was used.
For evaluation of the results a test set is used, which is the
HDA Döppelganger database [27]. Some slight alterations to
this database are made, which will be explained further on. In
this section information on the used datasets will be provided,
after which an elaboration on each step shown in Figures 7
and 8 is given.

1) Datasets
For training a Pinterest face dataset is used, which is pub-

licly available on Kaggle: the Pins Face Recognition dataset
[30]. The data is collected from images on Pinterest through
a Scrapper-Bot made by Python and Selenium [30]. Hence
all individuals in this dataset are celebrities, which is similar
to the HDA-doppelganger dataset [27] used for the previous
experiment and which will be used as the test set in this
experiment. The faces in the training set are preprocessed
with dlib [30] similarly as the HDA-doppelganger dataset. 54
female and 50 male identities are used. In total 11012 unique
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TABLE II: Overview of the used occlusion methods

Occlusion shape Location Start position remains Number of start Number of size
during size increasement positions increasements

Rectangular Random in face Yes 42 11
Circular Random in face Yes 42 11
Features Feature-based Yes 7 (features) 12
Pixels Random in face No 462 11

Fig. 6: Examples from the Pins Face Recognition dataset,
retrieved from [30]

images are left in the dataset and each identity has 106 images
on average. Examples of three (original) images of a female
and male individual are shown in Figure 6.

For testing the HDA-doppelganger database [27] is used,
which was also used in Section III-A2. The dataset is expanded
by adding mated images in a similar way as described in
Section III-A21. 541 images are added for the female class
and 689 images for the male class. Additionally, extra non-
mated pairs are created by matching the gallery image to probe
images of other identities.

2) Preprocessing
Before the features are extracted, the same preprocessing

as described in Section III-A3 is applied. The segmentation
maps of the eyebrows, eyes, nose, lips and face (blue) will
be used for extraction of the FISWG features [18]. In order
for easy processing, the contours of the segmented facial
parts are used. These contours are retrieved using opencv’s
FindContours functionality [31].

3) Feature extraction
The features that are extracted are based on the FISWG list

[18]. The features are selected based on these requirements:
1) The feature has to be present in a frontal view of

the face. This is important because only frontal view
images are available. Some features in the FISWG list
[18] require a side or top view of the subject, so these
features are dropped.

2) The feature is quantifiable. This is used as some of
the features involve highly specific descriptions, such as
individual hairs in eyebrows. In order to keep the fea-
ture retrieval straightforward these features are dropped

1A list of found names of the individuals in the dataset and copyright
information on the added images is available upon request.

and only features that are quantifiable (either distance,
percentage or other) are used.

3) The feature is present in the segmentation maps.
This requirement is set as the segmentation maps do
not overlap completely with the facial parts used in the
FISWG list. For example, no distinction is made between
forehead and the cheeks. Also, not all features are always
present in the images, such as the ears and the neck. These
are left out too.

4) The feature description is intuitive to the researcher.
As the researcher is not a forensic expert, the descriptions
of the features had to be intuitive to some extent, to pre-
vent misconceptions. Very technically described features
are left out. An example is this description: “Visibility of
infraorbital furrow (a place where a line or wrinkle may
appear parallel to and below the lower eyelid running
from near the inner canthus and following cheek bone
laterally)” [18].

The remaining features are retrieved in four steps: the eye
and eyebrow features, the mouth features, the nose features and
head features. A description of the FISWG feature extraction
and lists of all extracted features can be found in Appendix ??.
All these features are extracted per subject. There are seven
features left that are computed between two subjects. These
features compare the contours of the eyes, eyebrows, nose and
lips. A description of the method to extract these features can
be found in Appendix A. The features are further processed
in two ways:

1) 2D: The FISWG features of both subjects will be con-
catenated as a two-dimensional feature vector.

2) Diff: The FISWG feature values of one subject are
subtracted of the feature values of the other subject,
creating a one-dimensional difference feature vector.

4) Likelihood Ratio
The next step is to create a model to separate mated and

non-mated pairs. The two types of feature vectors of the full
training data set are scaled to zero-mean and unit variance.
Noise is added to the data, to create a broader representation
of values in the training data. The noise is computed by
taking one percent of the difference between the maximum and
minimum value for a particular feature in the feature vector
and multiplying this with random samples from the standard
normal distribution. The mean and covariance (matrix) of both
mated and non-mated feature data are computed, so the data
can be modeled as normal distributions. The contour features
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are only used in the Diff situation, as these features incorporate
both subjects.

To score a feature of a pair of subjects the log-likelihood
ratio (LLR) is computed. The log-likelihood of the pair under
both mated and non-mated distributions can be computed and
the ratio between the two log-likelihoods will tell under which
distribution the pair is most likely to fit. The equation of the
LLR can be found in Equation (2), where P (X|mated) repre-
sents the likelihood of sample X under the mated distribution
and P (X|non-mated) the likelihood of sample X under the
non-mated distribution.

log

(
P (X|mated)

P (X|non-mated)

)
=

log (P (X|mated))− log (P (X|non-mated))
(2)

5) Feature Fusion
Now the results of the FRS can be fused with the forensic

features. In this project only score level fusion and decision
level fusion will be considered, as most commercial systems
do not allow feature level fusion [19], as was also mentioned
in Section I-C. Although in this project an open source system
is used, it was decided to look at these options to offer a fair
comparison with commercial systems. Different strategies to
fuse the FISWG features with the FRS will be explained in
detail. A summary of all different options is shown in Table III
and corresponding graphical overviews of the systems are
shown in Figure 7 and Figure 8. All strategies are applied to
both the “2D” and “Diff” feature extraction methods explained
earlier. In both situations the output is the LLR, which is a
single value score, so there is no difference for the feature
fusion steps between the “2D” and “Diff” process. It is
important to mention that the training set will be used to
determine the parameters of the fusion models. The features
extracted from the original training set are scaled using the
scaling parameters found earlier and noise is added again,
meaning that this data differs slightly from the original training
set. The two different uses of the training set are highlighted
in Figures 7 and 8.

a) Score level fusion
For these fusion strategies the LLR-scores and the score

of the FRS are fused. Four different fusing strategies will be
presented. An overview of the system can be found in Figure 7,
where optional blocks are shown in color.

Strategy 1 - Non-scaled The LLR- and FRS scores are di-
rectly fed to a neural network consisting of one neuron.
This means that the weighted sum of all scores is taken.
The neuron learns the weights of each input and will fuse
all features in an optimal way. The single neuron neural
networks are implemented using Keras Tensorflow [32]
and are trained in 20 epochs with a batch size of 256.

Strategy 2 - Batch Normalization (BN) Instead of directly
feeding the scores to the neuron, batch normalization
is applied to the scores. Batch normalization applies a
transformation that maintains the mean output of a batch

close to zero and the standard output deviation close to
one [33].

Strategy 3 & 4 - Sum LLR In strategy 3 independence of
all features is assumed, so all log-likelihood ratios can be
summed. Again a single neuron network is used to find
the weights of the summed LLRs and the FRS score. For
strategy 4 a batch normalization layer is applied before
the neuron in the classifier and will be referred to as
BN/Sum LLR.

b) Decision level fusion
For these fusion strategies the decision (mated or non-

mated) per feature are combined to make a final decision.
An overview of the two strategies for the fusion step is shown
in Figure 8. In order to make the decisions, a threshold is
set at 1% False Match Rate (FMR) of the LLR scores per
feature and on the score of the FRS. This is the threshold
where only 1% of the non-mated is classified as mated match.
These thresholds are determined using the training dataset.

Strategy 5 - Use decision All decisions are led to a single
neuron neural network, which will determine the weights
of each separate decision to come to a final decision.

Strategy 6 - Voting A voting system is used on the decisions
of the features. It was found that if a pair is assigned a
score below 0.2, it is always a mated match and above 1.0,
it is always considered non-mated. Whenever the score
is between 0.2 and 1.0, the vote that followed from the
forensic features is included. The number of necessary
LLR of forensic features above the thresholds to get a
final mated vote, is varied from 10% to 90% of the total
number of forensic features. Only when both systems
favour towards mated, a mated vote is given. In all other
situations the final vote will give non-mated.

IV. RESULTS

A. Research question 1: Dependence of score calculation of
an FRS on facial regions

As 4 different methods of occlusion {rectangular, circular,
pixels, features}, for two genders {female, male} with
three different classes {mated, non-mated, lookalike} and
in most cases, for 11 different sizes are applied, over
250 heatmaps are collected. Therefore only a selection
of the results is shown. The main results of this research
question are shown in Figures 10 and 11. These images
show the heatmaps for different types of occlusions and for
different types of pairs (mated, non-mated and lookalikes)
for female and male subjects. All these occlusions are filled
with the average skin color of the subject and only one
size of occlusions is visible. In Figure 9 one can see two
heatmaps of the score change of mated female pairs with
a circular occlusion, one with the minimum area and one
with the maximum area. The heatmaps of all optional areas
of circular occlusions are shown in the Appendix in Figure 21.
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Fig. 7: Overview of the system with score level fusion, showing the optional summation (strategy 3 & 4) and batch normalization
(strategy 2 & 4) function blocks in red and green respectively. Highlighted are two subsections of the system that are separately
trained (A & B).

Fig. 8: Overview of the system with decision level fusion, showing the optional fusion strategies weighted sum (strategy 5)
and voting (strategy 6). Highlighted are two subsections of the system that are separately trained (A & B)
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TABLE III: Overview of the different options in the fusion strategies.

Strategy Name Sum Batch Threshold Weighted Majority
LLR Normalization LLR Sum Fusion Voting

1 Non-scaled ✓
2 BN ✓ ✓
3 Sum LLR ✓ ✓
4 BN/Sum LLR ✓ ✓ ✓
5 Use decision ✓ ✓
6 Majority Voting ✓ ✓

TABLE IV: Area-under-curve (AUC) and Equal Error Rate (EER) of different fusion strategies.

FRS Nonscaled BN Sum LLR BN + Sum LLR Use decision
AUC EER AUC EER AUC EER AUC EER AUC EER AUC EER

Female 2D 0.969 0.09 0.957 0.11 0.957 0.11 0.965 0.1 0.968 0.09 0.857 0.13
Diff 0.965 0.1 0.965 0.1 0.969 0.09 0.969 0.09 0.940 0.13

Male 2D 0.992 0.04 0.984 0.07 0.984 0.06 0.991 0.05 0.992 0.04 0.905 0.11
Diff 0.991 0.05 0.991 0.05 0.992 0.04 0.992 0.04 0.952 0.1

A) B)

Fig. 9: Heatmaps of the average score change per pixel
of mated female pairs with a circular average skin color
occlusion. The left heatmap has occlusions with the minimum
area and the right heatmap has occlusions with the maximum
area.

B. Research question 2: Fusing FRS with forensic features

All different fusion strategies for the 2D and Diff processes
are trained and tested as explained in Section III-B5. Table IX
shows the top an bottom three (absolute) weights, together
with the weight for the FRS score of the single neuron.
Table VIII shows the weights of the single neuron for the
two different strategies where the LLRs are summed before
fusion. For most strategies the final results can be summarized
in Receiver-Operator Curves (ROC-curves) which show the
False Match Rates (FMR) and True Match Rates (TMR) for
varying thresholds on the predicted outcomes of the whole
system. This is not possible for the voting strategy (strategy 6),
as it only gives two possible outcomes (mated and non-mated).
As the curves overlap greatly, the results are summarized as
the area under the ROC-curves (Area-under-curve / AUC). The
full ROC-curves are presented in Appendix C. The Equal Error
Rates (EER) are computed too. The EER is the point where the

TABLE V: Confusion matrices (normalized) of the voting
strategy on female subjects.

Predicted label 2D Predicted label Diff

True label 0.29 0.71 0.29 0.71
0.005 0.99 0.005 0.99

TABLE VI: Confusion matrices (normalized) of the voting
strategy on male subjects.

Predicted label 2D Predicted label Diff

True label 0.54 0.46 0.55 0.45
0 1 0 1

FMR and the False Non-Match Rate (FNMR) are equal. The
AUCs and EERs can be found in Table IV. When computing
the AUC and the EER the lookalike pairs are counted as non-
mated.

The performance of the voting strategy is shown in Tables V
and VI. The shown results have the decision thresholds set
at 1% FMR. The confusion matrices remain the same when
the system needs 20% or more of the LLR of the forensic
features favor a mated match, which is why only one confusion
matrix per gender and feature extraction method (2D & Diff)
is shown. The confusion matrices of the situation with 10% of
necessary features and different decision thresholds are shown
in Appendix C.

The performance on the lookalike pairs is evaluated as
follows: first the FMR on the mated and non-mated subjects of
the test database is set to 1% for all feature fusion strategies
(except the voting strategy). The same is done for the FRS
without feature fusion. The thresholds are applied to the
predictions of lookalikes for all systems. It is important to
mention that the lookalikes did not influence the choice of
the threshold, as they were left out in this situation. There
are 107 usable female lookalikes and 112/114 (Diff & 2D
respectively) male lookalikes. The percentages of correctly
classified lookalike pairs are shown in Table VII.

Some individual examples are analyzed to compare the
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Fig. 10: Heatmaps of the average change in score per pixel for different types of occlusions horizontally (from left to right:
rectangular, circular, feature and pixel occlusions) and different pairs vertically (from top to bottom: mated, non-mated and
lookalike pairs). All heatmaps are based on female subjects and the occlusions have the average skin color of the subject.
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Fig. 11: Heatmaps of the average change in score per pixel for different types of occlusions horizontally (from left to right:
rectangular, circular, feature and pixel occlusions) and different pairs vertically (from top to bottom: mated, non-mated and
lookalike pairs). All heatmaps are based on male subjects and the occlusions have the average skin color of the subject.
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Fig. 12: Examples of male lookalike pairs and the performance
of the different (2D) systems on these pairs. All images are
from the HDA-döppelganger dataset.

performance of the different strategies (1-5). The images are
shown in Figure 12 together with the performance of the
different systems on these specific examples. Furthermore, the
loglikelihood ratios that followed from the features are shown
in a boxplot in Figure 13.

V. DISCUSSION

A. Dependence of score calculation of an FRS on facial
regions

In order to visualize the dependence of the score calculation
of an FRS on facial regions, the results of the first research
question are presented as heatmaps. The heatmaps show the

Fig. 13: Boxplots of the loglikelihood ratios of all features.
The numbers on the x-axis correspond to the examples in
Figure 12.

change in score per pixel (Equation (1)). A positive change
means that the occluded image has a higher score than the
original image, corresponding with an increase in dissimilarity
(cosine distance). Thus, bright areas of the heatmap indicate
parts of the image that, when occluded, cause an increase in
dissimilarity (and vice versa).

Looking at Figures 10 and 11, a trend is visible that the
nose and eye regions are important for the mated pairs for
the rectangular, circular and feature occlusions. When these
regions are occluded in the probe, it results in a positive
change in the score, so the probe and gallery images look less
similar. This means that these regions are essential regions
for mated subjects. This is similar to the results of [17], who
also showed that their evaluated network mainly focuses on
the nose and eye areas. This is not clearly visible for the non-
mated pairs. It could mean that although a patch in this area
is occluded, enough information is still available to determine
the pair is non-mated and the score is not influenced greatly.
However, when focusing on the non-mated feature occlusions,
it appears that the occlusion of contours of the eyebrows, eyes
and nose have a negative change in score, meaning that the two
subjects look more similar when these parts are covered. This
could mean that the contours of facial features are important
distinct features, that can be used to distinguish between two
subjects. Again, these are the same important regions that were
mentioned by [17]. Also [14] mentions that the regions of
the eye and nose contain key information for face images.
Lastly, looking at the lookalike pairs, it seems like a mix of
the heatmaps of the mated and non-mated pairs. This is in
line with the definition of a lookalike, namely a non-mated
pair which “behaves” like a mated pair. Some parts around
the eye and nose region are highlighted, but not as clear as in
the case of mated pairs.

A difference between female and male pairs can be found,
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TABLE VII: Percentages of correctly classified lookalike pairs per system when the classification thresholds are set at 1%
FMR.

FRS Nonscaled BN Sum LLR BN/Sum LLR Use decision
Female 2D 53.27 59.81 61.68 51.14 52.33 64.49

DIFF 53.27 56.07 53.27 53.27 53.27 75.70
Male 2D 67.54 71.05 65.79 67.54 69.30 66.67

DIFF 66.67 60.52 63.16 67.54 65.79 76.32

TABLE VIII: Weights of the single neuron neural networks of both Sum LLR strategies.

Sum LLR BN/Sum LLR
2D Summed Features 6.30137 0.63693

FRS Score 12.94781 2.39703
DIFF Summed Features 3.6907 0.62557

FRS Score 12.88262 1.54494

TABLE IX: Top high and low (absolute) weights of the single neuron neural networks of four different fusion strategies.
Explanation of the feature names can be found in Appendix B.

Nonscaled BN Use decision
FRS score 8.9364 FRS score 1.47843 FRS score 7.95257
nose rel inp eyes 3.07519 Nose Symmetry 0.48125 Nose C 1.61382

High weights Nose Symmetry 2.96015 nose rel inp eyes 0.43283 eyebrow symmetry 1.40303
right color iris G 1.47614 Color Gright 0.31053 Nose Size 1.1494

2D
...

...
...

...
...

...
Low weights Symmetrylow 0.01858 left eye pos rel face 0.01183 Symmetryup 0.02415

symmetry eyes 0.01511 Bleft 0.0103 Colorup B 0.02354
right diam iris 0.01277 right diam iris 0.00403 right diam iris 0.0142
FRS score 8.88167 FRS score 1.40723 FRS score 7.95675
Eright 2.41294 Contourleft 0.39577 Contourleft 1.8342

High weights mouth rel inp eyes 2.1695 Contourright 0.32702 Nose Contour 1.71756
nose rel inp eyes 1.97394 Aup 0.28252 Contourright 1.59296

DIFF
...

...
...

...
...

...
Low weights Symmetryup 0.00997 distance outer eyes 0.0013 right color iris G 0.00694

left eye contour 0.00344 right eye contour 0.00093 Colorup G 0.0024
nose rel inner eyes 0.00334 left eye contour 0.00032 Nose Symmetry 0.00114

when looking at the feature-based occlusions. In case of the
female lookalike pairs it seems like occluding the features
results in more dissimilar scores, especially around the eye-
brow regions. This could mean that similar eyebrows are
important features to explain why certain female pairs are
considered lookalikes. Male non-mated and lookalike subjects
show negative score changes around the eyebrow contours,
meaning that when these features are covered they are con-
sidered more similar. This could indicate that the eyebrow
shapes are unique features for non-mated male subjects. The
researchers of [9] also showed that eyebrow corrections have
an impact on recognition rates, meaning that these features
contain important information.

The occlusions with pixels (visible in Figures 10 and 11
barely show any highlighted facial parts. Only the overall
shape of the face is visible, which can be be explained by
the fact that these pixels are not reached by all samples. This
means that occluding random pixels does not change the score
within the face and occluding rectangular, circular and feature
shapes does. It indicates that the FRS does consider larger
shapes in the face as small (pixel) changes do not influence

the score remarkably.
Looking at Figure 9 it is visible that the area of focus

remains in the center of the face around the nose when the size
of the occlusion is changed. However, when the occlusions
are small, one can see the shape of the eyes more clearly
highlighted, as when the occlusions are large that focus seems
to disappear. This is probably due to the fact that the average
change per pixel is considered, resulting in less resolution in
the heatmap of larger occlusions. The important areas remain
highlighted when the size is increased.

a) Limitations & Future research
Although these experiments give insight in the focus areas

of an FRS that are in line with literature, there are still lim-
itations. The occlusions are not completely uniformly spread
over the faces. This is because the positions are randomly
determined and a limited number of occlusions per subject
are placed. For a full analysis the occlusions should be placed
systematically in the face to ensure full coverage, however
this comes at a higher computational cost. Furthermore, only
one open source FRS is used to compare the different types
of pairs. For a more complete analysis, ideally several com-
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mercial and open source systems should be compared to see
whether they give similar results.

It is clear that the nose and eye(brow) regions are important
to determine whether a pair is mated and that these areas seem
to be less important for (random) non-mated subjects. How-
ever, as lookalikes behave similarly as mated pairs concerning
these areas, it might be useful to focus on details in these areas.
The features might seem similar, but as the lookalikes are
non-mated, there will be differences. And for (random) non-
mated pairs contours of the eyebrows and eyes seem important,
instead of the whole areas. This is also mentioned by [14], to
recognize morphed images they focus on details in the regions
of the eyes and nose. This idea is transferred to this research,
which leads to the results of the second research question.

B. RQ 2 - Fusion of FRS with forensic features

The goal of this research question was to improve the
performance of an FRS by fusing the result with forensic
features. The performances of the different fusion strategies
are summarized in Table IV. It is visible that several strategies
reach similar performance as the original system (only FRS).
This holds for both the 2D and Diff implementation. Only the
Use decision implementation seems to perform less than the
other systems, which will be discussed later. The EER and
AUC that are reached by our systems are comparable with
the EER and AUC of the FRS. However, they never perform
better.

This changes when we focus on the lookalikes, in Table VII
the percentages of correctly classified lookalike pairs per sys-
tem are shown. It is important to notice that the classification
threshold of each system at 1% FMR is based on only the
mated and (random) non-mated pairs. The Nonscaled and
Use decision systems seem to outperform the FRS (and other
systems) on classifying the lookalikes. However, when the
outcomes of the fusion methods are compared to the one of the
FRS using the McNemar’s test [34], which is “a statistical test
for comparing proportions from two dependent populations”
[35], none of the fusing methods show a significant difference
with the original FRS. The p-values of each method can be
found in the Appendix (Table XV). The Use decision imple-
mentation seems to perform best on the lookalikes, however
this strategy gave the highest EER and lowest AUC (Table IV).
This can be explained by the choice of the thresholds on the
likelihood ratios. They were set at 1% FMR, meaning that the
system will be rather conservative to assign a mated match (as
the FMR is to be kept low). More true mated pairs will be
considered as non-mated, resulting in a higher FNMR, which
could explain the lower performance in the AUC and EER.
This also explains the higher percentage correctly classified
lookalikes (correct means non-mated), because the system will
decide in favor of non-mated in general.

The same holds for the voting system. Tables V and VI
show that for both female and male subjects a high True
Non-Match Rate (TNMR) is reached, meaning that the system
is in almost all situations correct when appointing a non-
mated pair, even in the situations of lookalikes. However,

this comes at a cost, as the True Match Rate is very low,
29% in the case of female subjects. This means the system
performs well by assigning the label non-mated to nearly
all pairs, which makes the system unsuitable for real life
situations. This is why the results of the voting system are not
further considered. Changing the threshold to a higher FMR
(visible in the Appendix section C) does result in better True
Match Rates, however it comes with lower TNMRates. More
experiments with varying thresholds have to be done to find
the best settings, as well as the design a good comparison
system with the original system (only FRS), to improve this
fusion strategy.

The similarity in performance of Sum LLR and BN/-
Sum LLR can be explained as only one other value (sum of
LLR) is fused with the output of the FRS. These systems
will mainly follow the score of the FRS, which is also shown
in Table VIII where the weight of the score of the FRS has a
higher order of magnitude than the weights of the fused scores.
The same holds for the BN fusion method. In the situation of
Nonscaled and Use decision the top weights have the same
order of magnitude. And although they are visibly lower than
the weight of the FRS score, the features are more important
than for the strategies previously mentioned. It can be assumed
that the whole system therefore pays more attention to the
forensic features.

Looking at the specific features that are in the top three
of highest and lowest weights in Table IX one can see that
in the case of 2D feature processing the nose-related features
seem to be important. The Nonscaled, BN and Use decision
strategies all have several nose-related features in their top
three. Most also have some eye(brow) related features, such
as the eyebrow symmetry, in their top three. This corresponds
with the findings in the first research question that the nose
and eye region are important for determining whether a pair
is mated. The diameter of the iris appears to be the least
important feature. This could be caused by the fact that the
resolution of the image is small compared to the feature size,
and even smaller compared to subject-to-subject variations.
The large quantization error in combination with a small
signal makes that little information can be extracted from
this feature. This could be different when the images have
a higher resolution. In the case of Diff feature processing, two
strategies show a strong favour for the contour features. In
research question 1 it was found that covering the contours of
features resulted in more similar scores. Meaning that contours
are unique features of subjects, which could explain that these
specific features are important to make a distinction between
lookalikes. The Nonscaled strategy has no contour features in
its top three. It could be that other features show more extreme
values, which are highlighted by the Nonscaled strategy.

The individual lookalike examples in Figures 12 and 13
show that when a feature has an “extreme” postive LLR in
comparison to the other values, all fusing strategies favour
towards an incorrect mated match (example 2), as well as
the FRS without fusion. Similarly, when there are no real
extreme LLR values, the fusion strategies correspond with the
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FRS, in this case a correct label is chosen. In the situation
where only the Nonscaled, BN and Use decision strategies
are correct (example 3), one can see that the boxplot falls
mainly on the positive side of LLR values. However, several
extreme negative features are visible, which could explain why
the strategies that make use of the individual features do give a
correct prediction and the systems that sum all features do not,
as the extreme values are outweighted by the overall positive
LLRs. Furthermore, the FRS was wrong in this situation, so
there are situations where some of the fused strategies clearly
make use of the features to end up with a correct prediction.
However, in the last example the FRS and strategies that sum
the LLR do give a correct prediction. It is visible that the lower
quartile of the data is very dense, meaning that the overall
sum will remain low and thus a correct prediction follows.
The other systems will probably pay too much attention to the
positive extreme values and therefore give a wrong prediction.

a) Limitations & Future research
The feature extraction of all forensic features is based on

the segmentation tool provided by [26]. Another segmenta-
tion tool could be used to evaluate the dependence of the
feature extraction on the performance of the segmentation
tool. Furthermore, it was found that some features probably
suffer from quantization noise, in future research images
with higher resolution should be used to investigate whether
certain features perform differently. The features are modeled
as normal distributions, however, it could be that the true
densities are not normal distributions. And as “the likelihood
ratio test is optimal only when the underlying densities can
be estimated very accurately” [19], it could be that the LLR
is not optimal in this situation. One could investigate the
use of other density estimation techniques, such as kernel
density estimation. In this research this option was explored
shortly, however as it comes with higher computational costs
(as the density estimation is more accurate), it was not used
in further experiments and results were not collected. The
evaluation on the lookalikes was only possible on a small
dataset, around 200 valid samples of male and female pairs
in total. In future research this dataset could be increased, for
example by combining more images from each identity. Lastly,
in the fusion strategies all features are combined directly. One
could also consider fusing features of facial parts (such as
eyes, nose, etc.) first, and then fuse the facial parts with the
FRS score.

VI. CONCLUSIONS

In this work two research questions were investigated with
the goal to improve the performance of a Face Recognition
System on challenging lookalike faces by focusing on forensic
features.

The first question focused on the existing system: To which
extend does the score calculation of a Face Recognition
System, with an explicit emphasis on lookalike sets, depend
on facial regions? Based on literature a system was developed
that increasingly occluded parts of the face to visualize the
change in score of a Face Recognition System (FRS) in a

heatmap. Several occlusion strategies have been applied and it
was shown that a FRS does look at larger shapes, as changing
random pixels did not show a remarkable change in score. It
was found that the areas of the eye(brows) and nose seem to
be rather important for mated pairs, as occluding these areas
results in a visible change in score. However, these areas seem
of less importance for non-mated pairs. Special attention was
given to the case of lookalike pairs, and it was found is that
these areas also seem important for lookalikes, but less than
for mated pairs. Meaning that these could be crucial areas for
distinguishing between lookalikes. When the system would be
forced to pay more attention to these areas, it could learn how
to differentiate better between the subjects.

This leads us to the second research question: Can the
performance of an existing Face Recognition System be
improved by fusing the output with forensic features? In order
to do so features from the forensic feature list of FISWG [18]
were selected and automatically retrieved from subjects. These
features were modelled as normal distributions for mated and
non-mated pairs. For each pair of subjects the log-likelihood
ratios are computed for all features, which are then fed to
a fusion system where these ratios are combined with the
score of the FRS. Several fusion strategies were explored
and both score and decision level fusion were applied. It
was found that the overall system was not improved by
any of the strategies, however comparable performance is
reached. The important features were found to be features
concerning the eyebrows, nose and contours of facial features,
which is in line with the results found in the first research
question. When examining the performance of the systems on
lookalikes, it was found that the system did not significantly
improve the overall performance, but on individual examples
some systems outperformed the FRS. These systems used
a score based fusion and incorporated the separate features
and therefore showed that incorporating forensic features has
potential for better performance on lookalikes.

Summarizing, in this research it was investigated whether
the performance of an existing face recognition system could
be improved by incorporating forensic features. Although
the overall performance was not improved, on individual
examples several new systems showed improvement. This
shows potential for future research, where the experiments can,
for example, be expanded by larger databases on lookalikes
and different density estimation techniques can be applied to
further improve performance.
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Fig. 14: Examples of issues with eyebrow segmentation that
can be solved. Images are from [27].

APPENDIX A
DESCRIPTION OF FISWG FEATURE EXTRACTION

a) Eye and eyebrow features
These features were most challenging to retrieve, as

the segmentation process was not always perfect. First of
all, sometimes no eyebrow or eye could be found due to
occlusions. It also happened that only a part of the eyebrow
or eye was recognized. Examples are shown in Figure 15,
the segmented parts are shown as a green contour. In both
examples the segmented parts are too small. Another problem
was that both eyebrows were classified as the right or left
eyebrow and the other was not found, the eyebrows were
swapped or an extra small contour was found additional
to a correct contour, see the examples in Figure 14. These
situations could be solved. The same holds for the eyes. After
checking for these mistakes and if possible, compensating
for them, the features are retrieved. An overview of the
eyebrow features is shown in Appendix Table X. A graphical
overview is given for the position related features (feature
1-5 and 10-14) in Figure 16. It is important to notice that the
x- and y-coordinates start with [0,0] in the upperleft corner,
see the axes in Figure 14. An overview of the eye features
is shown in Appendix Table XI and several position related
features are shown in Figure 17. Some of the eye features use
iris landmarks, these are retrieved by an iris detector. This
detector is part of the used Facetoolbox, provided by [26]. It
is originally an Tensorflow based network that was meant for
eye region landmark based gaze estimation [36]. The network
estimates the position of the iris and returns 8 landmarks of
the contour. An example is shown in Figure 18, where the
iris landmarks are shown in blue.

b) Nose features
For this feature the only check is whether it is present

and whether the size of the found shape is large enough to
be considered a nose. Due to, for example, occlusions some
noses were not correctly segmented and then the features
become meaningless, so these situations are filtered. For most
features of the nose in the FISWG list, the profile view is
necessary [18], which results in a rather small list of features
compared to the eyebrow and eye features. An overview of

Fig. 15: Examples of issues with eyebrow segmentation that
cannot be solved. Images are from [27].

Fig. 16: The position related features of the eyebrow, image
is copied from [18] page 11.

the features can be found in Appendix Table XII, the position
related features are shown in Figure 19.

c) Mouth features
The segmentation parts of the mouth are divided into two

shapes: the upper lip and the lower lip. Again, a check for
both parts whether they are present and large enough is done.
Problems occur for example when the subject has a beard
that occludes parts of the lip. An overview of the mouth
features is shown in Appendix Table XIII, the position related
features are shown in Figure 20.

Fig. 17: The position related features of a single eye (left) and
both eyes (right). The description of the features can be found
in Table XI. The image is copied from [37]; arrows are added.

Fig. 18: Example of the eye region landmarks following from
the iris detector provided by [26].
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Fig. 19: The position related features of the nose. This image
is copied from [38] - licensed under CC-BY-NC; arrows are
added.

Fig. 20: The position related features of the mouth. Red
visualizes the features for the upper lip, the green arrows
represent the features for the lower lip. Image is copied from
[18]; arrows are added.

d) Head features
In the FISWG list there are several features related to

facial proportions, which are categorized as head features in
this research. The face shape is retrieved by the segmentation
map of the skin. It has to be noted that this is without the
hair, so it is not the full skull shape, but chin to hairline. The
overview of features can be found in Appendix Table XIV.
Most features use features that can already be found in the
other feature overviews.

e) Symmetry features
In Tables X to XIV (found in Appendix) several features

related to symmetry have been mentioned. The symmetry
between left and right eyebrows and eyes (two shapes) are
computed and the symmetry of the shapes of the nose and
lips (within shape) are computed.

2 shape symmetry
In the situation with two shapes, the first step is to overlay

the shapes. This is done by determining the centroid of the
shapes. Using the opencv library one can find the moments
of a contour [39]. In order to find the centroid one can use
Equation (3), where {x̄, ȳ} are the coordinates of the centroid.
The next step is to translate one of the two shapes to {0, 0}
by subtracting the centroid of all coordinates. Then all x-
coordinates are multiplied by −1 to mirror the shape, after

which another translation is done, to overlay the two shapes.
This is done by adding the centroid of the second shape to
all the coordinates of the first (mirrored) shape. Lastly, the
opencv function cv2.matchShapes which uses Hu moments to
compare two shapes.

{x̄, ȳ} =

{
M10

M00
,
M01

M00

}
(3)

1 shape symmetry
In case there is one shape, first its centroid (see Equation (3)

is found and the shape is translated to {0, 0}. Then the shape
is divided in a left part and right part, by looking at all positive
and negative x-coordinates. One of the parts is mirrored and
cv2.matchShapes is used to quantify the symmetry.

f) Contour features
All previously mentioned features are computed per

subject. There are seven features left that are computed
between two subjects. The face parts that are used are
expressed in segmentation maps and later on as contours (see
Section III-B2). The contours are expressed in coordinates.
Using these contours one can compare two areas. First the
two shapes are overlaid using the centroids (see Equation (3),
where {x̄, ȳ} are the coordinates of the centroid). Then the
contours are filled and a logical XOR operation is performed
on the two filled shapes. Then all pixels are counted to
compute the unique areas (the non-overlapping parts of the
contours). Which is the difference of the two shapes between
two subjects. This is done for the contours of the left and
right eyebrow, left and right eye, nose, upperlip and lowerlip.
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APPENDIX B
FEATURE EXTRACTION TABLES

TABLE X: Overview of eyebrow features

Facepart Feature How is it retreived

1 Eyebrow Aleft Upperright y-coordinate of the eyebrow minus the lowest y-
coordinate of the left side of the eyebrow. (First all extreme
x-coordinates are found and then extreme y-coordinates among
these sets are found.)

2 Eyebrow Bleft Upperleft y-coordinate of the eye (left eyecorner) minus the
lowest y-coordinate of the left side of the eyebrow. (First all
extreme x-coordinates are found and then extreme y-coordinates
among these sets are found. )

3 Eyebrow Cleft Lowerright y-coordinate of the eye (right eyecorner) minus
lowerleft y-coordinate of the eyebrow. (First all extreme x-
coordinates are found and then extreme y-coordinates among
these sets are found.)

4 Eyebrow Dleft Lowerleft x-coordinate of the eyebrow minus upperleft x-
coordinate of the eye (left eyecorner)

5 Eyebrow Eleft Lowerright x-coordinate of the eye minus the most left coordi-
nate of the eye.

6 Eyebrow Sizeleft Number of pixels in segmentation map
7 Eyebrow Color Rleft Average color in RGB, R value
8 Eyebrow Color Bleft Average color in RGB, B value
9 Eyebrow Color Gleft Average color in RGB, G value
10 Eyebrow Aright see Aleft, but for other eyebrow
11 Eyebrow Bright see Bleft, but for other eyebrow
12 Eyebrow Cright see Cleft, but for other eyebrow
13 Eyebrow Dright see Dleft, but for other eyebrow
14 Eyebrow Eright see Eleft, but for other eyebrow
15 Eyebrow Sizeright see Sizeleft, but for other eyebrow
16 Eyebrow Color Rright see Color Rleft, but for other eyebrow
17 Eyebrow Color Bright see Color Bleft, but for other eyebrow
18 Eyebrow Color Gright see Color Gleft, but for other eyebrow
19 Eyebrow eyebrow symmetry see symmetry explanation in ?? A-0e

TABLE XI: Overview of eye features

Facepart Feature How is it retreived

1 Eye left size iris Take the landmarks of the iris and create a cv2
contour; take the number of pixels within the
contour as the size.

2 Eye left size iris circle Take the landmarks of the iris retreived by the
eyerecognizer and compute the average diameter
of the iris. Using the diameter, compute the area
of the iris as a circle.

3 Eye left color iris R Take the landmarks of the iris and create a cv2
contour; take R value of the average RGB coded
color.

4 Eye left color iris G Take the landmarks of the iris and create a cv2
contour; take G value of the average RGB coded
color.

5 Eye left color iris B Take the landmarks of the iris and create a cv2
contour; take B value of the average RGB coded
color.

6 Eye left diam iris Take the landmarks of the iris retreived by the
eyerecognizer and compute the average diameter of
the iris. Divide by the horizontal distance of the eye
opening (most left and most right x-coordinates).
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Table XI continued from previous page
Facepart Feature How is it retreived

7 Eye left visib iris Take the contour of the iris and the contour of
the eye as masks and compute the overlap of the
masks. Then find the intersections of the overlap
and the eyemask (xor operation), which are the non
visible parts of the iris. The visible part of the iris
is the difference of the total size of the iris and the
non visible part of the iris. Divide this difference
by the total size of the iris to quantize the visibility
as a percentage.

8 Eye left size eye Number of pixels in segmentation map of this eye.
9 Eye right size iris See left size iris
10 Eye right size iris circle See left size iris circle
11 Eye right color iris R See left color iris R
12 Eye right color iris G See left color iris G
13 Eye right color iris B See left color iris B
14 Eye right diam iris See left diam iris
15 Eye right visib iris See left visib iris
16 Eye right size eye See left size eye
17 Eye distance inner eyes Most left x-coordinate of the left eye minus the

most right x-coordinate of the right eye (intercan-
thal distance).

18 Eye distance outer eyes Most right x-coordinate of the left eye minus the
most left x-coordinate of the right eye

19 Eye distance pupils Compute pupil centers of both eyes as the average
x- and y-coordinates of the iris landmarks. Take
the difference of the x-coordinates of the left and
right eye.

20 Eye offset Difference of y-coordinates of pupil centers (see
distance pupils) of left and right eye.

21 Eye symmetry eyes See symmetry explanation in ?? A-0e.

TABLE XII: Overview of nose features

Facepart Feature How is it retreived

1 Nose Nose A Difference between minimum and maximum y-coordinate of the
nose contour.

2 Nose Nose B Difference between minimum and maximum x-coordinate of the
nose contour.

3 Nose Nose C Look in the lower ten percent of the y-coordinates of the nose.
Find the minimum and maximum x-coordinates to compute the
width of the nasal bridge.

4 Nose Nose Size Number of pixels in segmentation map.
5 Nose Nose Color R Average color in RGB format, R value.
6 Nose Nose Color B Average color in RGB format, B value.
7 Nose Nose Color G Average color in RGB format, G value.
8 Nose Nose Symmetry See symmetry explanation in ?? A-0e.
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TABLE XIII: Overview of mouth features

Facepart Feature How is it retreived

1 Mouth Aup Take the middle of the lip as the average of the most left
and most right x-coordinates. Search in the region of \pm 10
coordinates around the middle of the contour for the maximum
and minimum y-coordinate. Take the difference of these y-
coordinates to find the height of the lip.

2 Mouth Bup Take the difference of the most left and most right coordinates
of the contour.

3 Mouth Sizeup The number of pixels in the contour.
4 Mouth Colorup R Average color in RGB format, R value.
5 Mouth Colorup B Average color in RGB format, B value.
6 Mouth Colorup G Average color in RGB format, G value.
7 Mouth Symmetryup See symmetry features.
8 Mouth Alow See Aup.
9 Mouth Blow See Bup.
10 Mouth Sizelow See Sizeup.
11 Mouth Colorlow R See Colorup R.
12 Mouth Colorlow G See Colorup G.
13 Mouth Colorlow B See Colorup B.
14 Mouth Symmetrylow See symmetry features in ?? A-0e.

TABLE XIV: Overview of head features

Facepart Feature (short) Feature (long) How is it retreived

1 Head nose rel inp eyes Nose width relative to innerpupillary distance
eyes

Nose B divided by distance pupils

2 Head nose rel outer eyes Nose width relative to width outer corners eyes Nose B divided by distance outer eyes
3 Head nose rel inner eyes Nose width relative to width inner corners eyes Nose B divided by distance inner eyes
4 Head nose rel left eye Nose width relative to left eye width Nose B divided by difference of most left and most

right x-coordinates of left eye
5 Head nose rel right eye Nose width relative to right eye width Nose B divided by difference of most left and most

right x-coordinates of right eye.
6 Head mouth rel inp eyes Mouth width relative to interpupillary distance

eyes
Bup divided by distance pupils

7 Head mouth rel outer eyes Mouth width relative to width outer corners eyes Bup divided by distance outer eyes
8 Head mouth rel inner eyes Mouth width relative to width inner corners eyes Bup divided by distance inner eyes
9 Head mouth rel left eye Mouth width relative to left eye width Bup divided by difference of most left and most right

x-coordinates of left eye
10 Head mouth rel right eye Mouth width relative to right eye width Bup divided by difference of most left and most right

x-coordinates of right eye.
11 Head nose rel mouth Nose width relative to mouth width Nose B divided by Bup
12 Head nose upperlip rel face Distance nose to upperlip relative to facelength Take the difference between highest y-coordinate of the

nose and the lowest y-coordinate of the upperlip. Divide
by the difference of the highest and lowest y-coordinates
of the face (length of the face).

13 Head chin lowerlip rel face Distance chin to lowerlip relative to facelength Take the difference between the highest y-coordinate of
the nose and the highest y-coordinate of the face and
divide this by the length of the face.

14 Head left eye pos rel face Left eye postition relative to facelength Use cv2.moments to find the center of the eye (see
symmetry features) and take the difference between this
center and the lowest point of the face. Divide this by
the length of the face.

15 Head right eye pos rel face Right eye position relative to facelength See left eye pos rel face.
16 Head face length Facelength. Difference between lowest and highest y-coordinates of

the face.
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TABLE XV: Percentages of correctly classified lookalike pairs per system and p-value of the McNemar’s test [34] of the
system compared to the FRS.

FRS Nonscaled BN Sum LLR BN/Sum LLR Use decision
% correct % correct p-value % correct p-value % correct p-value % correct p-value % correct p-value

Female 2D 53.27 59.81 0.1213 61.68 0.0523 51.14 0.4795 52.33 1.0 64.49 6.834e-09
Diff 53.27 56.07 0.4497 53.27 0.7237 53.27 n/a 53.27 n/a 75.70 7.998e-05

Male 2D 67.54 71.05 0.5224 65.79 0.8231 67.54 0.6831 69.30 0.6171 66.67 0.001723
Diff 66.67 60.52 0.1456 63.16 0.4227 67.54 1.0 65.79 1.0 76.32 0.07249

APPENDIX C
EXTRA RESULTS

Change in Score due to Occlusion for increasing Areas

approx. area
of occlusion

4000 4500 5000

7000650060005500

7500 10000 12500

3500

Fig. 21: Heatmaps of the score change of genuine female pairs with a circular average skin color occlusion. The eleven
heatmaps all have different areas of occlusion which are shown in the lower left corner of each heatmap.
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Fig. 22: ROC-curves of different ‘2D’ feature fusion strategies without the score of the FRS on female subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.

Fig. 23: ROC-curves of different ‘2D’ feature fusion strategies without the score of the FRS on male subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.
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Fig. 24: ROC-curves of different ‘2D’ feature fusion strategies using the score of the FRS on female subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.

Fig. 25: ROC-curves of different ‘2D’ feature fusion strategies using the score of the FRS on male subjects. The black ROC-
curve shows the result of using only the FRS. The dots show the points of the EER.
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Fig. 26: ROC-curves of ‘2D’ strategy 1, 2 and 3 together with the ROC-curve of the FRS.
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Fig. 27: ROC-curves of ‘2D’ strategy 4 and 5 together with the ROC-curve of the FRS.

TABLE XVI: Top High and Low LLR of the forensic features for different examples of lookalike pairs. The examples can be
found in Figure 12

All correct All incorrect Correct: Non-scaled; BN; use decision
Incorrect: FRS, Sum LLR, BN/Sum LLR

Correct: FRS, Sum LLR, BN/Sum LLR, use decision
Incorrect: Non-scaled, BN

FRS score 0.597520202 FRS score 0.393041432 FRS score 0.42572993 FRS score 0.489703774

Bright 0.515560502 Sizeright 2.275894344 nose rel inner eyes 0.405804894 Bright 0.793499295

High LLR Cright 0.32815138 left color iris G 0.753499706 Bright 0.399243287 Aright 0.411233416

Symmetryup 0.306696337 left color iris B 0.692576374 mouth rel inner eyes 0.329502466 Bleft 0.407136853

Aleft -0.26339648 Symmetrylow -0.12539211 Cright -0.45520606 Nose Color R -0.04979515

Low LLR Aup -0.30474284 Alow -0.25365471 Aleft -0.61675216 Dright -0.07630265

eyebrow symmetry -0.58620728 eyebrow symmetry -0.45903589 Aright -1.25197852 eyebrowsymmetry -0.23745861
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Fig. 28: ROC-curves of different ‘DIFF’ feature fusion strategies without the score of the FRS on female subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.

Fig. 29: ROC-curves of different ‘DIFF’ feature fusion strategies without the score of the FRS on male subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.
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Fig. 30: ROC-curves of different ‘DIFF’ feature fusion strategies using the score of the FRS on female subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.

Fig. 31: ROC-curves of different ‘DIFF’ feature fusion strategies using the score of the FRS on male subjects. The black
ROC-curve shows the result of using only the FRS. The dots show the points of the EER.
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Fig. 32: ROC-curves of ‘Diff’ strategy 1, 2 and 3 together with the ROC-curve of the FRS.
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Fig. 33: ROC-curves of ‘Diff’ strategy 4 and 5 together with the ROC-curve of the FRS.
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Fig. 34: Confusion matrix of the 2D voting strategy on female subjects. The thresholds are set at 1% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 35: Confusion matrix of the 2D voting strategy on male subjects. The thresholds are set at 1% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 36: Confusion matrix of the 2D voting strategy on female subjects. The thresholds are set at 1% FMR and 20-90% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 37: Confusion matrix of the 2D voting strategy on male subjects. The thresholds are set at 1% FMR and 20-90% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 38: Confusion matrix of the 2D voting strategy on female subjects. The thresholds are set at 5% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 39: Confusion matrix of the 2D voting strategy on male subjects. The thresholds are set at 5% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 40: Confusion matrix of the 2D voting strategy on female subjects. The thresholds are set at 5% FMR and 20-90% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 41: Confusion matrix of the 2D voting strategy on male subjects. The thresholds are set at 5% FMR and 20-90% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 42: Confusion matrix of the 2D voting strategy on female subjects. The thresholds are set at 10% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 43: Confusion matrix of the 2D voting strategy on male subjects. The thresholds are set at 10% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 44: Confusion matrix of the 2D voting strategy on female subjects. The thresholds are set at 10% FMR and 20-90% of
the forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 45: Confusion matrix of the 2D voting strategy on male subjects. The thresholds are set at 10% FMR and 20-90% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 46: Confusion matrix of the Diff voting strategy on female subjects. The thresholds are set at 1% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 47: Confusion matrix of the Diff voting strategy on male subjects. The thresholds are set at 1% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 48: Confusion matrix of the Diff voting strategy on female subjects. The thresholds are set at 1% FMR and 20-90% of
the forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 49: Confusion matrix of the Diff voting strategy on male subjects. The thresholds are set at 1% FMR and 20-90% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 50: Confusion matrix of the Diff voting strategy on female subjects. The thresholds are set at 5% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 51: Confusion matrix of the Diff voting strategy on female subjects. The thresholds are set at 5% FMR and 10% of the
forensic features have to be in favour of a match for a mated vote from the voting system.
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Fig. 52: Confusion matrix of the Diff voting strategy on female subjects. The thresholds are set at 5% FMR and 20-90% of
the forensic features have to be in favour of a match for a mated vote from the voting system.

Fig. 53: Confusion matrix of the Diff voting strategy on female subjects. The thresholds are set at 5% FMR and 20-90% of
the forensic features have to be in favour of a match for a mated vote from the voting system.
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