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Nomenclature

Subscripts

b Ball

l Left

p Platform

r Right

x x-direction

z z-direction

Superscripts

i Instance of ball incoming to platform

m Instance of maximum ball height

o Instance of ball outgoing of platform

Other symbols

αb, αp Angular acceleration of ball, angular acceleration of platform (rad/s2)

β Angle of incidence (rad)

∆p Linear impulse (kgm/s)

γ Angle of departure (rad)

ω Angular velocity of platform (rad/s)

σ Standard deviation of estimation error of impact time (s)

τ Actuator torque (Nm)

θ Rotation of platform (rad)

ab, ap Acceleration of ball, acceleration of platform (m/s2)

dc Contact damping (Ns/m)

ds Support damping (Ns/m)

e Coefficient of restitution
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Fd Damper force (N)

Fs Spring force (N)

Ft Tangential contact force (N)

Fc Normal contact force (N)

Fg,b, Fg,p Gravitational force on ball, gravitational force on platform (N)

g Gravitational constant (m/s2)

i Bounce number

Ib, Ip Inertia of ball, inertia of platform (kgm2)

kc Contact stiffness (N/m)

ks Support stiffness (N/m)

Lp Length of platform (m)

mb, mp Mass of ball, mass of platform (kg)

Mc Contact moment (Nm)

p Linear momentum (kgm/s)

r Distance between location of impact and center of platform (m)

rb Radius of ball (m)

t Time (s)

tp Thickness of platform (m)

ts Sample time (s)

vb, vp Velocity of ball, velocity of platform (m/s)

xb, xp x-position of ball, x-position of platform (m)

zb, zp z-position of ball, z-position of platform (m)
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Summary

Recently, the research chair of Precision Engineering at the University of Twente has developed
the T-Flex: a six degree of freedom, fully flexure-based hexapod. It has a translational workspace
of 5.5 dm3, can potentially achieve accelerations up to 18 g, has a repeatability of 0.35 µm RMS
and has a high force sensitivity. This combination of properties is unprecedented and therefore
the T-Flex is an interesting subject to display the current advancements in flexure-based mecha-
nisms. The goal of this research is therefore to select and develop a suitable demonstration that
showcases the combination of these properties.

Based on a literature survey and a set of criteria, a bouncing ball demonstration is deemed
most appropriate. An algorithm is developed for vertical, one-dimensional bouncing of a ball
on a platform. The objective of this algorithm is to bounce a ball to a given reference height,
where the platform velocity at the moment of impact can be regarded as control input to the
ball. To calculate the needed platform velocity, the velocity of the ball is relevant. In previously
developed ball bouncing algorithms, external sources of information are often used to reconstruct
the ball state, such as cameras or force sensors. Due to the high force sensitivity of the T-Flex
however, the contact force of the ball on the platform can be obtained from the torque delivered
by the actuators and the inverse dynamics model of the T-Flex. The contact force is the basis
for measurements as linear impulse and the time between bounces, which are the input to the
developed algorithm. The algorithm for one-dimensional bouncing has also been extended to an
algorithm for two-dimensional, sideways bouncing.

The one-dimensional bouncing has been verified in a simulation. The two-dimensional bouncing
has been simulated as well, as a proof of concept. Additionally, the one-dimensional bouncing
has been experimentally tested on the T-Flex. These experiments resulted in two main observa-
tions. Firstly, the measurement of linear impulse is 31% lower than expected, the cause of which
remains unknown. Secondly, it is found that air resistance is only negligible for bouncing heights
lower than 0.25 m. It is therefore recommended that the measurement for the linear impulse is
improved and the model for the ball trajectory is extended to account for air resistance, such that
higher bouncing is possible. Although the demonstration is not yet completely functional, its
feasibility is shown by comparing the required range of motion and acceleration to the properties
of the T-Flex.
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Chapter 1

Introduction

Recently, the research chair Precision Engineering at the University of Twente has developed the
T-Flex: a six degree of freedom (DOF), fully flexure-based hexapod [1]. A photograph is shown
in Figure 1.1. The design of the T-Flex aims to combine the advantages of parallel kinematic
manipulators (PKMs) with the advantages of flexure joints. PKMs are interesting for high-
precision tasks because they allow for high accelerations, due to low moving mass, and higher
repeatability because of their higher rigidity [2]. Using the joints shown in [3], [4], the range
of motion of a flexure-based PKM can be increased, while play and friction are still avoided.
The T-Flex is able to travel a workspace of 5.5 dm3 and achieves a repeatability of 0.35 μm
RMS. Accelerations of up to 18 g can potentially be achieved. Moreover, the torque feedback
has a resolution of 6 Nmm, which, in combination with the backdrivability due to the absence of
friction, results in a high force sensitivity. The resulting resolution of the measured force on the
end-effector is 0.00314 N in neutral position. This combination of properties is unprecedented
and therefore it is an interesting subject to display the current advancements in flexure-based
mechanisms.

Figure 1.1: The T-Flex [1].

To demonstrate the workspace and motion of the T-Flex, several pre-programmed trajectories are
already available. These include a sequence of translations and rotations, a swirl that combines
translation and rotation, and variations on both, some of which are shown in [5]. However, there
is not yet a demonstration of the mechanism that displays the repeatability and force sensitivity
in combination with the acceleration and stroke. Such a demonstration is desired, to show these
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Chapter 1 – Introduction

capabilities and in particular the combination of them.

The first goal of this research is to select a suitable demonstration to show the capabilities
of the T-Flex. Examples of existing demonstrations are executing a pre-planned movement [6]–
[8], a pick and place task [9], [10], balancing or bouncing an object [11]–[13] or an optical demon-
stration [14]–[16]. In Chapter 2, an inventarisation has been made of existing demonstrations
and a suitable demonstration is selected. A bouncing ball demonstration is found to be most
appropriate to showcase the capabilities of the T-Flex.

The second objective of this research is to develop and validate this demonstration. There
are multiple examples of bouncing, also called batting, manipulators. Examples of batting ac-
tions are playing table tennis or baseball. A series of consecutive, periodic batting motions is
often referred to as juggling. With juggling, the ball has a free flight through the air, whereas
during dribbling, the ball undergoes contact with a surface in the midst of its free-flight phase
[17]. All of these motions have in common that reliable information on the ball state is essential
to hit and aim the ball correctly. From literature, several methods of gathering this information
can be found.

The first method is using cameras or motion capture systems. With this information, the
ball trajectory can be predicted [18]–[21]. Alternatively, the ball can be tracked on the cam-
era footage, while the paddle makes an opposite and scaled-down motion compared to the ball
[12], [22]. This is an adoption of the so-called mirror algorithm [23], where the robot reference
trajectory is a function of the ball position. Secondly, methods that require no information
on the ball state at all have been developed as well. Those employ a periodic motion of the
bouncing surface, resulting in stable bouncing of the ball [24]. This periodic motion can be com-
bined with a concave paddle to stabilise the horizontal motion of the ball [13], or the periodic
motion can be implemented on two separate arms, resulting in two-dimensional juggling [25].
Next to this, there are methods that gather information on the ball state only when the ball
is in contact with the end-effector. This information is used in models of the ball rebound and
flight. A control scheme for vertical bouncing that only takes impact times and table motion
as input has been proposed [26], as well as a scheme that includes an impact predictor based
on impact times and a collision detector based on the equations of motion of the end-effector
[27]. A cooperative juggling set-up, using two delta robots that face each other and bounce a
ball back and forth, uses multiple force sensors mounted on the end-effectors [28]. These are
used for the estimation of the impact location and impact times. In [29], a comparison has been
done on basketball dribbling with input from a vision system and force and torque sensors that
are mounted on the end-effector. In the case of the force and torque sensor, the ball trajectory
is constructed using projectile motion equations, the conservation of momentum and the coef-
ficient of restitution. The force and torque based approach appears to be less successful than
the vision based approach because the estimates for the coefficient of restitution are not precise
enough, the force and torque measurements contain a lot of noise due to the moving end-effector
and the assumption is done that the ball does not move horizontally during dribbling, while it
in fact does travel horizontally in the experiments. Lastly, a variation on estimating the ball
trajectory and rebound properties only during impact without visual systems is done by using
accelerometers on rackets. This is shown for both tennis rackets [30] and table tennis paddles [31].

There are multiple bouncing demonstrators that show that a correct estimation of the ball
trajectory can be obtained without cameras or motion capture systems. However, to achieve
closed-loop bouncing, these demonstrators do require additional sensors, such as a force sensor
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or accelerometer. The use of additional sensors might introduce limitations, for example, addi-
tional noise when mounted on the end-effector [29], limited measurements in certain directions,
such as tangential forces, drift, or additional costs and complexity. These limitations can be
reduced by employing the high force sensitivity of the T-Flex, to gather information on the
ball state during collision. The contribution of this research is therefore the development of an
active bouncing algorithm that utilises solely the feedback from the encoders and actuators of
the T-Flex. This information is used to reconstruct and predict the ball trajectory. Due to the
force-sensitivity of the T-Flex, the forces and torques exerted on the end-effector, due to the
impact, can be measured. From this, the change in velocity and the impact location can be
calculated, regardless of where this is on the end-effector. This poses the opportunity for uncon-
strained one-dimensional and two-dimensional bouncing. With the predicted ball trajectory, the
platform velocity, which is the control input to the ball, can be calculated and the ball can be
bounced towards a given reference height.

The remainder of the report is structured as follows. In Chapter 2, the selection of a suit-
able demonstration is discussed. A theoretical framework of one-dimensional ball juggling and
the validation thereof by simulation is presented in Chapter 3. This will be extended to two-
dimensional juggling in Chapter 4. Empirical validation of the one-dimensional bouncing is
described in Chapter 5. In Chapter 6, conclusions are drawn and recommendations for future
work are given in Chapter 7.
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Chapter 2

Demonstration selection

The T-Flex is a 6DOF, fully flexure-based hexapod, that is able to achieve high accelerations,
high repeatability, high force sensitivity and a large workspace. The combination of these prop-
erties poses an interesting case to show the advancements in flexure-based mechanisms. For this
reason, the T-Flex will be displayed at events such as fairs. This requires that the demonstration
should be both appealing to the public and an effective way of showing its features. To this end,
a suitable type of demonstration needs to be determined. By finding examples of demonstra-
tions and classifying those demonstrations into several categories, an inventory can be made of
what features of the T-Flex each category could highlight. Each category will be scored on its
suitability by using a set of criteria that the demonstration should satisfy. A demonstration will
be selected based on this ranking.

2.1 Inventarisation of demonstrations

There are many examples of demonstrations for different kinds of robots and manipulators. For
this research, the focus is mainly on robots with parallel kinematics, such as hexapods, Stewart
platforms, delta robots, as the T-Flex is a PKM as well. Demonstrations that can be found
are for example exhibitions of a setup on a fair. Furthermore, inspiration can also be found in
the applications of industrial robots, the showcasing of a final project of a study programme, or
demonstrating a self-built robot. In addition, research on control theory and dynamic systems
might also result in experiments that have demonstrative value and are therefore interesting as
well.

The found demonstrations can be divided into several categories:

• Pre-planned movements: The robot follows a set of prescribed movements, demon-
strating its range, velocity and accelerations, for example. This can be extended with an
additional element, such as drawing a figure [32], moving through a grid of obstacles [6] or
milling a pyramid [8], shown in Figure 2.1.

• Pick and place: A gripper picks objects and places them somewhere else. Either the
gripper is static and the platform moves, or vice versa. Examples are the Micro Gripper
of SmarAct [9] that is used for microassembling, shown in Figure 2.2, or a delta robot
demonstrating its velocity by moving around golf balls [33].

• Balancing an object: The manipulator balances an object, for example, a ball. When
the object is pushed away from its resting point or trajectory, this will be corrected. In
the case of balancing a ball, the sensing of the ball position can be done with a touchpad
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Chapter 2 – Demonstration selection

[11] or a camera [34]. Another example is the upswing and balancing of a triple pendulum
on a 1DOF stage [35], see Figure 2.3.

• Throwing and/or catching an object: The robot throws an object and might catch
it again or throw it in an area somewhere else. In addition, there are also robots catching
objects based on camera input. An example of a robot throwing objects, regardless of
their shape and weight, is the TossingBot [36]. Examples of catching robots are a 6DOF,
cable-driven basketball hoop [37], or a catching hand [38]. Examples of juggling robots,
that throw and catch continuously, are Cassie Cal [12] which uses a camera to track the
ball and the Blind Juggler and its derivatives [13], [39], [40] that stabilise the bouncing by
a concave bowl and consistent periodic motion. Cooperative juggling between two delta
robots, using only force sensors, has been explored as well [28]. An image of a simulated
juggling session from this is shown in Figure 2.4. Another example is juggling with a triple
pendulum between two quadcopters, using the input of a motion capture system [41].

• Optical: The manipulator uses for example lights, lasers and visual patterns to show its
performance or accuracy. The SmarAct interferometer shows when a sensor head is aligned,
by aligning two light spots [15]. PI shows fibre alignment by letting light run through the
fibre as soon as it is aligned [14], Figure 2.5. Lastly, the repeatability of a 6DOF platform
can be shown by using for example laser crosses [16].

• Motion simulation: Flight and race car simulations are examples of motion simulations.
A person is seated on top of the platform and experiences the motion of the vehicle in
6DOF, such as demonstrated with a motorcycle simulator [42], shown in Figure 2.6, or an
airplane simulator [43].

2.2 Suitability and ranking

The demonstrations are evaluated for their suitability. First, it is investigated which of the four
capabilities of the T-Flex are shown for each demonstration category. Then, the categories are
evaluated on the amount of needed additional hardware, the amount of preparation that will
be needed, the supervision needed during the demonstration, the ability to adjust or extend the
demonstration, and the originality and attractiveness of it.

Since the T-Flex has a simultaneous travel range of ±50 mm in x, y and z direction and can
carry a maximum vertical payload of up to twenty kilograms [1], the motion simulation demon-
stration is deemed not feasible. Therefore, this category is omitted. The other categories and
their scoring is shown in Table 2.1. The first four criteria are the capabilities of interest: can
a demonstration show the possible acceleration, workspace, repeatability and current sensitivity
of the T-Flex? This is ranked with a yes or no. For the other categories, the scoring is done
on a scale of one to five, where a lower score indicates a less beneficial situation. The exact
rubric is included in Appendix A. For the needed hardware, it is taken into account whether
the demonstration requires additional objects and the effort it takes to install or mount these.
The amount of preperation that is needed to get the demonstration working is evaluated, as well
as the amount of needed supervision. A demonstration that requires continuous supervision or
regular intervention scores lower. The ability to adjust or extend the demonstration is evaluated
as well. Lastly, an indication is given of how well the demonstration would stand out at a fair
or event, based on its originality and how captivating it could be. The given scores are summed
and result in a total score, indicating the suitability of the demonstration.
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2.3 – Conclusion

Table 2.1: The scoring of the potential categories for the demonstration. The categories are
scored on a scale of 1 to 5, where 1 indicates that the category scores worst, and 5 is best.

Pre-planned
movement

Pick and
place task

Balancing
an object Optical Throw and/or

catch
Acceleration ✓ ✓ ✓ ✓ ✓
Workspace ✓ ✓ ✓ ✓
Sensitivity ✓ ✓
Repeatability ✓ ✓ ✓
Additional
hardware 5 1 4 2 4

Preparation 5 2 4 3 4
Supervision 5 4 3 4 1
Adjust/extend 3 3 2 4 5
Originality and
attractiveness 2 3 3 4 5

Total 21 16 21 20 22

2.3 Conclusion

From the ranking, it appears that throwing and catching scores highest overall, although dif-
ferences are small. The pre-planned movement demonstration scores lowest on attractiveness
and such a demonstration is already implemented on the T-Flex. The pick-and-place appears
to be the most complex demo. For these reasons, the pre-planned movement and pick-and-place
demonstrations will not be considered. None of the demonstrations is able to show all four ca-
pabilities, so a combination of demonstrations is to be considered. To achieve a demonstration
that shows three out of four capabilities, the throwing and catching and the balancing of an
object will be combined by juggling a ball. Through this, a demonstration can be achieved that
requires little additional hardware and preparation, is attractive and original, but requires less
supervision than just throwing or catching. However, this type of demonstration means that
the repeatability will not be shown. Therefore, the juggling could be combined with an optical
element as well, for example a laser pointing to fixed locations, to also show the repeatability of
the T-Flex.
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Chapter 2 – Demonstration selection

Figure 2.1: Milling of a pyramid using a pre-
planned path, video still adapted from [8].

Figure 2.2: Pick-and-place demonstration by
[44].

Figure 2.3: Balancing demonstration using a
triple pendulum on a 1DOF cart, video still
adapted from [45].

Figure 2.4: Simulation of a cooperative jug-
gling demonstration, video still adapted from
[46].

Figure 2.5: Optical fibre alignment demonstra-
tion, video still adapted from [14].

Figure 2.6: Motorcycle motion simulator,
video still adapted from [42].
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Chapter 3

1D Bouncing

3.1 Outline of the problem

The T-Flex is a fully flexure-based hexapod, resulting in no mechanical damping or hysteresis in
any of the joints and the actuator suspension. For this reason, no energy is dissipated in these
joints during motion. This implies that the force that is exerted onto the end-effector can be
reconstructed using kinematic and dynamic relations and the torque feedback of the actuators
and the measurements of the encoders. This provides the opportunity to model interactions
between the end-effector and external objects. The goal is to achieve active bouncing of a tennis
ball using solely the information that can be obtained during the collision. The bouncing will be
one-dimensional, so only straight up and down, see Figure 3.1 for an illustration of the vertical
bouncing on the T-Flex.

(a) Ball falls down, end-
effector moves upwards.

(b) Impact. (c) Ball goes up, end-
effector reaches highest
position.

(d) Ball reaches highest
position, end-effector is
moving downward.

Figure 3.1: One-dimensional bouncing on the T-Flex. A tube is mounted on the end-effector, to
constrain the ball to a vertical movement.

3.1.1 Notation

To establish a clear notation, each bounce is divided into three instances, which are visualised
in Figure 3.2. One single bounce is indicated with the index i. The consecutive bounce will be
referred to as bounce i + 1. The start of the bounce is defined as the moment when the ball
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Chapter 3 – 1D Bouncing

leaves the platform. The end of the bounce is right before the ball leaves the platform again for
the next bounce. This means that the flight time, consecutive impact and related measurements
are all indicated with index i. During each bounce, three main events can be distinguished. The
first is leaving the surface, denoted by the superscript o, for outgoing. The moment of reaching
maximum bouncing height is indicated with m, for maximum. Lastly, the moment right before
impact is denoted by i, for incoming. Additionally, all properties related to the ball will be
indicated with subscript b and similarly for the platform with subscript p. Height zob [i], for
example, refers to the height of the ball at the moment of leaving the surface during bounce i.
In the one-dimensional scenario, all positions, velocities and accelerations are in z-direction.

tm[i− 1] ti[i− 1] to[i] tm[i] ti[i] to[i+ 1] tm[i+ 1]

z

t

Figure 3.2: A bouncing trajectory of a ball over time. The ball leaves the surface at time to[i], it
reaches the maximum height of the parabola at time tm[i] and hits the surface again at time ti[i].
Between ti[i] and to[i+ 1], the ball is in contact with the surface.

3.2 Modelling of the ball impact

In this section, the collision between the ball and the platform is modelled. First, an explanation
of the coefficient of restitution is given. Next, the dynamics of the ball and platform are analysed
and several assumptions for the impact and ball flight are presented.

3.2.1 Coefficient of restitution

During a collision between the ball and surface, energy will be dissipated, resulting in a loss in
kinetic energy of the ball. Such collisions are known as inelastic collisions. On the other hand,
an elastic collision is an idealised collision, where no energy loss takes place. The loss of kinetic
energy can be described by the coefficient of restitution (COR), denoted by e, which has a value
between 0 and 1. A COR of 0 denotes a fully inelastic collision, where a total loss of energy
takes place and as a result, the ball sticks to the surface. A COR of 1 describes an entirely
elastic collision, without energy loss. When only translational velocities are taken into account,
the COR can be expressed as

e =
vob [i]− vop[i]

vip[i− 1]− vib[i− 1]
, (3.1)

where vb and vp are the velocity of the ball and the platform in z−direction [47]. Factors that
heavily influence the COR are the type of ball and the surface [48]. However, for any given
combination of these two, the COR will vary from bounce to bounce as well, as it is influenced
by, among others, the ball velocity and incident angle [49]. To simplify the analysis, the COR
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3.2 – Modelling of the ball impact

is assumed to be constant. During the tests, a standard, pressureless tennis ball will be used,
indicated as a type 2 ball by the International Tennis Federation. This type of tennis ball has a
COR between 0.728 and 0.762 in standardised tests [50]. These tests are done on a smooth and
rigid horizontal surface, although no material is specified. From here on, the COR of a tennis
ball is assumed to have a constant value of 0.75, which shows to be an appropriate value from
the tests (Section 5.5).

3.2.2 Model of the mechanism

The T-Flex consists of an end-effector, supported by 3 pairs of arms and actuators. Additionally,
a PID controller is imposed on the mechanism, which introduces stiffness and damping as well.
A simplified, 1DOF model is constructed for analysis. All mass has been lumped into a mass
that resembles the end-effector. The individual stiffnesses are gathered into a lumped stiffness
represented by a spring and similarly for the damping, represented by a damper. This model
forms the basis for the simulations as discussed in Section 3.8.

In this model, the platform and ball both only move in z-direction. It is assumed that the
platform does not rotate and the ball does not spin. Therefore, all effects due to ball spin are
neglected. Air resistance is neglected as well. Additionally, the ball is assumed to impact at the
center of the platform.

A free body diagram of the modelled mechanism, together with the ball, is shown in Figure 3.3.
Before impact, only the gravitational force Fg,b is acting on the ball. The end-effector also has
a gravitational force, Fg,p, as well as the modelled spring and damper force, Fs and Fd. The
platform is initially at rest. During impact, a contact force Fc exists, which is acting on both
the platform and the ball. The contact force on the ball is equal in magnitude but in opposite
direction of the contact force on the platform. The equation of motion for the ball is

mbab = Fc − Fg,b, (3.2)

where mb is the mass of the platform and ab is the acceleration of the platform.

Fs + Fd

Fg,p

Fg,b

Fc

z

Figure 3.3: Free body diagram of the ball and a 1DOF platform. The platform is supported by a
spring and damper. Both the ball and the platform only move in z-direction.
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Chapter 3 – 1D Bouncing

3.3 Overview of the control scheme

In Figure 3.4, an overview is shown of the control scheme for the bounce height. Given the
measurements for linear impulse ∆p and time between bounces ∆t, we would like to calculate
the platform velocity vp, to bounce the ball to a given reference height zref .

BE

FE

C

GT

CRV

vib[i] v̂ib[i+ 1] vp

∆p

zp

∆t̂[i+ 1]

vob,refzref

∆t[i]

Figure 3.4: Block diagram for the control problem of bouncing a ball to a given reference height.

Immediately after the impact starts, the measurement ∆t[i] is available. This is the input for
the backward estimation (BE), which outputs the incoming velocity of the ball vib[i]. After the
impact has finished, ∆p[i] is available as well. Both vib[i] and ∆p[i] are input for the forward
estimation (FE), which predicts the incoming ball velocity v̂ib[i+1] and time of impact ∆t̂[i+1]
for the next bounce. The hat indicates a predicted value.

A reference bounce height zref is given, from which a reference ball velocity vob,ref can be calcu-
lated, represented by the block calculate reference velocity (CRV). vob,ref and v̂ib[i+ 1] are input
for the controller (C), which calculates the necessary platform velocity vp during the following
bounce. Both vp and ∆t̂[i+ 1] are then used to generate a trajectory (GT) for the end-effector,
resulting in a reference position profile zp for the end-effector.

In the following sections, the measurements ∆t[i] and ∆p[i] will be specified and the calculations
for each block will be derived.

3.4 Obtaining measurements

The only moment of obtaining information about the ball state is during collision, which results
in the measurements that serve as input for the parameter estimation. This section is about how
these are obtained, as well as finding the position of the ball during impact.

The contact between the ball and the platform introduces a contact force, Fc, as explained
previously in Section 3.2.2. In simulations, the contact force acting on the ball can directly be
obtained from a Simscape function modelling the contact, which is discussed in Section 3.8.1. On
the T-Flex, the contact force acting on the platform can be obtained by comparing the expected
actuator torques, from the inverse dynamics model, with the actual actuator torques. This is
elaborated in Section 5.2.

The contact force is directly related to the change in linear momentum p of the ball and plat-
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3.5 – Estimation problem: ball trajectory prediction

form, which, in turn, is directly related to the change in velocity of both. This change in linear
momentum is called the linear impulse ∆p, defined as

∆p[i] =

∫ to[i+1]

ti[i]
mbab dt =

∫ to[i+1]

ti[i]
Fc − Fg,b dt, (3.3)

where ti and to indicate the time of the start and end of the collision, respectively, and mbab
follows from Equation (3.2).

Another relevant measurement in describing the ball trajectory is the time between two con-
secutive bounces, denoted by ∆t. The time between two bounces is described as

∆t[i] = ti[i]− to[i]. (3.4)

The definition of the start and end of a bounce differ for the simulation and the empirical ver-
ification. This will be discussed in Section 3.8 for the simulations and in Section 5.5 for the
experiments.

The position of the ball is defined as the position of the center of the ball. The ball state will
be expressed in the global frame, which is located at the ground, see Figure 3.3. The platform
position, velocity and acceleration are fully known, because of the kinematic relations between
the actuators and end-effector, as described in [51]. The ball position is therefore also known at
the start and end of the impact, as this can be expressed as

zib[i] = zip[i] + rb (3.5)

and

zob [i] = zop[i] + rb. (3.6)

Here, zb is the z-position of the ball, zp is the z-position of the platform and rb is the radius of
the ball.

3.5 Estimation problem: ball trajectory prediction

In order to do active bouncing, it is necessary to first obtain a formulation for the ball trajectory.
To this end, the ball trajectory is parameterised by the ball velocity. From the ball velocity,
is possible to obtain expressions for the ball height and the time between two bounces. The
purpose of this velocity estimation is to obtain an expression for the ball velocities without using
the COR, as the exact value of it is unknown and varies for each bounce. Therefore, the mea-
surements as described in Section 3.4 are used, in combination with physics-based relations.

The estimation problem can be divided into two separate estimations: the backward estima-
tion and the forward estimation. The backward estimation occurs right after the initial contact
between the ball and the platform, as it takes the measurement ∆t[i] as input. The forward
estimation is done after the collision is fully completed, so the measurement ∆p[i] is available,
and when the backward estimation is done, such that vib[i] is available. See Figure 3.5 for a
schematic representation. Both estimations are explained in this section, as well as how they can
be adjusted for the first bounce after dropping the ball.
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Figure 3.5: One-dimensional bouncing ball trajectory over time, with the approximate moments
of the backward estimations (magenta) and the forward estimations (blue). The available mea-
surements are indicated below the timestamps.

3.5.1 Backward estimation

At the moment of the backward estimation between bounce i and bounce i + 1, the available
measurement is the time between the current and previous bounce, ∆t[i]. Additionally, from the
previous forward estimation, the prediction for the incoming ball velocity v̂ib[i] is known. The
desired output is vib[i], the calculated incoming ball velocity.

The incoming velocity of the ball can be calculated using the measurement ∆t[i] and the position
of the ball on the platform. From the expression of the position of the ball

zib[i] = zob [i]− vib[i]∆t[i]− 1

2
g(∆t[i])2, (3.7)

we can solve for vib[i], which gives

vib[i] =
(zob [i]− zib[i])

∆t[i]
− 1

2
g∆t[i]. (3.8)

This calculated value of the ball velocity is used to correct the prediction of the ball velocity, by
taking the average of the input v̂ib[i] and the calculated value vib[i].

3.5.2 Forward estimation

At the moment of the consecutive forward estimation, the available measurement is the linear
impulse ∆p[i]. The other input is the incoming ball velocity vib[i] from the backward estimation.
Parameters that can now be estimated are the predicted incoming ball velocity for the next
bounce, v̂ib[i+ 1], and the prediction for the moment of the next bounce, ∆t̂[i+ 1].

The outgoing ball velocity is used in the calculation of ∆t̂[i + 1]. Using the conservation of
momentum, the outgoing ball velocity can be related to the incoming ball velocity as

vob [i+ 1] = vib[i] +
∆p[i]

mb
. (3.9)
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3.6 – Control problem: height regulation

The estimation of ∆t̂[i+1] is based on the nominal bouncing situation: the ball hits the platform
when it is in its neutral position, which is the reference position for the platform when no
movement is required. The height of the ball at time ti[i+ 1] can be expressed as

zib[i+ 1] = zob [i+ 1] + vob [i+ 1]∆t̂[i+ 1]− 1

2
g(∆t̂[i+ 1])2. (3.10)

This polynomial can be solved for ∆t̂[i+ 1], resulting in

∆t̂[i+ 1] =
vob [i+ 1]

g
+

√(
vob [i+ 1]

g

)2

+
2

g
(zib[i+ 1]− zob [i+ 1]). (3.11)

Since the velocity is in vertical direction and therefore subject to gravitational acceleration, the
estimate for the incoming velocity is

v̂ib[i+ 1] = vob [i+ 1]− g∆t̂[i+ 1]. (3.12)

3.5.3 Estimation of first bounce

The start of a bouncing sequence is schematically visualised in Figure 3.6. At the start of the
bouncing sequence, the ball is released from a known height zdrop. The value for zdrop is set
by the user of the demonstration. ∆t[1] can therefore not be measured, as the time of release
is unknown. The estimate of the incoming velocity v̂ib[1] is not available either, since there is
no preceding forward estimation. Information that is available however, is the measurement of
∆p[1] during the first collision. For these reasons, the first backward estimation is adjusted.

Since the height from which the ball is released, zdrop, is known, the incoming ball velocity
can be found by

vib[1] = −
√
2g(zdrop − zib[1]). (3.13)

After this, all forward and backward estimations can take place as described earlier.

3.6 Control problem: height regulation

With the estimated velocities and impact time from the forward and backward estimation, the
required control input for the ball can be calculated. This control input is the platform velocity.
An expression for this will be derived in this section.

For the height regulation of the ball, a reference bounce height zref is given. From this, a
reference velocity for the ball can be calculated: the velocity that the ball should have when
leaving the platform, to obtain this height. From the conservation of energy, a function for CRV
(see Figure 3.4) can be found:

vref =
√

2g(zref − zob ). (3.14)

To be coherent with to the calculation of ∆t[i + 1] in Equation (3.11), zob is chosen to be the
neutral position of the platform.

This reference velocity vref is input to the controller C, as is the predicted incoming veloc-
ity of the ball v̂ib[i + 1]. From both, the height regulation of the ball can be constructed. The
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Figure 3.6: Beginning of the bouncing ball trajectory, plotted over time, with the moments of the
first backward estimations (magenta) and the forward estimations (blue). The available measure-
ments are shown below the timestamps. At time tm[1], the ball is dropped from an arbitrary, but
known height zdrop.

outgoing ball velocity is related to the incoming ball velocity and the platform velocity by the
COR, as shown in Equation (3.1), where it is assumed that the platform velocity is unaffected
during the impact (vp = vip[i+1] = vop[i+2]). This assumption is motivated by the conservation
of momentum, since the mass of the platform is approximately a factor 16 larger than the mass
of the ball. This is calculated with a tennis ball with mb = 0.057 kg and the T-Flex with an
end-effector of mp = 0.91 kg. The reference platform velocity can be calculated as

vp =
vob [i+ 2] + evib[i+ 1]

1 + e
. (3.15)

3.7 Platform trajectory generation

In this section, a position profile for the end-effector is obtained, using the estimated impact
time from the forward estimation and the platform velocity from the controller.

The desired trajectory for the end-effector consists of a linear part, with constant velocity vp,
and polynomials of second and third order. In Figure 3.7, a generalised trajectory is shown, with
the position in z-direction plotted against the time.

The ball is predicted to impact the end-effector at time ti and the height of the platform at
ti is chosen to be the neutral position. At the time of impact, the platform should have the
velocity vp as calculated in Equation (3.15), to make sure that the ball bounces to the reference
height. To account for prediction errors in ti, there is an interval over which the platform moves
with constant velocity. This interval has a width of 2σ, where σ is the standard deviation of the
prediction error for ti. See Section 5.5 for an elaborated explanation. Using a constant veloc-
ity interval with a duration of 2σ, approximately 68% of all bounces can be correctly intercepted.

The calculation of the platform motion profile is discussed in Appendix B. After the genera-
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3.7 – Platform trajectory generation

tion of the motion profile, it can be verified whether it is within the range of the T-Flex, whether
the trajectory is feasible in the available time and if the acceleration of the entire profile is indeed
below the limits, because of the third order polynomial for the position. For the case where the
ball height in the previous bounce, zmb [i − 1] was 0.2 m, the reference bounce height, zref , is
0.2m, the COR is 0.75 and σ is 0.5 s, the position velocity and acceleration profiles are shown
in Figure 3.8. The impact time is at 0.6 s.

2σ

(t0, z0)

(t1, z1)

(t2, z2)

(t3, z3)

(0, zii)

(t4, z4)

(t5, z5)

(t6, z6)

(t7, z7)

z

t

Figure 3.7: Generalised image of the platform trajectory in z-direction over time, to do one-
dimensional bouncing. The expected impact time of the ball on the platform is tii. The platform
has a constant velocity for a duration of 2σ, between t3 and t4. Here, σ is the estimation error
of tii.
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Figure 3.8: Profiles for the position, velocity and acceleration, in the situation where zref = 0.2
m, zmb [i− 1] = 0.2 m, σ = 0.5 s and e = 0.75. The estimated impact time is at 0.6 s.

3.8 Simulations

The theoretical framework that is established in the previous sections has been verified with
simulations. First, an overview of the used simulation model and settings is given. Next, the
results from the simulations are presented and discussed.

3.8.1 Simscape model

The used software is Matlab 2018a with Simscape. To model the contact between the ball and
the platform, the Simscape Multibody Contact Force Library [52] has been used. An image of
the used model is shown in Appendix C. The sample time ts of the simulation is 0.001 s.

The model as presented in Figure 3.3 is the basis for this simulation. The supporting spring
and damper are a simplified, mechanical representation of T-Flex itself and the controller. The
ball is modelled as a spherical solid with a radius rb and mass mb of a standard tennis ball. It has
three DOFs (x, z and θ) with respect to the ground, which is modelled as a plate rigidly attached
to the global frame. Above the ground are two other plates, both rectangular shaped and with
the same mass mp, length Lp, thickness tp and width wp. The lower of these plates, called middle
plate, can only translate vertically with respect to the ground and is actuated by a prescribed
motion profile. The platform is placed above the middle plate. The middle plate and platform
can translate vertically and rotate with respect to each other. This is not strictly necessary, as
this is a 1DOF simulation, but the 1DOF connection block did not work as intended. The middle
plate and platform are attached with a spring and damper, with stiffness ks and damping ds,
located in the middle of the plates. The platform has a limited workspace of ±0.1 m. This is
to simulate a limited work range, and the limits are taken the same as the travel range of the
T-Flex in the z-direction. The contact between the ball and the platform is modelled by the
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Circle to Finite Line block, from the Multibody Contact Force Library, which models a contact
force between a circle and a finite line. The impact behaviour is characterised by the contact
stiffness kc and the contact damping dc. The used force law is linear and no friction is assumed.
Additionally, no air resistance is modelled.

The platform position and velocity in the world frame can be obtained by using the Trans-
form Sensor block (the block denoted by S). The Circle to Finite Line block outputs the normal
force between the ball and the platform. In the simulations, the contact force on an empty end-
effector is strictly zero, so the time at which the impact starts is the time at which the contact
force on the platform is not zero anymore. The end of the impact is when the contact force is
zero again. The detectImpact variable is a boolean, to indicate whether a ball is on the platform.

The Measurements block takes the contact force, the end-effector position and the current time
as input. At the moment that detectImpact is true, these values are saved into an array, which
is stopped at the moment that detectImpact is false again. After the impact has finished, the
linear impulse is calculated by piecewise constant integration of the contact force multiplied by
the sample time. The Backward Estimation and Forward Estimation blocks estimate the ball
trajectory as described in Section 3.5. Additionally, the COR is calculated in the Forward Es-
timation block for each collision. Since kc, dc, ks and ds all determine the impact behaviour,
the COR varies for each combination of these, so one constant value for the COR would render
incorrect results. The COR is used to calculate the platform velocity for the next bounce in
the Generate Platform Trajectory block. This block is the implementation of Section 3.7 and
after the generation and verification of the trajectory, it outputs the reference position for the
platform for each time sample.

3.8.2 Results

In the simulations, the ball is dropped from a known height z′drop with respect to the platform,
which is indicated with the prime. After the first bounce, the platform trajectory is calculated
and from the second bounce onward, the platform executes the calculated trajectories to achieve
a constant bouncing height. The stiffness and damping of the spring and damper supporting the
platform are varied, as well as the contact stiffness and damping, z′drop and zref . This results in a
total of 1728 different parameter combinations. The simulation time is 15 seconds. See Table 3.1
for the used variables.

Table 3.1: The used variables in the simulation for the one-directional bouncing. The left column
contains the variables with a fixed value and the right column contains the variables whose value
is varied.

Variable Value Variable Values
ts 1e-3 s kc [2000, 3000, 4000, 5000] N/m
rb 0.0335 m dc [2, 3, 4] Ns/m
mb 0.057 kg ks [1500, 2000, 2500, 3000] N/m
Lp 0.8 m ds [10, 20, 30] Ns/m
tp 0.01 m z′drop [0.25, 0.5, 0.75, 1] m
wp 0.4 m zref [0.5, 0.75, 1] m
mp 10 kg
tsim 15 s
zp,lim ±0.1m
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The evaluation of the simulated bouncing is threefold. First, it is assessed in which cases the
calculated platform trajectory is not feasible and ball bouncing fails. Next, the parameter esti-
mations for vib[i], v

o
b [i+ 1], v̂ib[i+ 1] and ∆t̂ are compared with the simulated values. Lastly, the

error between the maximum ball height and the reference height is shown.

Feasibility of active bouncing
In some cases, the platform trajectory cannot be executed. This happens when the estimated
time until the next bounce is shorter than the time it takes for the platform to complete the
trajectory, or when the calculated trajectory exceeds the platform workspace. In the simulations,
the active bouncing is assumed to have failed when the amount of bounces for a parameter com-
bination is below ten. In other words, the platform could not execute the calculated trajectories
and the bouncing of the ball eventually damps out. It is observed that this mainly occurs when
the difference between zref and z′drop is larger than 0.75 m. This combination of a low drop
height and a high reference height requires a high platform velocity. With the fixed duration
for the constant velocity, this results in a trajectory that exceeds the workspace limits and is
therefore not executed. From the 1728 parameter combinations, 211 failed in sustained bouncing
(12.2%).

Parameter estimation results
For the evaluation of the parameter estimation, the parameters of interest are vib[i], v

o
b [i + 1],

v̂ib[i + 1] and ∆t̂. These are, except for vob [i + 1], the outputs of the backward estimation and
forward estimation and they fully describe the ball trajectory. vob [i+1] is evaluated as well, as it
is used in the calculation of both v̂ib[i+ 1] and ∆t̂. The calculated parameters are denoted with
subscript calc. From the Transform Sensor blocks, the simulated values for the ball velocities
can be obtained. For the time between bounces, the difference between the start of the impact
and the end of the previous impact is taken. These are taken as the ground truth, indicated with
subscript gt.

The estimations from the first bounce after the ball has been dropped have been discarded
because the first backward estimation is altered and no trajectory is prescribed to the platform.
Additionally, the predictions for v̂ib[i + 1] and ∆t̂ have to be compared to measurements of the
next bounce. The predictions that are done during the last bounce of one parameter set can
therefore not be evaluated and are discarded. For this reason, there are fewer data points for
these than for vib[i] and vob [i + 1]. Finally, only the simulations with sustained bouncing are
considered.

The estimation error, here illustrated for the incoming ball velocity, can now be obtained by

∆vib[i] = vib,gt[i]− vib,calc[i] (3.16)

and the relative estimation error as

ṽib[i] =
∆vib[i]

vib,gt[i]
× 100%. (3.17)

The calculation is similar for vob [i+ 1], v̂ib[i+ 1] and ∆t̂.

The estimation errors and relative errors for vib[i], vob [i + 1] are evaluated for 37250 bounces,
shown in Figure 3.9. The prediction of v̂ib[i+ 1] and ∆t̂ is evaluated for 35737 bounces, which is
shown in Figure 3.10.
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Figure 3.9: The estimation and relative errors for vib[i] and vob [i+1] in a one-dimensional bouncing
simulation.

Figure 3.10: The estimation and relative errors for v̂ib[i+1] and ∆t̂ in a one-dimensional bouncing
simulation.
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It can be seen that vib[i] has a median relative error of -1.71% and vob [i+1] has a median relative
error of -4.13%. The median estimation error for vib[i] is 0.04 m/s, and it is -0.11 m/s for vob [i+1].
For reference, the median incoming velocity is -2.79 m/s and the median outgoing velocity is 2.78
m/s. For the relative error of v̂ib[i+ 1], a median of -3.85% is found, and for ∆t̂, this is -3.79%.
The median estimation error is 0.1 m/s for v̂ib[i + 1], and 0.02 s for ∆t̂. The average estimated
velocity is -2.79 m/s, and the estimated time between bounces is 0.57 s. The distribution of the
outliers in the relative error is similar for vob [i + 1], v̂ib[i + 1] and ∆t̂. This can be explained by
the dependency of these variables on each other; ∆t̂ is calculated using vob [i+ 1] and v̂ib[i+ 1] is
calculated using both vob [i + 1] and ∆t̂. The variance in vib[i], which might be explained by its
correction using ∆t. Most outliers occur when there is a combination of a high contact stiffness
and a high contact damping.

It can be seen that the distribution of the estimation error in vob [i + 1] is larger than for vib[i].
Since the estimation of vob [i+1] is also reliant on the measurement ∆p, it is likely that the mea-
surement contributes to the increased error distribution. The accuracy of the Circle to Finite
Line block and its output (the contact force) does depend on the used solver, tolerances, sample
time and used force law. A variable-step solver is recommended for the contact force library, but
a fixed-step solver is used, because of the piecewise constant integration for the linear impulse.
Additionally, the linear force law might be too simplified, compared to the available nonlinear or
custom force law options. In the calculation of ∆t̂, it is assumed that the ball impacts exactly at
the moment that the platform has the neutral position. This is not necessarily the case, which
results in an error in the estimation of ∆t̂. Since the calculation of v̂ib[i+1] is dependent on both
vob [i+ 1] and ∆t̂, these errors will propagate.

Control of the bouncing height
The objective of the bouncing model is to let the ball bounce to a given reference height. To
assess the error between the reference height and the maximum bounce height, four scenarios
are investigated. Here, the contact stiffness and reference height are varied, which results in the
ball trajectories shown in Figure 3.11. The dashed line is the set reference, and the dotted lines
are ±10% of the reference. It can be seen that for zref = 0.5 m, the settling time is longer when
the contact stiffness is higher. For the same contact stiffness, but higher zref , the ball stays
below 90% of the reference. In general, it is found that mainly a higher contact damping and a
higher reference height result in a larger error. It should also be noted that the platform velocity
is determined using a COR that is calculated during the previous bounce. Since that COR is
not representative of the current bounce, the platform velocity might be higher or lower than
required.
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Chapter 4

2D Bouncing

4.1 Outline of the problem

The goal as described in Section 3.1 is unchanged. However, instead of bouncing in one dimension,
the ball will now be bounced in two dimensions, resulting in sideways, in-plane bouncing. See
Figure 4.1 for an illustration. The goal is to meet both a reference height and to direct the ball
to a certain position on the platform. The ball can impact the platform on any position, not
necessarily in the centre, and the platform can move in x-direction, z-direction and rotate around
the y-axis.

4.1.1 Notation

The same notation as previously is adhered to. However, since the ball state is now two-
dimensional, either a subscript is added to indicate the direction or the quantity is denoted
as a vector.

Figure 4.1: Illustration of two-dimensional bouncing. The ball bounces sideways and the aim is
to achieve a given bouncing height and distance. In grey the platform position of the previous
bounce, in black the platform position to bounce the ball to the next position.
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4.2 Modelling of the ball impact

Analogously to the model as shown in Figure 3.3, a 2DOF model has been made, which is shown
in Figure 4.2. The end-effector is again modelled as a mass, which is supported on the left and
right edge by both a spring and damper. The left side is indicated with subscript l and the right
side with r. The springs represent all stiffnesses that are present in the joints of the T-Flex as
well as because of the PID controller. The dampers resemble the damping introduced by the
PID controller and the electromagnetic damping. This 2D model is the basis for the simulations
described in Section 4.8.

In this 2D model, the ball and platform can both translate in x- and z-direction. The ball
is assumed not to spin, so all effects due to spin are neglected, but the platform can rotate
around the y-axis. Air resistance is also neglected.

In Figure 4.2, free body diagrams of the platform and the ball are shown. The platform is
initially at rest, with the gravitational force Fg,p acting on it, as well as the modelled spring
and damper forces, Fs and Fd. During impact, the ball hits at an arbitrary distance r from the
centre of the platform. A contact force Fc acts on both the platform and the ball. The contact
force on the ball is equal in magnitude but in the opposite direction of the contact force on the
platform. Additionally, a tangential force Ft exists when the impact is oblique.

Ft

Ft

r

Fg,b

Fg,p

Fd,l + Fs,l Fd,r + Fs,r

Fc

z

x
θ

y

Figure 4.2: Free body diagrams of the ball and a 2DOF platform. The platform is supported by a
spring and damper on both sides, and can rotate around the y-axis and move in x- and z-direction.
The ball moves in x- and z-direction as well, but is assumed not to spin.

The equations of motion of the ball are

mbab,x = Fc,x − Ft,x,

mbab,z = Fc,z + Ft,z − Fg,b

Ibαb = 0

(4.1)

where Ib is the inertia of the ball and αb the angular acceleration. The last equation of motion
is zero, because of the assumption of no ball spin.
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4.3 Overview of the control scheme

In Figure 4.3, an overview is shown of the control scheme for the bounce height and distance.
Given the measurements ∆p and ∆t, we would like to calculate the platform velocity vp, to
bounce the ball to a given reference height zref , as well as a given location xref .

The control scheme is mostly similar to the one shown in Figure 3.4, except for some addi-
tional variables. Since the control problem is now two-dimensional, the positions, velocities and
linear impulse are indicated as vector quantities. Additionally, a predicted angle of incidence β̂ is
calculated in the forward estimation. This β̂ is the input for the controller C, which outputs the
platform velocity vp, as well as a reference platform angle θ. Another output from the forward
estimation is the estimated impact location of the ball x̂ib[i+1], which is input to the calculation
of the reference velocity for the ball (CRV). Outputs of CRV are the ball reference velocity, v̂ob,ref ,
and the reference angle of departure γ for the ball.

In the following sections, the calculations for the measurements and each block will be elab-
orated on.

BE

FE

C

GT

CRV

vi
b[i] v̂i

b[i+ 1], β̂ vp, θ

∆p[i]

xp

∆t̂[i+ 1]

vo
b,ref

, γ

xref

∆t[i]

x̂ib[i+ 1]

Figure 4.3: Block diagram for the control problem of bouncing a ball to a given reference height
and location.

4.4 Obtaining measurements

In this section, the measurements of linear impulse and time between bounces are discussed.
Additionally, an expression for the ball position on the platform and in the global frame is shown.

Obtaining the measurements for the time between two bounces is again as described in Sec-
tion 3.4. Since the ball now might have a velocity in two directions, x and z, it also has linear
momentum in two directions. For this reason, the linear impulse ∆p can be expressed as a vector
with components ∆px and ∆pz.

As shown in Figure 4.2, there are both a normal contact force and a tangential force acting
on the ball during impact, since the impact is oblique. Both can be decomposed into an x- and
z-component, such that the linear impulses can be calculated as

∆p[i] =

∫ to[i+1]

ti[i]
mbab dt =

∫ to[i+1]

ti[i]

(
Fc + Ft −

[
0

Fg,b

])
dt. (4.2)
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Because the ball is assumed not to spin, its behaviour can be described by only using transla-
tional velocities. It is therefore sufficient to only consider the linear impulse and omit the angular
impulse.

The distance r, from the contact point to the middle of the surface, is defined in the local
frame as well, see Figure 4.2. r can be found by

r = − My

∥Fc∥
. (4.3)

The measurement of the position of the ball is changed as well. The location of the centre of the
ball in the global frame can be obtained using

xb = xp + (
1

2
tp + rb)

[
sin(θ)
cos(θ)

]
+ r

[
cos(θ)
sin(θ)

]
, (4.4)

where tp is the thickness of the platform.

4.5 Estimation problem: ball trajectory prediction

In the two-directional bouncing, the trajectory of the ball is again parameterised by the velocities,
but also by the bounce location of the ball on the end-effector. From the block scheme in
Figure 4.3, it can be seen that the problem is again split in a backward and forward estimation.
The backward estimation again takes ∆t[i] as input, and takes place right after the impact
has started. The forward estimation has two inputs, the incoming ball velocity vi

b[i], from the
backward estimation, as well as the measured linear impulse. Therefore, the forward estimation
happens when the impact has finished, and the calculations for the backward estimation are
done. In this section, the calculations for the backward and forward estimations are presented.
It is also shown how these are adjusted for the first bounce.

4.5.1 Backward estimation

At the moment of the backward estimation between bounce i and bounce i + 1, the available
measurement is ∆t[i]. From the previous forward estimation, the prediction for the ball velocity
v̂i
b[i] is known as well. The desired output for the backward estimation is the calculated incoming

ball velocity vi
b[i].

The velocity in x-direction can be calculated with the difference in x-position and the time
between two bounces, while the velocity in z-direction can be found similarly to Equation (3.8),
resulting in

vi
b[i] =

1

∆t[i]
(xo

b[i]− xi
b[i])−

[
0

1
2g∆t[i]

]
. (4.5)

This calculated value of the ball velocity is used to correct the prediction of the ball velocity, by
taking the average of the input v̂i

b[i] and the calculated value vi
b[i].

4.5.2 Forward estimation

At the moment of the consecutive forward estimation, the measurement of ∆p[i] is available.
From the backward estimation, the input vi

b[i] is obtained. The output for the forward esti-
mation is the estimated impact time ∆t̂[i + 1], the predicted ball velocity for the next bounce
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v̂i
b[i+ 1], the predicted angle of incidence β̂ and the predicted location of impact x̂ib[i+ 1].

Since momentum is conserved in particular directions, the outgoing ball velocity in both di-
rections can be calculated using the law of conservation of momentum. The outgoing velocities
become

vo
b[i+ 1] =

1

mb
∆p+ vi

b[i]. (4.6)

The expression for the estimated impact time can be derived as shown in Section 3.5.2, resulting
in

∆t̂[i+ 1] =
vob,z[i+ 1]

g
+

√√√√(vob,z[i+ 1]

g

)2

+
2

g
(zib[i+ 1]− zob [i+ 1]). (4.7)

where zob [i+ 1] is again chosen as the neutral position of the end-effector.

The predicted incoming ball velocity can now be found. With the assumption of no air resis-
tance, the predicted incoming velocity v̂ib,x[i+ 1] is the same as the calculated outgoing velocity
vob,x[i + 1]. Since the velocity in z-direction is subject to gravitational forces, the prediction
becomes

v̂i
b[i+ 1] = vo

b[i+ 1]−
[

0

g∆t̂[i+ 1]

]
. (4.8)

To direct the ball to its reference bounce location, the ball should be intercepted with a correctly
tilted platform. To this end, the estimated angle of incidence β̂ and the estimated x-position of
the ball during the next impact are relevant. The angle of incidence is the angle between the
horizontal and the trajectory of the ball, see Figure 4.4. A vertically falling ball has an angle of
incidence β = π/2. The angle of incidence can be calculated as

β̂ =
π

2
− arctan

(
v̂ib,x[i+ 1]

v̂ib,z[i+ 1]

)
. (4.9)

Finally, the estimated x-position x̂ib[i+1] is calculated. This parameter is used in the calculation
of the platform angle during impact. x̂ib[i+ 1] is calculated as

x̂ib[i+ 1] = xob [i+ 1] + vob,x[i+ 1]∆t̂[i+ 1]. (4.10)

4.5.3 Estimation of first bounce

At the start of the bouncing sequence, limited information is available, similarly as described in
Section 3.5.3. The ball is again released from a known height zdrop, which is set by the user,
and falls vertically, such that the horizontal velocity is zero. The first measured time between
two bounces is ∆t[2], as ∆t[1] cannot be measured. The first backward estimation is therefore
again slightly adjusted. Now, the incoming velocity of the ball can be calculated using the law
of conservation of energy, as

vib,z[1] = −
√

2g(zdrop − zib[1]). (4.11)

During the first collision, ∆p[1] is measured, and the distance r, between the impact location
and the center of the platform can be found as well, as in Equation (4.3). With this information,
all calculations in the first forward estimation can be done. Hereafter, all backward and forward
estimations can take place as described previously.
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Figure 4.4: The angle of incidence β, the angle of departure γ and the angle of the platform θ.
All angles are defined with respect to the horizontal, shown as the dashed line.

4.6 Control problem: height and distance regulation

Using the estimated ball velocities, impact location and angle of incidence, a control input for
the ball can be found. The control input for two-dimensional bouncing consists of a platform
velocity in x- and z-direction. In this section, the derivation thereof is shown.

For the 2D bouncing, it is necessary to obtain a certain reference height, zref as well as a
certain bouncing location xref . Both are necessary to calculate the reference ball velocity, vref ,
which is represented by the CRV block in Figure 4.3. The inputs for this block are the references,
as well as the estimated ball impact location x̂ib from the forward estimation.

The difference between the outgoing position of the ball and its reference position can be denoted
by

∆x = xref − xob

∆z = zref − zob .
(4.12)

Since xob is unknown, is chosen to be equal to x̂ib, under the assumption that the ball does not
roll or slide during the impact. zob is once again chosen to be the neutral position of the platform,
to be coherent with the estimation of ∆t̂[i+ 1] and the design of the robot trajectory.

These distances ∆x and ∆z are related to each other by the angle of departure γ. When the
horizontal distance that needs to be covered is longer, a lower maximum height can be achieved,
and vice versa. This relation can be derived from the expressions for the maximum height and
the expression for the distance that is covered during the flight, as shown in Appendix D. From
the derivation, it follows that these three properties are related to each other by

∆z

∆x
=

tan(γ)

4
. (4.13)

For stable bouncing, it is required that the ball always flies upward. Therefore, it must hold
that 0 < γ < π. ∆z is always positive and ∆x is either positive, negative or zero, depending on
where the ball lands and what the reference location is. Since the arctan function is undefined
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for ∆x = 0, the atan2 function is better suited. Now, γ can be calculated as

γ = atan2(4∆z,∆x). (4.14)

From the expression for ∆z as derived in Equation (D.14), it is possible to calculate the reference
for the absolute ball velocity. The reference ball velocity is calculated as

∥vo
b∥ =

√
2g∆z

sin(γ)
. (4.15)

This reference ball velocity is the input for the controller C.

The other inputs for the controller C are the estimated angle of incidence and the reference
angle of departure. Its output is the platform velocity. According to [28], the absolute platform
velocity can be calculated from the reference ball velocity and estimated incoming velocity, as

∥vp∥ =
∥vo

b∥
e

−
∥∥∥vi

b

∥∥∥. (4.16)

Finally, to obtain the separate x- and z-components of the velocity, the angle θ that the platform
should make with respect to the horizontal, can be calculated as well. The derivation of this is
shown in Appendix E. This relation is

θ =
γ + β − π

2
. (4.17)

Combining Equation (4.16) and Equation (4.17), the x- and z-components of the platform velocity
are found as

vp,x = ∥vp∥ sin(θ),
vp,z = ∥vp∥ cos(θ).

(4.18)

4.7 Platform trajectory generation

From the estimated impact time, found in the forward estimation, and the platform velocities,
from the controller, a position profile for the platform can be obtained. Contrary to the platform
trajectory generation for the 1D bouncing, now three trajectories have to be generated: for x, z
and θ.

For the trajectory in x- and z-direction, the trajectory generation is exactly as described in
Section 3.7. The trajectory for both directions is generated separately, therefore the time at
which the trajectories start may differ (i.e. the movement in x-direction might start later than
the movement in z-direction, or vice versa). In both directions, the same maximum acceleration,
workspace limits and duration of the constant velocity are used.

In addition to the translation of the platform, a rotation is required as well. Here, the rota-
tion, and not the rotational velocity, is required to stay constant during the impact. Therefore,
this trajectory is constructed slightly differently from the translational trajectories.

In Figure 4.5, an image is shown of a generalised trajectory for the angle. The platform starts at
time t1 with an angle of θ1 = 0. The ball is expected to impact the platform at time ti and the
interval over which a constant angle is required, is taken as 2σ. This results in values for t3 and
t4 are therefore the same as those calculated in Section 3.7. The rest of the calculation of the
trajectory is shown in Appendix F. After the generation of the profile for the angular motion, it
can be verified whether it is within the allowed workspace and whether the trajectory is feasible
in the available time.
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Figure 4.5: Generalised image of the angular platform trajectory over time, to do two-dimensional
bouncing. The expected impact time of the ball on the platform is tii. The platform has a constant
angle θref for a duration of 2σ, between t3 and t4. Here, σ is the estimation error of tii.

4.8 Simulations

The simulation for one-dimensional bouncing has been extended to a simulation for two-dimensional
bouncing, to verify the theoretical framework. One simulation is presented as proof of concept.
Next, the results of this are shown and discussed.

4.8.1 Simscape model

An image of the simulation set-up is shown in Appendix G. The model as shown in Figure 4.2 is
used as the basis for this simulation. The properties and DOFs of the ball are kept the same as
in the 1D simulation. The platforms have the same properties as well, but the middle plate now
has 3 DOFs with respect to the ground: translation in x- and z-direction and rotation around
the y-axis. A position profile can be prescribed for all three DOFs. The connection between the
middle plate and the platform is changed to a spring and damper on both sides, with stiffness ks
and damping ds. The platform has a limited workspace of ±0.1 m in both x- and z-direction and
±11.5◦ for θ. The modelling of the ball flight and impact behaviour is unchanged. The COR is
now calculated using all absolute velocities.

The contact between ball and platform is again modelled using the Circle to Finite Line block,
which is able to output the contact forces in x- and z-direction, in the global frame. Additionally,
the moment imposed on the platform due to contact is obtained from this block as well. The
exact moment of the start and end of the impact is determined by comparing Fc to 0, similarly
as in the one-dimensional simulation, which results in the boolean detectImpact.

The Measurements block takes the contact forces, the end-effector position and the current time
as input. At the moment that detectImpact is true, these values are saved into an array, which
is stopped at the moment that detectImpact is false again. After the impact has finished, the
linear impulses are calculated by piecewise constant integration of the contact force multiplied
by the sample time ts. The Backward Estimation and Forward Estimation blocks estimate the
ball trajectory as described in Section 4.5. The Generate Platform Trajectory block is the im-
plementation of Section 4.7 and after the generation and verification of the trajectory, it outputs
the x, z and θ reference position for the platform for each time sample.

The simulation is not fully working as intended yet. It is not robust for certain combinations
of stiffness and damping, drop height and references. It has not been investigated yet whether
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this is due to an implementation error or if two-dimensional bouncing is indeed only feasible for
a limited range of these variables. Therefore, only one simulation is done, as a proof of concept
and to point out certain issues with the current simulation.

4.8.2 Results

The ball is dropped from a height z′drop and location x′drop with respect to the platform. After
the first bounce, the platform trajectory is calculated and from the second bounce onward, the
platform executes the calculated trajectories. In Table 4.1, the used variables are shown. The
reference in the x-direction changes, depending on the landing position of the ball. It can be
described as

xref =

{
−0.05 if xib ≥ 0.05

0.05 if xib < −0.05.
(4.19)

Table 4.1: The used variables in the simulation for the two-directional bouncing.

Variable Value Variable Value
ts 1e-3 s kc 1500 N/m
rb 0.0335 m dc 1 Ns/m
mb 0.057 kg ks 1000 N/m
Lp 0.8 m ds 10 Ns/m
tp 0.01 m z′drop 1.5 m
wp 0.4 m zref 0.75 m
mp 10 kg x′drop 0.1 m
tsim 30 s
xp,lim, zp,lim ±0.1m
θlim ±11.5◦

First, the estimation of several parameters will be compared with the simulated values. Next, the
ball trajectory will be evaluated for how well both references are tracked and some observations
are made with regard to the ball trajectory.

Parameter estimation results
For the parameter estimation, the parameters that are evaluated are vib,x[i], v

i
b,z[i], v̂

i
b,x[i + 1],

v̂ib,z[i + 1], x̂ib[i + 1] and β̂[i + 1]. These are outputs of the backward and forward estimation
and the predicted values for the velocity, impact location and angle of incidence determine the
control of the ball trajectory. From the Transform Sensor blocks, the simulated values for the ball
velocities and position can be obtained. The true value for β is obtained by using the measured
velocities in Equation (4.9).

Similar to the one-dimensional simulations, the estimations for the first bounce are discarded.
Additionally, the last value of the predicted values is omitted because it cannot be compared to
a measured value. This leaves 41 bounces.

The relative errors for all parameters are shown in Figure 4.6. The parameters vib,x[i], vib,z[i],
v̂ib,x[i+ 1] and v̂ib,z[i+ 1], all show one major outlier, but it is not from the same bounce. It can
be observed that the prediction for x̂ib[i+1] and v̂ib,x[i+1] have a larger distribution of the error
compared to the other parameters, but it is unclear what is causing this.
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Figure 4.6: Relative errors in the estimated parameters for the simulated two-dimensional bounc-
ing.

Control of the bouncing height and location
The ball trajectory is shown in Figure 4.7. In blue, the x-position of the ball is shown and in
orange the z-position. The ball bounces from left (negative x-value) to right (positive x-value).
It can be seen that the maximum height of the ball overshoots the reference in some bounces,
but in general stays within ±10% of the reference. The landing position of the ball is in general
close to the given reference.

It can be observed that the ball often makes an intermediate bounce. For some bounces from
left to right however, the bounce does succeed immediately, e.g. around 6 s and 19 s. It can be
observed that a bounce with a larger relative error for x̂ib[i+1] and v̂ib,x[i+1] (> ±5%) is followed
by an intermediate bounce, but it is unknown whether this is also the cause for the intermediate
bounce.
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Figure 4.7: The ball trajectory in x- and z-direction, compared to the references for both directions.
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Chapter 5

Emperical results and feasibility

The theoretical framework for one-dimensional bouncing has been verified experimentally on the
T-Flex. First, a method for estimation of the contact force between the ball and the platform
is established and verified. It is shown that the impact location can be found using the contact
forces and moments. A different parameterisation of the ball trajectory is developed, as the one
that was established previously appeared to be unrepresentative of the real set-up. The derived
relations for the ball height and measurements are verified on the T-Flex. Finally, a feasibility
analysis for bouncing a ball on the T-Flex is conducted, to show the potential of ball bouncing.

5.1 The T-Flex

The T-Flex is a flexure-based hexapod, with six degrees of freedom. It is equipped with six direct
drive actuators at its base, the Tecnotion QTR-A-133-60-N torque motors. The controller for
the actuators is a Kollmorgen servo drive of type AKD-P00306. It delivers current feedback with
a resolution of 1 mA, which results in torque feedback with a 6 Nmm resolution. This translates
to a resolution of 0.00314 N at the end-effector in neutral position. The encoders are of type
Heidenhain LIC 4119, which have a resolution of 13 nrad, which is 6.8 nm at the end-effector.
More details on the T-Flex and its components can be found in [1].

The global frame F is located at the middle of the base, between the actuators, see Figure 5.1.
In addition, a local frame F ′ is defined, which is located at the middle of the end-effector. From
here on, the ball position is expressed in this local end-effector frame. The neutral position of
the end-effector is at [0, 0, 0.29] m, in the global frame. This is the reference position for the
platform when no position profile is issued and it is the position that the platform has at the
predicted time of impact in the case of active bouncing.

5.2 Estimation of the contact force

To implement the parameter estimation as presented in Section 3.5 on the T-Flex, the contact
force is required. In this section, a method for estimating the contact force on the end-effector
is presented.

The torque feedback of the actuators returns a measured torque τmeas, which is the amount
of torque that was delivered by the actuators. Additionally, the inverse dynamics model of the
T-Flex is known, which gives the actuator torques required to actuate the modelled, nominal
system [51]. These calculated actuator torques are here named estimated torque τ est. Any
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Figure 5.1: Schematic drawing of the T-Flex with the global frame F and the local frame F ′. The
global frame is placed in the middle of the base, the local frame is located in the middle of the
end-effector.

torque that is unmodelled, such as noise, uncertainty and torque due to impact, is not included
in this estimation. This unmodelled torque, τ diff , can therefore be obtained by comparing this
estimation with the measured actuator torque, as

τ diff = τmeas − τ est. (5.1)

In tests with non-adaptive feedforward the feedback torque is 18.5 Nmm [51], which translates
to 0.00968 N on the end-effector in neutral position. With an impact of a tennis ball with a
mass of 0.057 kg falling from 1 m height and an impact duration of 0.018 s, the contact force is
approximately 27.5 N. Here, it is assumed that the maximum force occurs halfway through the
impact. It can therefore be assumed that the difference is only due to the impact. The torque
difference of the actuators can be transformed to the local frame on the end-effector, resulting
in the contact forces and moments, as

Fc = JTτ diff , (5.2)

where J is the Jacobian matrix from the actuator angles to end-effector coordinates.

This method for contact force estimation has been verified using standard weights of 100 and 200
gram. First, the platform is moved to its neutral position, where it is held. Then, the weight of
200 gram is placed and after several seconds, the weight of 100 gram is placed next to it. Next,
both weights are removed, first the 100 gram weight and several seconds later the 200 gram
weight. This sequence is repeated multiple times, first in two of the corners, then the middle and
finally the last corner. The estimation of the contact forces and moments is shown in Figure 5.2.

It can be observed that over time, an offset occurs, mainly with the force and moment in z-
direction. It is suspected that this is due to Dahl hysteresis model that is used in the inverse
dynamics. It can be assumed that the drift is negligible during the impact, because of its short
duration. Therefore, the contact force estimation is still accurate for differential measurements.

To evaluate the correctness of the contact force estimation, it is considered whether the in-
crease or decrease of the contact force corresponds with the increase or decrease of mass on the
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platform. The mean absolute error for the weights of 100 gram is 0.0037 kg (3.7% relative error)
and 0.0065 kg for the weight of 200 gram (3.23% relative error).

Figure 5.2: Estimated contact forces and moments on the T-Flex, using standard weights of 100
and 200 gram.

5.3 Estimation of the impact location

The impact location r is the distance of the impact from the centre of the platform, expressed
in end-effector frame F ′. It can be found using the estimated contact forces and moments by
solving the relation [

0 −Fc,z

Fc,z 0

] [
rx
ry

]
=

[
Mc,x

Mc,y

]
. (5.3)

for rx and ry. The estimation of the loading locations from Figure 5.2 has been shown in
Figure 5.3. The correctness of the estimation has not been quantified, but the estimated locations
did approximately correspond to the locations where the weights are placed. Although the
impact location is not required in one-dimensional bouncing, it is required when two- or three-
dimensional bouncing is implemented.

5.4 Development of a new ball trajectory formulation

In the following section, it will be shown that the parameter estimation that was shown and
validated in Section 3.5 returns inaccurate results. To gain more insight, the ball trajectory
and measurements are now parametrised using the bounce height and the platform velocity.
Analytical relations for the next bounce height and the measurements are derived.
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Figure 5.3: Estimated locations of the weight on the T-Flex, from the experiment in Section 5.2.
In grey the top view of the end-effector of the T-Flex.

5.4.1 Motivation for the alternative formulation

The parameter estimation procedure that was developed in Section 3.5, showed poor performance
in the estimation of the parameters on the T-Flex during preliminary tests. In Figure 5.4, an
estimation of the ball height is shown for a single experiment. The ball was dropped from 0.25
m above the end-effector. On the horizontal axis, the ball height as observed using a camera is
plotted. In blue, a calculation of the ball height using ∆t is shown, where the calculation is

zmb [i] =
g

8
(∆t)2. (5.4)

Here, it is assumed the ball reaches its maximum height at 1
2∆t. In red, a calculation of the

height using ∆p is shown, where the calculation is

vob [i] =
∆p

mb
+ vib[i− 1],

zmb [i] =
(vob [i])

2

2g
.

(5.5)

This relation for zmb [i] is obtained from the conservation of energy. It can be seen that the
calculation using ∆p deviates strongly, while the calculation using ∆t seems to coincide with the
camera observation. This was observed for multiple bounces, and also from different heights.
This gives reason to assume that either the measurement of ∆p is incorrect, or that the parameter
estimation as established in Section 3.5 is incorrect or uses invalid assumptions.
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5.4 – Development of a new ball trajectory formulation

Figure 5.4: Calculation of the ball height using the measurements of ∆t and ∆p, compared to the
ball height observed from camera measurements.

5.4.2 Derivation of analytical relations

An alternative parametrisation is developed to gain more insight into how and why the parame-
ter estimation fails and to potentially obtain a better parameter estimation. The new approach
uses a state-space representation similar to that of a Kalman filter. Therefore, the measurements
∆t and ∆p can be compared against a measurement model and both can be used to correct the
prediction of the ball prediction. Previously, only ∆t was used for corrections. The ball trajec-
tory and the measurements ∆t and ∆p will now be parameterised using only the ball height as
a state and platform velocity as an input. See Figure 5.5 for an overview. The ball velocity is
directly related to the maximum height, by the conservation of energy, where it is assumed that
there is no air resistance. Additionally, the velocity and height of the ball are influenced by the
platform velocity during impact. Using the equations that describe these relations, it is possible
to fully express the ball trajectory using the maximum height zmb as the state variable and the
platform velocity vp as the control input. A similar relation can be found for the measurements
∆t and ∆p. It appears that ∆t is only dependent on zmb [i], while ∆p is determined by both zmb [i]
and vp.

By describing the physical process and the measurements as described above and taking into
account the uncertainty, or noise, n, a generic description of the relations can be found as

zmb [i+ 1] = f(zmb [i], vp) + nf

∆t = g(zmb [i]) + ng

∆p = h(zmb [i], vp) + nh.

(5.6)

In the following, an expression for the functions f , g and h is derived using physics-based relations.

Derivation of predictor zmb [i+ 1]
First, the predictor for zmb [i + 1] is derived. The relation for the COR as described in Equa-
tion (3.1) is used, as well as the assumption that the platform velocity remains constant during
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∆p[i]
vp[i]

∆p[i+ 1]
vp[i+ 1]

zmb [i] zmb [i+ 1] zmb [i+ 2]

∆t[i] ∆t[i+ 1]

Figure 5.5: Schematic representation of the ball trajectory and the parameterisation of it. The
measurements during the impact are indicated.

impact. This results in

vob [i+ 1] = (1 + e)vp − evib[i]. (5.7)

By the assumption that there is no air resistance, so all kinetic energy is converted to potential
energy, this relation can be extended to√

2g(zmb [i+ 1]− zob [i+ 1]) = (1 + e)vp + e
√

2g(zmb [i]− zib[i])). (5.8)

Finally, this can be rewritten to an expression for zmb [i+ 1], which gives

zmb [i+ 1] =

(
(1 + e)vp + e

√
2g(zmb [i]− zib[i])

)2
2g

+ zob [i+ 1]. (5.9)

Derivation of measurement ∆t
Next, the measurement of ∆t can be modelled using the assumption that the maximum height
of the ball is achieved at 1

2∆t. The trajectory of the ball between the maximum height and the
moment of impact can be described by

zib[i] = zmb [i]− g

8
(∆t)2. (5.10)

Solving this for ∆t gives

∆t =

√
8

g
(zmb [i]− zib[i]). (5.11)

Derivation of measurement ∆p
Finally, an expression for the measurement of ∆p is obtained. The basis of this is the conservation
of momentum

vob [i+ 1] =
∆p

mb
+ vib[i]. (5.12)

vob [i+ 1] can be replaced by using Equation (5.7), from which it can be found that

(1 + e)vp − evib[i] =
∆p

mb
+ vib[i]. (5.13)
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The velocity vib[i] can be replaced by the conversion of kinetic energy to potential energy. Rewrit-
ing to an expression for ∆p results in

∆p = mb

(
(1 + e)vp + (1 + e)

√
2g(zmb [i]− zib[i])

)
. (5.14)

5.4.3 Conclusion

A disadvantage of this method is that the functions f and h are reliant on the COR. It has been
concluded before, in Section 3.2.1, that the COR varies for each bounce and is difficult to obtain
correctly. For simplification of the functions, it is assumed that the COR has a known, constant
value.

In summary, the analytical relations for the prediction and measurements can be written as

zmb [i+ 1] =

(
(1 + e)vp + e

√
2g(zmb [i]− zib[i])

)2
2g

+ zob [i+ 1] + nf (5.15)

∆t =

√
8

g
(zmb [i]− zib[i]) + ng (5.16)

∆p = mb

(
(1 + e)vp + (1 + e)

√
2g(zmb [i]− zib[i])

)
+ nh. (5.17)

5.5 Emperical results

To verify the contact force estimation during bouncing and the parametrisation as established
in the previous section, experiments have been done on the T-Flex. In this section, the set-up
and method are presented. This is followed by the results of the tests with and without moving
platform and a brief discussion of those.

5.5.1 Set-up

For the tests, only vertical bouncing has been done. To constrain the ball, an acrylic tube with
an inner diameter of 80 mm and a length of 1 m is used. The tube is tight-fitted into a 3D-printed
flange, which is mounted in the middle of the end-effector of the T-Flex, see Figure 5.6. Multiple
holes are drilled at the bottom of the tube, right above the flange, to let the air out when the
ball is falling. At 0.22 m, 0.47 m, 0.72 m and 0.97 m, holes are drilled to insert a pin. The pin
can be pulled out, to release the ball from any of those heights. The locations of the holes are
chosen such, that the centre of the ball is at 0.25 m, 0.5 m, 0.75 m and 1 m. At the bottom, a
steel plate is placed, to make sure that the ball bounces on an even surface.

5.5.2 Method

Two types of tests were done, one where the end-effector was held at its neutral position, and
one where the end-effector was moving at different velocities.

Since the tube is mounted onto the end-effector but not included in the mass matrix of the
inverse dynamics of the T-Flex, it will be estimated as a contact force. This is compensated
for by subtracting the force due to the gravity and acceleration of the tube and flange. For the
experimental validation, the contact force on an empty platform is not necessarily zero. This
might for example be due to the offset as discussed in Section 5.2. Therefore, the force threshold
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(a) The T-Flex with the tube. (b) Detail of the flange on the end-effector.

Figure 5.6: The test set-up. An acrylic tube is mounted on the T-Flex, using a 3D-printed flange.

is set at 5 N. The impact already starts before the contact force exceeds the threshold, however.
Taking ti[i] and to[i+1] as the moments that the contact force crosses the threshold, would mean
that ∆p[i] would be lower than the actual impulse. To account for this, five samples are added
to the start and end of the impact. From some testing, this seems sufficient to capture the whole
impact. Additionally, the contact force that is not zero when there is no impact, also means that
the measured contact force is higher than it actually is. This will result in a value for ∆p that is
too high. This is prevented by taking the mean of 40 samples before the impact and subtracting
this from the measured contact force.

A camera is placed roughly 25 cm above the end-effector and at approximately 1 m from the
tube. The bounces are filmed at a frame rate of 60 fps. The camera footage is analysed using the
Matlab Image Processing Toolbox, with the method described in [53]. The height of the flange is
taken as a reference, as this is a known distance. The distance between the end-effector and both
the top and bottom of the ball is measured, from which the distance between the end-effector
and the centre of the ball can be found. This is the ball height in the local end-effector frame.
The camera measurements are taken as ground truth for the ball height. The measurements for
∆t and ∆p are obtained as described in Section 3.4, where ti and to are the moments at which
the contact force crosses the threshold, plus or minus five samples, respectively. The height of
the ball is calculated as in Equation (5.9), with a fixed COR of 0.75.

After several bounces, the bounces follow quickly after each other, with lower contact force.
This might result in the calculation of ∆t and ∆p taking into account multiple consecutive
bounces, giving a larger value than expected. Therefore, it is checked whether a calculation of
∆p resulted in a higher value than the preceding bounces and if so, all data from that bounce
and the succeeding ones are discarded.

5.5.3 Tests without moving platform

For the tests without moving end-effector, the ball was dropped from each height three times.
The camera measurement of the ball height can also be used to calculate a ground truth value
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for ∆t and ∆p. For ∆t this is

∆t =

√
8

g
(zmb [i]) (5.18)

where zmb [i] is the height of the ball in local frame. The ground truth for ∆p can be calculated
from the conservation of momentum, using

∆p = mb(v
o
b [i+ 1]− vib[i])

∆p = mb(
√
2gzmb [i+ 1] +

√
2gzmb [i])

∆p = mb

√
2g(
√

zmb [i+ 1] +
√

zmb [i]).

(5.19)

Since vp = 0, the relations for zmb [i+ 1], ∆t and ∆p only are dependent on zmb [i]. In Figure 5.7,
the ground truth values of these parameters are shown in red. In yellow, the calculated values
are shown. The blue curve is the analytical expression for each parameter.

It can be observed in the plot with results for ∆t, that there is no data for bounces higher
than 0.25 m. Since there is no value for ∆t is available with the first bounce and the COR is
lower for higher bounces, the second bounce has drastically decreased in height. Therefore data
about ∆t is only available in the lower range.

Another observation is that for bounces higher than approximately 0.25 m, the ground truth
measurements deviate from the analytical relations. In these analytical relations, air resistance
is neglected. However, with higher bounce heights, and thus higher ball velocities, air resistance
is not negligible, as it is quadratically related to the velocity.

Because of the lack of measurements and the influence of air resistance, it is decided to limit the
analysis only to the bounces below 0.25 m. The data in this range is shown in Figure 5.8.

It is seen that the model for zmb [i+ 1] and ∆t show good performance compared to the ground
truth and the analytical relation. However, the measurements for ∆p appear too low. In Fig-
ure 5.9, the measured impulse and the impulse from the ground truth are plotted against each
other. On average, the impulse is estimated 31 % too low, when compared to the ground truth
of ∆p. It is yet unknown why this is the case.
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Figure 5.7: Estimation of zmb [i+ 1], ∆t and ∆p compared to the ground truth measurement and
analytical relation, with e = 0.75.

Figure 5.8: Estimation of zmb [i+ 1], ∆t and ∆p compared to the ground truth measurement and
analytical relation, with e = 0.75. Only data from bounces up to 0.25 m is considered.
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Figure 5.9: A comparison of the measured and ground truth ∆p.

5.5.4 Tests with moving platform

For the tests with a moving platform, a sine reference profile is used for the end-effector. The
used sines have an amplitude of 0.04 m and the frequency is varied. For each frequency, the test
is repeated three times. The ball is dropped from 1 m above the end-effector. These tests are
not recorded with a camera, so there are no ground truth measurements.

For zmb [i + 1] and ∆p, a surface plot can be made, with zmb [i] and vp on the horizontal axes,
and either of the parameters on the vertical axis. The platform velocity at the start of the
impact is recorded. These surface plots and the measurements are shown in Figure 5.10 and
Figure 5.12, respectively. For ∆t, the measurements and analytical relation are shown in Fig-
ure 5.11. This is not a surface plot but a curve, since the expression for ∆t is not dependent on
vp. Again, only the measurements of bounces below 0.25 m are shown.

In general, the same observations can be done as for the experiments without moving end-
effector. The estimations for the ball height follow the surface well. It can also be observed that
the measured ∆t are around the curve, but not necessarily on it, as was the case with the exper-
iments without moving end-effector. In the derivation of the expression for ∆t, it was assumed
that the maximum height of the ball is obtained at 1

2∆t, but this is not necessarily true when
the end-effector has a velocity.

For ∆p, there is no clear offset, as could be observed in Figure 5.9. However, there is a large
distribution of measurements and the majority is lower than expected based on the relation for
∆p.

Although the mass of the tube is compensated for in the contact force estimation, the effect
of the tube is still present in the parameter estimation. The tube is only fastened at the bottom
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and does sway due to its length. This introduces additional inertia that is not accounted for in
the inverse dynamics model.

Accuracy of ∆t estimation
The standard deviation of the estimation error for ∆t is relevant for the trajectory of the end-
effector: the duration of the constant velocity is equal to twice this standard deviation. The
standard deviation can be found by comparing the estimate of ∆t with the measured ∆t. First,
zmb [i + 1] is calculated by Equation (5.9), using either the ground truth measurements in the
case the platform was not moving or the measured value for zmb [i + 1] in the experiments with
moving platform. Using this, ∆t can be found following Equation (5.11). The comparison of the
predicted values for ∆t and the measured values is shown in Figure 5.13 The standard deviation
can now be calculated for the error between this estimate and the measured value for ∆t. The
value of the standard deviation σ is 0.0501 s.
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Figure 5.10: Estimations for zmb [i+1], indicated with the red dots, for a moving end-effector and
e = 0.75. The analytical relation is shown as the surface. The same graph is shown from two
sides.

Figure 5.11: Measurements for ∆t indicated with the red dots, for the moving end-effector. The
analytical relation is shown as the blue curve.
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Figure 5.12: Estimations for ∆p, indicated with the red dots, for a moving end-effector and e =
0.75. The analytical relation is shown as the surface. The same graph is shown from two sides.

Figure 5.13: Prediction for the value of ∆t[i + 1], based on the measurement of the ball height
of the previous bounce and the platform velocity, in red dots. The prediction is compared to the
measured value for ∆t[i + 1], in yellow diamonds. The found standard deviation is shown in
dotted lines.
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5.6 Feasibility

From the experiments, it is found that the estimation of the linear impulse is inaccurate. There-
fore, no working demonstration is available yet. To show the feasibility of bouncing a ball with
the T-Flex, four scenarios are analysed.

The feasibility of bouncing a ball depends on multiple factors, for example, the allowed maximum
acceleration of the platform, its travel range, the type of ball and the estimation errors in the
parameters. To limit the feasibility analysis, the one-dimensional bouncing case is considered
where a ball with COR = 0.75 is dropped from two different heights. Additionally, two different
durations of the trajectory are considered.

The assessment of the feasibility of bouncing with the T-Flex is twofold. The available workspace
needs to be large enough to accommodate the constant velocity over an interval of 2σ and the time
it takes to finish the prescribed trajectory needs to be shorter than the available time. A position
reference for the end-effector with relevant times and distances indicated, is shown in Figure 5.14.

(t0, z0)

(t1, z1)

(t2, z2)

(t3, z3)

(0, zii)

(t4, z4)

(t5, z5)

(t6, z6)

(t7, z7)

z

t

σt2−3t0−2

d

σvp

Figure 5.14: Trajectory of the end-effector in z-direction, with the times and distances that are
relevant for the feasibility analysis.

5.6.1 Allowed workspace

From the empirical results described in Section 5.5, it was found that σ = 0.0501 s. First, the
situation with drop height zmb [i − 1] = 0.2 m and reference height zref = 0.2 m is considered.
The maximum platform acceleration is assumed to be ap,z = g. It can be calculated from
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Equation (3.15) that the platform velocity vp,z to achieve this bounce should be 0.283 m/s.
From this, it is possible to calculate the lowest position of the T-Flex during this trajectory.
This can be found by adding the distances σvp,z, half of the distance covered during the constant
velocity, and d, the distance during the acceleration from vp,z = 0 m/s to vp,z = 0.283 m/s. The
lowest position is therefore

z2 = −(σvp,z + d) = −(σvp,z +
v2p,z
2ap,z

) = −0.0183m (5.20)

The individual range of the T-Flex in z-direction is ±0.1 m [1], so this is within the workspace
limits.

5.6.2 Required time for the trajectory

The second consideration for feasibility is the time that is needed to move the platform while
the ball is in the air. The time between two bounces with the given reference height can be
calculated using the outgoing velocity

vob,z =
√

2gzref = 1.98m/s, (5.21)

which results in

∆t =
2vob,z
g

= 0.404 s. (5.22)

To assess whether this is sufficient to let the end-effector do an entire trajectory between two
bounces, it is calculated how long this takes. Since the trajectory is symmetric, it suffices to look
at half a trajectory. This consists of three parts: from the start (t0) to the lowest position (t2),
from the lowest position to the start of the constant velocity (t3) and the constant velocity until
time of impact (ti).

1. The time it takes to move from t0 to t2 is

t0−2 = 2

√
z2
ap,z

= 0.0863 s. (5.23)

2. The time it takes to accelerate from vp,z = 0 m/s at t2 to vp,z = 0.283 m/s at t3 is found
as

t2−3 =
vp,z
ap,z

= 0.0288 s. (5.24)

3. Half of the constant velocity interval takes σ = 0.0501 s.

Therefore, in total, half of the trajectory takes 0.1652 s to complete. After the impact of the
ball, the second half of the trajectory needs to be completed, and the first half of the subsequent
trajectory needs to be executed, to accommodate for the next bounce. Under the assumption
that the ball impacts the end-effector exactly at time ti, this takes 0.3305 s.

5.6.3 Extension to longer constant velocity

The previously calculated feasibility used a duration of the constant velocity of 2σ, which accounts
for approximately 68% of the bounces. When this interval is elongated to 4σ, approximately
95% of the bounces are correctly intercepted. This has consequences for both the depth of the
trajectory and the required time. The lowest position of the trajectory can be found from

z2 = −(2σvp,z + d) = −(2σvp,z +
v2p,z
2ap,z

) = −0.0324m (5.25)
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This is within the workspace limits of the T-Flex. The required time can be recalculated as well,
where only the time for the constant velocity changes. This results in a total time of the half
trajectory of 0.2057 s, so 0.4113 s for the full trajectory. This is longer than the time between
two bounces. However, the needed time can be decreased by a higher maximum acceleration
and/or using a ball with a higher COR. By choosing a ball with a higher COR, a lower platform
velocity is required to bounce to the same reference height. This decreases the stroke of the
end-effector and the time needed to accelerate.

5.6.4 Higher bouncing height

Additionally, it has been checked whether bouncing is feasible for higher bouncing heights. Both
zmb [i− 1] and zref are now set to 0.5 m. The COR is still 0.75. The time between two bounces
would now be 0.6386 s. For the case with a constant velocity duration of 2σ, the lowest point
of the trajectory would be at −0.033 m. The total time for the trajectory is 0.422 s. This is
feasible. In the situation with a constant velocity duration of 4σ, the lowest point is at −0.055
m and the total required time is 0.5912 s. This is feasible as well.

5.6.5 Conclusion

The feasibility of ball bouncing with the T-Flex has been evaluated for two reference heights and
two durations of the trajectory. For both bouncing heights, the needed time to complete the
trajectory is within the available time for a constant velocity duration of 2σ. However, for the
trajectory with a constant velocity duration of 4σ, bouncing is not feasible for lower bouncing
heights. It should be noted that the assumed acceleration in z-direction is lower than the limit
of the T-Flex and the COR could be increased by using a different ball. Therefore, bouncing a
ball using the T-Flex with the given conditions is deemed feasible.
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Conclusion

To showcase the properties of the T-Flex, a bouncing ball demonstration is found to be most
suitable, based on a comparison of existing demonstrations and several criteria. It shows three
out of four features of the T-Flex, it requires a low amount of preparation and supervision and
has a high degree of attractiveness. However, the repeatability is not shown in this demonstra-
tion, although this is one of the main features of the T-Flex.

A description for a one-dimensional bouncing ball is developed, where use is made of the possibil-
ity to measure the contact force on the T-Flex end-effector. The linear impulse and time between
consecutive bounces can be found using these contact forces, from which the ball velocities can
be calculated. Based on the ball velocities, the required platform velocity is found, which is the
control variable for the ball height. This bouncing algorithm is verified in simulations.

The simulations show that the relative error for the parameter estimation for the ball velocities,
prediction of the incoming velocity and impact time is between -15% and +5 % approximately.
For the estimation of the incoming ball velocity, this is between approximately -8% and +2 %.
Active bouncing is feasible in simulation, given that the difference between the drop height of the
ball and the reference bouncing height is not too large. However, the reference height is achieved
less accurately with higher contact damping and a higher reference height.

The one-dimensional model is expanded to two-dimensions, where the ball is bouncing side-
ways. The parameters that need to be controlled are the ball velocity in x- and z-direction and
the angle of departure. A simulation is done as a proof of concept, which shows that additional
work is required to make the two-dimensional bouncing functional. The simulation is not robust
for different combinations of parameters and an intermediate bounce can be seen, possibly due
to errornous estimations of x̂ib[i+ 1] and v̂ib,x[i+ 1].

For the experiments of one-dimensional ball bouncing on the T-Flex, an alternative description
for the ball trajectory is developed, to better investigate the inaccuracies in the measurements
and parameter estimation. From experiments, it was found that the linear impulse is estimated
approximately 31% too low on a non-moving platform. For the experiments with moving plat-
form, this was too low as well, although with larger distribution. Additionally, the assumption
that air resistance is negligible is found to only hold up to 0.25 m, making the found analytical
relations inaccurate for higher bouncing heights. The standard deviation of the estimation error
for ∆t is approximately 0.05 s, which is of large influence on the duration of the platform tra-
jectory.
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Finally, the feasibility of bouncing with the T-Flex has been demonstrated. For a bouncing
height of 0.2 m, it is found that bouncing is indeed feasible for the stroke and acceleration
capabilities of the T-Flex.
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Recommendations

A start is made with the development of a ball bouncing demonstration for the T-Flex and
although the demonstration is not fully functional yet, it is recommended to continue its devel-
opment. This is supported by the high scoring in the demonstration selection and the results of
the feasibility analysis.

To obtain a working demonstration, it is advisable to investigate the estimation for the lin-
ear impulse on the T-Flex. From the experimental results, it is found that the estimation is too
low. Additionally, only bounces up to 0.25 m are considered, as the derived parameter estimation
becomes inaccurate above this height due to neglected air resistance. For higher bouncing, the
air resistance is considerable and it is therefore advisable to include air resistance in the trajec-
tory model. During experiments with a moving end-effector, it is observed that the tube, that
is used to constrain the ball, sways. This introduces unmodelled inertia terms, resulting in an
inaccurate contact force estimation. To improve the estimation, it would be advisable to either
do the identification of the parameters for the inverse dynamics including the tube, or mount
the tube above the end-effector, such that the inverse dynamics are not affected. Additionally,
it has been observed that a tennis ball does damp out quickly. Switching to a different ball with
a higher COR might be beneficial.

In this work, two different ball trajectory parameterisations are established, one using the ball
velocity and the other using the bounce height. It is recommended to use the former method,
given that the measurement of the linear impulse is correct. In the latter method, the relations
for the ball bounce height and the measurement ∆p are functions of the COR. Since the COR
is unknown beforehand, this method would be more unreliable than the parameter estimation
with velocity, which only relies on measurements and physical relations.

The demonstrator on the T-Flex can eventually be extended to two-dimensional or three-dimensional
bouncing. To do so, the parameter estimation needs to be improved. From the simulation, it ap-
pears that two-dimensional bouncing is not robust for certain combinations of stiffness, damping,
drop height and references. It is not clear whether this is due to modelling or implementation
errors, or whether two-dimensional bouncing is indeed only feasible for a limited set of values. It
would be advisable to investigate this, and how this would translate to bouncing on the T-Flex.
Additionally, the cause of the intermediate bounces should be investigated as well, to achieve the
sideways bouncing as intended.
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Appendix A

Rubric for scoring criteria of
demonstration choice
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Appendix B

Calculation of platform trajectory 1D
bouncing

The desired trajectory for the end-effector consists of a linear part, with constant velocity vp, and
polynomials of second and third order. The ball is predicted to impact the end-effector at time ti

and the height of the platform at ti is chosen to be the neutral position. At the time of impact,
the platform should have the velocity vp, to make sure that the ball bounces to the reference
height. To account for prediction errors in ti, there is an interval over which the platform moves
with constant velocity. This interval has a width of 2σ, where σ is the standard deviation of the
prediction error for ti.

The interval of constant velocity starts at time

t3 = ti − σ (B.1)

and ends at time

t4 = ti + σ. (B.2)

With t3 and t4 known, the rest of the trajectory can be constructed as well. The trajectory
is symmetric, the part of the trajectory between ti and t7 can be obtained by reversing and
negating the trajectory between t0 and ti. Therefore, only the calculation of the first half of the
trajectory will be shown.

The position of the platform at ti is zero. The position of the platform at t3 is then

z3 = −σvp. (B.3)

From t2 to t3 the platform undergoes a constant, maximum acceleration ap. At t2, the platform
reaches the deepest position in the trajectory and has a velocity of zero. The time t2 is found
from

t2 = t3 −
vp
ap

. (B.4)

Subsequently, the relation between positions z2 and z3 can be expressed as

z2 = z3 −
1

2
ap(t3 − t2)

2. (B.5)
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The trajectory between t0, the start of the trajectory, and t2 can be divided into two parts of
equal length: between t0 and t1 with maximum acceleration and between t1 and t2 with maximum
deceleration. At time t1, the maximum velocity vmax is achieved. The average velocity is denoted
by vavg.
The relation between the lowest point z2 and the maximum velocity is

vmax = 2vavg =
2z2

t2 − t0
. (B.6)

Additionally, since the platform starts with zero velocity, the maximum velocity can be expressed
as

vmax =
1

2
(t2 − t0)ap. (B.7)

By substituting Equation (B.7) into Equation (B.6), the starting time of the trajectory t0 can
be found as

t0 = t2 − 2

√
z2
ap

(B.8)

and time t1 as

t1 = t2 −
√

z2
ap

. (B.9)

Now z1 can be calculated as

z1 =
1

2
(t1 − t0)vmax. (B.10)

The positions and times that have been calculated serve as boundary conditions for the polyno-
mials that describe the trajectory. Between t0 and t1, a second order polynomial

z(t) = a1t
2 + a2t+ a3 (B.11)

is used, with boundary conditions

v(t0) = 0 (B.12)
z(t1) = z1 (B.13)
v(t1) = vmax. (B.14)

Solving for the coefficients results ina1a2
a3

 =

 −vmax/(2(t0 − t1))
(t0vmax)/(t0 − t1)

(2t0z1 − 2t1z1 + t21vmax − 2t0t1vmax)/(2(t0 − t1))

 . (B.15)

Between t1 and t3, a third order polynomial

z(t) = b1t
3 + b2t

2 + b3t+ b4 (B.16)

is used, as there are four boundary conditions, namely

z(t1) = z1 (B.17)
v(t1) = vmax (B.18)
z(t3) = z3 (B.19)
v(t3) = vp. (B.20)
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Solving for the coefficients results in
b1
b2
b3
b4

 =
1

((t1 − t3)3)


−(2z1 − 2z3 − t1vmax + t3vmax − t1vp + t3vp)

(3t1z1 − 3t1z3 + 3t3z1 − 3t3z3 − t21vmax + 2t23vmax − 2t21vp + t23vp − t1t3vmax + t1t3vp)
−(t33vmax − t31vp + t1t

2
3vmax − 2t21t3vmax + 2t1t

2
3vp − t21t3vp + 6t1t3z1 − 6t1t3z3)

(t31z3 − t33z1 + t1t
3
3vmax − t31t3vp + 3t1t

2
3z1 − 3t21t3z3 − t21t

2
3vmax + t21t

2
3vp)

 .

(B.21)

The third order polynomial does not give a constant acceleration, but the constraint on both the
position and slope at t1 and t2 cannot be fulfilled with a second order polynomial.

The position during the constant velocity can be calculated by

z(t) = z(t− ts) + vpts, (B.22)

where ts is the sample time of the model.
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Appendix C

Simulation model 1D bouncing
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Appendix D

Derivation of the angle of departure

The following derivation only concerns parameters of one single bounce. Therefore, the bounce
index i is omitted for clarity. The maximum height of the ball is assumed to be achieved at time
1
2∆t, therefore the maximum height of the ball can be expressed as

zmb = zob +
1

2
vob,z∆t− 1

8
g(∆t)2. (D.1)

The ball velocity vob,z can be written as a function of the absolute velocity and the angle of
departure, resulting in

zmb = zob +
1

2
∥vo

b∥ sin(γ)∆t− 1

8
g(∆t)2. (D.2)

The total horizontal distance that is covered by the ball trajectory can be expressed as

xib = xob + vob,x∆t, (D.3)

which can be rewritten as

xib = xob + ∥vo
b∥ cos(γ)∆t. (D.4)

Additionally, ∆t can be expressed as a function of the absolute velocity and the angle of departure
as well. Here, it is assumed that both zob and zib are zero. This gives the equation

∥vo
b∥ sin(γ)∆t− 1

2
g(∆t)2 = 0, (D.5)

and solving this for ∆t results in

∆t =
2∥vo

b∥ sin(γ)
g

. (D.6)

By substitution of Equation (D.6) into Equation (D.4), the horizontal distance can be expressed
as a function of vo

b and γ, by

xib = xob +
2∥vo

b∥
2

g
sin(γ) cos(γ). (D.7)

Using the trigonometric relation

sin(2γ) = 2 sin(γ) cos(γ), (D.8)

this relation can be simplified to

xib = xob +
∥vo

b∥
2 sin(2γ)

g
. (D.9)
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Similarly, the vertical distance can be expressed as a function of vo
b and γ as well. Substitution

of Equation (D.6) into Equation (D.2) gives the maximum height as

zmb = zob +
∥vo

b∥
2 sin2(γ)

2g
. (D.10)

For brevity, the following notation will be used from here on

∆x = xib − xob , (D.11)
∆z = zmb − zob . (D.12)

This simplifies Equation (D.9) and Equation (D.10) further down to

∆x =
∥vo

b∥
2 sin(2γ)

g
, (D.13)

∆z =
∥vo

b∥
2 sin2(γ)

2g
. (D.14)

Division of ∆z by ∆x yields a relation between the angle of departure, the maximum ball height
and the distance, namely

∆z

∆x
=

∥vo
b∥

2 sin2(γ)

2g
· g∥∥vo

b

∥∥2 sin(2γ) , (D.15)

∆z

∆x
=

sin2(γ)

4 sin(γ) cos(γ)
. (D.16)

Using

tan(γ) =
sin(γ)

cos(γ)
, (D.17)

this can be simplified as

∆z

∆x
=

tan(γ)

4
, (D.18)

which is the final form of this relation.
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Appendix E

Derivation of the reference angle for the
platform

The platform makes an angle θ with the horizontal. The ball impacts the platform with an angle
of incidence β and leaves the platform with an angle of departure γ. The angle of incidence and
the reference angle of departure are known, from which the reference angle of the platform can
be derived. See Figure E.1 for a sketch of the platform, ball velocities and all relevant angles.
It is assumed that the angle ∠A of the ball velocities with respect to the platform normal are
equal for both the incoming and outgoing instances, indicated with the dots.

Platfo
rm

Normal

vib

vob
γ

β

θ

∠A

Figure E.1: Visualisation of the impact of the ball on the platform and the involved angles.

From Figure E.1, it can be seen that

γ − β = 2∠A (E.1)

and that

γ − (θ +
1

2
π) = ∠A. (E.2)

Substitution of Equation (E.2) into Equation (E.1), gives

γ − β = 2γ − 2θ − π. (E.3)

Rewriting this for θ results in

θ =
γ + β − π

2
. (E.4)
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Appendix F

Calculation of platform trajectory 2D
bouncing

The platform starts at time t1 with an angle of θ1 = 0. The ball is expected to impact the
platform at time ti and the interval over which a constant angle is required, is taken as 2σ. This
results in values for t3 and t4 are therefore the same as those calculated in Equation (B.1) and
Equation (B.2). Since this profile is symmetrical around ti, only the calculation of the trajectory
from t1 to t3 is shown. The part between t4 and t6 can be obtained by mirroring and negating
the first part of the trajectory.

To obtain the reference angle with maximum acceleration and deceleration, two second-order
polynomials are used: one between t1 and t2, the other between t2 and t3. The values for t1
and t2 are found from the relation between the maximum velocity, which occurs at t2, and the
maximum acceleration.

The maximum angular velocity can be expressed as

ωmax =
2θref
t3 − t1

(F.1)

and as
ωmax =

1

2
αmax(t3 − t1), (F.2)

t1 can be found as

t1 = t3 − 2

√
θref
αmax

. (F.3)

Since t2 is exactly between t1 and t3, this is

t2 = t3 −

√
θref
αmax

. (F.4)

The angle θ2 at time t2 can now be found using

θ2 =
1

2
ωmax(t2 − t1). (F.5)

Between t1 and t2, a second order polynomial

θ(t) = a1t
2 + a2t+ a3 (F.6)
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is used, with boundary conditions

θ(t1) = 0 (F.7)
θ(t2) = θ2 (F.8)
ω(t2) = ωmax. (F.9)

This results in the coefficientsa1a2
a3

 =
1

(t1 − t2)2

 −(θ2 + ωmaxt1 − ωmaxt2)
(ωmaxt

2
1 − ωmaxt

2
2 + 2θ2t2)

(t1(t1θ2 − 2t2θ2 + ωmaxt
2
2 − ωmaxt1t2))

 . (F.10)

Between t2 and t3, a second order polynomial

θ(t) = b1t
2 + b2t+ b3 (F.11)

is used, with boundary conditions

θ(t2) = θ2 (F.12)
ω(t2) = ωmax (F.13)
θ(t3) = θref . (F.14)

This results in the coefficientsb1b2
b3

 =
1

(t2 − t3)2

 (θref − θ2 + ωmaxt2 − ωmaxt3)
−(2t2θref − 2t2θ2 + ωmaxt

2
2 − ωmaxt

2
3)

(ωmaxt
2
2t3 + θref t

2
2 − ωmaxt2t

2
3 − 2θ2t2t3 + θ2t

2
3)

 . (F.15)
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Appendix G

Simulation model 2D bouncing
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Appendix H

Plagiarism Report
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