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Learning feedback potential maps using large-scale optimal control

Roelof Jan Velthuijs

Abstract— Impedance controllers are widely used to stabilize
feedback systems. Although simple to deploy, these linear
controllers are often not optimized for the task at hand.
Therefore, a generalized nonlinear feedback law defined as the
gradient of the potential and dissipation maps is presented.
An optimal control framework is built around the idea that
solving a large number of optimal control problems for the
same feedback maps will make them optimal for a certain task.
The maps can be adapted to a specific scenario by changing the
desired task, constraints and objective functions. 2 case studies
for 1-DoF positioning tasks are explored and the resulting maps
analyzed.

I. INTRODUCTION

In recent years, energy-based control methods have be-
come a point of interest in the control domain. By viewing
every system as an entity that store and transforms energy,
the energy exchange between two interconnected subsystems
can be explicitly analysed in the energy-based framework.
Using such a method, a controller, which can be interpreted
as a separate system, can be interconnected to the system
it needs to control, forming a closed-loop system [1], [2].
The closed-loop system is then controlled by changing the
energetic behavior of the controller. One of the most popular
controllers which can be studied with an energy-based per-
spective are impedance controllers. For a mechanical system,
an impedance controller uses the power relationship between
force and velocity to control a system. A PD-controller that
takes a velocity and produces a force is therefore called an
impedance controller.

PD-controllers are a common type of feedback controller
that have been extensively researched. Some of their ad-
vantages are the ease of implementation requiring only two
constants and the computational simplicity of finding the
optimal constants for linear problems. This makes these con-
trollers well suited for deployment in, e.g. motion tracking
or balancing problems, often with the addition of gravity
potential compensation [3]. A disadvantage that limits the
applicability of PD-controllers is that they can only be
optimised for 2 constants, which can lead to sub-optimal
behaviour for specific tasks.

As an impedance controller is a PD controller, they have
the same advantages and disadvantage. Using a spring and
damper constant limits the possible energetic behavior. The
optimal behaviour for a controller is dependent on the task,
where a task is the objective we desire to achieve. Task
examples could be the regulation of an arm and stabilisation
of an inverted pendulum.

Variable impedance controllers try to better optimise for
a task by changing the impedance through space and/or
time. This changes the energetic behaviour throughout the

task, which adds a source of possible unstable and unsafe
behaviour without additional restrictions on the energetic
behaviour of the controller. A few examples of variable
impedance controllers with energy budgeting methods are
[4]–[7].

The elastic and viscous behaviour of a controller can
be generalized by a potential and dissipation map. We can
influence the energetic behaviour of the closed-loop system
by shaping these maps. This generalization allows us to
shape the elastic and viscous behaviour without having to
adhere to restrictive predefined shapes, such as the quadratic
position dependency of the potential energy of a spring. The
optimisation would thus provide more freedom to find a
better energetic behaviour for the closed-loop system.

For most controllable systems, a control law that guar-
antees (asymptotic) stability for the closed-loop system is a
desired property. The (asymptotic) stability depends on the
shape of the potential and dissipation maps, and shaping such
maps is a computationally hard task. Multiple papers have
been written on the subject of optimal energy shaping using
e.g. neural networks [8], [9].

We propose a new optimisation framework to shape op-
timal potential and dissipation maps. We optimise the maps
by solving the optimal control problem for a finite set of
trajectories, where the set of trajectories is defined by a
distribution of initial states throughout the system´s state-
space and its final states as the desired states. The resulting
maps shape the closed-loop system such that it has energetic
minima at these desired states, converging to those states
from any point within the maps, being (asymptotically) stable
around these desired states.

The main contribution of this paper is a framework to
compute nonlinear potential and dissipation maps based on a
task. This framework consists of a large-scale optimal control
problem, which optimizes a potential and dissipation map for
multiple trajectories distributed throughout the region of the
map.

This paper is organized as follows: Sec. II will provide
the technical knowledge required to understand the proposed
framework. The control law and a stability proof based
on Lyapunov functions are given in section Sec. III. In
Sec. IV, we will present the optimisation framework itself. In
Sec. V, two case studies will show the optimised controllers,
including some simulated results using these controllers.
A discussion and conclusion are formulated based on the
presented work in Sec. VI.
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II. BACKGROUND

A. Impedance Control

An impedance controller in the mechanical domain is
modelled as a spring and damper applying an input force

u = k(xref − x)−bẋ, (1)

where k is the spring constant, b is the damping constant,
x is the position, ẋ is the velocity relative to the inertial
reference frame, and xref is the desired reference position.
By changing xref, a force is applied that pushes the system
back to the reference.

A spring stores potential energy V according to

V (x) =
1
2

k(xref − x)2, (2)

the potential function of the spring. Similarly, the damping
force can be modelled using the Rayleigh dissipation func-
tion

R(ẋ) =
1
2

bẋ2. (3)

By summing the negative position and velocity gradients of
Eq. (2) and Eq. (3) respectively we obtain

u =−(
dV (x)

dx
+

dR(ẋ)
dẋ

), (4)

which is equivalent to Eq. (1).
Optimising the spring and damping constants of an

impedance controller has been done, as has optimising them
as variable functions over space and time [4]. In this research,
we generalize the shape of V (x) and R(ẋ). Therefore, we will
use the terms potential map and dissipation map as gener-
alized terms to describe the elastic and viscous behaviour
respectively of the closed-loop system.

Impedance control is limited in how it can shape the
energetic behaviour of the closed-loop system. For a constant
k, the quadratic dependency on position in Eq. (2) means that
the spring force will always be linear. The spring potential
only has a single minimum to shape the potential energy of
the closed-loop system, whereas some tasks might require
multiple minima. This can cause the impedance controller to
not be suited for nonlinear systems. For systems with their
own potential, e.g. gravity, potential compensation is often
used to accompany impedance controllers.

B. Lyapunov Criteria

In this section, we briefly summarise the Lyapunov cri-
teria, which a Lyapunov candidate function should fulfill
to qualify as a Lyapunov function. If we can prove that
a function is a (strong) Lyapunov function, (asymptotic)
stability around an equilibrium can be proven.

Let ẋ = f (x,u) be a system, with x̄ being an equilibrium
of this system. Let VL(x) be a candidate Lyapunov function
and let neighborhood Ω be a subset of the state-space of
the system. Let x̄ be in Ω and VL(x) be a function in Ω. If
VL(x) is continuously differentiable, VL(x) is positive definite
defined by

VL(x)> 0, ∀x ∈ Ω,x ̸= x̄, VL(x̄) = 0, (5)

and V̇L(x) is negative semi-definite defined by

V̇L(x) =
dVL(x)

dx ẋ ≤ 0, ∀x ∈ Ω,x ̸= x̄, V̇L(x̄) = 0, (6)

then x̄ is a stable equilibrium and VL(x) is a Lyapunov
function. In the case that V̇L(x) is negative definite defined
by

V̇L(x) =
dVL(x)

dx ẋ < 0, ∀x ∈ Ω,x ̸= x̄, V̇L(x̄) = 0, (7)

then x̄ is an asymptotically stable equilibrium and VL(x)
is a strong Lyapunov function instead. If the closed-loop
system admits a Lyapunov function around an equilibrium,
the stability of that equilibrium can be proven.

III. CONTROL LAW

In this section, we define the potential and dissipation
maps and show how they induce a control law for a closed-
loop system. A stability proof will be given using Lyapunov
analysis and LaSalle’s invariance principle.

A. Potential Map

The potential map V (x) is defined as a potential energy
storage function that depends on the system configuration x.
The negative position gradient of the potential map is a force

Fpot =−dV (x)
dx

. (8)

The potential map is added to other potential energies inside
the system, e.g. gravity or stiffness. The total potential energy
of the system will then be

Vtotal(x) =V (x)+V̂ (x), (9)

where V is the potential map and V̂ is the potential energy
inside the system. An example of this can be found in Fig. 1.
The total potential of the system is changed by adding the
control potential to the open-loop potential.

Fig. 1: The blue line is the created potential map, the red
line is the potential energy of a system consisting a mass-
spring, with xref = 0 and k = 1, such that V̂ (x) = 1

2 x2. For the
closed-loop system, they are summed to give Vtotal, placing
the energetic minimum of the potential at x = 0.4.
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B. Dissipation Map

A Rayleigh dissipation function as defined in Eq. (3) is
used to model the damping force, were the Rayleigh function
is

R(x, ẋ) =
1
2

D(x)ẋ2. (10)

Here D(x) is a position dependent damping constant, there-
fore making the damping position dependent. By taking the
negative velocity gradient of Eq. (10), we obtain a damping
force

Fdamp =−dR(x, ẋ)
dẋ

=−D(x)ẋ. (11)

This damping force has a direction opposite to the velocity
ẋ, as long as D(x)> 0.

C. Proposed Control Law

The input forces produced by the potential and dissipation
map in Eq. (8) and Eq. (11) are summed to compose the
control law

u =−
(dV (x)

dx
+

dR(x, ẋ)
dẋ

)
. (12)

The closed-loop dynamics then become

ẋ = f (x,u) = f (x,−
(dV (x)

dx
+

dR(x, ẋ)
dẋ

)
). (13)

By applying the potential and dissipation maps as input
forces within the closed-loop system, an interconnection
between the system and the controller is made. The energy
of the potential map can be interchanged with the system,
and the dissipation map can dissipate energy. The controller
changes the behaviour of the closed-loop system, shaping the
potential and inserting damping when it is required.

The goal of the feedback law is to regulate the states of
the closed-loop system to reach a desired final state xf. The
feedback laws should converge any initial state x0 to the final
state xf.

Therefore, we want (asymptotic) stability around xf for
the closed-loop system. Next, using a Lyapunov analysis, we
prove that the potential and dissipation map as implemented
in the closed-loop system Eq. (13) provide (asymptotic)
stability around xf, such that they can be used as the feedback
law.

D. Stability Proof

We show a stability proof example on a closed-loop system
using Lyapunov analysis and LaSalle’s invariance principle.
This system will be used in Sec. V as a case study. For other
systems, a similar analysis can be applied.

We apply the presented strategy in Eq. (12) on a moving
mass in 1D to demonstrate an example of closed-loop sta-
bility around desired final states. The dynamics of a moving
mass are

ẍ =
1
m

u, (14)

with ẍ being the acceleration, m being the mass and u an
input force. We define Ω as a subset of the state-space. Let
the task be to move the system from starting position x0 ∈ Ω

to a final position xf ∈Ω, with ẋ f = 0. Note that xf needs to be
an equilibrium. A common choice for a Lyapunov candidate
function is the total energy within the system

VL(x, ẋ) = Kkin(ẋ)+Vtotal(x), (15)

where the kinetic energy Kkin(ẋ) = 1
2 mẋ2 and Vtotal(x) is

Eq. (9). Since V̂ (x) = 0,

VL(x, ẋ) =
1
2

mẋ2 +V (x). (16)

Since a Lyapunov function has to be a continuously differ-
entiable positive definite function within a neighborhood Ω

of the equilibrium xf, the potential map has to have the same
property. Next, we show that V̇L is negative (semi)-definite.

V̇L(x, ẋ) = mẋẍ+
dV (x)

dx
ẋ. (17)

Using Eq. (14) and Eq. (12), we obtain

V̇L(x, ẋ) =−
(dV (x)

dx
+

dR(x, ẋ)
dẋ

)
ẋ+

dV (x)
dx

ẋ, (18)

=−dR(x, ẋ)
dẋ

ẋ. (19)

Using Eq. (10), we get

V̇L(x, ẋ) =−D(x)ẋ2. (20)

We conclude that V̇L is negative semi-definite if D(x) ≥ 0
which implies that the equilibrium is stable. This is not suf-
ficient for asymptotic stability, which would require Eq. (20)
to be negative definite.

Using LaSalle’s invariance principle, it can be proven that
xf is asymptotically stable. let E be a set of the state-space
where V̇L(x, ẋ) = 0, i.e. E = (x ∈ Ω, ẋ = 0). Let M be the
largest invariant subset of E. To find M in E, ẋ = 0 for all
times. This means that x is constant for all time as well.
Eq. (14) then becomes

0 =− 1
m

dV (x)
dx

=− 1
m

dV (xf)

dx
, (21)

which is satisfied where the gradient is 0, which is at xf. This
shows that the system converges towards the largest invariant
subset M = ((x, ẋ) = (xx,0)), and we can therefore conclude
that the equilibrium xf is asymptotically stable.

This leads to the following constraints for maps defined
within a neighborhood Ω to guarantee asymptotic stability:

1) V (x) is continuously differentiable.
2) V (x) is positive definite around its equilibrium xf.
3) D(x) is positive definite.
If the maps are shaped such that they meet these con-

straints, the equilibrium is asymptotically stable. The third
restriction is intuitively understood from Eq. (11): If D(x)< 0
then the damping force would have an amplifying effect on
velocity, causing unstable behaviour.

For the case of multiple equilibria xf inside Ω, asymptotic
stability around those equilibria does not exist within Ω.
This is solved by splitting Ω into subsets, where each
subset is the neigborhood around an equilibrium such that
Lyapunov theorem and LaSalle’s invariance principle hold
within this subset.
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IV. MAP OPTIMISATION FRAMEWORK

In this section, the optimisation framework used to com-
pute the optimal potential and dissipation maps is explained.
First, we will introduce the motivation behind the construc-
tion of the framework, after which the continuous time
problem will be formulated, including the map functions,
constraints, and cost functions. Next, the implementation
of the transcription is explained. Lastly, we formulate the
transcribed nonlinear program (NLP).

A. Concept

The following hypothesis is the motivation behind the
framework: Solving a large number of optimal control prob-
lems that are functions of the same feedback maps allows for
the computation of maps that are optimal for a given task.

We choose a number Ntraj trajectories, where each optimal
control problem consists of regulating a single trajectory
to a desired final state using the same feedback maps. We
define x0 as the initial position states and xf as the final
position states of a trajectory. For this research we are
looking at position regulation tasks, meaning that the initial
and final velocity ẋ0 and ẋ f are zero. We define Ψ as a
region of the state-space. A subset of Ψ, Ω, is then defined
as being between positions and having zero velocities. For
each trajectory we pick x0 from a homogeneous distribution
within Ω. xf ∈Ω is chosen to be the same for each trajectory.
If enough trajectories are used, this should result in feedback
maps that regulate all x ∈ Ω to xf.

Controller Plant

Problem
Formulation

Closed-Loop
System

Boundary Constraints
Multiple Trajectories

Cost Function

Transcription




Optimisation

Path Constraints

Initial Guesses




Fig. 2: The optimization framework and controller imple-
mentation are depicted in a block diagram. The red blocks
are part of the optimisation done offline, whilst the green
blocks are the on-line feedback control.

A block diagram of the optimisation framework can be
found in Fig. 2. A closed-loop system is described by the
system dynamics and the feedback law, consisting of the
potential and dissipation maps. The trajectories are initialized
as boundary constraints. Further path constraints can be
added to specify the task. The cost function can be chosen
based on the desired behaviour of the closed-loop system,
and initial guesses improve the chance of convergence to an

optimal solution. Transforming the continuous time problem
into an algebraic one is done using direct collocation, as
further explained in Sec. IV-E, resulting in a NLP. The
outputs of the optimisation are the optimised potential map
V (x) and dissipation map R(x, ẋ) as well as the optimised
trajectories. These optimised maps can be implemented as
closed-loop controller.

B. Continuous Time Optimal Control Formulation

In this section, we will formulate the continuous time
optimal control problem. To improve readability, we omit
the time dependence from the variables whenever it is clear
from context. We describe the closed-loop dynamics of a
system by ẋ = f (x,u), where we use Eq. (12). We want to
regulate the system’s states x ∈ Ω to go to xf ∈ Ω. We choose
Ntraj trajectories as defined in Sec. IV-A.

For a time horizon t ∈ [0,T ], the continuous time optimal
control problem is formulated as

minimize
V (·),R(·)

J(x,u) = 1
Ntraj

∑
Ntraj
i=1 (L(xi,ui)+K(Ti))+ Jr,

subject to ẋ = f (x,u), ti ∈ [0,Ti] ,

u =−( dV (x)
dx + dR(x,ẋ)

dẋ ),

(xi(0),xi(Ti)) = (x0,i,xf), (x0,i,xf) ∈ Ω,

(ẋi(0), ẋi(Ti)) = (0,0),
Ti ≥ 0, i = 1,2, .,Ntraj,

(22)

where index i denotes each trajectory and L and K are
the running and final cost computed for each trajectory
respectively. Furthermore, Jr is a regularization cost and Ti
is the final time of each trajectory. Note that xf is the same
final state for each trajectory, defining the task.

C. Potential and Dissipation map

This section describes how the maps are defined for the
optimisation.

The potential map V (x) and position dependent damping
term D(x) should be continuously differentiable and the
optimization should have freedom in shaping these functions.
We therefore use uniformly distributed third order B-splines
functions for V (x) and D(x), which are shaped using spline
weight vectors wV and wR respectively. These weight vectors
have a size of Nmap and are used as the decision variables
to shape the maps. For the optimal control problem, we will
write the functions shaping as V (x,wV ) and D(x,wR). Further
details on B-spline can be found in [10].

The spline is valued only within x ∈ Ω. Outside of this
region the spline and its gradient will be 0.

D. Cost Functions

In this section we present cost function examples that are
used for the case studies as well. The presented functions
describe a metabolic, performance and regularization cost.
The specific task is characterised by a specific choice of
cost function.
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The final cost term K is an example of a performance cost.
This cost function represents the squared final time

K(Ti) = T 2
i , (23)

with T the final time. As the average of the sum of squared
final times is taken, Using the squared value of T results in a
penalty for trajectory end times that are much larger than the
average. An alternative performance cost function using the
not-squared value of T allows for more variance in trajectory
end times.

The metabolic cost function is an example of a running
cost term L. This cost function represents the average effort
to reach the final goal. The metabolic cost is defined as

L(x,u) =
∫ T

0
u2dt. (24)

Lastly, a regularization cost Jr is added to the total cost
function. This cost function penalises high amplitudes of the
position dependent damping term. The regularization cost is
defined as

Jr = 0.01
1

Nmap

N

∑
j=1

mapw2
R, (25)

with wR the spline control points of the dissipation function.
This regularization term prevents high damping at positions
where the trajectories in the NLP do not have a velocity. By
using a factor 0.01, the damping will not be minimized if
it compromises performance. Note that this is not necessary
for V (x) as we choose x0,i such that all the spline control
points wV, j are constrained in achieving the task.

E. Transcription Using Direct Collocation

The continuous-time optimal control problem needs to
be transcribed to a NLP for numerical solving. We utilise
direct collocation, explained in [11], [12]. Instead of the
continuous-time dynamics, the dynamics are only imposed
at Ncol collocation points at times tk with k = 0, . . . ,Ncol −1.
Between the collocation points the system dynamics are
approximated by a polynomial spline, where the spline order
depends on the collocation order. The inputs and states then
become xk = x(tk) and uk = u(tk). For readability, f (xk,uk)
is written as fk.

This research uses trapezoidal collocation, the lowest
order collocation method. It approximates states as quadratic
splines and dynamics and control inputs as linear splines.
Trapezoidal collocation utilises the trapezoidal rule for inte-
gration, i.e. ∫ T

0
f (x,u)dτ ≈

Ncol−1

∑
k=0

1
2

h( fk+1 + fk), (26)

with h = tk+1 − tk being the time between two collocation
points. As a result, the continuous time system∫ tk+1

tk
ẋ dt =

∫ tk+1

tk
f (x,u)dt, (27)

can be written as

xk+1 − xk =
1
2

h( fk+1 + fk). (28)

The final time Ti of each trajectory is defined as

Ti = hi(Ncol −1). (29)

By making Ti a decision variable, the optimisation can
change the time between collocation points hi.

F. Nonlinear Program

By combining the previous sections to transcribe the
original continuous time optimal control problem, the NLP
can be formulated as

minimize
wV ,wR,Ti

Jtotal =
1

Ntraj
∑

Ntraj
i=1 (L(xk,i,uk,i)+K(Ti))+ Jr,

subject to xk+1 − xk =
1
2 ( fk+1 + fk) k ∈ [0,Ncol −1] ,

uk =−( dV (xk)
dx + dR(xk,ẋk)

dẋ ),

V (x) =V (x,wV ), R(x, ẋ) = 1
2 D(x)ẋ2

D(x) = D(x,wR), wR > 0
(xi(0),xi(Ti)) = (x0,i,x f ,i), (xi(0),xi(Ti)) ∈ Ω

(ẋi(0), ẋi(Ti)) = (0,0),
Ti = hi(Ncol −1)≥ 0, i = 1,2, ..,Ntraj.

(30)

An additional constraint wR > 0 is required, to ensure
D(x) > 0∀x, as elaborated in Sec. III-D. Note that this
constraint is over-conservative, as the spline is 0 outside of
the area it is defined for. This means that the spline could
still be positive even with some negative weight.

V. CASE STUDIES

The proposed scheme is implemented through the follow-
ing two case studies. The first case study involves the regu-
lation of a point mass, and as such does not present natural
potentials. The second case study involves the regulation of
an inverted pendulum in a gravitational field, and as such
involves a plant which presents a natural potential V̂ .

For both case studies, the machine used for all optimisa-
tions and simulations is equipped with a AMD Ryzen 5 PRO
5650U CPU and 8 GB of RAM. All optimisation are done
using the CasADi[13] open source software in Python. As a
solver, IPOPT[14] is used. The function for the optimisable
B-spline can be found in [15]. All simulations are done using
the odeint function in the SciPy[16] Python package.

A. Case study 1: Shaping a potential function

The first case study involves the optimisation of a nonlin-
ear potential and dissipation map using a point mass.

The differential equation for a 1D moving mass is defined
in Eq. (14), in which the input is a force acting on the
moving mass. The stability proof for this system was given
in Sec. III-D. We use m = 1kg.

The NLP as defined in Sec. IV-F is used for implementa-
tion in a solver.
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(a) The potential map and its gradient. The vertical dotted line
indicates x f = 0.3. (b) The dissipation map

Fig. 3: Case Study 1 - The optimised potential and dissipation maps for the moving mass system.

We define a task, where we want a moving mass position
between −1m and 1m, the set Ω, to converge to 0.3m. This
is formulated for the NLP as

Ω = [−1m,1m] ,

x0,i ∈ Ω, i = 1,2, ..,Ntraj,

xf,i = 0.3m,

ẋ0,i = ẋf,i = 0ms−1.

(31)

We provide the solver with initial guesses for the trajectory
positions, velocities, and final times. An initial guess for the
spline weights of the potential and dissipation maps is not
used, meaning the weights will start at 0. As an initial guess
for the position for each trajectory, the logistic function is
used. This function has an S-shaped curve which resembles
the accelerating and decelerating motion the system makes.
We therefore define the position initial guess as

xk = x0,i +
L

1+ e−k(tk−Ti/2) , (32)

where k = 8 is the steepness and L = xf,i−x0,i the amplitude.
tk is the time at each collocation point. If we give an initial
guess for the final time, we also have an initial guess for
the time at tk. The final time is guessed as Ti = 3s for all
trajectories. The derivative of Eq. (32) is used as initial guess
for the velocity,

ẋk =
k ·L · e−k(tk−Ti/2)

(1+ e−k(tk−Ti/2))2
, (33)

resulting in a velocity peak halfway through the motion.
The optimisation is done with Ncol = 3, Nmap = 20 and

Ntraj = 20.
This optimisation problem consist of only 180 decision

variables: 20 trajectories with a position and velocity at
3 collocation points and a final time, the potential and
dissipation map with 20 spline weights each. This seems
like a small problem, but the issue comes from the constraint

Jacobian, which has 2080 non-zeros. For the same problem
with Ncol = 10 increases the non-zeros in the constraint
Jacobian to 9080. This slows down the speed of the solver
significantly. The choice for 3 collocation points will be
discussed in the discussion.

As we use a uniform B-spline, the spline weights are
equally spaced across the maps. If one of these spline
weights does not have a collocation point close to it, then
the optimisation can not guarantee a positive definite map
anymore. Consequence would be that the maps would not
be able to be the feedback law for that part of the map.
We want to constrain the potential map spline by having a
trajectory start close to every spline weight and therefore we
initialize a trajectory for every spline weight.

The same hardware and software is used as for case study
1. The IPOPT solver finds a solution after 92 iterations,
taking 9.664s. The cost function values can be found in
Table I. The resulting potential and dissipation maps are

Cost Functions Cost
1

Ntraj
∑

Ntraj
i=1 K(Ti) 4.860

1
Ntraj

∑
Ntraj
i=1 L(xk,i,uk,i) 3.068

Jr 0.258
Jtotal 8.186

TABLE I: Cost function values for case study 2 after
optimisation.

shown in Fig. 3a and Fig. 3b respectively. The minimum of
the potential is at xf, which is the point of lowest energy the
closed-loop system should go to. The potential is positive
definite around xf, with no other undesired local minima.
The gradient of the potential is 0 at xf, even though it does
not look very smooth. The position dependent damping term
is high at the center of the system, where dissipation is
needed to get every trajectory at the minimum, and low at
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(a) The state convergence of the moving mass over time. (b) The phase-space convergence of the moving mass.

Fig. 4: Case Study 1 - Initial value problem of the closed-loop system with the optimised maps.

the outsides where little dissipation is required.
The optimised maps should result in asymptotic stability

for the closed-loop system around xf. To verify this, we
set up an initial value problem, where 100 trajectories are
picked from a homogeneous distribution in Ω. The system
is simulated using a time step of 0.04s. The resulting state-
time and phase-space convergence can be found in Fig. 4a
and Fig. 4b respectively.

It can be seen that if the position of the closed-loop system
lies within Ω, it converges to the desired final position. From
this we conclude that the set of optimised maps makes the
closed-loop system asymptotically stable around the final
state xf.

B. Case study 2: Shaping a nonlinear potential function for
a nonlinear system with potential energy.

The second case study involves the optimisation of a
potential and dissipation map for an inverted pendulum.

The open-loop system used in this case study is an inverted
pendulum with a point mass attached to a massless rod. An
actuator in the joint controls the system by applying a coun-
terclockwise positive torque. The second-order differential
equation of such a system is

ẍ = J−1(τi +mgl sin(x)), (34)

in which ẍ is the angular acceleration, J is the systems inertia,
τi the input torque, m = 1kg the mass, g = 9.81ms−2 the
gravitational constant and l = 1m the position of the center
of mass of the system.

The inverted pendulum has a nonlinear potential due to
gravity

V̂ (x) = mgl(1+ cos(x)). (35)

The total potential energy Vtotal(x) is then defined as in
Eq. (9).

The stability proof in Sec. III-D is altered due to the
inclusion of V̂ (x). The candidate Lyapunov function, the total

energy of the closed-loop system, becomes

VL(x, ẋ) =
1
2

Jẋ2 +mgl(1+ cos(x))+V (x). (36)

The derivative of the candidate Lyapunov function becomes

V̇ (x) = Jẋẍ−mgl sin(x)ẋ+
dV (x)

dx
ẋ, (37)

= (τi +mgl sin(x))ẋ−mgl sin(x)ẋ+
dV (x)

dx
ẋ, (38)

= τiẋ+
dV (x)

dx
ẋ, (39)

which is the same as Eq. (20).
The NLP as defined in Sec. IV-F is used for implementa-

tion in a solver.
We define a task, where we want the inverted pendulum

position between −π and πrad, the set Ω, to converge to
0rad. This is formulated for the NLP as

Ω = [−πrad,πrad] ,
x0,i ∈ Ω, i = 1,2, ..,Ntraj,

xf,i = 0rad,
ẋ0,i = ẋf,i = 0rads−1.

(40)

The same initial guesses for case study 1 are used in case
study 2, i.e. Eq. (32) and its derivative Eq. (33). The final
time is guessed as Ti = 3s for all trajectories. No initial guess
is used for the spline.

The optimisation is done with Ncol = 3, Nmap = 20 and
Ntraj = 20, using the same reasoning as in case study 1 for
the chosen values.

The same hardware and software is used as for case study
1. The IPOPT solver finds a solution after 171 iterations,
taking 18.569s. The cost function values can be found in
Table II. The resulting potential and dissipation maps can
be found in Fig. 5a and Fig. 5b respectively. The potential
map Fig. 5a also includes V̂ and the total potential Vtotal. It
can be seen that V (x) modifies Vtotal, placing the energetic
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(a) The potential energies and gradients of an inverted pendulum.
The vertical dotted line indicates x f = 0. (b) The dissipation map.

Fig. 5: Case Study 2 - The optimised potential and dissipation maps for the inverted pendulum.

Cost Functions Cost
1

Ntraj
∑

Ntraj
i=1 K(Ti) 4.11

1
Ntraj

∑
Ntraj
i=1 L(xk,i,uk,i) 97.6

Jr 0.122
Jtotal 101.8

TABLE II: Cost function values for case study 2 after
optimisation.

minimum of the closed-loop system at xf. The gradient of
V (x) has smooth curve, showing that it can compensate
for gravity. The dissipation map shows that the position
dependent damping term is highest around the equilibrium.

To verify the stability of the optimised maps, we set
up an initial value problem similar to case study 1, where
100 trajectories are picked from a homogeneous distribution
within Ω. The system is simulated using a time step of 0.04s.
The resulting state-time and phase-space convergence can
be found in Fig. 6a and Fig. 6b. It can be seen that if the
position of the closed-loop system lies within Ω, it converges
to the desired final position. We conclude that the set of
optimised maps is able to provide the closed-loop system
with asymptotic stability around the final state xf.

VI. DISCUSSION

In this section, possible improvements of the method are
discussed regarding the maps, optimal control framework and
results.

We generalized the potential and dissipation maps using
the argument that more freedom in the map shapes would
allow for more possibilities in finding optimal maps for a
task.

When comparing impedance controllers with the opti-
mised maps, placing a potential minima is something both
can do. The shapes of the optimised maps from the case

studies are not of quadratic shape however. The optimi-
sation also takes into account potential energy within the
system, therefore not needing potential compensation. For an
impedance controller, potential compensation is often used.

Another difference compared to impedance controllers is
the ability to shape multiple minima in a single potential
map. A task that would want two minima could be made by
letting setting up the optimisation framework to let half of
the trajectories converge to one minima and the other half to
the second minimum.

The used dissipation map is a position dependent Rayleigh
function. For some tasks, it might be interesting to have
the D(x) term allowed to become negative. This would
lead to local energy generation instead of dissipation, which
although unstable, might be useful dependent on the task.
Furthermore, in R(x, ẋ) the velocity term is a quadratic term.
Replacing this quadratic term by a function that is positive
definite w.r.t. velocity will result in different behaviour for
the dissipation function.

The set of position states Ω, from which a linear distri-
bution was picked for the initial boundary constraints has a
big influence on the resulting optimised maps. We chose the
linear distribution to obtain behaviour that would converge
the entire map. Using a normal distribution instead might
lead to a larger control action around the equilibrium. The
inverse normal distribution could be interesting if we would
want behaviour that is mostly focused on trajectories at the
edge.

For both case studies, 3 collocation points were used
per trajectory as it led to the smoothest map shapes. This
however causes for large errors in the dynamics of the opti-
misation when compared to the simulated results. For more
complex systems these errors might cause the problem to
become unfeasible, which means that more accurate methods
to model the dynamics will have to be implemented.

Path constraints can not reliably be implemented if the
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(a) The state convergence over time of an inverted pendulum. (b) The phase-space convergence of an inverted pendulum.

Fig. 6: Case Study 2 - Initial value problem of the closed-loop system with the optimised maps.

error is too big either. For some tasks, it is relevant that the
trajectories are constrained by e.g. a speed limit. Currently,
if we set a speed limit, the optimisation might think that it
satisfies the speed limit constraint, where in the simulation it
goes over this constraint. Reducing the error in the dynamics
will allow the usage of path constraints, which gives more
options when defining a task.

Regarding the usage of direct collocation, the following
improvements can be made. Mesh refinement could be tried
to better estimate the trajectories as more collocation points
are added, thus imposing the dynamics more.

In both case studies, a second-order system was tran-
scribed using first-order trapezoidal collocation, splitting the
system up into a set of first-order equations. In [17], it is
stated that transcribing a second order system as a set of first
order differential equations leads to errors in the system dy-
namics. They propose a second-order trapezoidal collocation
method for transcribing second-order systems to reduce these
dynamics errors. The results show that using second order
collocation methods leads to significantly smaller dynamic
errors, compared to the first order transcription used in this
research. Choosing a higher order collocation method, like
Hermite-Simpson collocation, can be another solution to
reduce the error in the system dynamics.

One advantage of using 3 collocation points is that it
makes the optimisation very fast. This is due to the low-
complexity 1D system dynamics used in both case studies.
The optimised maps that are obtained in the case studies
show asymptotic stability around the equilibrium in the
simulations. The compensation of gravity in Fig. 5a could
be something for further study, as the system is able to com-
pensate the gravity even though the errors in the optimisation
dynamics are significant.

A good initial guess can prevent the solver from getting
stuck in local minima. Obtaining good initial guesses can be
done by warm-starting the optimisation solver. Warm-starting
the solver is done by solving an optimisation problem first

and using the results as initial guess for a more complex
problem [11]. This could be used to obtain a good initial
guess of the spline weights.

The relation between the number of spline weights and the
number of trajectories also is of interest. It is clear that when
too few trajectories are used for optimisation, the map loses
its ability to converge for every state. When too few spline
weights are used, it is not optimal to find an optimal shape.
Researching the influence of the number of spline weights
and the number of trajectories required for a good set of
maps could be important when tasks get more complicated.

Lastly, the presented case studies were simple 1D scenar-
ios. Future work consists of applying the optimisation frame-
work to multidimensional systems, e.g. an obstacle avoidance
task. Adding dimensions will make the optimisation problem
significantly harder to solve and therefore will require better
understanding of the framework.

VII. CONCLUSION

It has been shown that solving a large number of optimal
control problems using the same potential and dissipation
maps allows for maps that are optimal for a task. This allows
for the creation of nonlinear maps and the ability to optimally
shape the energy potential inside the closed-loop system.
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