
DMB DATABASE MANAGEMENT
AND
BIOMETRICS

.16277

INVESTIGATING VISION TRANSFORMERS FOR
HUMAN ACTIVITY RECOGNITION FROM

SKELETAL DATA

Ajay Mathew Joseph

MSC. FINAL PROJECT ASSIGNMENT

Committee:
E. Talavera Martínez, PHD (1st supervisor)

dr.ir. L. Spreeuwers
dr. J. Reenalda

January, 2023

2023DMB0001
Data Management and Biometrics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Investigating Vision Transformers for Human
Activity Recognition from Skeletal Data

Ajay Mathew Joseph
Faculty of EEMCS
University of Twente

Enschede, The Netherlands

Estefanı́a Talavera
Faculty of EEMCS
University of Twente

Groningen/Enschede, The Netherlands

Abstract—Transformers are increasingly being used for dif-
ferent kinds of applications these days. Recent works show
that vision transformers can also demonstrate great capacity
in solving Human Activity Recognition tasks based on skeletal
trajectories. However, there are still certain aspects of them that
are left unexplored, with respect to the input representation
as well as the model architecture. We investigate two aspects
of the problem: first, we use skeletal keypoint trajectories
as inputs which are decomposed locally as well as globally.
Secondly, we introduce convolutional learning in to transformers
by using tubelet embeddings which we assume could extract
better spatio-temporal information. We inspect our model on two
different datasets, NTURGB+D 120 and HR-Crime. We observe
that decomposing the keypoints globally and locally does not
improve the performance. We also observe that incorporating
a tubelet embedder to a simple transformer architecture gives
similar results as the baseline results with significantly lesser
computational costs. We also discuss the limitations of our work
and what could be done to improve it.

Index Terms—Human activity recognition, Transformers,
Skeleton based activity classification, Tubelet embeddings, Key-
point decomposition

I. INTRODUCTION

In the past decade, there have been great advancements
in the technological field in our world. Humans now live in
a digital ecosystem. We are surrounded by motion sensors
and cameras almost everywhere we go. In public places,
governments and businesses have setup closed-circuit tele-
vision cameras (CCTV) to monitor various activities like
traffic, crowds and even to detect anomalous activities [1].
Even though humans have advanced a lot technologically, and
complex surveillance systems are in place, we still observe a
lot of criminal activities happening around us in plain sight.
However, it’s also a humongous task to manually inspect each
video [2, 3].

In the recent years, price of computing has gone down and
the usage of digital systems have gone up [4, 5, 6] and this
brings us an opportunity to make use of Deep Learning appli-
cations for automating tasks like these. In the Deep Learning
world, these tasks come under the field of Human Activity
Recognition (HAR). HAR aims to understand and recognize
human behaviour from data like videos, skeleton trajectories
[7, 8, 9, 10], depth maps [11], infrared data [12], audio data
[13] etc. It has a wide range of applications like surveillance
systems [1], virtual/augmented reality [14], human monitoring

[15], etc. For example, identifying a criminal activity from a
live CCTV video.

Most of the previous HAR works had focused on visual fea-
tures extracted from videos like Spatio-Temporal Interesting
Points (STIP) [16, 17], and recently, experiments with other
kinds of data like those mentioned before have picked up.
Deep learning methods also primarily focused on video data,
however, they are computation intensive. Also, video features
contain other kinds of information like background noises,
lights, clothing etc. which could influence the results. Other
features mentioned above have an advantage that they could
be more descriptive compared to videos, like human skeletons
which are compact, strongly structured and semantically rich.
However, obtaining the skeletal keypoints is a different task
and it comes under the field of pose estimation.

These days, transformers are increasingly used for video
analysis and have obtained state of the art performances. Since
the domains of skeletal and video activity recognition are
similar, recent advancements related to vision transformers
(used for video related tasks) can also be explored with
respect to skeletal trajectories. Even though transformer based
methods demonstrated great capacity in solving HAR tasks,
there are still areas left to be explored, which could help us
understand better about how transformers work for HAR tasks.
The input representation of the skeletal trajectories and the
usage of different types of embeddings are areas which are
less explored in this task. We explore those areas in this work.

Video Vision Transformer (ViViT) [18] introduced by the
Google Research team used tubelet embeddings which cor-
responds to 3D convolution capturing temporal and spatial
information at once from videos. This introduced convolu-
tion to transformers. Typically, transformers are pretrained
on large datasets since they lack inductive bias. However,
convolutional networks have inductive bias and we investigate
whether tubelet embeddings could help overcome the lack of
inductive bias for transformers. We propose an architecture
which incorporates the tubelet embedding. For each body part,
we pass the keypoints through a 3D convolution layer whose
outputs are passed to a transformer encoder. This tubelet
embedder is explored as an alternative for the patch embedding
layer in general transformers.

We also investigate a different input representation, with
the keypoints decomposed locally and globally. We build our

experiments on the architecture proposed by Zheng et.al. [19]
(originally proposed for pose estimation), which gave state
of the art performance on HRC dataset [7]. We explore the
following research questions:

1) Can skeletal keypoints which are decomposed locally
and globally better represent the skeletal trajectories for
HAR tasks with transformers compared to conventional
image coordinates?

2) Can tubelet embeddings replace the patch embeddings in
transformers for HAR tasks to encode information such
as movement of body parts and reduce the computational
complexity?

Our major contributions are:
1) We estimate the performance of NTU-RGB+D 120

dataset (see section IV) on the transformer models used
in [7].

2) We demonstrate that keypoints which are decomposed
locally and globally cannot benefit HAR tasks with a
simple transformer architecture.

3) We incorporate a Tubelet Embedder to different trans-
former architectures and demonstrate that they can help
match the performance of the baseline architecture with
much lesser computational costs.

4) While obtaining similar results as to the baseline archi-
tectures, we improve the interpretability of the results by
analyzing them visually using attention heatmaps and T-
SNE plots.

5) We compare two different input representations for the
Tubelet Embedder and discuss their performances.

The rest of the paper is divided as follows. In Section
II, we will discuss about the scientific background of this
research. In Section III, the methodology of this project will be
discussed and then in Section IV, the experimental setup will
be described. Section V describes the results and Section VI
discusses the results obtained. Section VII will finally conclude
the research work.

II. SCIENTIFIC BACKGROUND

In this section, we would first discuss about the technical
background for this work and then discuss the related works
in this field.

A. Technical background
1) Transformers: Transformers were introduced by

Vaswani et.al. in 2017 [20] with the purpose of using
in Natural Language Processing (NLP) tasks. As per the
authors, “the Transformer is the first transduction model
relying entirely on self-attention to compute representations
of its input and output without using sequence-aligned RNNs
or convolution” [20]. This helps to extract a better meaning
for each word and also to build better relations with other
words. Transformers basically use self-attention mechanism to
extract features for each word by figuring out how important
all the other words in the sentence are, with respect to the
given word.

Before Transformers, Recurrent Neural Networks (RNNs)
dominated the NLP space, especially for dealing with
sequence-to-sequence problems. However, they had few se-
rious limitations. They could not retain information while
dealing with long sentences. The information from the initial
words were lost by the time the model reaches the later words.
This was because at any time, the decoder dealt only with
the latest hidden state. In the case of CNNs, the receptive
field is limited by the size of the filters and the number of
convolutional layers used. Increasing these hyperparameters
increases the complexity of the model and can lead to prob-
lems like vanishing gradients. It was for these reasons, the
concept of attention mechanism was introduced. With attention
mechanism, the model related every word with every other
word. Hence, no information could get lost.

Discussing about the structure of a vanilla transformer,
it’s inputs are in the form of tokens and these tokens are
represented using embeddings. For example, each word in a
sentence could be a token.

The next step is to add positional embeddings. In the
case of RNNs, the model could understand the order of
the words since they were processed sequentially but here
in the case of transformers, it processes all words at once,
hence there is no way to retain the information about the
token’s positions. For this reason, positional embeddings were
introduced. These are embeddings which could be added to the
embeddings of the words. There are multiple ways to use these
embeddings. They could be fixed or learnable. The idea is that
as training progresses, the model would learn to understand the
information related to the positions of the words.

These embeddings would be the inputs to the core part
of the transformer, the encoders and decoders. Also, these
embeddings would maintain the same shape and structure
until the very final layer. The transformer has a series of
encoders followed by a series of decoders. Each encoder has
a self attention layer which is followed by a feedforward
neural network. The decoder also has a similar structure, with
a vanilla attention layer between the final encoder and the
corresponding decoder. This can be observed in Figure 1.

The output of the final decoder can be passed through linear
and softmax layers to get the final output.

However, transformers assume minimal prior knowledge
about the structure of the problem as compared to their
convolutional and recurrent counterparts, and hence, they
are typically pre-trained using pretext tasks on large-scale
(unlabelled) datasets. The learned representations are then fine-
tuned on the downstream tasks in a supervised manner to
obtain favorable results.

2) Self attention: Before discussing self attention, let’s
have a look at vanilla attention. Attention mechanism is the
most important component of the transformer architecture.
Let’s look at attention from the context of Natural Language
Processing. Consider a model which could translate a sentence
from one language to another. Here, the attention mechanism
helps the model look at every other words while making the
decision. So the model could ‘attend’ to every other word with

Fig. 1: Architecture of a transformer [20].

respect to a certain word before making a decision. Hence,
every word could contribute to the decision making process.
Vanilla attention mechanism is illustrated in Figure 2a.

Self attention is a mechanism in which the words in a sen-
tence could attend to other words in the same sentence. This
is helpful when we have ambiguous words whose meaning
changes depending on the context. In that case, depending on
the attention from the other words, the model could take a
decision. Self attention mechanism is illustrated in Figure 2b.

As per [20], “An attention function can be described as
mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The
output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility
function of the query with the corresponding key”. To calculate
the attention, as seen in equation 1, we initially do a matrix
multiplication of the Query and Key matrices, divide it by the
square root of the dimension of the embeddings and apply
a softmax function before matrix multiplying it by the Value
matrix. Further explanation of the attention mechanism is out
of the scope of this section.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

B. Related Works in the field of HAR
In this section, we summarize some of the related works in

the fields related to HAR.

1) Human Activity Recognition: HAR on video data in-
volves mainly two approaches: using handcrafted features and
using Deep Learning models. While methods using hand-
crafted features used features like Spatio-Temporal Interesting
Points (STIP) [16, 17] and skeleton trajectories [23, 24], deep
learning methods [25, 26] proposed architectures based on
convolutional networks making using of intermediate repre-
sentations like Video Spatio-Temporal Map (VSTM).

Many works have tried combining both approaches, using
deep learning with handcrafted features. They used different
architectures like Recurrent Neural Networks (RNN) [27, 28,
29], Convolutional Neural Networks (CNN) [30, 31, 32] and
Graph Convolutional Network (GCN) [33, 34, 35]. However,
they were affected by their limitations [36, 37, 38]. CNN
methods considered only correlation between neighbouring
joints while RNN could attend only to short term contexts.
GCN demonstrated difficulty in capturing relationship between
joints which are far away. Until transformers became popular,
GCNs dominated the state of the art works in skeletal HAR.

Most of the state of the art works in skeletal activity recog-
nition has been done using Graph Convolution Networks as
seen in Table I. Nowadays transformers exhibit great ability in
solving sequential tasks and have lately replaced architectures
like Recurrent Neural Networks (RNN). Thus, transformers
are also used in HAR tasks these days [8, 7, 39, 40, 41, 42].
We use transformers in this work and they will be discussed
in detail in section II.

Discussing about the usage of transformers for activity
recognition, Gavrilyuk et.al. recently used transformers for
group activity recognition from videos with the help of a
2D pose network and 3D CNN [61]. Also, for group activity
recognition, Li et.al. introduced GroupFormer [62], which
used a Clustered Spatial-Temporal Transformer which grouped
individuals and made use of inter-group and intra-group re-
lations to capture global activity. In [63], Li et.al. used the
reflection and refraction of WiFi signals from humans as
input to a transformer to detect activities with the help of
a transformer.

Skeleton trajectories were used for the first time by Morais
et.al. [29]. However, they used RNNs for the task. In another
work, Morais et.al. [9] demonstrated that using keypoints
which are locally and globally decomposed could benefit HAR
tasks. They factored out the the human behavioral irregularity
into factors like location, velocity, direction, etc. For this,
they decomposed the skeletal keypoints to local and global
components, where the global component tracked the whole
body, while the local component tracked the skeleton in the
canonical coordinate frame of the body’s bounding box. The
global component carries information about the shape, size
and rigid movement of the human bounding box. The local
component models the internal deformation of the skeleton
and ignores the skeleton’s absolute position in relation to the
environment. We investigate whether this could improve the
performance while being used with transformers. We explore
two kinds of input representations for the global and local
decomposed keypoints. In the first representation, we keep the

(a) Attention mechanism: Words from one sentence at-
tending to words from another sentence [21]. Considering
the image as a heatmap, the intensity shows how much
the word attends to the other word.

(b) Self Attention mechanism: Words from one sentence
attending to words from the same sentence [22]. The red
word is the word which is being attended and the intensity
of blueness indicates the attention strength.

Fig. 2: Two kinds of attention mechanisms

Method NTU-RGB+D 60 NTU-RGB+D 120 Year

LSTM + Convolution

Va-Fusion [43] 89.1 - 2018
AGC LSTM [44] 89.2 - 2019

GCN

AGCN [45] 88.5 - 2019
DGNN [46] 89.9 - 2019
DDGCN [47] 91.1 - 2020
ST-GCN [48] 81.5 70.7 2018
AS-GCN [49] 86.8 78.3 2019
SGN [50] 89.0 79.2 2019
RCGCN [51] 87.3 81.1 2021
2S AGCN [52] 88.5 82.5 2019
FGCN [53] 90.2 85.4 2020
Shift-GCN [54] 90.7 85.9 2020
DCGCNADG [55] 90.8 86.5 2020
MS-G3D [56] 91.5 86.9 2020
MSTGCN [57] 91.5 87.5 2022
EGCN [58] 91.7 88.3 2022
CTR-GCN [59] 92.4 88.9 2021
STF [60] 92.5 88.9 2022

Transformer

STST [42] 91.9 - 2021
ST-TR [8] 88.7 81.9 2021
DSTA-Net [39] 91.5 86.6 2020
IIP-Transformer [40] 92.3 88.4 2021
FG-STFormer [41] 92.6 89.0 2022

TABLE I: State of the art top-1% accuracy for skeleton activity
recognition tasks for two datasets, NTU-RGB+D 60 and NTU-
RGB+D 120 (sorted in the order of performance for NTU120
dataset).

global keypoint and then the local keypoints of each joint. In
the second representation, we couple both the data: with every
local keypoint of a joint, we also keep the global keypoint of
the frame.

Franco et.al. [64] used a multi-modal approach combining
information from Histogram of Oriented Gradients (HOG)
descriptors as well as skeletal information like the joints’
3D position and also it’s orientation with respect to the
sensor coordinate system. In other works, Mazi et.al.[65] and
Cippitelli et.al. [66] used Support Vector Machine (SVM)
techniques to dynamically cluster skeleton data.

Combining both transformers and skeletal activity recog-
nition, Zhang et.al. introduced Zoom Transformer [67] for
group activity recognition which exploited both single person
motion as well as multi-person motion. Zhai et.al. [68] used
RGB input as well as skeletal information to form a group
activity recognizer. However, they used the transformer to
process the RGB input while the skeletal data was processed
by a GCN. One of the very first works making use of
pure attention networks was by Shi et.al. [39]. Zhang et.al.
proposed a multi-task self-supervised learning method [42]
using transformers which used confusing samples in different
situations to improve the robustness of the model. Plizzari
et al. [8] introduced transformer self attention in skeleton
activity recognition instead of graph convolution and also
proposed Spatial Self-Attention module (SSA), Temporal Self-
Attention module (TSA) and Spatial-Temporal Transformer
network (ST-TR). While SSA was used to deal with joint
relationships within a frame, TSA was used to deal with long
range dependencies across the skeleton trajectory. Combining
both, the ST-TR architecture was able to produce state of
the art performance on various datasets. However, it also
made use of convolutional modules. In [40], Wang et.al.

captured intra-body part and inter-body part dependencies and
made use of partition encoding and intra-inter-part transformer.
In a much recent work, Snoun et. al. [69] used CNNs to
process 2D skeletal data while 3D skeletal data were dealt
with transformers and proved that transformers are superior in
performance. In the most recent work [41], Gao et.al. proposed
a focal joints and global parts coupling spatial transformer to
model the correlations of adaptively selected focal joints and
that of human body parts and obtained the state of the art
performance.

In her master thesis [7], Boekhoudt analyzed several trans-
former architectures and explored different representations for
human body movement. It was built on the works of Zheng
et.al. [19]. While the architecture proposed in [19] lifted a
2D pose to a 3D pose by analyzing a sequence of skeletal
trajectories, Boekhoudt [7] modified the same architecture
and used it to classify the skeletal trajectories by replacing
the regression head with a classification head. Boekhoudt’s
work demonstrates that model architectures designed for pose
estimation could also be modified for HAR tasks. We would
be using this architecture as our baseline model.

Eventhough transformers perform greatly, they have certain
limitations as well. One of them is that they have quadratic
complexity since they attend to all of the input tokens. Another
limitation is that they lack inductive bias. Convolutional Neural
Networks (CNN) have inductive bias because we assume that
closer pixels are related, and hence, we use kernels which walk
over the image picking up patterns. Transformers do not have
this functionality and they just attend to different tokens of
the input. In ViT[70], Dosovitskiy et.al. used a hybrid model,
which uses a CNN before the transformer and the patches
for the transformer are extracted from a CNN feature map.
Another way to overcome the lack of inductive bias is to use
a large dataset and this is one reason we use the NTURGB+D
120 dataset which is large in size (see Table II).

In other experiments, Saini et.al. [71] used genetic algo-
rithms using features like velocity and acceleration of trajecto-
ries, movement direction, radial distance, circle structure, etc.
to classify the trajectories and obtained great results. Matei
et.al. [72] tested different methods and showed the negative
impact of dataset imbalance and also demonstrated how data
augmentation methods can boost the performance in HAR
tasks. In [73], Gupta et.al. introduced three different datasets,
each varying on the context in which they were created. They
also investigate the strength and limitations of datasets which
are created in a lab environment and those which are obtained
from real-life situations.

2) Human Pose Estimation: Human Pose estimation
(HPE) is an important step in HAR applications and it aims
to estimate human poses based on their skeleton joints from
images. Human pose estimation could be done either in 2D or
3D. 3D pose estimation is majorly done in two ways: Direct
estimation approaches which infers the pose from 2D images;
and 2D to 3D lifting approaches, which infer 3D poses from
2D poses detected from images.

Research in this field started from extracting 3D poses from

a single 2D pose of an image [74]. It then progressed to
estimating poses from videos, making use of the temporal
information [75, 76, 77, 78, 79, 80, 81]. Some works [82]
made use of LSTM cells while some other works [76, 79, 83]
made use of other parameters like bone-length and spatial-
temporal relationships. In [84], Liu et.al. made use of attention
mechanism to identify significant frames. Since majority of
these works made use of dilated temporal convolutions to
capture the global dependencies, they were limited in temporal
connectivity.

Following the works of [74, 77, 84, 85], Zheng et al.
[19] presented PoseFormer, using a purely transformer based
architecture without involving a convolutional architecture. It
used the human joint relations within one frame and also the
temporal correlation across multiple frames to display a 3D
human pose of the center frame.

In [86], Xu et al. proposed a simple vision transformer
baseline, ViTPose for pose estimation from images. ViTPose
takes as input a single image and outputs the 2D pose of the
person(s) in that image. It used a simple architecture, with a
ViT backbone and simple decoder for estimating the poses.
With the biggest backbone, it was able to obtain state of the
art performance on the MS COCO keypoint dataset [87].

While most of the works used skeleton keypoints obtained
with respect to the frame boundaries, Morais et.al. [9] demon-
strated that a combination of global and local decomposition
of the skeletons would work in a better way. The global
decomposition can track the whole body in the scene while
the local decomposition can describe the skeleton within the
frame of the body’s bounding box (see Figure 3).

Fig. 3: Local & Global decomposition of keypoints [9].

3) Vision Transformers: In recent years, transformers are
being increasingly used in the field of Computer Vision. Even
though transformers were built for the purpose of dealing
with Natural Language Processing tasks, researchers have
extended it to the field of Computer Vision. Dosovitskiy et.al.
introduced Vision Transformers (ViT) [70] and proved that
a pure transformer applied directly to sequences of image
patches can perform well on image classification tasks. ViT
with its simple architecture has outperformed state of the
art convolution based models. Thanks to the self-attention

mechanism of the transformer, global correlations across long
input sequences can be distinctly captured. Earlier, in the
case of using attention mechanism in the field of computer
vision, attention was applied in conjunction with convolutional
networks. However, ViT proved that this was not necessary.

The major modification was that the image was divided
into small patches and the embeddings of these patches were
passed as an input to the transformer. These patches act just
like the word tokens in the case of NLP tasks. We also
prepend a CLS token, which is a learnable embedding at the
beginning of the sequence of embeddings which can be passed
to a classification head to do the classification. It also does
away with the decoder part since it does not need to output a
sequence. This can be observed in Figure 4.

Fig. 4: Architecture of ViT [70].

Dosovitskiy et.al. [70] proves that this strategy when cou-
pled with pre-training on large datasets matches or exceeds the
state of the art on many image classification datasets which is
a promising result.

Multiscale Vision Transformers (MViT) [88] uses different
channel-resolution scale stages to create a multiscale pyramid
of features for video classification. These layers in the early
stages operate at high spatial resolution and in the later stages
at spatially coarse features. MViTv2 [89] improved MViT
with the help of decomposed relative position embeddings and
residual pooling connections.

Transformers typically use two types of position encodings
and these are absolute and relative position encodings. Vision
transformers mostly used absolute encodings, however, Wu
et.al. [90] experimented with relative position encodings for
vision transformers and demonstrated that relative position
encodings are beneficial for vision tasks.

Arnab et. al. in ViViT [18] experimented with four different
pure-transformer architectures for video classification. These
include Spatio-temporal attention (STA), Factorised encoder
(FE), Factorised self attention (FSA), Factorised dot product
attention (FDPA). STA simply passes the tokens through the
transformer encoder. FE passes the tokens initially through a
spatial transformer and then passes them through a temporal
transformer. FSA does Multi Head Self Attention (MHSA)

on spatial features first and then passes it to an MHSA layer
for temporal extraction before passing it to the feed forward
network. Finally, FDPA computes attention weights for each
token separately over the spatial and temporal dimensions
using different heads.

One interesting feature of ViViT is that they used tubelet
embeddings which is an extension of ViT’s embedding to
3D and it corresponds to 3D convolution (see Figure 5).
It is essentially a 3D patch over a few frames extracting
spatio-temporal tokens which is then linearly projected to
a d-dimensional embedding. We implement this feature in
our work and we hypothesize that tubelet embeddings could
capture better spatio-temporal features compared to 2D patch
embeddings.

Fig. 5: Tubelet embeddings, as used in ViViT [18]. ViViT
uses a 3D convolution layer over multiple video frames. For
example, the yellow cuboid labelled x1 represents a 3D kernel
which extracts the embedding x1.

ViTPose [86] is a recent work and it has been used by
Yang et.al. in [91]. Yang et.al. benchmarked ViTPose on it’s
validation dataset which is manually annotated and performed
better than other pose estimation methods. Furthermore, an
object tracker ViTTrack was designed which is a siamese
structure with a shared backbone encoder, ViT for feature
extraction.

In this work, we explore two different aspects which are
missing in the literature:

• We explore training transformers for HAR tasks with
locally and globally decomposed trajectories (as proposed
in [9] for the task of anomaly detection), to investigate
whether they could better represent the skeletal trajecto-
ries for HAR tasks using transformers.

• We study how tubelet embeddings can be incorporated
to transformer architectures for HAR tasks to investigate
whether they could help encode information such as
movement of different body parts. We also investigate
if we can overcome the lack of inductive bias in trans-
formers with the help of tubelet embeddings.

To the best of our knowledge, no other work available today
has explored these research lines.

III. METHODOLOGY

In this section, we will discuss the model architecture as
well as the input representation for both the research questions.

A. Global and local decomposition of keypoints

1) Model Architecture: We use the Temporal Transformer
(T-Tran) architecture from [7] to investigate whether using
globally and locally decomposed keypoints could improve the
performance compared to the baseline results. The architecture
of this transformer can be seen in Figure 6. It takes as input a
sequence of skeleton poses, each representing a frame. The
general input representation is of the from X ∈ Rf×(J.2)

where f is the number of frames and J is the number of
keypoints. Here, 2 indicates that every keypoint is 2 dimen-
sional. Each of the frames acts as a patch and is embedded
to a higher dimension C using the patch embedding layer.
Positional embeddings are also added to the patch embeddings
and the class embedding is also concatenated at this stage.
These are then passed to the Transformer Encoder layer. The
final embedding of the class token is passed through a linear
layer to get the classification of the sequence of frames.

Fig. 6: Architecture of Temporal Transformer.

2) Input representation: In the baseline model, a plain list
of n keypoints were used, as seen in Figure 7.

Fig. 7: Baseline input representation. (xi, yi) represents the x
and y coordinates of the ith skeletal keypoint in a frame.

For this experiment, we decompose the keypoints globally
as well as locally. The global keypoint of a frame is taken as
the mid-point of the bounding box defined by the keypoints of
the skeletal body. This can be observed as the red point (xg ,
yg) in Figure 8.

Now, all the keypoints can be decomposed as the sum of
the global keypoint (green vector) and a local keypoint (blue
vector). This way, the relative position of the joints can be

Fig. 8: Globally and locally decomposed keypoints. The red
box is the bounding box formed by the skeletal keypoints and
it’s midpoint is the global keypoint. The local keypoint is the
blue vector from the global keypoint to the keypoint.

represented with respect to the bounding box. As discussed in
[9], if the xy coordinates are used alone, the depth information
would be missing. Hence we find the width and height of
the bounding box (w, h) using Equation 2 and then use them
to normalize the local components (l) using Equation 3. In
Equation 2, we find the width and height of the bounding box
by taking the difference of the largest and smallest x and y
coordinates respectively. In Equation 3, we normalize the local
components by dividing them by the width and height of the
bounding box.

w = max(xi)−min(xi)

h = max(yi)−min(yi)
(2)

lxi =
xi − xg

w

lyi =
yi − yg

h

(3)

We know that, while the global component tracks the move-
ment of the human bounding box, the local component tracks
the internal movement of the skeleton within the bounding
box. Now we explore two different input representations, with
different levels of importance for the global component :

• Global Single (GS): In this setting, we keep the global
keypoint at the beginning of the list of keypoints along-
with other local keypoints. This can be observed in Figure
9a. The input is of the form X ∈ Rf×((J+1).2) since we
have J local keypoints and one global keypoint.

• Global Repeated (GR): In the global repeated setting,
we keep the same global keypoint along with all local
keypoints, as seen in Figure 9b. It is of the form X ∈
Rf×(2.J.2) since for each local keypoint, we also attach
with it, the global keypoint.

(a) Global single input representation.

(b) Global repeated input representation.

Fig. 9: Different input representations with local (l) and global
(g) decomposition of keypoints. (gx, gy) represents the global
component while (lxi, lyi) represents the local component of
the ith skeletal keypoint in the frame.

B. Exploring Tubelet Embeddings
To explore tubelet embeddings, we approach the problem

as follows. Given a skeletal trajectory extracted from a video,
we divide it into different segments based on the user defined
segment length and assign the action label of the video to all
the segments. We reshape the keypoints to a matrix and feed
them into a Tubelet Embedder to obtain different embeddings
as output. These would replace the patch embeddings used
in the original transformers. The model architecture and input
representations would be discussed detailed in the following
subsections.

1) Model architecture: Initially, we use the same Temporal
Transformer (T-Tran) used in the previous experiment as a
baseline model. We replace the patch embedding layer with a
Tubelet Embedder layer, as seen in Figure 10. We call this ar-
chitecture, the Temporal Tubelet Transformer (TTubeFormer).
The Tubelet Embedder is essentially a 3D convolution layer
which takes as input, keypoints rearranged in the shape of a
matrix and does 3D convolution over them using a 3D kernel.
The representation of the input in the shape of a square matrix
can be seen in Figure 11.

We investigate this aspect in detail by exploring two differ-
ent architectures:

• Body Part Transformer (BPFormer): For dealing with
Tubelet embeddings, we modify the Temporal Trans-
former architecture which was used in the experiments
for Global and local decomposed keypoints. As seen in
Figure 14, we introduce a Body Part Embedder which
takes as input the sequence of keypoints of a body part
over multiple frames. The Body Part Embedder then em-
beds it to multiple embeddings using a Tubelet Embedder
(3D convolutional layer). We use five different Tubelet
Embedders, one for each body part (Torso, Elbows,
Wrists, Knees, Ankles). Now these embeddings will be
encoded either by taking their mean, or by concatenating
them as shown in Figure 12a and Figure 12b.
The Body Part Embedder thus outputs 5 different en-
codings, one for each body part. These are then fed to

Fig. 10: Temporal Tubelet Transformer (TTubeFormer). The
patch embedding in the Temporal transformer (T-Tran) has
been replaced with a Tubelet embedder which embeds the
whole skeleton to different embeddings.

Fig. 11: Input representation for the Temporal Tubelet Trans-
former (TTubeFormer). In this example, we have considered
a dataset with 17 keypoints. Since we have 17 keypoints, we
cannot make it a square matrix. Hence, we append 16 zeroes
and reshape it to a 5×5×2 matrix. For a dataset with a square
number of keypoints (for example, 25), it can be reshaped
without padding any zeros.

a Body Part Transformer Encoder which captures the
relationship between different body parts. The class token
is then passed through a linear layer to make the final
classification.

• Body Part Tubelet Transformer (BPTubeFormer):
Here we modify the architecture to include another
Transformer Encoder layer. The output embeddings of
the Tubelet embedder (3D convolutional layer) are passed
to a Transformer encoder to capture the temporal and
spatial relationship between the different keypoints within
a body part. Here we use five different Transformer
Encoders, one for each body part. Thus, each encoder can
exclusively learn about a body part. The output features
are either concatenated or their mean is taken as in
the previous architecture. The rest of the architecture is
the same as the previous architecture. With the help of
this architecture, we learn and interpret the movements

(a) Mean of embeddings.

(b) Concatenation of embeddings.

Fig. 12: Embedding encoding methods. In (a), we take the
mean of all embeddings. In (b), we concatenate all the
embeddings to obtain a long embedding.

belonging to a body part.
2) Input representation: For the experiments related to

tubelet embedding, we make use of two kinds of input repre-
sentations. The input we have is a sequence of 1D keypoints
while for dealing with 3D convolution, we need inputs in
the shape of a square matrix. Hence, the difference comes
in the way we transform the 1D input (list of keypoints)
to a 2D or 3D representation. In both the cases, if we are
concatenating the output of the Tubelet Transformer, we take
the body part with most number of keypoints as the standard
and pad the keypoint data of all other body points to meet the
shape of that body part representation. For example, consider
a dataset which has a body part containing 9 body points. This
means we have 18 values to represent that body part. We can
rearrange them in the shape of 3 × 6. To transform this to a
square matrix shape, we need to pad 3 rows to this matrix, so
that the whole matrix shape becomes 6×6. For a smaller body
part which has only 2 keypoints, we can reshape the 4 values
to a 2×2 matrix but we also need to pad 4 rows and 4 columns,
as seen in Figure 13a, to match the matrix shape of the torso
body part. This is necessary because different shapes would
mean different number of embeddings as the result for 3D
convolution and it would be impossible to concatenate them
to the same dimension. The two types are:

1) 1-Channel: In the 1 Channel representation, we rear-
range the 1D input to a 2D matrix and then pad the
non-matching dimensions with zeros, as seen in Figure
13a.

2) 2-Channel: In the 2 Channel representation, we rear-

(a) 1-Channel representation.

(b) 2-Channel representation.

Fig. 13: Different input representations for the keypoints to
explore Tubelet Embeddings. The orange dashed cells labelled
0 represent the padded values.

range the 1D input to a 3D matrix with the third
dimension specifying the xy coordinates and then pad
the non-matching dimensions with zeros, as seen in
Figure 13b.

IV. EXPERIMENTAL SETUP

A. Datasets & Preprocessing

In this section, we analyse the two datasets which we have
used in this research work. A brief summary of them can be
seen in Table II and sample images can be seen in Figure 17.

The train and test datasets are obtained based on a 80:20
train:test split. For this, the dataset is divided into four quartiles
based on the trajectory lengths. Each of these quartiles are
then divided based on a 80:20 split so that trajectories of all
lengths are present equally after the split. The training dataset
is again divided to obtain a validation dataset while doing
cross-validation. During cross-validation, the training dataset
is divided into three folds.

During preprocessing, all trajectories which are shorter than
a specified segment length are removed. All trajectories are
then divided in to segments based on that segment length.
These segments are all then labelled with the activity class
label of the parent trajectory from which they were segmented.

The two different datasets that we analyse are:
1) HR-Crime: The HR-Crime dataset [94] is a subset of

UCF-Crime dataset [95] which is a surveillance video dataset

Fig. 14: Body Part Transformer (BPFormer). A body part embedder is used for each body part to obtain the tubelet embeddings
(3D convolution over the reshaped body part keypoints over time). In the next step, the mean of these embeddings are obtained
or they are concatenated. This leaves us with five different embeddings, one for each body part. The class token embedding
is concatenated to them and then passed to the Body Part Transformer along with the position encodings.

Fig. 15: Body Part Tubelet Transformer (BPTubeFormer). We use 6 different transformer modules in this architecture. One for
each body part and finally the Body Part Transformer to extract information between each body part. The Tubelet embedder gives
tubelet embeddings (3D convolution over the reshaped body part keypoints over time) for each body part. These embeddings
are then fed to a Transformer Encoder alongwith positional encodings. The encoder outputs different embeddings. The mean
of these embeddings are taken, or they are concatenated. This leaves us with five different embeddings, one for each body
part. The class token embedding is concatenated to them and then passed to the Body Part Transformer along with the position
encodings.

(a) Fighting (b) Explosion (c) Shoplifting

Fig. 16: HR-Crime dataset samples from three activity classes.

(a) Kicking (b) Shaking hands (c) Typing

Fig. 17: NTU120 dataset samples from three activity classes.

(a) Skeleton keypoints for the HRC [92] dataset. It has 17
keypoints in total. The oval shaped groupings represent
different body parts of the skeleton.

(b) Skeleton keypoints for the NTU120 [93] dataset. It
has 25 keypoints in total. The oval shaped groupings
represent different body parts of the skeleton.

Fig. 18: Skeleton keypoints in HRC [92] and NTU120 [93] datasets.

HRC NTU120
Keypoints 17 25

Videos 789 114,480
Classes 13 120

Train segments
(millions) 3.5 5.2

Test segments
(millions) 0.86 1.3

Mean frame length 315 69

TABLE II: Statistics of the HRC [92] and NTU120 [93]
datasets. For Train and test segments, those with atleast 24
frames are considered.

consisting of 789 human-related anomaly videos and 782
human-related normal videos. It consists of anomaly videos
from 13 categories: Abuse, Arrest, Arson, Assault, Burglary,
Explosion, Fighting, Road Accidents, Robbery, Shooting,
Shoplifting, Stealing and Vandalism [92]. A box plot of the
number of trajectories per video in HRC dataset could be seen
in Figure 19. As can be seen, most of the videos have around
30 trajectories while there are few videos which have more
than 200 trajectories with one video even having more than
600 trajectories.

Fig. 19: Box plot of number of trajectories per video in HRC
[92] dataset.

The skeletal data was given and they were extracted in three
steps: first, the human bodies were detected using YOLOv3-
spp [96] and then AlphaPose [97] was used to detect the
body skeletons and finally, the skeletons were tracked using
PoseFlow [98]. This also means that the trajectories extracted
are not perfect. The skeletons thus extracted had 17 keypoints
and a sample skeleton can be seen in Figure 18a.

One limitation of the HR-Crime dataset is that it has
annotations at the video level and not at the trajectory level
[72]. Hence, one video might contain the trajectories of many
people of which only one might be involved in the criminal
activity. One possible way to overcome this limitation is to
assign an anomaly score to each trajectory and group them in

to two clusters.
2) NTU RGB+D: The NTU RGB+D [99] is a human

action recognition dataset which is large scale and collected
from a lab environment. It has two versions, NTU RGB+D
60 and NTU RGB+D 120. NTU RGB+D 60 consists of
56,880 action samples from 60 action classes collected from
40 different human subjects while NTU RGB+D 120 consists
of 114,480 action samples from 120 action classes. For both
the datasets, the activity classes can be seen in Appendix:Table
XVII and Appendix:Table XVIII. It has 4 different modalities
of data, namely, RGB videos, depth map sequences, 3D
skeletal data and infrared videos. The action classes consists
mostly of daily actions and also few health-related actions and
mutual actions. The skeletal data consists of information of 25
human body joints as seen in Figure 18b. Some statistics about
the dataset with the number of videos with different number
of trajectories can be seen in Table III.

No. of
trajectories

No. of
videos

1 85834
2 27014
3 1088
4 9

TABLE III: Number of videos with different numbers of
trajectories in the NTU120[93] dataset.

The advantage of this dataset is that it contains high
definition videos while it also means that the videos do not
have a real life nature. Also, since the skeletal trajectories are
extracted using sensors, they are the ground truth, contrary
to HRC dataset. In this work, we use the NTU RGB+D 120
(NTU120) version of this dataset.

B. Baseline Approaches
As a baseline, we take the results obtained by the HRC and

NTU120 dataset on the architectures used by [7]. The results
can be seen in Table IV and Table V. It is interesting to note
that while a spatial-temporal model gave the best results for
the HRC dataset, a temporal model performed better than a
spatial-temporal in the case of the NTU120 dataset.

Model C f Balanced Accuracy

T-Tran-1 [7] 256 24 0.4760 ± 0.0090
T-Tran-2 [7] 128 12 0.4325 ± 0.0057
T-Tran-3 [7] 256 12 0.4071 ± 0.0013
T-Tran-4 [7] 128 12 0.3887 ± 0.0013
ST-Tran [7] 32 60 0.4926 ± 0.0043
SBPT-Tran [7] 16 60 0.4876 ± 0.0110

TABLE IV: Results for HRC [92] dataset on the models used
in [7]. C is the embedding dimension and f is the number
of frames. T-Tran [7] architecture can be seen in Figure 6,
ST-Tran [7] in Appendix:Figure 27 and SBPT-Tran [7] in
Appendix:Figure 28.

C. Implementation Details
The experiments in this research work are carried out using

the PyTorch machine learning framework which is based on

Model C f Balanced Accuracy

T-Tran-1 [7] 256 24 0.4669 ± 0.0059
T-Tran-2 [7] 128 12 0.4830 ± 0.0030
T-Tran-3 [7] 256 12 0.2425 ± 0.0033
T-Tran-4 [7] 128 12 0.3264 ± 0.0013
ST-Tran [7] 32 60 0.3812 ± 0.0116
SBPT-Tran [7] 16 60 0.4370 ± 0.0012

TABLE V: Results for NTU-120 [93] dataset on the models
used in [7]. C is the embedding dimension and f is the number
of frames. T-Tran [7] architecture can be seen in Figure 6,
ST-Tran [7] in Appendix:Figure 27 and SBPT-Tran [7] in
Appendix:Figure 28.

the Torch library. The experiments were run on the EEMCS-
HPC Cluster which is part of the many clusters in University
of Twente. The cluster consists of many nodes equipped with
GPUs for running GPU intensive jobs. The SLURM HPC
scheduler is used to manage the jobs submitted to the cluster.

The models are trained with a learning rate of 0.001. We
also use an early stopping criteria which would stop training
if there is no improvement in the validation loss for 3 epochs.
The batch size was set to be 1000, however, few of the models
took more memory and hence the batch size had to be reduced
to 500 or 100. The weights were updated using the Adam
optimizer and the loss calculated was cross entropy loss.

We designed the following experiments in this work:
1) Experiment 1: Global and Local decomposition of key-

points:
a) Experiment 1.1: T-Tran [7] with Global Single in-

put representation with HRC and NTU120 datasets.
b) Experiment 1.2: T-Tran [7] with Global Re-

peated input representation with HRC and NTU120
datasets.

2) Experiment 2: Exploring Tubelet Embeddings:
a) Experiment 2.1: TTubeFormer with whole body in-

put representation with HRC and NTU120 datasets.
b) Experiment 2.2: BPFormer with 1-Channel and

2-Channel input representation with mean and
concatenated embeddings with HRC and NTU120
datasets.

c) Experiment 2.3: BPTubeFormer with the 2-
Channel input representation and concatenated em-
beddings with HRC and NTU120 datasets.

d) Experiment 2.4: BPTubeFormer with the 2-
Channel input representation and concatenated em-
beddings with HRC and NTU120 datasets with
replication padding for the inputs.

e) Experiment 2.5: BPTubeFormer with the 2-
Channel input representation and concatenated em-
beddings with HRC and NTU120 datasets with
different strides for the tubelet embedder.

f) Experiment 2.6: BPTubeFormer with the 2-
Channel input representation and concatenated em-
beddings with HRC and NTU120 datasets with
different segment lengths for the tubelet embedder.

D. Validation
We evaluate the models in two ways, qualitatively and

quantitatively. Quantitative evaluation would help us determine
which model/architecture performs the best while qualitative
evaluation would help us understand how the transformer
learns and interprets the problem.

Quantitative evaluation: To evaluate the models quanti-
tatively, we use various metrics. We report the metrics with
their mean and standard deviation, since we do 3 fold cross
validation. Since we are dealing with multiclass classification
with imbalanced classes, we use weighted metrics to get an
estimate of the results which accounts for the class imbalance.
These include Balanced accuracy, which is the average of the
recall obtained for each class, and also the weighted F1 score.

In the end, we summarize the results using a confusion
matrix for the best performing models. To analyze the com-
plexity of the models, we also compare the number of multi-
ply–accumulate (MAC) operations as well as the total number
of trainable parameters in the model. The MAC operation
computes the product of two numbers and adds that product
to an accumulator (a ← a+ (b× c)). It is the most common
operation used in machine learning models due to its usage
in matrix operations. These are calculated using the THOP1

library.
Qualitative evalutaion: For qualitative evaluation, we used

the trained models from our experiments. The models would
be used to predict the activity of the class. We can then
generate heatmaps using the attentions scores of the Body Part
Transformer and the Tubelet Transformer to explore which
parts of the input the different heads attend to. In the body
part transformer, we would consider the attention scores be-
tween different body parts, and in the tubelet transformer, we
would consider the attention scores between different tubelet
embeddings for each body part. The proper classifications and
misclassifications would also be analysed.

We also plot the t-distributed Stochastic Neighbor Em-
bedding (T-SNE) plots [100] and Silhouette plots [101] of
the class token embeddings generated by the BPTubeFormer
models for the test sets from both the datasets. T-SNE es-
sentially helps us to understand high dimensional data and
project it to lower dimensional space. It uses a similarity
measure between pairs of instances in the higher dimensional
and lower dimensional space. This measure is used to project
the embeddings to lower dimensional space. T-SNE plots are
generated using the Tensorboard2 toolkit.

Silhouette plots demonstrate how well objects are classified
as clusters of data. It is a measure of how similar is an
object to it’s own cluster and how different it is from other
clusters. The similarity is called cohesion and the difference is
called separation. Silhouette values range from -1 to +1 where
+1 shows proper matching while -1 shows poor matching.
Silhouette plots are generated using the Scikit-learn library
[102].

1THOP : https://github.com/Lyken17/pytorch-OpCounter
2Tensorboard : https://www.tensorflow.org/tensorboard

V. RESULTS

A. Quantitative Evaluation
Experiments 1.1 and 1.2: Local and Global decomposi-

tion of keypoints
The results for experiments with locally and globally de-

composed keypoints can be observed in Table VI. We ex-
perimented with two different input representations, namely,
Global Single and Global Repeated. In Global Single rep-
resentation, we keep a single copy of the global keypoint
while in the Global Repeated representation, we keep a
copy of the global keypoint alongwith all local keypoints.
We have experimented these representations on the Temporal
Transformer architecture with an embedding dimension of 256
and segment length of 24 since these parameters gave the
best performance on the HRC dataset. The results show that
for the HRC dataset, the Global Single representation gave
a balanced accuracy of 0.4122 ± 0.0004 while the Global
Repeated representation gave 0.3919 ± 0.0037. For NTU120
dataset, the Global Single representation gave 0.4473 ± 0.0016
while Global Repeated representation gave 0.3959 ± 0.0102.
For both the cases, the F1 score also follows a similar pattern.
Even though the difference is small, we observe that keeping
a copy of the global keypoint with all local keypoints do not
improve the performance. Also, altogether, using globally and
locally decomposed keypoints do not improve the performance
when compared to the baseline input represention shown in
Figure 7.

Dataset Input Type Balanced Accuracy F1 score

HRC [92] GS 0.4122 ± 0.0004 0.4500 ± 0.0021
GR 0.3919 ± 0.0037 0.4309 ± 0.0030

NTU120 [93] GS 0.4473 ± 0.0016 0.4406 ± 0.0005
GR 0.3959 ± 0.0102 0.3929 ± 0.0103

TABLE VI: Results of Experiments 1.1 and 1.2 with locally
and globally decomposed keypoints implemented on a Tempo-
ral Transformer with embedding dimension 256 and segment
length 24. GS indicates the Global Single representation and
GR indicates the Global Repeated representation.

Experiment 2.1: TTubeformer with whole body inputs
The results for Experiment 2.1 can be seen in Table VII. We
used the TTubeformer which is the Temporal Transformer
with the patch embbeding layer replaced with the Tubelet
Embedder. We observe that for the HRC dataset, we obtained
a balanced accuracy of 0.4871 ± 0.0028 while for the NTU120
dataset, it came out as 0.3904 ± 0.0010. Comparing it with
the baseline results, the accuracy for the HRC dataset is very
close to that of the ST-Tran [7] architecture, while for the
NTU120 dataset, there is a big difference of nearly -10%. This
suggests that, for the HRC dataset, TTubeFormer architecture
can match the performance of the baseline model with the
Tubelet Embedder.

Experiment 2.2: BPFormer with 1-Channel and 2-
Channel input representation with mean and concatenated
embeddings

Dataset Balanced Accuracy F1 Score

HRC [92] 0.4871 ± 0.0028 0.5234 ± 0.0036
NTU120 [93] 0.3904 ± 0.0010 0.3887 ± 0.0013

TABLE VII: Results of Experiment 2.1 with the TTubeformer
and whole body inputs (C = 256, f = 24).

Table VIII shows the results for the Experiment 2.2 with
different input representations and embedding combination
techniques for BPFormer.

We investigate two input representations here, namely, 1-
Channel and 2-Channel representation. With respect to embed-
ding combination technqiues, we investigate taking the mean
of the embeddings as well as concatenating the embeddings.
We do experiments with all combinations of these techniques.

As it can be seen, concatenating the embeddings constantly
outperformed taking the mean of the embeddings. With the 1-
Channel representation, for HRC dataset, concatenation gave a
balanced accuracy of 0.4617, 5% higher than taking the mean.
For NTU120, difference was much higher, +17%.

With the 2-Channel representation, for the HRC dataset,
the mean method and the concatenation method produced
very similar accuracies, around 0.4450. However, for NTU120,
concatenation method gave a balanced accuracy of 0.4560,
nearly 15% higher compared to the mean method.

Now comparing the two different input representations, for
NTU120, the 2-Channel representation clearly outperformed
the 1-Channel representation by nearly 7%. However, in the
case of HRC dataset, the 1-Channel representation slightly out-
performed the 2-Channel representation. While the 1-Channel
representation with concatenated embeddings gave a balanced
accuracy of 0.4617, the 2-Channel representation with the
same embedding combination method gave 0.4472. Since the
difference is negligible and the 2-Channel representation takes
less number of operations, we take the 2-Channel representa-
tion to be performing better than the 1-Channel representation.

Experiment 2.3: BPTubeFormer with the 2-Channel
input representation and concatenated embeddings with
HRC and NTU120 datasets

Here we analyze the performance of the BPTubeFormer
which uses a Tubelet Transformer alongwith the Body Part
Transformer, on the two datasets with different kernel sizes for
the Tubelet Embedder. Since all body parts are reshaped to (2,
3, 3), we start with a kernel size of (1, 3, 3) and only change
the temporal dimension. Following the ViViT [18] approach,
we keep the stride same as the kernel size. We only change
the temporal dimension since changing the other dimensions
would not be useful because the stride is same as the kernel
size. The segment length is set as 24 while the embedding
dimension is 32.

We observe in Table IX that, for the HRC dataset we were
able to achieve a balanced accuracy of 0.4982 with a kernel
size of (2, 3, 3) while the least performance was obtained with
a kernel size of (8, 3, 3) which gave a balanced accuracy of
0.4686, nearly 3% lesser compared to the best performance.

Dataset Model Type Channels Embedding C f Balanced Accuracy F1 Score

BPFormer-V1 1 Mean 256 24 0.4129 ± 0.0022 0.4480 ± 0.0026
HRC [92] BPFormer-V2 1 Concatenate 32 24 0.4617 ± 0.0048 0.4990 ± 0.0034

BPFormer-V3 2 Mean 256 24 0.4431 ± 0.0018 0.4811 ± 0.0007
BPFormer-V4 2 Concatenate 32 24 0.4472 ± 0.0090 0.4857 ± 0.0075

BPFormer-V1 1 Mean 256 24 0.2129 ± 0.0034 0.2192 ± 0.0030
NTU120 [93] BPFormer-V2 1 Concatenate 32 24 0.3797 ± 0.0060 0.3748 ± 0.0050

BPFormer-V3 2 Mean 256 24 0.2952 ± 0.0324 0.3060 ± 0.0345
BPFormer-V4 2 Concatenate 32 24 0.4560 ± 0.0033 0.4559 ± 0.0014

TABLE VIII: Results of Experiment 2.2 with BPFormer. While concatenating embeddings, the intermediate embedding
dimension of the Tubelet embedder is taken as 32, while during mean calculation, it is taken as 256. The segment length is
taken as 24. For the 1-Channel representation, the kernel size was taken to be (5, 2, 2) while for the 2-Channel representation,
the kernel size was taken to be (5, 3, 3).

Dataset Model Type Kernel Balanced Accuracy Top-3 Accuracy Top-5 Accuracy F1 Score

BPTubeFormer-1 (1, 3, 3) 0.4797 ± 0.0065 0.7384 0.8453 0.5134 ± 0.0071
BPTubeFormer-2 (2, 3, 3) 0.4982 ± 0.0004 0.7485 0.8508 0.5309 ± 0.0009

HRC [92] BPTubeFormer-3 (4, 3, 3) 0.4873 ± 0.0048 0.7457 0.8495 0.5230 ± 0.0039
BPTubeFormer-4 (5, 3, 3) 0.4768 ± 0.0017 0.7351 0.8456 0.5123 ± 0.0011
BPTubeFormer-5 (6, 3, 3) 0.4747 ± 0.0045 0.7352 0.8457 0.5115 ± 0.0045
BPTubeFormer-6 (8, 3, 3) 0.4686 ± 0.0022 0.7349 0.8458 0.5024 ± 0.0023

BPTubeFormer-1 (1, 3, 3) 0.3957 ± 0.0083 0.6077 0.7000 0.3895 ± 0.0087
BPTubeFormer-2 (2, 3, 3) 0.4229 ± 0.0119 0.6363 0.7257 0.4162 ± 0.0091

NTU120 [93] BPTubeFormer-3 (4, 3, 3) 0.4468 ± 0.0053 0.6702 0.7586 0.4449 ± 0.0050
BPTubeFormer-4 (5, 3, 3) 0.4217 ± 0.0128 0.6520 0.7439 0.4245 ± 0.0099
BPTubeFormer-5 (6, 3, 3) 0.4617 ± 0.0130 0.6820 0.7680 0.4586 ± 0.0131
BPTubeFormer-6 (8, 3, 3) 0.4704 ± 0.0071 0.7008 0.7865 0.4713 ± 0.0055
BPTubeFormer-7 (12, 3, 3) 0.4681 ± 0.0037 0.7073 0.7931 0.4722 ± 0.0027

TABLE IX: Results of Experiment 2.3 with BPTubeFormer for HRC[92] and NTU120[93] datsets. The embedding dimension,
C is 32. The segment length, f is 24 and the stride is same as the kernel size. Kernels are square matrix filters that are used to
extract features from other square matrices (here, keypoints represented in square matrix form) with the help of convolution.

For the NTU120 dataset, however, the best performance was
obtained with a kernel size of (8, 3, 3) while the performance
decreased consistently as the kernel size was reduced, reaching
the lowest with a kernel size of (1, 3, 3).

It is interesting to note that for the HRC dataset, the highest
accuracy was obtained by taking the convolution of just two
frames while for the NTU120 dataset, the convolution of 8
frames had to be taken to obtain the highest accuracy. Also,
for both the datasets, the Top-3 Accuracy is around 70% and
the Top-5 Accuracy is around 85% for the HRC dataset and
78% for the NTU120 dataset.

Experiments 2.4, 2.5 and 2.6: BPTubeFormer with the
2-Channel input representation and concatenated embed-
dings with HRC and NTU120 datasets with replication
padding, different strides and different segment lengths
for the tubelet embedder

In previous experiments, for padding the keypoints for
reshaping them, we used the constant padding mode, (with
zeros) as shown in Figure 13b. In Experiment 2.4, we use the
‘replicate’ padding mode provided by PyTorch, which pads the
matrix elements with the outer elements, instead of zeros. We
observe in Table XI that for the HRC dataset, replicate padding
decreased the performance by 2% while for the NTU120
dataset the performance improved by a small margin, 0.8%.
Since the increase in performance for the NTU120 dataset with

the replicate padding mode is very small, this might indicate
that the replicate padding mode cannot give no better results
than padding with zeros, or that padding with non-zero values
results in noise.

We also experimented with a smaller kernel and a smaller
stride value which is not equal to the kernel size. Thus
the same elements would be convolved over by the same
kernel more than once. Also, this would give more number
of embeddings. It is to be noted that this is in contrast to
the original proposed method in ViViT [18], where the kernel
size was same as the stride. We used a kernel of dimension
(2,2,2) with two different stride values, (2,1,1) and (1,1,1).
The results can be seen in Table X. For the HRC dataset,
it was observed that the balanced accuracies decreased by a
very small amount. For the NTU120 dataset, the accuracies
decreased by a significant amount. This helps us to infer that
small changes in the kernel size or the stride value does not
bring any improvement in HAR tasks. It also proves that the
original implementation of keeping the same value for both
the kernel and stride provides the best performance.

Further experiments were carried out with a longer segment
length. For this, we considered segments which are 60 frames
long compared to 24 in the previous experiments. We observe
in Table XII that the balanced accuracies remained similar
for HRC dataset while for the NTU120 dataset, the accuracy

Dataset Model Type Kernel Stride Balanced Accuracy F1 Score

BPTubeFormer-2-V1 (2, 3, 3) (2, 3, 3) 0.4982 ± 0.0004 0.5309 ± 0.0009
HRC [92] BPTubeFormer-8-V1 (2, 2, 2) (2, 1, 1) 0.4890 ± 0.0025 0.5246 ± 0.0035

BPTubeFormer-8-V2 (2, 2, 2) (1, 1, 1) 0.4917 ± 0.0022 0.5265 ± 0.0010

BPTubeFormer-6-V1 (8, 3, 3) (8, 3, 3) 0.4704 ± 0.0071 0.4713 ± 0.0055
NTU120 [93] BPTubeFormer-8-V1 (8, 2, 2) (8, 1, 1) 0.4469 ± 0.0052 0.4408 ± 0.0044

BPTubeFormer-8-V2 (8, 2, 2) (4, 1, 1) 0.3888 ± 0.0071 0.3823 ± 0.0053

TABLE X: Results of Experiment 2.5 with the BPTubeFormer (C = 32, f = 24) with different strides. The kernel size was
taken to be (2, 2, 2) for the HRC dataset and (8,2,2) for the NTU120 dataset.

Dataset Model Type Padding
Mode Balanced Accuracy

HRC [92] BPTubeFormer-2-V1 constant 0.4982 ± 0.0004
BPTubeFormer-2-V2 replicate 0.4722 ± 0.0034

NTU120 [93] BPTubeFormer-6-V1 constant 0.4704 ± 0.0071
BPTubeFormer-6-V2 replicate 0.4784 ± 0.0044

TABLE XI: Results of Experiment 2.4 with the BPTubeFormer
(C = 32, f = 24) with replicate padding.

dropped by 5%. This suggests that for both the datasets, longer
segment lengths do not provide any benefits. However, the
decrease in performance can also be because when the segment
length is fixed as 60, it removes any trajectories which have
shorter lengths.

Dataset Model Segment
Length Balanced Accuracy

HRC [92] BPTubeFormer-2-V1 24 0.4982 ± 0.0004
BPTubeFormer-2-V4 60 0.4899 ± 0.0023

NTU120 [93] BPTubeFormer-6-V1 24 0.4704 ± 0.0071
BPTubeFormer-6-V4 60 0.4201 ± 0.0165

TABLE XII: Results of Experiment 2.6 with the BPTube-
Former (C = 32) with a longer segment length f =60.

Best performing models for Experiment 2.3: In this
section we analyze the performance of our models used in
Experiment 2.3 with the HRC [92] as well as the NTU120
[93] dataset.

HRC dataset: We use a confusion matrix to analyze the
classification performance of BPTubeFormer-2 which gave
the best performance on the HRC dataset. This can be seen
in Figure 20. It can be seen that all models perform better
than random guessing (1

13 ≈ 0.0769). We observe that out
of the 13 classes, 10 classes exhibit an accuracy above 50%
(Robbery has nearly 50% accuracy). The least performance
was seen for the class Arson, 22%. The best performance
was seen for the class Shoplifting, similar to the finding in
[7]. However, the accuracy for the class Vandalism saw great
improvement, rising to 50% from 0.04% in the baseline model
[7]. Accuracies of some other classes also improved, namely,
Shooting, Fighting and Explosion. Accuracy for the class
Arson got reduced by 3 times.

The high performance for Shoplifting videos is justifiable
because such videos mostly contain actions which are seem-

ingly normal, while other crime videos contain eccentric
activities like Fighting, Vandalism, Shooting etc. Among all
the 13 classes, Shoplifting is the only activity with such a
property. This might be the reason why it has high accuracy.

It was interesting to note that the accuracy of Vandalism
improved from 0.04 from Boekhoudt’s work [7] to 0.50 in
our work. It was mostly misclassified as either Fighting or
Road Accidents. The misclassification as Road Accidents is
understandable since most of such activities happen in the
public space where there are roads and peoples’ behaviour
and walking could be similar in both the situations. However,
it should also be noted that Vandalism is one of the activity
class with very few video samples, 1388.

The most misclassified classes were Shooting, Robbery and
Arson. Shooting was misclassified mostly as Fighting and
Arrest while Arson was misclassified as Robbery and Fighting
many times. While observing Shooting videos, we saw that
many of them had people trying to fight with the shooter
to stop him. Shooting videos also resembled police officers
trying to arrest people since the attacked people were trying
to catch the shooter’s hands. The class Arson is also easily
misclassified because at times, the videos become blocked
with fire occluding the camera and interrupting the skeletal
trajectories.

It was observed that the activity class Fighting was predicted
many times while the actual classes were Arson, Assault,
Explosion, Robbery, Shooting, Stealing, etc. This is because
Fighting is an activity which can happen during any of the
mentioned activities. People will fight the attackers when
activities like Stealing, Assault or Robbery happen.

It was also interesting to note that Robbery was also mis-
classified as Shoplifting. While observing the videos belonging
to the class Robbery, we noticed that many of them happened
inside shops and closely resembled shoplifting. This might be
an indication that our model performs well in understanding
similar activities.

Similar to the activity class Arson, Explosion also demon-
strated a low accuracy of 0.33. Explosion videos were clas-
sified as almost all of the other activity classes except Arson
and Shoplifting. This is reasonable because in most of the
explosion videos, the camera gets occluded with fire and
smoke and interrupts the trajectories and hence affects the
learning of the model. This could be the reason why it results
in a low accuracy like that of Arson.

NTU120 dataset: The confusion matrix for NTU120

Fig. 20: Confusion matrix for BPTubeFormer-2 model using HRC dataset.

dataset on the BPTubeFormer-6-V2 model can be seen in
Appendix:Figure 30. The best performance a class exhibited
is 80%, which was obtained by A9, A22, A26, A27, A59,
A97, A98 which corresponds to the activities standing up,
cheer up, hopping, jump up, walking towards each other, arm
circles and arm swings. The least performance exhibited was
10% obtained by the activities A72, A107 which corresponds
to make victory sign and wield knife towards other person.
Since there are many classes, a lot of misclassifications were
also observed. This can be observed in Table XIII.

Observing the activity classes with high classification accu-
racy, one thing to be noted is that all of them are activities with
big movements of the body. For example, standing up, hopping
and jumping up are activities in which the torso or the other
body parts exhibit large movements. While standing up, the
upper body parts move and while jumping, all the body parts
move at the same time. This is also the case while walking
towards each other. Also, activities like arm circles and arm
swings happen by moving the arm a lot. The transformer is
able to learn a lot with the help of these large movements.

On the other hand, the most misclassified activities with less
accuracy are making victory sign and wielding knife towards
another person. One problem with these activities is that they
closely resemble other similar activities like A71 (make ok
sign) and A69 (thumb up). These are quick and subtle activities
and also, at the same time, most of the body parts remain

constant during all these activities. For example, while making
victory sign and ok sign, only the wrists part change while all
other parts including elbows, torso, knees and ankles remain
motionless.

The most misclassified activity is A17 (taking off a shoe).
It is misclassified as A16 (wearing a shoe). In both these
activities, what changes is the order of movement of the
leg. Another example just like A17 and A16 is A89 (put
something into a bag) and A90 (take something out of a
bag) where only the order changes. All other aspects remain
the same during both the activities. Another example is A24
(kicking something) and A51 (kicking other person). More
such activities can be seen in Table XIII.

A30 (typing on a keyboard) is an activity which is misclassi-
fied as A11 (reading) and A12 (writing). In all three activities,
the movements are similar, where the person is sitting and the
hands are moving.

Complexity of the models in terms of MACS and number
of parameters. The comparison of the models based on the
complexity is given in Table XIV. From the table, it can be
seen that the complexity varies over a wide range of values.
The most complex model in terms of MACS operations is
the ST-Tran [7] while in terms of the number of trainable
parameters, it is BPFormer-2. The least complex model in
terms of MACS operations is BPFormer-4 while in terms of
the number of trainable parameters, it is T-Tran-2 [7] and T-

Actual Class Predicted Class Misclassification
Rate

A1 (drink water) A3 (brushing teeth) 0.2
A11 (reading) A12 (writing) 0.2
A17 (take off a shoe) A16 (wear a shoe) 0.4
A24 (kicking something) A51 (kicking other person) 0.2
A31 (pointing to something with finger) A32 (taking a selfie) 0.2
A53 (pat on back of other person) A57 (touch other person’s pocket) 0.2
A58 (handshaking) A56 (giving something to other person) 0.2
A72 (make victory sign) A71 (make ok sign) 0.3
A73 (staple book) A76 (cutting paper (using scissors)) 0.2
A84 (play magic cube) A74 (counting money) 0.2
A83 (ball up paper) A82 (fold paper) 0.2
A89 (put something into a bag) A90 (take something out of a bag) 0.3
A92 (move heavy objects) A114 (carry something with other person) 0.2

TABLE XIII: Misclassification rates between actual and predicted classes for NTU120 dataset with the BPTubeFormer-6 model.

Model MACS (×109) # Params (Millions)

T-Tran-1 [7] 52.9 2.1
T-Tran-2 [7] 18.6 0.53
T-Tran-3 [7] 27.4 2.1
T-Tran-4 [7] 5.8 0.53
ST-Tran [7] 613.5 9.5
SBPT-Tran [7] 154 2.4
BPFormer-1 12.9 2.1
BPFormer-2 255.1 42.5
BPFormer-3 13.1 2.2
BPFormer-4 3.2 0.55
BPTubeFormer-2 30.5 4.9
BPTubeFormer-6 3.9 0.7

TABLE XIV: Comparison of the computational complexity
of different models in terms of MACS and the number of
trainable parameters. MACS is expressed in the order of 109

and the number of parameters in millions. The best performing
models from the baseline and our proposed methods are shown
in bold letters.

Tran-4 [7].

For the HRC dataset, the best baseline performance was
given by ST-Tran [7]. Using the Tubelet Embedder, the best
performance was given by BPTubeFormer-2. From the table,
we can observe that the MACS operations came down from
613.5×109 to 30.5×109 (about 20 times less) and the number
of parameters from 9.5 million to 4.9 million (about 2 times
less). The high number of MACS operations for ST-Tran
model is because it takes in a segment length of 60, thereby
significantly increasing the number of embeddings. For the
NTU120 dataset, the best baseline performance was obtained
using T-Tran-2 [7] and using the Tubelet Embedder, it was
using BPTubeFormer-6. In terms of complexity, the MACS
operations came down from 18.6×109 to 3.9×109 (about 5
times less). However, it was observed that the number of
parameters increased slightly from 0.53 million to 0.7 million.

The above results prove that the proposed models which
use Tubelet embeddings can match the performance of the
architectures proposed by Boekhoudt et.al. [7] with much
lesser computational costs. This observation will be discussed
in detail in Section VI.

Fig. 21: Bar plot comparing the MACS and number of
parameters for different models. Note that the blue bar for ST-
Tran has been broken between 40 and 600. For HRC dataset,
ST-Tran performed should be compared with BPTubeFormer-
2 and for NTU120 dataset, T-Tran-2 should be compared with
BPTubeFormer-6.

B. Qualitative Evaluation

Experiment 1.1. To perform qualitative evaluation, we take
a trajectory segment from both the datasets and observe their
attention weights of the last layer for all the 8 heads of
the model. The attention is between different frames of the
segment. This can be observed in Figure 22. For both the
datasets, it can be seen that none of the heads focus on any
specific frames. For the HRC dataset, we can see that many
heads seem to focus on some of the frames, but however,
the values are low and the heatmap is not bright enough. In
the case of the NTU120 dataset, we do not see any specific
pattern at all. There is no specific focus on any of the frames
and the attentions are scattered around. This proves that the
model could not learn enough from the locally and globally
decomposed keypoints.

Experiment 2.3. To perform qualitative evaluation for this
experiment, we take a trajectory segment from both the
datasets and observe their attention weights of the last layer

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(a) Segment of a video from Abuse category in HRC dataset.

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(b) Segment of a video from Arm circles category in NTU120 dataset.

Fig. 22: Heatmaps for attention between frames within a segment for Experiment 1.1 with HRC and NTU120 datasets.

for all the 8 heads of the model. The attention is between the
encoded embeddings for each body part. We also visualize the
different body parts and observe their attention scores.

For the HRC dataset, we take a segment from the Abuse
class in which a woman is hitting a child on a running bus.
From Figure 23a, it can be observed that the first, fourth
and fifth heads focus most on the second column, which
corresponds to the Torso body part. The seventh head focuses
on the fourth column, which is of the wrists. The second, third
and eighth heads focus on the third column, which is of the
elbows. The sixth head slightly focuses on many columns,
mostly on those for the torso, elbow, wrists. The last two
columns which corresponds to knees and ankle are focused on
none of the heads. This makes sense since it can be observed in
Figure 23e that in all the frames, the lower body part remains
constant and only the upper body part is under action. Each
blob in the frames correspond to different body parts - blue
for torso, green for elbow, red for wrists, purple for knee
and yellow for ankle. The radius of the blob indicates the
attention score for that body part. The wrists and torso blobs
are the biggest and the knee and ankle blobs are the smallest,
as expected.

Figures 23b, 23d and 23c show the attention weights be-
tween different tubelet embeddings within the Tubelet trans-
former for the body parts torso, elbows and wrists. The
segment length is 24 and the kernel size is (2,3,3). Hence,
the number of tubelet embeddings is 12, with each of them
representing two frames. This is why the attention matrix
is in the shape 12×12. It can be seen that for the tubelet
embeddings of the Wrists, Head 1 focuses on the frames 3
and 4. Heads 5 and 7 collectively focuses on frames 3 to
6. Head 3 completely focuses on frames 15 and 16. Head 4
focuses on frames 5 to 8.

For the Torso, Heads 1 and 9 focus on frames 19 and 20.
Also, Head 4 focuses on frames 11, 12, 21, 22. For the Elbows,
Head 1 focuses on frames 3 and 4, Head 5 and 7 on frames
23 and 24, Head 6 on frames 13-16. It can be seen that wrists
being the most active body part in this activity, it is attending

to the frames 3 to 6 where it shows the most movement, as
can be seen in Figure 23e.

For the NTU120 dataset, we take a segment from the Arm
circles class in which a man circles his arms while standing
in a place. Figure 24a shows that most of the focus is on the
columns for Torso, elbows and wrists while heads 5,6 and 7
also focuses a bit on the knee. While focusing on torso, elbows
and wrists is important, it is unsure as to why some heads also
focus on the knees. From Figures 24b, 24c and 24d, we do not
observe any specific pattern. Here, the segment length is 24
while the kernel size is (8,3,3). Thus, one tubelet embedding
represents 8 frames. This is why the attention matrix is in
the shape 3×3. Observing the attention matrix of the tubelet
embeddings of Wrists, we see that Head 1, 4, 6, and 7 focuses
on the frames 17-24. Heads 2 and 5 focus on frames 9 to 16.
Head 3 and 8 focus on frames 1-8.

For the attention matrix related to Elbows, Head 1 and 3
focuses on the frames 1-8 and Heads 2, 4, 6 and 7 focus on
the frames 17-24.

Contrasting to the HRC dataset, the attention focus is
scattered in the NTU120 dataset since the activity occurs not
within a timeframe of the segment but mostly throughout all
frames. From Figure 24e, we see that the blobs for wrists and
elbows are big as expected. The blob for torso is smaller since
the torso remains almost constant while doing arm circles, like
knees and elbows.

Silhouette plots. Figure 25 and Appendix:Figure 29 shows
the silhouette plots for the BPTubeFormer models on the
datasets HRC and NTU120 respectively. For the HRC dataset,
we observe an average silhouette score of 0.0413. We observe
generally low values for the silhouette coefficients for all
the classes. Most embeddings in the Abuse, Road Accidents,
Stealing and Vandalism classes are cohesive indicated by the
long right tail and the height of each silhouettes in Figure 25.
Separation value (indicated by the left tail of the silhouettes)
is high for the classes Assault, Burglary, Explosion, Fighting,
Robbery, Shooting and Shoplifting. This indicates that they
have embeddings which are largely separated and overlaps

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(a) Heatmaps for attention between body parts

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(b) Heatmaps for attention between Tubelet embeddings of Torso

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(c) Heatmaps for attention between Tubelet embeddings of Wrists

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(d) Heatmaps for attention between Tubelet embeddings of Elbows

Frame 1 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 9 Frame 11

(e) Visualization for the attention scores for each body part

Fig. 23: Experiment 2.3 for HRC dataset. Visualization of self-attention in BPTubeFormer on a sequence of 24 frames. (a,
b, c, d) Attention heatmap: Attention matrix of the last layer for heads 1 to 8. (a) represents the attention weight between the
different body parts (index 0) corresponds to the class token. (b), (c) and (d) shows the attention weights between the different
tubelet embeddings within the Tubelet transformer for the body parts Torso, wrists and elbows respectively. (e) Skeleton body
parts and attention: The importance of each body part for the class token is illustrated. Each blob represents a body part -
blue for torso, green for elbows, red for wrists, purple for knees, and yellow for ankles. The bigger the blob, the higher the
attention score.

with other clusters. There are also some classes which have
most of their embeddings separated. These are Assault, Bur-
glary and Robbery.

For the NTU120 dataset, we observe an average silhouette
score of 0.0436. The classes with good cohesion values are
A18 (wear on glasses), A72 (make victory sign), A84 (play
magic cube), A94 (throw up cap/hat), A113 (cheers and drink),
A120 (finger-guessing game (playing rock-paper-scissors)).
The classes with most of their embeddings separated are A2
(eat meal/snack), A9 (standing up (from sitting position)), A15

(take off jacket), A28 (make a phone call/answer phone), A36
(shake head), A51 (kicking other person), A60 (walking apart
from each other), A83 (ball up paper), A86 (apply cream
on hand back), A87 (put on bag), A100 (butt kicks (kick
backward)), A112 (high-five), A114 (carry something with
other person).

It is interesting to note that most of the activities with high
separation values are those which are in Table XIII. This
confirms that the model has confusion with distinguishing
between activities which are very similar.

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(a) Heatmaps for attention between body parts

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(b) Heatmaps for attention between Tubelet embeddings of Torso

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(c) Heatmaps for attention between Tubelet embeddings of Wrists

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

(d) Heatmaps for attention between Tubelet embeddings of Elbows

Frame 1 Frame 4 Frame 7 Frame 10 Frame 13 Frame 16 Frame 19 Frame 22

(e) Heatmaps for attention between Tubelet embeddings of Elbows

Fig. 24: Experiment 2.3 for NTU120 dataset. Visualization of self-attention in BPTubeFormer on a sequence of 24 frames. (a,
b, c, d) Attention heatmap: Attention matrix of the last layer for heads 1 to 8. (a) represents the attention weight between the
different body parts (index 0) corresponds to the class token. (b), (c) and (d) shows the attention weights between the different
tubelet embeddings within the Tubelet transformer for the body parts Torso, wrists and elbows respectively. (e) Skeleton body
parts and attention: The importance of each body part for the class token is illustrated. Each blob represents a body part -
blue for torso, green for elbows, red for wrists, purple for knees, and yellow for ankles. The bigger the blob, the higher the
attention score.

T-SNE plots. We visualize the T-SNE plots for Experiment
2.3 in Figure 26. The plot for the HRC dataset can be seen in
Figure 26a. We can observe that the embeddings are tightly
packed and some embeddings are loosely scattered around
the edges. Tensorboard displays embeddings with non-unique
colours and hence, some colours are shared by two different
classes. For example, red is shared by Assault and Vandalism.
We can see that the embeddings for Robbery and Shoplifting
are close to each other with some embeddings of Shooting
placed in between them. Overall, most of the embeddings are

well clustered.

The T-SNE plot for NTU120 dataset can be seen in Figure
26b. Again, Tensorboard supports colouring for only 50 dif-
ferent labels at maximum. Hence, we cannot uniquely colour
all the 120 classes of the NTU120 dataset. In Figure 26c
and Figure 26d, we illustrate the embeddings for the classes
A59 and A107 where A59 is one of the classes with high
accuracy and A107 is a class with a low accuracy. We can
see that the embeddings for the class A59 is closely packed
indicating good classification and the embeddings for the class

Fig. 25: Silhouette plot for the classifications of the BPTubeFormer model on the HRC dataset. The y axis labels indicate the
activity class labels. The red line indicates the average silhouette score for all the classes.

(a) T-SNE plot for HRC dataset. (b) T-SNE plot for NTU120 dataset.
(c) Embeddings for A59 class within the T-
SNE plot.

(d) Embeddings for A107 class within the
T-SNE plot.

Fig. 26: T-SNE plots for the BPTubeFormer models on the HRC and NTU120 datasets. Tensorboard does not support colouring
for more than 50 labels, hence for the NTU120 dataset, we show the embeddings for the A59 and A107 classes separately in
(c) and (d).

A107 are scattered around indicating that there is variability
in representing the samples of this class.

VI. DISCUSSION

In this section, we discuss the overall results obtained while
investigating the two aspects of this work.

Local and Global decomposition of keypoints: We inves-
tigated two different keypoint representations with respect to
the Local and Global decomposition of keypoints. However, it
was observed that this approach lowered the performance of
the models compared to the baseline results. In the original
work [9], the authors used Message-Passing Encoder-Decoder
Recurrent Neural Network (MPED-RNN) which is a network
consisting of two RNN branches dedicated to the global and
local frame components. However, we processed the local and
global components in a much simpler way. This might be
suggesting that we need a more complex architecture to make
use of the local and global components of the skeletons. The
Global Single representation performed better compared to the
Global Repeated representation. This could also mean that
the global component is introducing some noise to the input
representation. The local component might be more important
for the model to learn the dependencies. This makes sense
because the local component captures the actual movement of
the body joints after factoring out the global component.

As seen in Figure 22, for all the heads, the attention between
frames do not follow a pattern and is scattered with low
values. This is the case for both the datasets. This suggests
that the model cannot learn much with locally and globally
decomposed keypoints.

Exploring Tubelet Embeddings: The major part of this
work was concentrated on exploring how Tubelet embeddings
could benefit the task of HAR. It was observed that Tubelet
embeddings helped transformers to nearly match the perfor-
mance of patch embeddings on both the datasets. However,
it was ironic to note that the same architecture helped in
matching the baseline performance for both the datasets. A
simple TTubeFormer model which replaced the patch em-
bedding layer in T-Tran model [7] with a Tubelet Embedder
layer matched the performance of the baseline model on HRC
[92] dataset, while it did not, in the case of the NTU120
dataset. For the BPFormer model, taking the concatenation
of the embeddings worked the best for both the datasets. The
2-Channel representation gave a boost of 7% in performance
for the NTU120 dataset over the 1-Channel representation.
However, for the HRC dataset, both the 1-Channel and 2-
Channel representations resulted in nearly similar accuracies.
Hence, we can infer that we lose some information by taking
the mean of embeddings when compared to concatenating the
embeddings.

Another contrasting observation was that, using the BP-
TubeFormer architecture, a kernel size of (2,3,3) gave the
best performance in our work and the worst performance
was obtained for the kernel size of (8,3,3). However, for
the NTU120 dataset, the best performance was obtained for
the kernel size of (8,3,3) and the worst for (1,3,3). Other

modifications to the architecture like using replication padding
mode, different stride than kernel size and a longer segment
length did not result in any significant improvement in the
performance. The fact that changing the stride value did not
improve the performance establishes that keeping the same
value for both the kernel and stride as in the original work
[18] gives the best performance. This might be because having
disjoint convolutions helps better in encoding the movement
of different body parts.

While comparing the attention maps of the Tubelet trans-
former, it was observed that different heads attended to the
tubelet embeddings corresponding to the frames which rep-
resented important movements in the activity. For example,
the movement of wrists while Abusing. This observation was
evident for the HRC dataset. For the NTU120 dataset, we
observed that the heads did not focus on any particular tubelet
embedding. We understand that this is because the NTU120
dataset is a lab made dataset and mostly contains the activity
throughout the given segment length. This should be why
the heads do not focus on any particular tubelet embedding.
This proves that tubelet embeddings can detect movements of
various body parts and helps in better interpretability of the
models.

A major observation was related to the misclassifications
related to very similar activities. It was evident from the
silhouette plots of Figure 29 that the model found difficulty in
distinguishing very similar activities in the NTU120 dataset.
The model might be too simple to catch the differences
between such very similar activities. This could be further
investigated with the NTU60 dataset which is a subset of the
NTU120 dataset and a more complex model architecture.

The two datasets, HRC [92] and NTU120 [93] did not work
in the same way with Tubelet embeddings. One reason could
be the nature of both the datasets. While the NTU120 dataset is
lab made and skeletal data is obtained using sensors, the HRC
dataset is obtained from real world surveillance footages with
low quality videos and the skeletal data might not be accurate.

Thus it can be inferred that replacing the patch embeddings
with tubelet embeddings will help in encoding the movement
of different body parts and using a more complex architecture
can significantly improve the performance.

Comparison with state of the art results: While com-
paring the performance of NTU120 dataset on the baseline
architectures used in [7] (T-Tran-2) and the state of the art
(SOTA) models, it was observed that the performance of
T-Tran-2 was almost half that of the SOTA models. This
could be because SOTA models used complex architectures.
For example, ST-TR [8] used two-streams, one for Spatial
data and the other for Temporal data. For both the streams,
convolutional layers were also used. The two streams are
trained end-to-end separately and are later fused together. FG-
STFormer [41], used much more complex input features. They
selected certain informative ‘focal’ joints and also used body
parts. They used self-attention among them as well as cross-
attention between the focal joints and the body parts. These
might be the reason why the performance of T-Tran-2 did not

match that of the SOTA results. It is also to be noted that
all the SOTA works used the cross-subject and cross-setup
benchmarks, while we used the whole dataset and split them
to train and test datasets based on the trajectory lengths.

Dataset Model Accuracy

HRC [92] ST-Tran [7] (Baseline) 0.4926 ± 0.0043
BPTubeFormer-2 (Ours) 0.4982 ± 0.0004

ST-TR [8] 0.8190
DSTA-Net [39] 0.8660
IIP-Transformer [40] 0.8840

NTU120 [93] FG-STFormer [41] 0.8900
T-Tran-2 [7] (Baseline) 0.4830 ± 0.0030
BPTubeFormer-6-V2 (Ours) 0.4784 ± 0.0044

TABLE XV: Comparison of state of the art results with ours.

Computational Complexity of the models: Comparing
the computational complexity of the models, we can observe
that the number of MACS operations increases a lot with
increase in the number of embeddings. For example, with ST-
Tran architecture, we take a segment of 60 frames and this
exponentially increases the number of embeddings and hence,
the number of MACS and parameters.

We explore the number of embeddings the architecture deals
with, in the case of HRC dataset. Table XVI illustrates these
details. The ST-Tran architecure has a Spatial Transformer
which deals with 17 (keypoints) 32-dimensional embeddings
and a Temporal Transformer Encoder which deals with 60
(frames) 544-dimensional embeddings. In the case of the
BPTubeFormer-2 architecture, it has a Tubelet Transformer
which deals with 12 (tubelet embeddings) 32-dimensional
embeddings and a Body Part transformer which deals with
6 (body parts) 384-dimensional embeddings. In the case of
BPTubeFormer-6, the Body Part Transformer deals with 6
(body parts) 96-dimensional embeddings.

The less computational complexity of the architectures
which use Tubelet Embeddings is due to the fact that Tubelet
embedders introduce 3D convolutional learning and 3D con-
volutions can extract spatial and temporal dependencies at
the same time, with low computational cost. This avoids the
need to have separate Spatial and Temporal encoders with
transformers. Convolutional learning also has the advantage
that it introduces inductive bias to the architecture which
transformers typically lack. This asserts the fact Tubelet Em-
bedders are a promising method to improve the performance
of Transformers used in HAR tasks.

A. Limitations

Here we discuss some of the limitations with respect to this
work. One of the limitation is that we observed that the vali-
dation accuracy nears 100% towards the end of training. This
could be a reason why we do not have a major improvement
in the test accuracy. As a remedy, we also used weight decay
regularization to prevent overfitting. However, it was observed
that the performance did not improve. Hence, it was decided
to not use weight decay techniques.

Model Encoder No. of Embeddings No.of Elements

T-Tran-2 [7] Transformer 34 × 128-d 4352

ST-Tran [7] Spatial 17 × 32-d 544
Temporal 60 × 544-d 32640

BPTubeFormer-2 Tubelet 12 × 32-d 384
Body Part 6 × 384-d 2304

BPTubeFormer-6 Tubelet 3 × 32-d 96
Body Part 6 × 96-d 576

TABLE XVI: Comparison of the number of embeddings dealt
by different modules of the different architectures.

Another limitation is that in the HRC dataset, we do not
have videos from the ’Normal’ category which do not have
any anomalous events. Hence, if the model sees trajectories
belonging to the Shoplifting class, it’s more than likely to pre-
dict it as a shoplifting activity since those activities resemble
normal activities and the shoplifters does this crime without
anyone noticing it.

We also found that in the HRC dataset, classes like Arson,
Explosion exhibited low accuracies. As mentioned in [7], these
activities occlude the camera with smoke and dust and thus
skeletal trajectories are not retrieved which makes activity
recognition difficult.

In the original paper, Liu et.al. [84] proposed two evaluation
benchmarks for the NTU120 dataset, cross-subject and cross-
setup, to standardize the research using this dataset. However,
these could not be used in this research work. Using them
could have standardised the comparison with the state of the
art results.

B. Future Work

There is a lot of scope for improvement in this work:
1) The models could be evaluated on other datasets like

Kinetics-Skeleton [103] and Human 3.6M [104].
2) The models could be checked for overfitting and the

models could be regularised using regularization tech-
niques other than weight decaying.

3) NTU provides 3D keypoints for the same dataset. The
code already supports 3D keypoints and these could be
easily integrated. This couldn’t be implemented in this
work due to memory limitations and time constraints.

4) A major scope for improvement is to use a hybrid
architecture as used in ViT [70]. For this, a ResNet CNN
architecture could be used to extract embedding features
from the videos and these could be used along with the
patch/tubelet embeddings and the class token.

5) For the experiment regarding local and global decom-
position of keypoints, the framework could be extended
by making it a two stream network in which one stream
deals with the global components, while the other deals
with the local components.

6) The NTU120 dataset comes with other modalities of
data like depth map sequences and infrared data. These
data could be used to retrieve more information.

7) The authors of NTU120 work [93] proposed two evalu-
ation criterias for the NTU120 dataset, cross-subject and
cross-setup. In the future works, these could be used for
direct comparison with state of the art works.

VII. CONCLUSION

In this work, we explored two different aspects of skeletal
activity recognition using transformers with two different
datasets. In the first we explored whether using an input
representation with the locally and globally decomposed key-
points could better represent the skeletal data. We observed
that using locally and globally decomposed keypoints, the
models performed badly compared to the baseline models.
This indicates that with this architecture, they do not help in
extracting enough information for HAR tasks. We also investi-
gated tubelet embeddings with three different architectures. We
observe that they matched the existing baseline performance
with much less computational cost. We demonstrated that
Tubelet Embedders could encode the movement of different
body parts with better interpretability which is relevant for
HAR tasks. For the NTU120 dataset, many similar activites
were misclassified with each other, for example, reading and
writing, take off shoe and wear shoe, etc. This suggests that
incorporating tubelet embeddings to transformers could benefit
HAR tasks and the performance could be further improved
with more complex model architectures.

REFERENCES

[1] Elly Cosgrove. One billion surveillance cameras will
be watching around the world in 2021, a new study
says. Dec. 2019. URL: https://www.cnbc.com/2019/
12 / 06 / one - billion - surveillance - cameras - will - be -
watching-globally-in-2021.html.

[2] CCTV camera market size, trends, growth and
overview – 2030: MRFR. Feb. 2020. URL: https : / /
www.marketresearchfuture.com/reports/cctv-camera-
market-8160.

[3] Video surveillance storage market segmentation by
enterprise type (large enterprise, and Small amp;
Medium Enterprise); by end-user (residential, com-
mercial, defense, industrial, and others); by deploy-
ment type (on-premise, and Cloud)-Global Demand
Analysis amp; Opportunity Outlook 2031. Oct. 2022.
URL: https://www.kennethresearch.com/report-details/
video-surveillance-storage-market/10154361.

[4] John C McCallum. Historical cost of computer mem-
ory and storage. 2022. URL: https://ourworldindata.
org/grapher/historical-cost-of-computer-memory-and-
storage?country=∼OWID WRL.

[5] D. Berleant. Trends in the cost of computing. June
2022. URL: https://aiimpacts.org/trends- in- the-cost-
of-computing/.

[6] Digital around the world - datareportal – global
digital insights. URL: https://datareportal.com/global-
digital-overview.

[7] Kayleigh Boekhoudt. Learning how to represent
human-related crimes when using transformers for
action recognition. 2021.

[8] Chiara Plizzari, Marco Cannici, and Matteo Matteucci.
“Skeleton-based action recognition via spatial and tem-
poral transformer networks”. In: Computer Vision and
Image Understanding 208-209 (July 2021), p. 103219.
DOI: 10.1016/j.cviu.2021.103219. URL: https://doi.
org/10.1016%2Fj.cviu.2021.103219.

[9] Romero Morais et al. Learning Regularity in Skeleton
Trajectories for Anomaly Detection in Videos. 2019.
DOI: 10 . 48550 / ARXIV. 1903 . 03295. URL: https : / /
arxiv.org/abs/1903.03295.

[10] Chenyang Li et al. “Skeleton-based gesture recogni-
tion using several fully connected layers with path
signature features and temporal transformer module”.
In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01. 2019, pp. 8585–8593.

[11] Pichao Wang et al. “Action Recognition From Depth
Maps Using Deep Convolutional Neural Networks”.
In: IEEE Transactions on Human-Machine Systems
46.4 (2016), pp. 498–509. DOI: 10.1109/THMS.2015.
2504550.

[12] Aparna Akula, Anuj K. Shah, and Ripul Ghosh. “Deep
learning approach for human action recognition in
infrared images”. In: Cognitive Systems Research 50
(2018), pp. 146–154. ISSN: 1389-0417. DOI: https :
/ / doi . org / 10 . 1016 / j . cogsys . 2018 . 04 . 002. URL:
https : / / www. sciencedirect . com / science / article / pii /
S1389041717302206.

[13] Dipanwita Thakur, Suparna Biswas, and Arindam
Pal. “Human Activity Recognition Systems Based
on Audio-Video Data Using Machine Learning
and Deep Learning”. In: Internet of Things Based
Smart Healthcare: Intelligent and Secure Solutions Ap-
plying Machine Learning Techniques. Ed. by Suparna
Biswas et al. Singapore: Springer Nature Singapore,
2022, pp. 151–175. ISBN: 978-981-19-1408-9. DOI:
10 .1007 /978- 981- 19- 1408- 9 7. URL: https : / /doi .
org/10.1007/978-981-19-1408-9 7.

[14] Abassin Sourou Fangbemi et al. “Efficient Human
Action Recognition Interface for Augmented and Vir-
tual Reality Applications Based on Binary Descriptor”.
In: Augmented Reality, Virtual Reality, and Computer
Graphics. Ed. by Lucio Tommaso De Paolis and
Patrick Bourdot. Cham: Springer International Pub-
lishing, 2018, pp. 252–260. ISBN: 978-3-319-95270-3.

[15] Gheorghe Sebestyen, Ionut Stoica, and Anca Hangan.
“Human activity recognition and monitoring for el-
derly people”. In: 2016 IEEE 12th International Con-
ference on Intelligent Computer Communication and
Processing (ICCP). 2016, pp. 341–347. DOI: 10.1109/
ICCP.2016.7737171.

[16] Ivan Laptev. “On Space-Time Interest Points”. In:
International Journal of Computer Vision 64.2 (Sept.
2005), pp. 107–123. ISSN: 1573-1405. DOI: 10.1007/

s11263- 005- 1838- 7. URL: https://doi.org/10.1007/
s11263-005-1838-7.

[17] Dr Mohana and Mahanthesh U M. “Human Action
Recognition using STIP Techniques”. In: International
Journal of Innovative Technology and Exploring En-
gineering 9 (May 2020). DOI: 10.35940/ijitee.G5482.
059720.

[18] Anurag Arnab et al. ViViT: A Video Vision Trans-
former. 2021. DOI: 10 . 48550 / ARXIV. 2103 . 15691.
URL: https://arxiv.org/abs/2103.15691.

[19] Ce Zheng et al. 3D Human Pose Estimation with
Spatial and Temporal Transformers. 2021. DOI: 10 .
48550/ARXIV.2103.10455. URL: https://arxiv.org/abs/
2103.10455.

[20] Ashish Vaswani et al. Attention Is All You Need. 2017.
DOI: 10.48550/ARXIV.1706.03762. URL: https://arxiv.
org/abs/1706.03762.

[21] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural Machine Translation by Jointly Learning
to Align and Translate. 2014. DOI: 10.48550/ARXIV.
1409.0473. URL: https://arxiv.org/abs/1409.0473.

[22] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long
Short-Term Memory-Networks for Machine Reading.
2016. DOI: 10.48550/ARXIV.1601.06733. URL: https:
//arxiv.org/abs/1601.06733.

[23] Yi-Xiang Zhang et al. “RGB+2D skeleton: local hand-
crafted and 3D convolution feature coding for action
recognition”. In: Signal, Image and Video Processing
15.7 (Oct. 2021), pp. 1379–1386. DOI: 10 . 1007 /
s11760-021-01868-8. URL: https://doi.org/10.1007/
s11760-021-01868-8.

[24] Onur Temuroglu et al. “Occlusion-Aware Skeleton
Trajectory Representation for Abnormal Behavior De-
tection”. In: Apr. 2020, pp. 108–121. ISBN: 978-981-
15-4817-8. DOI: 10.1007/978-981-15-4818-5 9.

[25] Karen Simonyan and Andrew Zisserman. Two-Stream
Convolutional Networks for Action Recognition in
Videos. 2014. DOI: 10.48550/ARXIV.1406.2199. URL:
https://arxiv.org/abs/1406.2199.

[26] Amin Zare, Hamid Abrishami Moghaddam, and Arash
Sharifi. “Video spatiotemporal mapping for human
action recognition by convolutional neural network”.
In: Pattern Analysis and Applications 23.1 (Feb. 2020),
pp. 265–279. ISSN: 1433-755X. DOI: 10.1007/s10044-
019-00788-1. URL: https://doi.org/10.1007/s10044-
019-00788-1.

[27] Inwoong Lee et al. “Ensemble Deep Learning for
Skeleton-Based Action Recognition Using Temporal
Sliding LSTM Networks”. In: 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV). 2017,
pp. 1012–1020. DOI: 10.1109/ICCV.2017.115.

[28] Ge Pan, YongHong Song, and ShengHua Wei. “Com-
bining Pose and Trajectory for Skeleton Based Ac-
tion Recognition using Two-Stream RNN”. In: 2019
Chinese Automation Congress (CAC). 2019, pp. 4375–
4380. DOI: 10.1109/CAC48633.2019.8997171.

[29] Romero Morais et al. Learning Regularity in Skeleton
Trajectories for Anomaly Detection in Videos. 2019.
DOI: 10 . 48550 / ARXIV. 1903 . 03295. URL: https : / /
arxiv.org/abs/1903.03295.

[30] Zewei Ding et al. “Investigation of different skeleton
features for CNN-based 3D action recognition”. In:
2017 IEEE International Conference on Multimedia
Expo Workshops (ICMEW). 2017, pp. 617–622. DOI:
10.1109/ICMEW.2017.8026286.

[31] Yangyang Xu et al. “Ensemble One-Dimensional Con-
volution Neural Networks for Skeleton-Based Action
Recognition”. In: IEEE Signal Processing Letters 25.7
(2018), pp. 1044–1048. DOI: 10 . 1109 / LSP. 2018 .
2841649.

[32] Pichao Wang et al. “Action recognition based on joint
trajectory maps with convolutional neural networks”.
In: Knowledge-Based Systems 158 (2018), pp. 43–53.
ISSN: 0950-7051. DOI: https : / / doi . org / 10 . 1016 / j .
knosys.2018.05.029. URL: https://www.sciencedirect.
com/science/article/pii/S0950705118302582.

[33] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial
Temporal Graph Convolutional Networks for Skeleton-
Based Action Recognition. 2018. DOI: 10 . 48550 /
ARXIV.1801.07455. URL: https://arxiv.org/abs/1801.
07455.

[34] Lei Shi et al. “Two-Stream Adaptive Graph Convo-
lutional Networks for Skeleton-Based Action Recog-
nition”. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2019,
pp. 12018–12027. DOI: 10.1109/CVPR.2019.01230.

[35] Yuxin Chen et al. Channel-wise Topology Refinement
Graph Convolution for Skeleton-Based Action Recog-
nition. 2021. DOI: 10.48550/ARXIV.2107.12213. URL:
https://arxiv.org/abs/2107.12213.

[36] Bin Ren et al. A Survey on 3D Skeleton-Based Action
Recognition Using Learning Method. 2020. DOI: 10.
48550/ARXIV.2002.05907. URL: https://arxiv.org/abs/
2002.05907.

[37] Chuankun Li et al. “Joint Distance Maps Based Action
Recognition With Convolutional Neural Networks”.
In: IEEE Signal Processing Letters 24.5 (May 2017),
pp. 624–628. DOI: 10.1109/lsp.2017.2678539. URL:
https://doi.org/10.11092Flsp.2017.2678539.

[38] Salman Khan et al. “Transformers in Vision: A Sur-
vey”. In: (2021). DOI: 10.48550/ARXIV.2101.01169.
URL: https://arxiv.org/abs/2101.01169.

[39] Lei Shi et al. Decoupled Spatial-Temporal Attention
Network for Skeleton-Based Action Recognition. 2020.
DOI: 10.48550/ARXIV.2007.03263. URL: https://arxiv.
org/abs/2007.03263.

[40] Qingtian Wang et al. IIP-Transformer: Intra-Inter-Part
Transformer for Skeleton-Based Action Recognition.
2021. DOI: 10.48550/ARXIV.2110.13385. URL: https:
//arxiv.org/abs/2110.13385.

[41] Zhimin Gao et al. Focal and Global Spatial-Temporal
Transformer for Skeleton-based Action Recognition.

2022. DOI: 10.48550/ARXIV.2210.02693. URL: https:
//arxiv.org/abs/2210.02693.

[42] Yuhan Zhang et al. “STST: Spatial-Temporal Special-
ized Transformer for Skeleton-Based Action Recog-
nition”. In: MM ’21. Virtual Event, China: Asso-
ciation for Computing Machinery, 2021, pp. 3229–
3237. ISBN: 9781450386517. DOI: 10.1145/3474085.
3475473. URL: https : / / doi . org / 10 . 1145 / 3474085 .
3475473.

[43] Pengfei Zhang et al. View Adaptive Neural Networks
for High Performance Skeleton-based Human Action
Recognition. 2018. DOI: 10 . 48550 / ARXIV. 1804 .
07453. URL: https://arxiv.org/abs/1804.07453.

[44] Chenyang Si et al. An Attention Enhanced Graph Con-
volutional LSTM Network for Skeleton-Based Action
Recognition. 2019. DOI: 10 . 48550 / ARXIV. 1902 .
09130. URL: https://arxiv.org/abs/1902.09130.

[45] Lei Shi et al. “Two-Stream Adaptive Graph Convo-
lutional Networks for Skeleton-Based Action Recog-
nition”. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2019,
pp. 12018–12027. DOI: 10.1109/CVPR.2019.01230.

[46] Lei Shi et al. “Skeleton-Based Action Recognition
With Directed Graph Neural Networks”. In: 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2019, pp. 7904–7913. DOI:
10.1109/CVPR.2019.00810.

[47] Matthew Korban and Xin Li. “DDGCN: A Dynamic
Directed Graph Convolutional Network for Action
Recognition”. In: Computer Vision – ECCV 2020.
Ed. by Andrea Vedaldi et al. Cham: Springer Inter-
national Publishing, 2020, pp. 761–776. ISBN: 978-3-
030-58565-5.

[48] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial
Temporal Graph Convolutional Networks for Skeleton-
Based Action Recognition. 2018. DOI: 10 . 48550 /
ARXIV.1801.07455. URL: https://arxiv.org/abs/1801.
07455.

[49] Maosen Li et al. Actional-Structural Graph Convolu-
tional Networks for Skeleton-based Action Recogni-
tion. 2019. DOI: 10.48550/ARXIV.1904.12659. URL:
https://arxiv.org/abs/1904.12659.

[50] Pengfei Zhang et al. Semantics-Guided Neural Net-
works for Efficient Skeleton-Based Human Action
Recognition. 2019. DOI: 10 . 48550 / ARXIV. 1904 .
01189. URL: https://arxiv.org/abs/1904.01189.

[51] Yi-Fan Song et al. “Richly Activated Graph Con-
volutional Network for Robust Skeleton-Based Ac-
tion Recognition”. In: IEEE Transactions on Circuits
and Systems for Video Technology 31.5 (May 2021),
pp. 1915–1925. DOI: 10 . 1109 / tcsvt . 2020 . 3015051.
URL: https://doi.org/10.1109%2Ftcsvt.2020.3015051.

[52] Lei Shi et al. “Two-Stream Adaptive Graph Convo-
lutional Networks for Skeleton-Based Action Recog-
nition”. In: 2019 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2019,
pp. 12018–12027. DOI: 10.1109/CVPR.2019.01230.

[53] Hao Yang et al. Feedback Graph Convolutional Net-
work for Skeleton-based Action Recognition. 2020.
DOI: 10 . 48550 / ARXIV. 2003 . 07564. URL: https : / /
arxiv.org/abs/2003.07564.

[54] Ke Cheng et al. “Skeleton-Based Action Recognition
With Shift Graph Convolutional Network”. In: 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2020, pp. 180–189. DOI:
10.1109/CVPR42600.2020.00026.

[55] Ke Cheng et al. “Decoupling GCN with DropGraph
Module for Skeleton-Based Action Recognition”. In:
Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi
et al. Cham: Springer International Publishing, 2020,
pp. 536–553. ISBN: 978-3-030-58586-0.

[56] Ziyu Liu et al. Disentangling and Unifying Graph
Convolutions for Skeleton-Based Action Recognition.
2020. DOI: 10.48550/ARXIV.2003.14111. URL: https:
//arxiv.org/abs/2003.14111.

[57] Zhan Chen et al. Multi-Scale Spatial Temporal Graph
Convolutional Network for Skeleton-Based Action
Recognition. 2022. DOI: 10 . 48550 / ARXIV. 2206 .
13028. URL: https://arxiv.org/abs/2206.13028.

[58] Yi-Fan Song et al. “Constructing Stronger and Faster
Baselines for Skeleton-based Action Recognition”. In:
IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022), pp. 1–1. DOI: 10 .1109/TPAMI.
2022.3157033.

[59] Yuxin Chen et al. Channel-wise Topology Refinement
Graph Convolution for Skeleton-Based Action Recog-
nition. 2021. DOI: 10.48550/ARXIV.2107.12213. URL:
https://arxiv.org/abs/2107.12213.

[60] Lipeng Ke, Kuan-Chuan Peng, and Siwei Lyu. To-
wards To-a-T Spatio-Temporal Focus for Skeleton-
Based Action Recognition. 2022. DOI: 10 . 48550 /
ARXIV.2202.02314. URL: https://arxiv.org/abs/2202.
02314.

[61] Kirill Gavrilyuk et al. Actor-Transformers for Group
Activity Recognition. 2020. DOI: 10 . 48550 / ARXIV.
2003.12737. URL: https://arxiv.org/abs/2003.12737.

[62] Shuaicheng Li et al. GroupFormer: Group Activity
Recognition with Clustered Spatial-Temporal Trans-
former. 2021. DOI: 10 . 48550 / ARXIV. 2108 . 12630.
URL: https://arxiv.org/abs/2108.12630.

[63] Bing Li et al. “Two-Stream Convolution Augmented
Transformer for Human Activity Recognition”. In:
Proceedings of the AAAI Conference on Artificial
Intelligence 35.1 (May 2021), pp. 286–293. DOI: 10.
1609 / aaai . v35i1 . 16103. URL: https : / / ojs . aaai . org /
index.php/AAAI/article/view/16103.

[64] Annalisa Franco, Antonio Magnani, and Dario Maio.
“A multimodal approach for human activity recogni-
tion based on skeleton and RGB data”. In: Pattern
Recognition Letters 131 (2020), pp. 293–299. ISSN:
0167-8655. DOI: https://doi.org/10.1016/j.patrec.2020.

01.010. URL: https://www.sciencedirect.com/science/
article/pii/S0167865520300106.

[65] Alessandro Manzi, Paolo Dario, and Filippo Cavallo.
“A Human Activity Recognition System Based on
Dynamic Clustering of Skeleton Data”. In: Sensors
17.5 (May 2017), p. 1100. ISSN: 1424-8220. DOI: 10.
3390 / s17051100. URL: http : / / dx .doi . org /10 .3390 /
s17051100.

[66] Enea Cippitelli et al. “A Human Activity Recognition
System Using Skeleton Data from RGBD Sensors”.
In: Computational Intelligence and Neuroscience 2016
(Mar. 2016), p. 4351435. ISSN: 1687-5265. DOI: 10.
1155/2016/4351435. URL: https: / /doi .org/10.1155/
2016/4351435.

[67] Jiaxu Zhang et al. “Zoom Transformer for Skeleton-
based Group Activity Recognition”. In: IEEE Trans-
actions on Circuits and Systems for Video Technology
(2022), pp. 1–1. DOI: 10.1109/TCSVT.2022.3193574.

[68] Xiaolin Zhai et al. “Spatial Temporal Network for Im-
age and Skeleton Based Group Activity Recognition”.
In: Proceedings of the Asian Conference on Computer
Vision (ACCV). Dec. 2022, pp. 20–38.

[69] Ahmed Snoun, Tahani Bouchrika, and Olfa Jemai.
“Deep-learning-based human activity recognition for
Alzheimer’s patients’ daily life activities assistance”.
In: Neural Computing and Applications (Oct. 2022).
ISSN: 1433-3058. DOI: 10.1007/s00521-022-07883-1.
URL: https://doi.org/10.1007/s00521-022-07883-1.

[70] Alexey Dosovitskiy et al. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale.
2020. DOI: 10.48550/ARXIV.2010.11929. URL: https:
//arxiv.org/abs/2010.11929.

[71] Rajkumar Saini et al. “Trajectory Classification Using
Feature Selection by Genetic Algorithm”. In: Pro-
ceedings of 3rd International Conference on Com-
puter Vision and Image Processing. Ed. by Bidyut B.
Chaudhuri et al. Singapore: Springer Singapore, 2020,
pp. 377–388. ISBN: 978-981-32-9291-8.

[72] Alina-Daniela Matei, Estefania Talavera, and Maya
Aghaei. Crime scene classification from skeletal tra-
jectory analysis in surveillance settings. 2022. DOI:
10.48550/ARXIV.2207.01687. URL: https://arxiv.org/
abs/2207.01687.

[73] Pranay Gupta et al. “Quo Vadis, Skeleton Action
Recognition?” In: International Journal of Computer
Vision 129.7 (July 2021), pp. 2097–2112. ISSN: 1573-
1405. DOI: 10.1007/s11263-021-01470-y. URL: https:
//doi.org/10.1007/s11263-021-01470-y.

[74] Julieta Martinez et al. A simple yet effective baseline
for 3d human pose estimation. 2017. DOI: 10.48550/
ARXIV.1705.03098. URL: https://arxiv.org/abs/1705.
03098.

[75] Xingyi Zhou et al. Towards 3D Human Pose Estima-
tion in the Wild: a Weakly-supervised Approach. 2017.
DOI: 10.48550/ARXIV.1704.02447. URL: https://arxiv.
org/abs/1704.02447.

[76] Rishabh Dabral et al. Learning 3D Human Pose from
Structure and Motion. 2017. DOI: 10.48550/ARXIV.
1711.09250. URL: https://arxiv.org/abs/1711.09250.

[77] Dario Pavllo et al. 3D human pose estimation in
video with temporal convolutions and semi-supervised
training. 2018. DOI: 10.48550/ARXIV.1811.11742.
URL: https://arxiv.org/abs/1811.11742.

[78] Yu Cheng et al. “Occlusion-Aware Networks for 3D
Human Pose Estimation in Video”. In: Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV). Oct. 2019.

[79] Yujun Cai et al. “Exploiting Spatial-Temporal Rela-
tionships for 3D Pose Estimation via Graph Convo-
lutional Networks”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).
Oct. 2019.

[80] Tianshu Zhang, Buzhen Huang, and Yangang Wang.
“Object-Occluded Human Shape and Pose Estimation
From a Single Color Image”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). June 2020.

[81] Jingbo Wang et al. Motion Guided 3D Pose Estimation
from Videos. 2020. DOI: 10 . 48550 / ARXIV. 2004 .
13985. URL: https://arxiv.org/abs/2004.13985.

[82] Mir Rayat Imtiaz Hossain and James J. Little. “Ex-
ploiting Temporal Information for 3D Human Pose Es-
timation”. In: Computer Vision – ECCV 2018. Springer
International Publishing, 2018, pp. 69–86. DOI: 10 .
1007/978-3-030-01249-6 5. URL: https://doi.org/10.
1007%2F978-3-030-01249-6 5.

[83] Zhi Li et al. “On Boosting Single-Frame 3D Human
Pose Estimation via Monocular Videos”. In: Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Oct. 2019.

[84] Ruixu Liu et al. “Attention Mechanism Exploits Tem-
poral Contexts: Real-Time 3D Human Pose Recon-
struction”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). June 2020.

[85] Tianlang Chen et al. Anatomy-aware 3D Human
Pose Estimation with Bone-based Pose Decomposition.
2020. DOI: 10.48550/ARXIV.2002.10322. URL: https:
//arxiv.org/abs/2002.10322.

[86] Yufei Xu et al. ViTPose: Simple Vision Transformer
Baselines for Human Pose Estimation. 2022. DOI: 10.
48550/ARXIV.2204.12484. URL: https://arxiv.org/abs/
2204.12484.

[87] Tsung-Yi Lin et al. Microsoft COCO: Common Ob-
jects in Context. 2014. DOI: 10.48550/ARXIV.1405.
0312. URL: https://arxiv.org/abs/1405.0312.

[88] Haoqi Fan et al. Multiscale Vision Transformers. 2021.
DOI: 10.48550/ARXIV.2104.11227. URL: https://arxiv.
org/abs/2104.11227.

[89] Yanghao Li et al. MViTv2: Improved Multiscale Vision
Transformers for Classification and Detection. 2021.

DOI: 10.48550/ARXIV.2112.01526. URL: https://arxiv.
org/abs/2112.01526.

[90] Kan Wu et al. Rethinking and Improving Relative
Position Encoding for Vision Transformer. 2021. DOI:
10.48550/ARXIV.2107.14222. URL: https://arxiv.org/
abs/2107.14222.

[91] Yuxiang Yang et al. APT-36K: A Large-scale Bench-
mark for Animal Pose Estimation and Tracking. 2022.
DOI: 10.48550/ARXIV.2206.05683. URL: https://arxiv.
org/abs/2206.05683.

[92] Kayleigh Boekhoudt et al. HR-Crime: Human-Related
Anomaly Detection in Surveillance Videos. 2021. DOI:
10.34894/IRRDJE. URL: https://dataverse.nl/citation?
persistentId=doi:10.34894/IRRDJE.

[93] Jun Liu et al. “NTU RGB+D 120: A large-scale
benchmark for 3D human activity understanding”. In:
IEEE Transactions on Pattern Analysis and Machine
Intelligence 42.10 (2020), pp. 2684–2701.

[94] Kayleigh Boekhoudt et al. HR-Crime: Human-Related
Anomaly Detection in Surveillance Videos. Version V1.
2021. DOI: 10.34894/IRRDJE. URL: https://doi.org/
10.34894/IRRDJE.

[95] Waqas Sultani, Chen Chen, and Mubarak Shah. Real-
world Anomaly Detection in Surveillance Videos.
2018. DOI: 10.48550/ARXIV.1801.04264. URL: https:
//arxiv.org/abs/1801.04264.

[96] Zhanchao Huang and Jianlin Wang. DC-SPP-YOLO:
Dense Connection and Spatial Pyramid Pooling Based
YOLO for Object Detection. 2019. DOI: 10 . 48550 /
ARXIV.1903.08589. URL: https://arxiv.org/abs/1903.
08589.

[97] Hao-Shu Fang et al. RMPE: Regional Multi-person
Pose Estimation. 2016. DOI: 10.48550/ARXIV.1612.
00137. URL: https://arxiv.org/abs/1612.00137.

[98] Yuliang Xiu et al. “Pose Flow: Efficient Online Pose
Tracking”. In: (2018). DOI: 10.48550/ARXIV.1802.
00977. URL: https://arxiv.org/abs/1802.00977.

[99] Amir Shahroudy et al. NTU RGB+D: A Large Scale
Dataset for 3D Human Activity Analysis. 2016. DOI:
10.48550/ARXIV.1604.02808. URL: https://arxiv.org/
abs/1604.02808.

[100] Laurens van der Maaten and Geoffrey Hinton. “Vi-
sualizing Data using t-SNE”. In: Journal of Machine
Learning Research 9.86 (2008), pp. 2579–2605. URL:
http://jmlr.org/papers/v9/vandermaaten08a.html.

[101] Peter J. Rousseeuw. “Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis”.
In: Journal of Computational and Applied Mathemat-
ics 20 (1987), pp. 53–65. ISSN: 0377-0427. DOI: https:
/ / doi . org / 10 . 1016 / 0377 - 0427(87) 90125 - 7. URL:
https : / / www. sciencedirect . com / science / article / pii /
0377042787901257.

[102] F. Pedregosa et al. “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[103] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial
Temporal Graph Convolutional Networks for Skeleton-
Based Action Recognition. 2018. DOI: 10 . 48550 /
ARXIV.1801.07455. URL: https://arxiv.org/abs/1801.
07455.

[104] Catalin Ionescu et al. “Human3.6M: Large Scale
Datasets and Predictive Methods for 3D Human Sens-
ing in Natural Environments”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 36.7
(July 2014), pp. 1325–1339.

APPENDIX

Fig. 27: ST-Tran architecture [7].

Fig. 28: SBPT-Tran architecture [7].

Fig. 29: Silhouette plot for the classifications of the BPTubeFormer model on the NTU120 dataset. The y axis labels indicate
the activity class labels. The red line indicates the average silhouette score for all the classes.

Class Label Activity
A1 drink water.
A2 eat meal/snack.
A3 brushing teeth.
A4 brushing hair.
A5 drop.
A6 pickup.
A7 throw.
A8 sitting down.
A9 standing up (from sitting position).

A10 clapping.
A11 reading.
A12 writing.
A13 tear up paper.
A14 wear jacket.
A15 take off jacket.
A16 wear a shoe.
A17 take off a shoe.
A18 wear on glasses.
A19 take off glasses.
A20 put on a hat/cap.
A21 take off a hat/cap.
A22 cheer up.
A23 hand waving.
A24 kicking something.
A25 reach into pocket.
A26 hopping (one foot jumping).
A27 jump up.
A28 make a phone call/answer phone.
A29 playing with phone/tablet.
A30 typing on a keyboard.
A31 pointing to something with finger.
A32 taking a selfie.
A33 check time (from watch).
A34 rub two hands together.
A35 nod head/bow.
A36 shake head.
A37 wipe face.
A38 salute.
A39 put the palms together.
A40 cross hands in front (say stop).
A41 sneeze/cough.
A42 staggering.
A43 falling.
A44 touch head (headache).
A45 touch chest (stomachache/heart pain).
A46 touch back (backache).
A47 touch neck (neckache).
A48 nausea or vomiting condition.
A49 use a fan (with hand or paper)/feeling warm.
A50 punching/slapping other person.
A51 kicking other person.
A52 pushing other person.
A53 pat on back of other person.
A54 point finger at the other person.
A55 hugging other person.
A56 giving something to other person.
A57 touch other person’s pocket.
A58 handshaking.
A59 walking towards each other.
A60 walking apart from each other.

TABLE XVII: List of activities in the NTU60 [99] dataset

Class Label Activity
A61 put on headphone.
A62 take off headphone.
A63 shoot at the basket.
A64 bounce ball.
A65 tennis bat swing.
A66 juggling table tennis balls.
A67 hush (quite).
A68 flick hair.
A69 thumb up.
A70 thumb down.
A71 make ok sign.
A72 make victory sign.
A73 staple book.
A74 counting money.
A75 cutting nails.
A76 cutting paper (using scissors).
A77 snapping fingers.
A78 open bottle.
A79 sniff (smell).
A80 squat down.
A81 toss a coin.
A82 fold paper.
A83 ball up paper.
A84 play magic cube.
A85 apply cream on face.
A86 apply cream on hand back.
A87 put on bag.
A88 take off bag.
A89 put something into a bag.
A90 take something out of a bag.
A91 open a box.
A92 move heavy objects.
A93 shake fist.
A94 throw up cap/hat.
A95 hands up (both hands).
A96 cross arms.
A97 arm circles.
A98 arm swings.
A99 running on the spot.
A100 butt kicks (kick backward).
A101 cross toe touch.
A102 side kick.
A103 yawn.
A104 stretch oneself.
A105 blow nose.
A106 hit other person with something.
A107 wield knife towards other person.
A108 knock over other person (hit with body).
A109 grab other person’s stuff.
A110 shoot at other person with a gun.
A111 step on foot.
A112 high-five.
A113 cheers and drink.
A114 carry something with other person.
A115 take a photo of other person.
A116 follow other person.
A117 whisper in other person’s ear.
A118 exchange things with other person.
A119 support somebody with hand.
A120 finger-guessing game (playing rock-paper-scissors).

TABLE XVIII: Additional activities included in the NTU120 [93] dataset, apart from those in Table XVII.

Fig. 30: Confusion matrix for BPTubeFormer-6-V2 using NTU120 dataset.

	2023DMB0001_AjayMathewJoseph
	Joseph_MA_EEMCS

