
Platform-Independent RuntimeQuality Metrics for Integrations
RIK SMALE, University of Twente, The Netherlands

One way of measuring the quality of software systems is through the us-
age of metrics. Having a higher quality of software is needed to be able to
differentiate in the current market and allows quicker development of new
features and reduces the time spent on maintenance. Just like with software
systems in general this holds for integrations as well. Integrations play a big
role in the digital transformation by connecting various systems together to
create more efficient processes. While general runtime quality metrics have
been proposed in the past, none have looked specifically into measuring the
quality of integrations this way. This paper does so by first identifying spe-
cific ISO 25010 (sub)characteristics, like time behaviour, resource efficiency
and reliability and provides metrics from previous research shown to work
for software systems in general. It then validates these through an expert
to provide a list of runtime quality metrics that can be used to measure the
quality on an integration.

Additional Key Words and Phrases: System Integration, Quality Metrics,
Runtime Quality

1 INTRODUCTION
Over the last years many businesses have been looking into how to
digitally transform their processes. The first step of that is to remove
the usage of paper and keep track of that information digitally. Since
companies have many different processes this information is stored
in various systems. As these systems become less monolithic, sepa-
rate systemsmight come into use which will increase the complexity
of the landscape of a company even more. To tackle this complexity
systems might share their data through integrations. With integra-
tions become more important, the quality of these systems should
also be able to be held to some standard. Therefore research needs
to be done into measuring the quality of these integrations.

2 PROBLEM STATEMENT
While runtime (quality) metrics have been researched in various
settings before [10, 13, 18], no specific research has been done into
metrics for integrations. Integrations have different goals than other
systems so this research will look into whether these metrics are
suitable for usage in integrations. This paper hopes to identify these
metrics and determine which are suitable for usage.

2.1 Research question
Using the problem statement the following research question can
be composed;
Which runtime metrics are suitable for usage in measuring the

quality of integrations?
To answer this research question, the following sub-question will

be used;

TScIT 38, February 3, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Which runtime metrics have been identified for measuring quality
of software systems in earlier research?

3 METHODOLOGY
The methodology of this research is inspired by the Design Science
methodology[7]. The first step is researching runtime quality met-
rics aimed at general software projects identified in the past. After
that an artefact will be designed, which will be a set of possible met-
rics. Those will be validated by an expert. The metrics that will be
reported in this research will be done according to the Goal Quality
Metric method [16] and mapped to (sub)characteristics of ISO 25010
[8].

4 RELATED WORK

4.1 RuntimeQuality
ISO 25010 [8] defines two models that can be used for software qual-
ity; a quality in use model and a product quality model. The product
quality model has eight characteristics, divided up in thirty-one
subcharacteristics, that can be used to categorise product quality
attributes. This research focuses on the quality of the runtime of a
program, which is the seventh and final stage of the program life cy-
cle. [12, 17] The runtime is when the program is actually executing.
Measuring metrics on the runtime of a program allows for more
platform-independent metrics since the other stages might differ in
programming languages and platforms. Most of the subcharacteris-
tics of ISO 25010 can be used to define runtime quality.

4.2 Goal, Question, Metric approach
One possible way of defining metrics is the Goal, Question, Metric
approach, first proposed by Basili and Weiss (1984) [2]. The mea-
surement model that is the result of this approach has three levels
[1]; The first level is the conceptual level (Goal) in which a goal
is defined from various points of view. It details the purpose, the
issue, the object (or process) and the viewpoint. The second level
is the operational level (Question) in which questions are used to
characterise how the goal can be assessed and/or achieved. These
are done from a chosen viewpoint. The third and final level is the
quantitative level (Metric) in which a set of data, associated with
every question, is used to answer the question quantitatively. This
data can either be objective or subjective, depending on if they only
depend on the object that is measured or also the viewpoint which
was selected for the operational level. As shown in figure 1, metrics
can be used for multiple questions.

4.3 Integrations
In order to be able to measure the quality it is needed to know
what the object is that is being measured. This paper looks into
the integration of enterprise applications defined as "unrestricted
sharing of data and business processes among any connected ap-
plications and data sources in the enterprise" [11] . The systems
that do this integration have some basic characteristics [4] ; they

1



TScIT 38, February 3, 2023, Enschede, The Netherlands Rik Smale

Fig. 1. Visualisation of relation between Goals, Questions and Metrics

Goal

Question

Metric

Goal

Question

MetricMetric

QuestionQuestionQuestion

MetricMetricMetric Metric

Table 1. Resulting ISO 25010 subcharacteristics

Performance Efficiency
Time Behaviour

Resource Utilisation
Reliability
Maturity

Availability
Fault Tolerance
Recoverability

integrate at the business level including business and data processes;
they re-use applicable business processes and data; they involve no
real understanding of specific system functions; they do not require
source code or code administration rights to any of the applications
to the integrated; and they generally require no changes to the
hardware infrastructure of the applications to be integrated. Since
these integration systems run separately from the applications to be
integrated it is possible to do runtime measurements independently
as well.

4.4 RuntimeQuality of Integrations
Garg (2022) [5] has identified two characteristics and four subchar-
acteristics of ISO 25010 that might provide insights in the quality
of integrations. The characteristics are reliability and security. The
four subcharacteristics are time behaviour, resource utilisation, mod-
ularity, and modifiability. Modularity and modifiability, relating to
the characteristic of maintainability, show the degree to which a
program has their components separated and modifications can be
made without impact to the product quality. These are more related
to the edit time of a program. Therefore these two subcharacteris-
tics will not be taken into account for this research. The security
characteristic is also not taken into account for this research for the
same reason. The resulting subcharacteristics are summarised in
Table 1

5 RESULTS
The following section contains a non-exhaustive list of runtime
quality metrics that might be able to be used to measure the quality
of integrations. This list is non-exhaustive since some metrics found
are not able to be measured and/or have not been proven to be
suitable for usage in general software systems yet. These metrics
are mapped to (sub)characteristics of ISO 25010 [8] and will be
discussed in their respective sections. Combined with the ability to
change the time span of the measurements, these metrics, can tell
much about the quality on an integration according to the expert.

Table 2. Goal Question Metric model for Performance Efficiency metrics

Goal Purpose Measuring
Issue the runtime quality
Object of an integration

Viewpoint as a software engineer
Question Q1 Time Behaviour
Metrics M1 Mean response time [9]

M1a Response time under various
load conditions [6]

M2 Response time adequacy [9]
M3 Mean turnaround time [9]
M4 Turnaround time adequacy [9]
M5 Mean throughput [9]
M6 Capacity [6]

Question Q2 Resource Utilisation
Metrics M7 Mean processor utilisation [9]

M8 Mean memory utilisation [9]
M9 Mean I/O devices utilisation [9]
M10 Bandwidth utilisation [9]
M11 Network usage [6]
M12 Disk usage [6]

Some metrics in specific, as discussed below. Different methods
of displaying a metric can also be used for other metrics, like the
change under various load conditions or the adequacy

5.1 Performance Efficiency
Table 2 defines the GQM model for metrics related to the Perfor-
mance Efficiency characteristic, mapped to the subcharacteristics.
The metrics are explained in the section of their subcharacteristic.

5.1.1 Time Behaviour. Metrics related to Time Behaviour look into
response and processing times and throughput rates of the inte-
gration. [8] The response time is the time that the system takes
to respond to a specific task [15] and the turnaround time is the
time that the system takes to complete the task [15]. Both of these
attributes can be used to calculate the following metrics;

• The mean time in a specified time period. For the response
time this is calculated by the sum of the time taken divided
by the number of responses. For the turnaround time this is
the sum of the times between starting and completing the
task divided by the number of tasks.

• The mean time under various load conditions in specified
time periods. These metrics are taken from a subset of data
of the previous metric. Haindl and Plösch [6] propose to use
the normal load and the peak load, where the biggest amount
of requests come in.

• The time adequacy. Some integration might have a target
response time. This target might be from a user, internally
decided or contractually obligated. This metric uses the mean
time as calculated before divided by the target time.

The throughput is the amount of tasks that are completed in a certain
time period. From this the mean can be used, but also the maximum
amount can be seen as the capacity of the integration [6].

2



Platform-Independent RuntimeQuality Metrics for Integrations TScIT 38, February 3, 2023, Enschede, The Netherlands

Table 3. Goal Question Metric model for Reliability metrics

Goal Purpose Measuring
Issue the runtime quality
Object of an integration

Viewpoint as a software engineer
Question Q1 Maturity
Metrics M1 Mean time between failure (MTBF) [9]

M2 Failure rate under various
load conditions [6]

Question Q2 Availability
Metrics M3 System availability [9]

M4 Mean down time [9]
M5 Number of reliability incidents [6]

Question Q3 Fault Tolerance
Metrics M6 Mean fault notification time [9]
Question Q4 Recoverability
Metrics M7 Mean recovery time [9]

M8 Backup data completeness [9]

5.1.2 Resource Utilisation. While metrics in the Time Utilisation
subcharacteristic look into how long it takes to do a certain thing,
metrics in the Resource Utilisation subcharacteristic are about how
many resources are needed to do that certain thing. These include
the processor (CPU), memory (RAM), I/O devices (e.g. hard disk)
and transmission bandwidth (over a network). The mean utilisation
of these are metrics. Network usage can be measured by two metrics,
how much bandwidth is used in a second but also per day. The disk
usage can also be measured by several metrics. One is to measure
the time that the disk is active, another is the rate on which data
is being transferred, and a third is the amount of disk space that is
being used up. In talking to the expert, it became clear that there are
differing opinions on what is better for the quality of an integration.
Integrations that receive the same number of requests throughout
the day might have 80%-90% CPU usage and still be of good quality
while integrations that receive a varying number of requests might
time out in a mean usage of 80%. One metric that could provide more
insights to the quality of an integration according to the expert is
the usage of I/O devices. Since integrations facilitate processing a
request from one system to another, I/O devices like hard disks are
often not needed.

5.2 Reliability
Table 3 defines the GQM model for metrics related to the Reliability
characteristic, mapped to the subcharacteristics. The metrics are
explained in the section of their subcharacteristic.

5.2.1 Maturity. The maturity is defined as the "degree to which a
system, product or component performs specified functions under
specified conditions for a specified period of time". [8] Metrics that
can measure this maturity relate to how often errors or other fail-
ures in the system occurs. The main metric in this subcharacteristic
is the mean time between failure (MTBF) which can be calculated
by dividing the operation time by the number of occurring failures.
[15] Another metric derived from this information is the failure

rate under various load conditions, as also discussed in subsubsec-
tion 5.1.1.

5.2.2 Availability. The availability subcharacteristic has metrics
that relate to how often the system is available for use. The system
availability can be measured by dividing the actual operation time of
the system by the operation time as specified in the operation sched-
ule. [15] This operation schedule can exclude planned downtime due
to maintenance and like the adequacy metrics can be determined by
e.g. internal agreements or a Service Level Agreement. The expert
noted that proving the actual availability can be difficult since it is
not possible to know the system is running if there are no requests
to it. A metric that can be measured more easily is the mean down
time [15] which show how long, on average, a system is unavailable
for when a breakdown of the system occurs. The number of times
that a breakdown, or another interruption of the operation of the
integration occurs can also be used as a metric for the number of
reliability incidents.

5.2.3 Fault Tolerance. Fault Tolerance deals with how much errors
can occur while the system does not get any downtime. One runtime
metric identified in this category is the mean fault notification time.
This measures how long the system takes to report a fault until
it is detected. Measuring this is more difficult and depends on if
you are able to do monitoring on your monitoring systems. The
expert mentioned that often this can be measured retroactively since
manual efforts are required to figure out when the fault occurred.

5.2.4 Recoverability. Metrics for the recoverability subcharacteris-
tic show if a system can recover data in case of an error or break-
down and how quickly it can do that. The latter can be derived to
the mean recovery time. Another metric is the backup data com-
pleteness. Unlike the other metrics this metric is not suitable for
use in integrations since integrations do not store data, they just
process it between other systems.

6 DISCUSSION

6.1 Validation & Limitations
The major limitation of this paper is in the validation. While the
metrics have been found from earlier research into software quality,
this research validates the usability of these metrics in the specific
domain of integrations through one expert. The metrics are shown
to have validity through the underlying theory and the usability has
validity through content validity through the discussion with the
expert. Both these validity criteria are for internal validity as per
Meneely et al. [14] Do note that usability in the sense of this paper
does not correspond with the usability validation criteria identified
by Cavano and McCall [3] since that deals with cost-efficiency
instead of suitability of the usage. These metrics can further be
validated in several ways. One that was kept in mind for runtime
metrics is the trackability in which the metrics change together with
the quality factor which it is supposed to measure. Better content
validity can also be achieved by consulting more experts.

6.2 Future work
This research only provided a first step in the ability of measur-
ing the runtime quality of integrations. A second step would be

3



TScIT 38, February 3, 2023, Enschede, The Netherlands Rik Smale

to validate these metrics using data of actual integrations, some-
thing that could not happen in this research due to time constraints.
After the metrics are validated it would be possible to research
possible reference values for these metrics. These values would
most likely only work for specific configurations, programming
languages and/or platforms, but future research could look into
generalising these. Other research could be done to other quality
metrics using the identified (sub)characteristics mentioned in sub-
section 4.4. This could use the other stages of the program lifecycle,
mainly the edit time (also called design time). A third possibility is to
see if runtime quality can be improved by introducing further best
practices and checklists instead of measuring at the runtime. These
final two possibilities could especially be used in future research to
the security characteristic since these are less related to the other
(sub)characteristics researched in this paper.

7 CONCLUSIONS
This paper researches various runtime quality metrics that have
been identified in the past and discusses them with an expert to see
if they are suitable for usage in measuring the quality of integrations.
It starts off with an explanation on the importance of this under-
researched topic and gives insights into runtime quality, quality
metrics, the Goal, Question, Metric approach and integrations in
general before diving into some information on the runtime quality
of integrations. Various papers were used to identify runtime quality
metrics in six previously identified subcharacteristics of the ISO
25010 standard. The result of this is a set of runtime metrics that
have been identified for measuring quality of software systems used
to answer the research sub-question. These resulting 20 metrics
discussed with an expert. Almost all of these metrics were found
to be suitable for usage in measuring quality of integrations at
runtime in various degrees. All metrics from Table 2 and the ones
from Table 3 apart from backup data completeness are therefore
the result to the main research question. Future research can look
into visualizing these metrics in a dashboard, amongst other topics
identified in this paper.

ACKNOWLEDGMENTS
I would like to thank my supervisor, Lucas Meertens, for his enthu-
siasm in discussing this topic and keeping up with me throughout
the process. I also would like to thank Samet Kaya for his feedback
and insights on the resulting metrics.

REFERENCES
[1] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The Goal

Question Metric Approach.
[2] Victor R. Basili and David M. Weiss. 1984. A Methodology for Collecting Valid

Software Engineering Data. IEEE Transactions on Software Engineering SE-10, 6
(1984), 728–738. https://doi.org/10.1109/TSE.1984.5010301

[3] Joseph P. Cavano and James A. McCall. 1978. A Framework for the Measurement
of Software Quality. In Proceedings of the Software Quality Assurance Workshop on
Functional and Performance Issues. Association for Computing Machinery, New
York, NY, USA, 133–139. https://doi.org/10.1145/800283.811113

[4] Naveen Erasala, David C. Yen, and T.M. Rajkumar. 2003. Enterprise Application
Integration in the electronic commerce world. Computer Standards Interfaces 25,
2 (2003), 69–82. https://doi.org/10.1016/S0920-5489(02)00106-X

[5] Aachi Garg. 2022. Features to Predict Quality of Low-Code Integrations. TScIT
37 (2022).

[6] Philipp Haindl and Reinhold Plösch. 2022. Value-oriented quality metrics in soft-
ware development: Practical relevance from a software engineering perspective.
IET Software 16, 2 (2022), 167–184. https://doi.org/10.1049/sfw2.12051

[7] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design
science in information systems research. MIS Quarterly 28, 1 (Mar 2004), 75–105.
https://doi.org/10.2307/25148625

[8] ISO/IEC 25010. 2011. ISO/IEC 25010:2011, Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models.

[9] ISO/IEC 25023. 2016. ISO/IEC 25023:2016, Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — Mea-
surement of system and software product quality.

[10] Markus Klems, David Bermbach, and René Weinert. 2012. A Runtime Quality
Measurement Framework for Cloud Database Service Systems. In 2012 Eighth
International Conference on the Quality of Information and Communications Tech-
nology. 38–46. https://doi.org/10.1109/QUATIC.2012.17

[11] D.S. Linthicum. 2000. Enterprise Application Integration. Addison-Wesley.
[12] Ben Lutkevich. 2021. What is runtime?: Definition from TechTarget. https:

//www.techtarget.com/searchsoftwarequality/definition/runtime
[13] Sara Mahdavi-Hezavehi, Matthias Galster, and Paris Avgeriou. 2013. Variability

in quality attributes of service-based software systems: A systematic literature
review. Information and Software Technology 55, 2 (2013), 320–343. https://
doi.org/10.1016/j.infsof.2012.08.010 Special Section: Component-Based Software
Engineering (CBSE), 2011.

[14] AndrewMeneely, Ben Smith, and Laurie AnnWilliams. 2010. Software metrics val-
idation criteria: A systematic literature review. http://www.lib.ncsu.edu/resolver/
1840.4/4133

[15] Ahmad Ruzita. 2019. Goal oriented software sustainability evaluation model for
sustainable software development. Ph. D. Dissertation. Universiti Utara Malaysia.

[16] Rini van Solingen and Egon Berghout. 1999. The goal question metric method: A
practical guide for quality improvement of software development. McGraw-Hill.

[17] Stackpath. 2023. What is runtime? - stackpath. https://www.stackpath.com/edge-
academy/what-is-runtime/

[18] Luis Emiliano Sánchez, J. Andrés Diaz-Pace, Alejandro Zunino, Sabine Moisan,
and Jean-Paul Rigault. 2014. An Approach for Managing Quality Attributes at
Runtime Using Feature Models. In 2014 Eighth Brazilian Symposium on Software
Components, Architectures and Reuse. 11–20. https://doi.org/10.1109/SBCARS.
2014.13

4

https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1145/800283.811113
https://doi.org/10.1016/S0920-5489(02)00106-X
https://doi.org/10.1049/sfw2.12051
https://doi.org/10.2307/25148625
https://doi.org/10.1109/QUATIC.2012.17
https://www.techtarget.com/searchsoftwarequality/definition/runtime
https://www.techtarget.com/searchsoftwarequality/definition/runtime
https://doi.org/10.1016/j.infsof.2012.08.010
https://doi.org/10.1016/j.infsof.2012.08.010
http://www.lib.ncsu.edu/resolver/1840.4/4133
http://www.lib.ncsu.edu/resolver/1840.4/4133
https://www.stackpath.com/edge-academy/what-is-runtime/
https://www.stackpath.com/edge-academy/what-is-runtime/
https://doi.org/10.1109/SBCARS.2014.13
https://doi.org/10.1109/SBCARS.2014.13

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Research question

	3 Methodology
	4 Related work
	4.1 Runtime Quality
	4.2 Goal, Question, Metric approach
	4.3 Integrations
	4.4 Runtime Quality of Integrations

	5 Results
	5.1 Performance Efficiency
	5.2 Reliability

	6 Discussion
	6.1 Validation & Limitations
	6.2 Future work

	7 Conclusions
	Acknowledgments
	References

