
UNIVERSITY OF TWENTE.
Faculty of Electrical Engineering,

Mathematics & Computer Science

Authentication Method for Windows OS
based on Location Classification using

WiFi Signals

Vasile Victor Ciresica
Master of Science Thesis

January 2023

Supervisors:
Prof. Dr. Andreas Peter

Prof. Dr. Maarten van Steen
Philipp Jakubeit

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

1

Abstract—In an ever evolving digital world au-
thentication is an essential procedure in the day-to-
day activities which involve interacting with digital
systems. It is a basic and crucial part of the security
of a system, as it is the requirement for two parties
to assure the identity of the other. Its apparatus is
continuously increasing in complexity to keep the sys-
tems secure against evolving adversaries. Multi-factor
authentication systems have been widely adopted in
recent years to increase the security of the systems
in terms of assurance of authenticity. This led to the
research and development of numerous authentication
methods. In this wealth of authentication methods,
conditions of the user, like location, stand out as a
candidate for further research and development. They
have the advantage of being intrinsically nonintrusive
(i.e. do not require user input). In this paper we
extend an existing scheme which describes the use of
WiFi for location based authentication. This classifies
WiFi signal measurements to be on location or off
location, in a privacy preserving manner. Our work
focuses on adapting this authentication method to the
predominantly used operating system Windows. We
constructed a dataset of 33 non-overlapping locations
on which we build the adapted method for Windows.
We then evaluate its performance and benchmark
it against state-of-the-art authentication methods de-
signed with the same objectives and with similar
traits. We also present limitations of the method
and particularities that Windows imposes for WiFi
data analysis. Finally, we describe further directions
that can be explored regarding location authentication
based on WiFi data.

1. INTRODUCTION

Migration toward digital systems is growing
rapidly in most domains nowadays to meet the con-
sumers’ needs. A direct implication of this massive
increase is the high demand for cyber security to
protect the digital services from being misused.
The US Bureau of Labour Statistics forecasts an
increase of 33% in the number of security analyst
jobs between 2020 and 2030, much more than
the average growth for all jobs (8%) or computer
science jobs (13%) [1].

One of the most basic and common procedures
when interacting with a digital system in a secure
manner is authentication. Authentication is defined
in the ISO 27000 standard [2] as the ”provision
of assurance that a claimed characteristic of an

entity is correct”. The National Institute of Stan-
dards and Technology (NIST) defines authentication
as ”Security measures designed to establish the
validity of a transmission, message, or originator, or
a means of verifying an individual’s authorization
to receive specific categories of information” [3].
Authentication can be achieved through multiple
methods, distinguished by their authentication fac-
tors. The most common authentication schemes use
as claimed characteristic something you know (e.g.
a password), something you have (e.g. a token),
something you are (e.g. fingerprint) or somewhere
you are (e.g. location) to identify a user. Cur-
rently, the use of combined factors into a Multi-
Factor Authentication (MFA) scheme, to improve
assurance of authenticity, has became prevalent [4].
MFA is a must for entities operating with high
value assets or privacy sensitive data, like banks or
hospitals. According to the 2017 Annual Report to
US Congress on the Federal Information Security
Management Act [5] up to 65% of cyber security
incidents could have been prevented with strong
MFA.

Location as authentication claim can be used in
MFA schemes. Location can be determined using
data from different sensors, e.g. GPS, proximity
sensor. Unfortunately, using the geographical loca-
tion of a user has the drawback of being privacy
invasive. To overcome this, the location can be
described in terms of other sensor measurements.
In this paper we study how ambient WiFi signals
can be used for location classification, which has
authentication as a direct application. Those signals
can be collected from surrounding Access Points
(AP) and processed in a privacy preserving manner,
as was shown by [6].

A. Motivation

The main advantage of location based authenti-
cation is being intrinsically nonintrusive. Nonintru-
siveness describes that user input is not required
[7]. This property will increase the adoption of
MFA schemes, as it makes the process of authenti-
cation easier for users. While there already exist
many methods that are nonintrusive, none have
been widely adopted because they require dedicated

2

sensors, like wristbands [8], or, in the case of gait
based authentication, it requires a physically mov-
ing user [9]. WiFi, on the other hand, is ubiquitous
and identifying the location does not require user
movement.

A preliminary work in the direction of WiFi-
based authentication was done by the authors of
[6]. They developed a method that uses WiFi sig-
nals to uniquely identify non-overlapping locations.
Further, they build a dataset and analyse the perfor-
mance of the method in the real-world environment.
Their results show that WiFi-based location classi-
fication is a feasible method that can be applied
for authentication. The authors of [6] developed
and tested their methods for the Linux Operating
System (OS), which represents a small percentage
of overall laptop users. A more widespread OS is
Windows, which, according to Statscounter, a web
traffic analysis service, is used by the vast majority
(76.33%) of laptop users. Thus, to facilitate mass
adoption of WiFi-based authentication we use the
work in [6] as a foundation to build a location
classifier based on WiFi for the Windows OS.

B. Research Questions

In this paper we describe the steps we made
to implement and evaluate the WiFi-based loca-
tion classification method for the Windows OS.
Throughout the research the aim was to answer the
following research questions:

• How can the WiFi data be accessed on Win-
dows?

• What data from the WiFi signals, available
on Windows, is most suitable for WiFi-based
authentication?

• How can a WiFi-based location classification
method for Windows OS be implemented?

• How does the WiFi signal data influence the
security and privacy of the method?

• How does the performance of the WiFi-based
location classification method compares to
other methods used in authentication?

To answer the research questions we look into
how to access WiFi data and how the data can
be used. We also investigate the entropy of WiFi

data accessible on the Windows OS and possible
privacy issues regarding this data. Further, we look
into WiFi data processing and location classification
for authentication.

To develop the classification method, evaluate the
performance and showcase our results, we use a
real-world dataset of WiFi signals that we gathered
through distributed scanning, using a dedicated soft-
ware we developed during the research.

C. Contributions
This work delivers four main contributions. Our

first contribution is to highlight a method to access
WiFi data on the Windows OS. This method can be
used in further research regarding WiFi. Our second
contribution is to build a software tool capable
of collecting WiFi data. This software includes a
user interface which makes it easy to use and it
can be distributed to build datasets of WiFi sig-
nals. Another contribution we bring is a real-world
WiFi dataset of 33 non-overlapping locations. This
dataset can be used to develop, test and benchmark
new methods that employ WiFi signals. Having
common datasets tremendously improves accuracy
when comparing the performance of different meth-
ods. Our final contribution is developing a location
classification method based on WiFi, for Windows.
We use the work of [6] as foundation. By making
the method available on Windows we unlock the
vast majority of laptop device users, making the
method more feasible for mass adoption, which will
further lead to an increase in the users’ data security.

D. Outline
In this section we provide an overview of the

structure of the thesis.
Section 2 introduces the background knowledge

and the relevant literature that forms a basis for this
thesis. We detail how the WiFi protocol enables de-
vices to distribute information through radio signals,
and how the data packets are structured, what infor-
mation they carry and how can it be extracted. Also,
we present the authentication method designed in
[6].

Section 3 provides a thorough description of
how the dataset for the research was built, how the

3

software tool was developed to collect the WiFi data
and how the preliminary processing was performed.
We also present the analysis of the WiFi data, how
the classification method is designed and how it is
applied on the dataset. Further more, we describe
the new parameters introduced by the Windows OS.

Section 4 describes attack scenarios and if the
WiFi based authentication method is vulnerable in
those scenarios. We also provide additional actions
the user can take, if necessary, to ensure secure
authentication.

Section 5 showcases the results of the analysis
and we interpret them in perspective to the research
questions. Also, we compare our solution with other
results from the literature.

Section 6 concludes this work. We provide the
answers to the research questions, describe the
limitations that were encountered and propose di-
rections for future research.

2. BACKGROUND AND RELATED WORK

In this section, we introduce preliminary knowl-
edge which forms the basis for understanding the
research further presented in this thesis. We also
discuss the related research that forms the founda-
tion for this paper.

A. The IEEE 802.11 WiFi standard

Many advances in technology came as solutions
to the connectivity needs of people. Devices are
becoming smaller and smaller so they are easier to
carry and communication between them becomes
simpler to achieve. One technology that facilitates
connectivity is WiFi. WiFi is a set of protocols that
enables devices to communicate over a small area
using radio signals, and connect to the Internet.
The Institute of Electrical and Electronics Engi-
neers (IEEE) defined the 802.11 Standard for WiFi
to assure compatibility between devices. Over the
years WiFi gained popularity at a very fast pace and
became an ubiquitous technology.

The IEEE 802.11 standard defines the protocols
used to manage access to the WiFi media channel
and transmit data. Well defined rules for channel

access are required because it must be shared be-
tween different devices and they can easily interfere
with each other.

The WiFi protocol also defines the format and
content of the frames that the devices send. In
order to manage the proliferation of WiFi enabled
devices, they are grouped into small local networks.
Access to a WiFi network and communication be-
tween devices are mediated by an AP. The AP peri-
odically broadcasts special packets called discovery
beacons to make the network visible to devices in its
proximity. Those beacons contain the information
necessary for devices to connect to the network and
start communication. The information in a beacon
frame is organised in fields. There are 247 element
fields defined in the 802.11 IEEE 2020 standard
[10]. The fields present in a discovery beacon frame
vary with the network’s capabilities and the devices
that are part of the network.

B. WiFi beacon frame format

The beacon frame does not contain application
data, it contains only meta data about the network,
the radio channel and the communication parame-
ters used to facilitate the actual data exchange. The
format of the beacon frame is show in Figure 1.
The WiFi beacon contains two types of fields, fixed
fields and element fields.

The fixed fields are mandatory fields with a set
length. Those fields include the time period at which
beacon frames are sent, the physical capabilities for
data transmission supported by the device and infor-
mation about the network’s structure and properties.

The element fields occupy a larger part of the
beacon frame. They are variable length fields, they
are not all mandatory and are designed to be
flexible, to support protocol updates. As shown in
Figure 2 each field has an ID (1 byte), a length in
bytes (1 byte), an ID extension (0 or 1 byte) and a
body which can vary between 1 byte and 253 bytes.
The ID and length subfields have a fixed format
while the ID extension and body vary depending
on the element field.

4

Fig. 1: Beacon frame format

Fig. 2: Element field format

We can use the mentioned knowledge of the
beacon frame format to process WiFi data from
surrounding APs. We can split a beacon frame into
fields and process each field accordingly.

The first step in our analysis is to access the WiFi
data. Most personal-use devices come equipped
with a WiFi antenna. Those include laptops, mobile
phones, smart-watches, smart-bracelets. For those
devices, WiFi communication is handled by the
OS and user applications have limited access. This
is done to protect the hardware and to simplify
programming applications that communicate over
the Internet. Sometimes access to the WiFi internals
of a device is necessary for a user application.
For this reason some OSs offer more elaborate
interfaces. We can leverage the interfaces the OS
supplies in order to access the necessary data for
our WiFi-based Authentication method.

C. WiFi Authentication Method for the Linux OS

The authors of [6] propose a WiFi-based classi-
fication method and show how it can be used in
a multi-factor authentication scheme. The method
uses six WiFi beacon fields that are accessible on
Linux and the received signal strength indicator
(RSSI) to construct fingerprints of different loca-
tions. The RSSI represents the power of the radio
signal received by the WiFi antenna of the device.
The six fields used in [6] are: the Capability flags,

the WiFi Protected Access (WPA) flags, the Robust
Secure Network (RSN) flags, the Frequency, the
Mode and the Maximum Bit Rate. The fingerprints
build from the six fields and the RSSI are then
compared to determine if they were constructed
from measurements collected at the same physical
location or not.

There are two key factors in deciding which fields
to use for classification, specifically, availability and
privacy. Preserving the privacy of a user implies
not disclosing sensitive personally identifiable in-
formation (PII). PII is data that can be traced back
to an individual and that, if disclosed, could result
in harm to that person. Such information includes
biometric data, medical information, financial infor-
mation and unique identifiers such as passport or
social security numbers. Threats to privacy include
not only crimes, such as identity theft, but also dis-
closure of personal information that the individual
would prefer remained private.

The authors of [6] also have access to the Media
Access Control (MAC) address of the AP and the
Service Set Identifier (SSID), but both represent
PII. The MAC address is a 6-byte number that
encodes the device vendor and the device model.
An adversary can use this information to increase
the probability of a successful attack. The SSID is
a 32-byte text field representing a human readable
identifier of the WiFi network. The SSID is set by
the administrator of the AP and might contain sen-
sitive information, for example his address. Also,
the default value of the SSID of a device contains
device specific information (e.g. model, vendor,
internet service provider). This information can be
used by an adversary to identify vulnerabilities

5

based on the AP’s hardware or software. These
vulnerabilities will most likely result in a higher
probability of a successful attack on the AP. The
authors of [6] choose not to use these fields in
order to protect the user’s privacy. Although they
aim to construct a fingerprint of the WiFi signals at
a location, it is not the geographical location that
we fingerprint, but the measurable environment. We
also choose to avoid fields that can be linked to a
geographical location or contain PII.

The method for constructing the WiFi fingerprint
from [6] has two main components, an access
point identifier (APID) and the RSSI. The APID is
constructed using the six mentioned fields, by con-
catenating them into a 63 bits value [11]. The RSSI
is measured in decibels relative to a milliwatt (dBm)
or as a percentage, denoting the measured dBm
of the signal relative to the maximum measurable
dBm value of the antenna (i.e. measured dBm

maxim dBm). In
[6] further normalization is applied such that the
RSSI ∈ [0, 1].

The WiFi-based authentication method defined in
[6] uses as main component a WiFi-based location
classifier C to establish if two sets of measurements
were conducted at the same location. To define
how the classifier works, they first distinguish a
measurement (m), a scan (S) and a profile (S).
A measurement m is defined as the set of fields
gathered from a beacon frame (i.e. the WiFi data),
transmitted by an AP at a certain moment in time.
A scan S is defined as a series of measurements
m collected over a fixed period of time, with the
same sensor and at a fixed location. A profile S
is defined as a set of scans collected over a fixed
period of time.

In order for a user to authenticate using the
method from [6] he would follow the next steps.
First a profile S of a location is registered by a user
by collecting measurements at the location. Then,
when a user tries to authenticate, measurements are
collected from the AP signals in the surrounding
environment to construct a scan S. Next, a similarity
metric is computed using S and S and compare to a
threshold to determine if S is sufficiently similar to
S (i.e. it is smaller or bigger than the threshold). If
it is sufficiently similar, the authors of [6] infer that

the location where S was collected is the same as
the location where S was collected. The similarity
between S and S is computed using a modified
version of Jaccard Similarity that takes into account
the APID and the RSSI. The formula for the Jaccard
Similarity with RSSI (JSR), defined in [6], is:

JSR(S;S) =
|APID({S,S})|

|APID(S) ∪ APID(S)|
(1)

The denominator |APID(S) ∪ APID(S)| is the
total number of unique APIDs in either the scan
S or the profile S. To define the numerator
|APID({S,S})|, they first define RSSI(S;AP) as
the average of all RSSI values from the measure-
ments from the same AP (i.e. with the same APID),
belonging to the scan S. Next, they define

||S;S’;APID|| = ||RSSI(S’, APID)−
RSSI(S, APID)||

(2)

as the absolute difference between the average
RSSI values for the same AP, from two scans S
and S’. Using the previous defined absolute RSSI
difference, they use {S,S} to denote the collection
of scans S′ from the profile S, that contain only
APs that are in S and the absolute RSSI difference
between S and S′, for all common APs, is smaller
than a profile specific threshold d(S). From the def-
inition of {S,S} they obtain the following equation:

{S,S} = {APID |
∥∥S,S′, APID

∥∥ < d(S); S′ ∈ S;
APID ∈ S′ ∩ S}

(3)

The set {S,S} is strictly dependent on d(S),
which is defined in [6] as the maximum absolute
difference between the RSSI values for the same
APID, from any two scans in S, S and S’. The
formula for the threshold d(S) is given by:

d(S) = max{
∥∥S;S′;APID

∥∥ | AP ∈ APID(S)
∩APID(S′),S,S′ ∈ S,S ̸= S′}

(4)

Thereby, the numerator of JSR(S;S),
|APID({S,S})|, is the total number of APs
in {S,S}.

6

After the JSR is computed, the WiFi-based classi-
fier compares the value to a precalculated threshold
T (JSR;S;U) to determine if the scan S was con-
ducted at the location of the profile S. The threshold
is computed using existing scans and their location
labels. To compute the threshold the authors of [6]
first calculate the local scan limit (LSL) and the
remote scan limit (RSL). The LSL is computed for
a given profile using all the existing scans in the
profile. The LSL is the minimum JSR between each
scan in the profile and the profile itself.

LSL(JSR;S) = min({JSR(S,S) | S ∈ S}) (5)

To calculate the RSL for a given profile S, they
first define the set of L-remote scans U as scans
that were collected at different locations than the
profile S. For each remote scan they compute the
JSR against the profile and take as the RSL the
maximum value, as defined in [6].

RSL(JSR;S;U) = max({JSR(U,S) | U ∈ U})
(6)

Given the LSL and the RSL, the threshold for
determining if a scan was conducted at the same
location as a profile is defined as the average
between the LSL and the RSL.

T (JSR;S;U) =
LSL(JSR;S) +RSL(JSR;S;U)

2

In summary, the WiFi-based classifier C com-
putes JSR and T (JSR;S;U) and return the results
of the comparison JSR(S;S) > T (JSR;S;U), as
defined by Equation 7. To use the classifier for
authentication we consider S as a valid location
fingerprint registered by an user and S as a login
attempt at a location. The classifier will determine
if there is a match between the profile and the scan,
and using the result we can grant or deny access to
the user, as described in [6].

C(S,S) = JSR(S;S) > T (JSR;S;U) (7)

As stated, an objective that the authors of [6] aim
to achieve when doing WiFi-based authentication

is to preserve privacy. To achieve this the APID is
constructed using six features of the WiFi beacon.
Those features are defined in [11] and are acces-
sible on Linux via the desktop bus, which is the
inter-process communication daemon used in Linux
systems.

3. WIFI AUTHENTICATION METHOD FOR THE
WINDOWS OS

As stated, Linux covers a small part of the total
laptop OS market as opposed to Windows. Creating
an authentication method for Windows opens the
path for mass adoption and will strengthen the
resolve for doing additional research into WiFi-
based authentication. The main difference between
the two OSs is the interface offered to access WiFi
data. Linux OS offers unprivileged access through
the desktop bus to only a few bytes from the WiFi
beacon frame. This data consists of eight fields and
the RSSI, out of which the MAC address and the
SSID cannot be used because of privacy concerns.
Windows offers access to WiFi data through the
C/C++ Native WiFi API. Through this API we can
retrieve the entire beacon frame and the RSSI.

A. Data Collection

In order to assess the reliability and performance
of our authentication method we require a dataset.
The datasets available online either do not contain
the details required or do not contain measurements
over a long enough period of time, as required for
our analysis. Therefore, we decided to build our
own dataset based on measurements we conducted.
During the process of data collection we developed
a software tool that uses the C/C++ Native WiFi
API to record beacons sent by APs for extended
periods of time [12], [13].

We developed a web application that queries the
OS internals, through the C/C++ Native WiFi API,
once every second, for the buffered WiFi beacons
the antenna received from the surrounding APs.
This is achieved using the tool in [14]. The beacons
received from the Native WiFi API are formatted
and written into a capture file.

To make the tool easy to use we decided to wrap
the C software into a web application with a simple

7

user interface. To do this we used the Python C
API [15] to package the C software as a python
module and run it on a python server. Further, we
build a server using the Flask web framework and
a web interface using the React framework. Also,
we modified the C software to save the RSSI value,
and the timestamp at which the WiFi beacon was
received by the antenna, into the capture file.

To gather the necessary data we conducted mea-
surements during a four months period. The process
consisted of finding volunteers to use the software
tool to conduct measurements in non-overlapping
geographical locations. During this period we con-
structed a dataset of scans from 33 non-overlapping
locations. Each location has measurements collected
over a time period between one hour and four
hours. In the Appendix we show statistics about
our dataset, for each location. We computed the
minimum, maximum and average number of APs
per scan, for each location. We also vary the length
of a scan to see how it influences the number of
APs. We can see in the table’s summary section that
as we increase the length of the scan we have more
APs in average in a scan. Each additional AP gives
us more data that we can use to classify locations
apart.

B. WiFi Beacon Fields

As stated, Windows provides access to the entire
beacon frame as opposed to unprivileged access in
Linux, which provides access to only eight features
of the beacon frame. Access to more features in the
beacon can increase the performance of our method,
but not all fields can be used. When constructing
the APID there are several factors to consider when
choosing the fields we include. The most important
factor is privacy. On Windows we have access to
the MAC address and the SSID, as we do on Linux,
but those contain privacy sensitive information. To
preserve the privacy of the user we exclude those
fields from the APID. Another field that contains
privacy sensitive information, and we do not include
in the APID, is the Country field. This element field
specifies the country in which the device operates.

Another factor we consider when choosing the
fields to include in the APID is invariance over time.

This property is essential because the purpose of the
APID is to identify an AP regardless of the moment
in time the measurement was taken. To find fields
that vary over time we use the dataset we collected.
We group the measurements by MAC address so
the measurements in each group were taken from
the same AP. We then compare the values for
each field in each group to identify the variable
fields. Our dataset shows that the following 11
fields either change their value over time or are not
present at all in subsequent beacons from the same
AP: DS Parameter Set, TIM, BSS load, ERP, HT
Information, Secondary Channel Offset, Extended
Capabilities, Transmit Power Envelope, Operating
Mode Notification, Element ID Extension, Vendor
Field, Timestamp, Beacon Interval.

Another important characteristic of the beacon
frame we consider when choosing the fields is that
the Vendor Field can appear multiple times in the
beacon. The Vendor Field, as defined in the 802.11
standard [10], ”is used to carry information not de-
fined in this standard within a single defined format,
so that reserved element IDs are not usurped for
nonstandard purposes and so that interoperability
is more easily achieved in the presence of non-
standard information”. To facilitate interoperability,
any vendor can register with the IEEE authority to
obtain an organization identifier. This organization
identifier is included in the Vendor Field for devices
to identify Vendor fields they can process. The
format of the Vendor Field is show in Figure 3.

Fig. 3: Vendor field format

A common practice of AP manufacturers is to
include their own vendor fields to extend the capa-
bilities of their APs. We cannot include the vendor
fields of AP manufacturers as information about the
manufacturer of a user’s AP is considered privacy
sensitive information (the same reason we do not
include the MAC address). Also, from our dataset
we determined that some vendor fields from AP

8

Field
ID Field name Description Field length Reason to

exclude

0 SSID Is a user-friendly identifier for the local network 0-32 Bytes privacy invasive

3 DS Parameter
Set

Contains information to allow channel number iden-
tification for devices 3 Bytes variable field

5 TIM Element used to signal the timing and availability
of data for associated devices 4-256 Bytes variable field

7 Country Specifies the country in which the device operates 4-256 Bytes privacy invasive

11 BSS Load Contains information on the current device popula-
tion and traffic levels in the BSS 7 Bytes variable field

40 Quiet Used to advertise an interval during which no trans-
mission occurs in the current channel 6 Bytes variable field

42 ERP

It contains the requirement of the ERP element
sender (AP, IBSS device, or mesh device) as to
the use of protection mechanisms to optimize BSS
performance and as to the use of long or short
Barker preambles

3 Bytes variable field

61 HT Operation Controls the operation of HT devices in the BSS 24 Bytes variable field

62 Secondary
Channel Offset

This element field is used by an AP when changing
to a new 40 MHz or wider channel 3 Bytes variable field

127 Extended
Capabilities

The Extended Capabilities element carries informa-
tion about the capabilities of a device that augment
the capabilities specified in the Capability Informa-
tion field

2-256 Bytes variable field

195 Transmit Power
Envelope

Conveys the local maximum transmit power for
various transmission bandwidths 4-7 Bytes variable field

199 Operating Mode
Notification

Is used to notify devices that the transmitting AP
is changing one or more of its operating channel
width, the maximum number of spatial streams it
can receive, and its LDPC receive preference

3 Bytes variable field

221 Vendor Field

Is used to carry information not defined in this
standard within a single defined format, so that re-
served element IDs are not usurped for nonstandard
purposes and so that interoperability is more easily
achieved in the presence of nonstandard information

2-256 Bytes variable field

255 Element ID
Extension

Extension field for functionality not included in the
255 fields 3-256 Bytes variable field

Note: variable field = the value of the field changes over periods of time on the order of minutes or even seconds, because the field
describes the state of the WiFi network and not one or multiple static AP configurations

TABLE II: Beacon fields excluded from the APID

9

manufacturers are variable over time, which is also
a motivating factor not to include them in the APID.

Besides the vendor fields the actual AP manu-
facturer includes in the beacon, there are vendor
fields from other organizations that can be present in
the beacon frame. A vendor field that we identified
in our dataset is the Microsoft assigned field with
organization identifier 00:50:F2. Under this organi-
zation identifier we find the WEP, WPA and WPA2
secure access protocols. This field is invariant and
does not contain private data, therefore we include
it in the APID.

In Table II, Table III and Table IV we list all
the fields we exclude from the APID, respectively,
all the fields we include. We construct the APID by
concatenating the fields in Table III and Table IV
into a byte string.

C. Analysis

To determine the performance of our authenti-
cation method we compute the precision, recall,
false match rate (FMR) and false non-match rate
(FNMR). Those are common metrics used to bench-
mark classification methods, and are present in the
related literature [9], [6], [16]. To define the metrics
we first consider a profile S, which is composed
of multiple scans S. We then define the function
locate that returns the true physical location of
a scan or profile, as a unique label that contains
no information about the geographical location. If
locate(S) = locate(S) then the measurements in
the scan and the measurements in the profile were
conducted at the same location. We now define L
as a set of test scans, which were conducted at the
same physical location as S, and U (also called
remote scans) as a set of test scans which were
conducted at different locations, not overlapping
with the location of S. Further, we use C to denote
our WiFi-based location classifier. When applying
C to a profile S and a scan S′, then C associates S
a label L and S′ a label L′ and return if L = L′.

With the above premise we now define: true pos-
itives(TP), false positives(FP), true negatives(TN)
and false negatives(FN). For a given S and S if their
measurements were collected at the same location
(locate(S) = locate(S)) and C returns L = L′, then

the classification result is considered a true positive,
because the classifier correctly identified that the
locations are the same. In the same manner, given
S and S, we define the result as a false positive when
locate(S) ̸= locate(S) and L = L′; a true negative
when locate(S) ̸= locate(S) and L ̸= L′; a false
negative when locate(S) = locate(S) and L ̸= L′.

Using the above definitions, we describe our
evaluation metrics as follows:

Precision =
TP

TP + FP
. (8)

Recall =
TP

TP + FN
. (9)

FMR =
FP

FP + TN
. (10)

FNMR =
FN

TP + FN
. (11)

We now calculate those metrics for our clas-
sifier C. We take our dataset and group it by
location. As mentioned, our dataset consists of 33
non-overlapping locations. We take each location
and group the measurements into scans, where a
scan is comprised of the measurements collected
over a time period of n seconds (scan length). A
lower value for n has the advantage of making
the classification faster, mainly because we require
less time to collect the necessary data, but also
it takes the classifier less time to process it. The
disadvantage, however, is that less data may worsen
the performance of the classifier. To select the best
value for the scan length, we compute the precision
and recall for different values of n and use them as
guidelines.

Further, we group the scans at each location in
two sets, one that will be used for training the
classifier (profile S) and one that will be used for
testing the classifier(local test set L). For statistical
consistency we pick the same length (number of
scans m) for S and L. We also want to lower the
length of the profile as much as possible to make
profile data collection in real world application
(e.g. authentication) less time consuming. The same
trade-off applies as for the scan length, if the profile

10

Field
ID Field name Description Field

length
Minimum
Entropy

1 Supported Rates Specifies any combination of up to eight BSS membership
selectors and rates in the OperationalRateSet parameter

3-10
Bytes 2.87 bits

32 Power
Constraint Indicates the maximum transmit power 1 Byte 0.5 bits

35 TPC Report Contains transmit power and link margin information sent in
response to a TPC Request element 4 Bytes 3.53 bits

45 HT Capabilities Contains optional information for High-Throughput func-
tionality for stations that support it

28
Bytes 6.96 bits

48 RSN Contains the information required to establish a secure
connection to the network

0-256
Bytes 2.55 bits

50 Extended
Supported Rates Specifies the rates in the Operational Rate Set parameter 3-256

Bytes 2.07 bits

51 AP Channel
Report

Contains a list of channels where a device is likely to find
an AP

3-256
Bytes 3.71 bits

52 Neighbor Report Contains information about APs in neighboring BSS 15-256
Bytes 5.27 bits

54 Mobility
Domain

Used by the AP to advertise that it is included in the group
of APs that constitute a mobility domain, to advertise its
support for FT capability, and to advertise its FT policy
information

5 Bytes 3.69 bits

59
Supported
Operating
Classes

Is used by a device to advertise the operating classes within
which it is currently configured to operate.

3-256
Bytes 2.99 bits

66
Measurement

Pilot
Transmission

Contains the measurement pilot interval 3-256
Bytes 0.11 bits

67
BSS Available

Admission
Capacity

Is helpful for roaming devices to select an AP that is likely
to accept future admission control requests

4-256
Bytes 1.0 bits

70 RM Enabled
Capability Signals support for radio measurements in a device 7 Bytes 3.35 bits

74
Overlapping
BSS Scan
Parameters

Used by an AP to indicate the values to be used by BSS
members when performing OBSS scan operations

16
Bytes 0.65 bits

107 Interworking Contains information about the interworking service capa-
bilities of a device

3-11
Bytes 2.6 bits

113 Mesh
Configuration Is used to advertise mesh services 7 Bytes 2.0 bits

191
Very High
Throughput
Capabilities

Is used to advertise network communication capabilities 12
Bytes 5.0 bits

192
Very High
Throughput
Operation

Is used to advertise network communication capabilities 5 Bytes 2.92 bits

200 UPSIM Is used to advertise power saving capabilities 1-33
Bytes 1.5 bits

TABLE III: Beacon fields included in the APID

11

Field
ID Field name Description Field

length
Minimum
Entropy

221 Vendor Field

Is used to carry information not defined in this standard
within a single defined format, so that reserved element
IDs are not usurped for nonstandard purposes and so that
interoperability is more easily achieved in the presence of
nonstandard information

2-256
Bytes 3.01 bits

231 Sectorized
Group ID List

Includes the information necessary for a receiving device to
determine its sectorization group membership

2.5-256
Bytes 1.5 bits

Capabilities It is used to indicate requested or advertised optional capa-
bilities 2 Bytes 3.32 bits

TABLE IV: Beacon fields included in the APID

length is too small the performance of the classifier
may worsen. To select a suitable profile length we
compute the precision and recall for different values
for m and use them as guidelines.

To calculate the similarity threshold
T (JSR;S;U) we need two other thresholds,
LSL and RSL. First, we want to calculate LSL.
For this we require the threshold d(S), which we
calculate using Equation 4 from a profile. Once
d(S) is calculated, we can determine the JSR for
each scan in L using Equation 1 and take the
minimum JSR value as our LSL, as defined in
Equation 5.

As the next step we compute the RSL. For each
location in our dataset we choose at random, from
the pool of scans from the other 32 locations, a
number of scans equal to 2m. We then split those
scans into a remote set U of m scans for training
and a remote set R of m scans for testing. Finally,
we use Equation 6 to determine the RSL value.

After acquiring the LSL and the RSL we calcu-
late the threshold T (JSR;S;U) by averaging the
sum of the LSL and the RSL. We use T to classify
each scan in L and compute the TP, FN and the
recall for each location. We then use T to classify
each scan in R and obtain the FP, TN and compute
the precision. Also, for each location we do a
Monte Carlo cross validation step for the remote
scan set. This step consists of repeating the steps to
choose the remote scan set 100 times (we choose a
number that deemed sufficiently large for testing)

and computing the TP, FP, TN, FN, precision,
recall, FMR, FNMR. We do this to validate that the
authentication has a high recall for any randomly
chosen U and R.

D. Experimental Evaluation

In our analysis we compute the precision and
recall for different values for m and n. We start
with the configuration m = 60min and n = 60sec
and decrease the values to see how it affects the
precision and recall. From our experiments we
managed to obtain a precision of 1.00 and a recall of
1.00 for values up to n = 30sec and m = 30min,
as shown in Figure 4. If we further decrease the
profile or scan length the performance also drops.
We show in Figure 5 results for n = 15sec and
m = 15min. For precision we have the minimums
of 0.9672 for location 29, 0.9677 for location 32
and 0.9836 for location 27. For recall we see better
results, with only two locations dropping to values
of 0.983. We deem the precision and recall for this
configuration insufficient for continuous authenti-
cation applications, because the impact of a FP is
too severe, so the precision should not be less than
1.0. A FP indicates that an authentication request
that should be denied is instead granted. Thus, we
recommend using the n = 30sec and m = 30min
configuration to avoid FPs. Also, for a scan length
of 15 seconds, we look into increasing the profile
length to give the classifier more data in an effort
to increase the precision. Even with a 60 minutes

12

Fig. 4: Classifier precision when m = 30min, n = 30sec, over 100 cross validation runs

profile, we see in Figure 6 that the precision drops
to 0.983 for location 21, to 0.991 for location 16 and
to 0.995 for locations 2 and 3. For m = 60min we
also need 60min of data for the test set. However,
we are limited by our dataset, which contains only
22 locations with that amount or more, as shown in
Figure 6.

We conclude that a scan length smaller than 30
seconds does not contain sufficient data for the
classifier to achieve adequate precision.

4. SECURITY ANALYSIS

The security of the authentication method is
given by its resilience against adversaries. An au-
thentication system has to be secure against differ-
ent adversaries that try to gain illegitimate access to
the system posing as a valid user, known as mas-
querading. There are multiple scenarios in which an
adversary can try to gain access. We look into the

chances of an adversary to guess a valid fingerprint,
an adversary attacking the communication channel
and an onsite adversary. One method for an attacker
to gain access is to brute force a valid scan of a
user, this scenario allows us to conduct an analysis
on how hard it is to guess a valid fingerprint. The
hardness of this challenge is given by the amount
of information contained in a scan.

In information theory, Shannon’s entropy is a
measure of information in a random variable. We
apply Equation 12 to calculate the Shannon entropy
in a scan using our dataset.

H(X) = −
n∑

i=1

P (xi) log2 P (xi) (12)

In the above formula, H(X) represents the en-
tropy of the random variable X . The values x1 to
xn represent the possible values the random variable
X can take. P (xi) is the probability with which X
takes the value xi.

13

Fig. 5: Classifier precision when m=15min, n=15sec, over 100 cross validation runs

Fig. 6: Classifier precision when m=60min, n=15sec, over 100 cross validation runs

14

The entropy of a scan is given by the APIDs
in the scan. With our limited dataset we cannot
compute the exact entropy of an APID (H(APID)),
but we can calculate an upper bound and a lower
bound for the entropy.

The APID is build of multiple fields, where each
field can be considered a random variable. The
entropy for a set of random variables is given by
Shannon’s Joint Entropy formula:

H(X1, ..., Xk) =−
∑

x1∈X1

...
∑

xk∈Xk

P (x1, x2, ..., xk)

· log2 P (x1, x2, ..., xk)

(13)

In the Joint Entropy formula, X1 to Xk represent
the sets of values that the random variables X1 to
Xk can take. A property of the joint entropy is that
it is always lower or, at most, equal to the sum of the
entropy values of the comprising random variables:

H(X1, ..., Xk) ≤ H(X1) +H(X2) + ...+H(Xk)

(14)

This implies that the entropy of the APID is
less or equal to the sum of the entropies of the
comprising fields. We calculate the entropy of a
field using our dataset and Equation 12. More
precisely, we have P (xi) equal to the number of
times field i has value xi in our dataset divided
by the total number of APs. At last, by summing
the entropies of the fields given in Table III and
Table IV we obtain 51.97 bits as the upper bound
for H(APID), as given by Equation 14.

The lower bound for H(APID) is given by the
Joint Entropy (Equation 13) of the fields estimated
using our dataset. Here [x1, x2, ..., xk] is a unique
combination of fields, or an unique APID, in our
dataset, and P (x1, x2, ..., xk) is the probability with
which that APID appears. We calculate the prob-
ability by dividing the number of time the APID
appears by the total number of APs. As a result, we
obtain a lower bound of 8.99 bits for the entropy.

However our lower and upper bounds for
H(APID) are dependent on the size of the dataset.
In order to make a more precise estimate we built
another set of scans [17] from real world measure-
ments collected during walking and cycling around

the city. Collecting measurements while travelling
over extended areas greatly increases the set of
unique APs our new dataset contains. Adding [17]
to our 33 locations dataset we increase the number
of unique APIDs to 10560. Using the new dataset
the upper bound is now 76.53 and the lower bound
is now 10.83. Also, we show the Shannon entropy
for each field, using the new dataset, in Table III
and IV. We observe a significant increase in the
entropy as our dataset increases in size.

To get a better approximation of the entropy we
use the joint entropy formula and the definition of
joint entropy entropy of two or more independent
random variables. Two random variables X1 and
X2 are independent if the value of X1 does not
influence the value of X2, or otherwise (i.e. know-
ing the value of X1 does not give any additional
information about X2). Using domain knowledge of
the WiFi protocol we can separate fields into sets
that are independent. Given two independent sets
G1 and G2 (i.e. every field in G1 is independent
from every field in G2), we have:

H(G1,G2) = H(G1) +H(G2)

Because the two sets are comprised of a smaller
part of the total fields in the APID, the maximum
entropy they can hold is lower, so they require less
data to approximate their entropy.

To split the APID fields into independent groups
we need to use domain knowledge. Our split of the
fields into independent fields consists of two sets.
G1 contains the Supported Rates, Power Constraint,
TPC Report, HT Capabilities, Extended Supported
Rates, Measurement Pilot Transmission, RM En-
abled Capabilities, VHT Capabilities, VHT Opera-
tion, UPSIM, and G2 contains the remaining fields
from Table III and IV. In G1 we included all the
fields that contain information about the transmis-
sion rate and performance capabilities of the AP, or
information that is indirectly linked to the transmis-
sion capabilities, like the AP’s power constraints or
the physical medium state. G2 contain fields that
carry administrative information regarding the net-
work structure (e.g. AP Channel Report, Neighbor
Report, Mesh Configuration), how to establish a
secure connection (e.g. RSN, Vendor Fields) or how

15

and when to transmit packets (e.g. Measurement
Pilot Transmission). The information contained in
G1 is independent from the information on G2

according to our domain knowledge gathered from
[10].

We use the G1, G2 grouping to recalculate a
lower bound for the entropy of an APID. We now
have the following results:

H(G1) = 7.70 bits

H(G2) = 9.89 bits

H(G1,G2) = H(G1) +H(G2) = 17.59 bits

We obtain a much higher entropy using indepen-
dent sets of fields. Our results show a significant
increase over the entropy obtain by the authors of
[6], which is 9.1 bits. This is a direct implication of
having access in userspace to more fields on Win-
dows than on Linux. In locations where multiple
APIDs are detected in a scan, the entropy is equal
to the number of APIDs times the entropy of one
APID.

To evaluate the security of the method against
brute force attacks we use as reference the NIST
[18] entropy requirements for authentication meth-
ods. More precisely, we look into the memorized
secrets category, for which the requirement is a
minimum of 8 characters from the printable ASCII
character set. The printable ASCII character set
contains 96 characters, thus, the minimum entropy
for a memorized secret is log2(96

8) = 52.67bits.
Therefore, we recommend using our method in
locations where at least three APs (which will
give a minimum entropy of 52.77), in order to be
compliant with the NIST standards.

Another scenario that we look into is an ad-
versary compromising the communication channel
between a user and the server that authenticates
the user. In order to secure the communication we
recommend that authentication is only initiated after
an encrypted communication is established between
the user and the server. An encrypted channel using
TLS is used in most communications over the
Internet and such a channel can also be leveraged
for our authentication method. A TLS encrypted

channel guarantees the user the authenticity of the
server and also protects against Man-in-the-Middle
attacks and Reply attacks.

Another scenario is protecting against people that
have access to the same physical location as the
user. In the case of an office building other people
that have access are colleagues. We do not know
how big the distance between two users must be
such that our method can distinguish their scans
as being at distinct locations. To protect in such
scenarios we recommend a first and second factor
for authentication, and then use our method only
as additional factor (e.g. for continuous authentica-
tion).

5. COMPARISON WITH RELATED WORK

In the literature there are other attempts for
continuous authentication methods. Most of the
methods that are presented in the literature are based
on behavioural biometrics, e.g. physical movements
of the hand when using a smartphone [16] or finger
movements on a touchpad [19]. The authors of
[16] use readings from accelerometer, gyroscope,
and magnetometer to model user behaviour for
authentication. On the other side, the authors of
[19] propose a method for embedded devices to
determine finger movements from the WiFi channel
state information (CSI).

Another approach to continuous authentication
explored by the authors of [20] targets IoT devices
that do not present peripherals for user input. Their
method uses CSI to infer daily human behavioural
patterns.

The domain of location based authentication us-
ing WiFi was explored in [21] and [22]. The authors
of [21] build a template of the WiFi networks that
are detected by the mobile phone of the user during
a 24h period, in slots of t minutes. For a 30 minutes
slot period they have a 48 slots template. Each slot
consists of the MAC addresses of the WiFi networks
and a score given by the frequency with which each
network appear in the same slot during a day, on
a 30 day period. Additional to the WiFi location,
accelerometer data collected over a period of three
seconds is used to identify user mobile phone
movement patterns when opening an application.

16

Method False
Acceptance Rate

False Rejection
Rate Precision Recall

Uses privacy
preserving

features

Our Method (n = 30 sec, m = 30
min) 0 0 1.00 1.00 TRUE

MineAuth [22] - - 0.982 0.983 FALSE

[21] 0.091 0.091 - - FALSE

[16] 0.0095 0.0667 - - FALSE

[6] (n = 60 sec, m = 120 min) - - 0.98 0.975 TRUE

TABLE V: Comparison of experimental results from related research in the literature

Using readings from the two sensors the authors of
[21] authenticate the user. The experiments in [21]
show the method has a low performance given by an
EER of 0.091. This means that the false acceptance
rate (FAR) is 0.091, which is too high for practical
authentication applications.

In [22] the authors also use WiFi to identify
the location of the user, but they combine the
WiFi data with data from more sensors to increase
the performance. They use the reading from WiFi,
bluetooth, GPS sensors, and usage data (e.g. calls,
SMS) as identify behavioural patterns and location
for authentication, based on a user’s profile. [22]
experiments show a precision of 0.982 and a recall
of 0.983 which are good.

To compare our work with the literature we
compute for our method the metrics used in other
research papers and present the results in Table V.
We see that our method outperforms all the previous
methods from the literature that use WiFi sensor
readings for authentication. It also outperforms [6],
which is an expected results given that on Windows
we have access to more fields than on Linux, which
,in term, increases the entropy of an APID. More
over, we managed to decrease the scan size to 30
seconds and the profile size to 30 minutes with
minimum impact on performance. This decrease
in parameters’ size makes the method more user
friendly and further increases the probability of
adoption. However, we still require half a minute
for a fingerprint. Whether this is tolerable must be

decided per use case.

6. CONCLUSIONS

In our research we managed to build a method
that can be used for continuous authentication,
based on the research from [6], for the widespread
operation system Windows and using the ubiquitous
WiFi infrastructure. To develop this method we de-
vised a way to access WiFi data using the Windows
C/C++ Native WiFi API. Using the Native WiFi
API a user does not need privileged access rights,
which is an essential requirement for authentication.
We also made preserving the privacy of the user an
important requirement in our research and excluded
all WiFi data which could classify as PII.

By using the Native WiFi API we have access
to the entire WiFi discovery beacon frame which
gives us more capability information compared to
[6]. This leads to a higher minimum entropy of
17.59 bits compared to the entropy obtained in [6],
9.1 bits. As a result of higher entropy, we are able to
identify locations based on WiFi data collected over
smaller periods of time. We built a proof-of-concept
implementation that gives better results than other
methods in the literature. We also compare it to
[6], and we obtain a similar performance with a
four times smaller profile length (i.e. from 120
minutes to 30 minutes), and the scan length also two
times smaller (i.e. from 60 seconds to 30 seconds).
With lower scan length, continuous authentication
can be performed more often. This decreases the

17

attack windows in which an adversary can exploit
a hijacked session key or physical device with an
active session. Also, smaller scan and profile length
makes our method less onerous for users, which
subsequently increases the probability of adoption.

A. Research Limitations

A limitation of our research is the lack of data to
better evaluate the performance. Because the online
datasets did not match our requirements we decided
to collect our own data. This dataset contains 33
locations on which we approximate the capabilities
of our method. A larger dataset will give us a better
approximation of the authentication performance
and also the entropy in the WiFi discovery beacon
frame.

Another limitation of our method is being OS
specific. On most devices the cumbersome task
of handling the low level network configurations
is taken away by the operating system. This also
comes with limited access to user applications
which want to take advantage of the meta data that
the network protocols use. To make the method
accessible to more devices we need to adapt it for
different platforms (e.g. MacOS, mobile OSs).

B. Future work

To further improve our results we identify a few
directions for future research. In our method we
calculate the RSSI threshold d(S) based on the
profile, as the authors of [6] do. Another method
that might improve the performance is calculating
d(S) for each AP in a profile. This approach aims
to obtain a precise mapping of the behaviour of
each individual AP in a location and reduce the
probability of a false positive.

Another direction for future research that we
identify is examining the beacon fields that we
excluded from the APID. Most of the fields were
excluded because their values variate overtime. This
volatility might be restricted to only part of those
fields and other parts might present stable values
as long as the AP is not reconfigured. If this
hypothesis is correct, it may be possible to include
information from more fields in the APID, which

will lead to a higher entropy per AP and thus a
better performance.

REFERENCES

[1] “The U.S. Bureau of Labor Statistics’ Information
Security Analyst’s Outlook. Statistics on Cyber
Security jobs.” [Online]. Available: https:
//www.bls.gov/ooh/computer-and-information-technology/
information-security-analysts.htm#tab-6

[2] “ISO/IEC 27000 - Information technology — Security
techniques — Information security management systems -
Overview and vocabulary,” International Organization for
Standardization, Geneva, CH, Standard, 2018.

[3] W. Barker, “Guideline for identifying an information
system as a national security system,” 2003.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-59.pdf

[4] LastPass, “Global Password Security Report -
Emerging trends in credential management, access
and authentication in businesses worldwide.”
2019. [Online]. Available: https://lp-cdn.lastpass.
com/lporcamedia/document-library/lastpass/pdf/en/
LMI0828a-IAM-LastPass-State-of-the-Password-Report.
pdf

[5] T. O. of Management and Budget, “Annual
report to congress on the federal informa-
tion security management act,” 2017. [On-
line]. Available: https://www.whitehouse.gov/wp-content/
uploads/2017/11/FY2017FISMAReportCongress.pdf

[6] P. Jakubeit, A. Peter, and M. van Steen, “Wifi finger-
printing as nonintrusive authentication factor,” in Emerging
Technologies for Authorization and Authentication (ETAA)
International Workshop, 2022.

[7] S. McKenna and S. Gong, “Non-intrusive person authen-
tication for access control by visual tracking and face
recognition,” in International Conference on Audio- and
Video-Based Biometric Person Authentication, 1997, p.
177–183.

[8] J. Ranjan and K. Whitehouse, “Object hallmarks: Identi-
fying object users using wearable wrist sensors,” in Pro-
ceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, 2015, p. 51–61.

[9] L. Zhang, C. Wang, and D. Zhang, “Wi-pigr: Path inde-
pendent gait recognition with commodity wi-fi,” in IEEE
Transactions on Mobile Computing, 2021, pp. 3414–3427.

[10] IEEE, “IEEE Standard for Information Technology–
Telecommunications and Information Exchange between
Systems - Local and Metropolitan Area Networks–Specific
Requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,”
in IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-
2016), 2021, pp. 1–4379.

[11] “Network manager’s accesspoint data
structure documentation.” [Online]. Available:
https://developer-old.gnome.org/NetworkManager/1.2/
gdbus-org.freedesktop.NetworkManager.AccessPoint.html

[12] “Scanning tool server source code.” [Online]. Available:
https://github.com/victorciresica/wifi-scanner

[13] “Scanning tool interface source code.” [Online]. Available:
https://github.com/victorciresica/wifi-scanner-frontend

https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm#tab-6
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm#tab-6
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm#tab-6
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-59.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-59.pdf
https://lp-cdn.lastpass.com/lporcamedia/document-library/lastpass/pdf/en/LMI0828a-IAM-LastPass-State-of-the-Password-Report.pdf
https://lp-cdn.lastpass.com/lporcamedia/document-library/lastpass/pdf/en/LMI0828a-IAM-LastPass-State-of-the-Password-Report.pdf
https://lp-cdn.lastpass.com/lporcamedia/document-library/lastpass/pdf/en/LMI0828a-IAM-LastPass-State-of-the-Password-Report.pdf
https://lp-cdn.lastpass.com/lporcamedia/document-library/lastpass/pdf/en/LMI0828a-IAM-LastPass-State-of-the-Password-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2017/11/FY2017FISMAReportCongress.pdf
https://www.whitehouse.gov/wp-content/uploads/2017/11/FY2017FISMAReportCongress.pdf
https://developer-old.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://developer-old.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://github.com/victorciresica/wifi-scanner
https://github.com/victorciresica/wifi-scanner-frontend

18

[14] “C program for collecting beacon frames in cap files using
the windows native wifi api.” [Online]. Available: https:
//github.com/6e726d/Native-WiFi-API-Beacon-Sniffer

[15] “Python c api.” [Online]. Available: https://docs.python.
org/3/c-api/index.html

[16] M. Abuhamad, T. Abuhmed, D. Mohaisen, and D. Nyang,
“Autosen: Deep-learning-based implicit continuous authen-
tication using smartphone sensors,” in IEEE Internet of
Things Journal, 2020, pp. 5008–5020.

[17] “Wifi measurements dataset collect throughout the city
of bucharest.” [Online]. Available: https://github.com/
vciresica/wifi-research

[18] “NIST. Digital identity guidelines, authentication and
lifecycle management.” [Online]. Available: https://pages.
nist.gov/800-63-3/sp800-63b.html

[19] H. Kong, L. Lu, J. Yu, Y. Chen, and F. Tang, in Continu-
ous Authentication through Finger Gesture Interaction for
Smart Homes Using WiFi, 2020, pp. 3148–3162.

[20] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan,
H. Xue, C. Song, X. Ma, D. Koutsonikolas, W. Xu,
and L. Su, “Towards environment independent device free
human activity recognition,” in Proceedings of the 24th
Annual International Conference on Mobile Computing
and Networking, 2018, p. 289–304.

[21] G. Li and P. Bours, “Studying WiFi and Accelerometer
Data Based Authentication Method on Mobile Phones,” in
Proceedings of the 2018 2nd International Conference on
Biometric Engineering and Applications, 2018, p. 18–23.

[22] X. Pang, L. Yang, M. Liu, and J. Ma, “Mineauth: Min-
ing behavioural habits for continuous authentication on
a smartphone,” in Australian Conference on Information
Security and Privacy, 2019, pp. 533–551.

https://github.com/6e726d/Native-WiFi-API-Beacon-Sniffer
https://github.com/6e726d/Native-WiFi-API-Beacon-Sniffer
https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/c-api/index.html
https://github.com/vciresica/wifi-research
https://github.com/vciresica/wifi-research
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html

19

APPENDIX

Location label

Scan Length 15 sec Scan Length 30 sec Scan Length 60 sec

Min
APs

Max
APs

Avg
APs

Min
APs

Max
APs

Avg
APs

Min
APs

Max
APs

Avg
APs

Location 1 3 7 4.22 3 7 4.56 3 7 4.93

Location 2 5 31 23.74 12 32 25.66 21 34 27.49

Location 3 7 23 16.60 15 27 19.98 18 28 23.05

Location 4 6 34 25.62 21 41 31.17 27 49 37.30

Location 5 29 52 41.49 38 56 47.43 46 63 53.09

Location 6 24 47 34.74 29 56 40.73 38 66 47.58

Location 7 5 30 9.23 6 30 9.98 7 31 11.00

Location 8 1 24 14.64 11 25 17.31 15 25 19.35

Location 9 3 19 11.97 7 22 14.65 13 23 17.38

Location 10 10 38 25.46 19 42 29.21 23 48 32.24

Location 11 2 5 3.73 3 5 3.87 3 5 3.92

Location 12 20 35 27.56 23 38 30.86 27 41 34.19

Location 13 8 22 14.29 9 23 16.48 13 25 18.65

Location 14 13 29 18.96 14 29 20.97 17 32 23.38

Location 15 21 52 30.57 25 62 34.60 28 67 39.02

Location 16 11 65 22.21 13 78 25.73 13 94 30.07

Location 17 14 33 23.51 20 40 29.05 26 51 34.27

TABLE VI: Dataset scan time distribution

20

Location label

Scan Length 15 sec Scan Length 30 sec Scan Length 60 sec

Min
APs

Max
APs

Avg
APs

Min
APs

Max
APs

Avg
APs

Min
APs

Max
APs

Avg
APs

Location 18 4 62 47.13 43 69 57.08 30 76 65.38

Location 19 3 6 4.55 4 6 4.59 4 6 4.58

Location 20 8 28 21.09 14 32 24.02 20 35 27.12

Location 21 6 45 33.19 26 53 40.98 6 59 47.50

Location 22 6 14 9.61 7 14 10.35 8 14 10.79

Location 23 16 30 22.41 18 32 24.75 20 34 26.59

Location 24 9 14 11.38 10 14 12.12 11 15 12.67

Location 25 20 53 39.12 35 58 47.23 44 67 56.03

Location 26 17 56 38.55 31 67 47.97 41 84 59.18

Location 27 12 43 31.40 17 48 36.42 31 54 42.10

Location 28 8 18 12.37 10 18 13.16 11 19 14.20

Location 29 13 32 24.50 20 37 28.11 25 40 32.02

Location 30 1 4 2.98 1 4 3.03 1 4 3.05

Location 31 1 9 4.52 3 9 5.11 3 11 6.03

Location 32 18 30 23.25 21 33 26.06 24 36 29.27

Location 33 24 71 52.35 29 82 64.15 50 101 77.40

Summary 1 71 22.03 1 82 25.68 1 101 29.42

TABLE VII: Dataset scan time distribution

	Introduction
	Motivation
	Research Questions
	Contributions
	Outline

	Background and related work
	The IEEE 802.11 WiFi standard
	WiFi beacon frame format
	WiFi Authentication Method for the Linux OS

	WiFi Authentication Method for the Windows OS
	Data Collection
	WiFi Beacon Fields
	Analysis
	Experimental Evaluation

	Security analysis
	Comparison with Related Work
	Conclusions
	Research Limitations
	Future work

	References
	Appendix

