
Can You Feel My Sign? Sending shapes to a haptic display
KIONA BIJKER, Universiteit Twente, Netherlands
Gentle stroking touches are considered highly relevant in social interactions.

When loved ones are apart they cannot express or receive these touches. In

2021 C.Stork developed a haptic sleeve to mediate such affective touches

during a video or phone call [7]. This haptic display was limited to straight

strokes. In this article the development of an algorithm will be discussed that

simplifies user input shapes to straight lines. This adds more expressiveness

to the sleeve by allowing user drawn shapes to be simulated. The sleeve has

been adjusted during this project based on suggestions from F. Tang et al.

[9], these adjustments will also be discussed.

CCS Concepts: •Human-centered computing→ Interactive systems
and tools; •Mathematics of computing → Numerical analysis.

Additional Key Words and Phrases: haptic display, mouse-movement, shape

approximation, Tactile Brush, affective touch

ACM Reference Format:
Kiona Bijker. 2023. Can You Feel My Sign? Sending shapes to a haptic display.

In . ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nn

nnnnn

1 INTRODUCTION
Gentle stroking touches are considered highly relevant in social

interactions. When loved ones are apart they cannot express or

receive these touches. In 2021 C.Stork developed a haptic sleeve to

mediate such affective touches during a video or phone call [7]. The

design was based on the TaSST by G. Huisman et al. [4] together

with the Tactile Brush algorithm as defined by A. Israr et al. [5].

Stork’s tactile display was limited to straight strokes. This severely

limits the expressiveness of the tactile display. Within this paper

the aim is to extend the sleeve with shapes for more expressive

communication, this is reflected in the main research question:

RQ How to send shapes from user input to the haptic display?

To do this an algorithm needs to be developed to turn the shapes

input by the user into straight strokes that can be simulated by the

haptic sleeve. This algorithm will have to be real-time enough to

allow for uninterrupted drawing by the user. This leads to the first

sub-question of this paper:

SQ 1 How to design an efficient algorithm that translates shapes

into polygons?

The polygons the algorithm sends to the sleeve need to be com-

patible with the sleeve. The polygons the haptic sleeve simulates

also need to be recognisable to the user as otherwise the media-

tion of the affective touch is inaccurate. This leads us to the second

sub-question of this paper:

SQ 2 What are the requirements from the sleeve to display a poly-

gon that can be recognised by a user?

This second question can be divided into several sub-questions:

TScIT 38, February 3, 2023, Enschede, The Netherlands
© 2023 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in , https://doi.org/10.1

145/nnnnnnn.nnnnnnn.

SQ2.1 What is the delay between sending a vector to the Haptic

Sleeve and the vibration motor output?
1

SQ2.2 What are the minimum size and duration of a stroke for the

sleeve?

SQ2.3 At what resolution can the user no longer accurately deter-

mine the figure they feel?
2

SQ2.4 What is the difference between various shapes in the needed

resolution to accurately recognise the shape, if any?
2

Within this article the working principle of the tactile display of

the sleeve will be discussed in section 2. This lays the basis for

answering SQ2.1 and SQ2.2 in section 3 where the sleeve is discussed

in more detail. From there we move to answering SQ 1 in section 4.

SQ2.3 and SQ2.4 remain unanswered as an experiment was designed

but could not be conducted within the required time frame. This

experiment will be discussed in section 6. Efficiency of the algorithm

will be discussed in section 7 with a reasoning for the approximate

workload and working memory load of the algorithm, as a full

complexity analysis was outside the project scope.Within this article

the words vector and line are used interchangeably to mean the

visual representation for a straight stroke.

ACKNOWLEDGMENTS
I would like to thank my supervisor, dr. Angelika Mader for her

support and faith in me. I would like to thank prof. dr. Marc Uetz

and prof.dr.ir. Bernard J. Geurtz for their explanations and help

regarding algorithmic complexity and efficiency. I am grateful for

the support from dr.Mariet Theune andmy research track colleagues

in navigating this bachelor project. Last but certainly not least I

would like to thank my friends and family. In particular I would like

to thank Erik for being a great bug catcher, my parents for their

motivational support, and my fiance for taking the time to hear me

complain about the latest bug. Without these people I would not

have gotten where I am today.

2 WORKING PRINCIPLE OF THE USED HAPTIC
DISPLAY

A haptic illusion is a touch related illusion. For this project two hap-

tic illusions were used: the phantom tactile sensation and apparent

tactile motion. These illusions were used to create the Tactile Brush

algorithm [5].

2.1 Phantom tactile sensation
The phantom tactile sensation is also known as the funneling illu-

sion. If two vibro-tactile actuators are placed in close proximity on

the skin and activated the subject will experience a single vibro-

tactile actuator between the two physical actuators. This phantom

actuator’s location depends on the ratio between the intensities

1
A large delay between strokes may lead the user to only recognise separate lines rather

than a coherent picture

2
These questions remain unanswered

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 38, February 3, 2023, Enschede, The Netherlands Kiona Bijker

of the two physical actuators, while the intensity depends on the

absolute intensity of both physical actuators [5].

2.2 Apparent tactile motion
Apparent tactile motion is an illusion created by activating vibro-

tactile actuators in close proximity in succession with overlapping

times. The subject then experiences this as a single actuator moving

between the two physical actuators [5].

2.3 Extension to 2D grid
Both aforementioned illusions were corroborated using line-based

tactile displays. These findings were used to extend to a 2D grid

display. By combining the apparent tactile motion and funnelling

illusion within a 2D grid of vibro-tactile actuators, an illusion of a

stroke can be generated in any direction within the grid [5] [3].

3 THE HAPTIC SLEEVE
Within this project a haptic sleeve was used with vibro-tactile actu-

ators in a 2D grid formation. This sleeve was developed by C. Stork

in a previous project [7] based on the TaSST by G. Huisman et al.[4].

3.1 Original sleeve
The original sleeve consists of a flexible 3D printed grid with vibro-

tactile actuators. These actuators are controlled by a Raspberry Pi

using two i2c multiplexers. The activation times, intensities and

duration are determined using the implemented Tactile Brush al-

gorithm. This was implemented using Python. The sleeve could

simulate a straight stroke starting and ending on the lines of the

vibro-tactile grid. This stroke to simulate can be sent to the sleeve

using an MQTT protocol [7]. A more in-depth guide on the usage

of the sleeve can be found in Appendix A.

3.1.1 Basic workings. The sleeve connects to the MQTT server to

receive a message with a stroke. It then disconnects and uses the

Tactile Brush to create an actuator schedule. Once this schedule is

executed the sleeve again connects to the server to receive the next

stroke. The duration between receiving the message and the start of

tactile output depends on the length of the stroke as a longer stroke

requires more scheduled actuators.

3.1.2 Tactile Brush. The Tactile Brush algorithm uses the phantom

tactile sensation and apparent tactile motion illusions to simulate

a stroke using vibro-tactile actuators. Given a stroke from point A

to point B with a certain distance and duration, the Tactile Brush

can generate a schedule for vibro-tactile actuator activation. This

includes activation time, activation duration and intensity. To deter-

mine these variables a number of formulas are used which can be

found in the article by A. Israr et al. [5]. For this project the formu-

las of interest are the intensity formulas used to create a funneling

illusion 𝑣 with intensity 𝐴𝑣 between actuators 1 and 2:

𝐴1 =
√︁
1 − 𝛽 ∗𝐴𝑣, 𝐴2 =

√︁
𝛽 ∗𝐴𝑣

Here 𝐴1 is the intensity for actuator 1, 𝐴2 the intensity for actuator

2. 𝛽 is the ratio of the distances from 𝑣 to 1 and from 𝑣 to 2 [5].

3.1.3 MQTT. MQTT is a communication protocol that consists of

a publisher, a broker, and a subscriber. At the broker there is a list

of topics messages can be published to. When the publisher sends

a message to a for a specific topic every subscriber to that topic is

forwarded that message [1].

Fig. 1. A visual representation of the adjusted sleeve algorithm

3.2 Code adjustments
The sleeve as developed by C. Stork was limited in stroke start-

and endpoints. To allow for start- and endpoints of a stroke to be

anywhere in the grid instead of only on grid lines the algorithm

for the sleeve needed to be adapted. The adaptation was based on a

paper by F. Tang et al. [9]. The Tactile Brush algorithm creates virtual

actuators representing phantom tactile sensations on the grid lines

using a number of formulas for the intensity, activation time and

activation duration. This is what allows the Tactile Brush to simulate

strokes starting and ending between physical actuators [5]. Tang et

al. suggest adding an abstraction to allow start- and endpoints to

be anywhere within the grid. This abstraction applies the formulas

used by the Tactile Brush team a second time. The starting point

between grid lines is simulated using two virtual actuators on the

grid lines. These two virtual actuators are simulated by the physical

actuators on the same lines [9]. As an example take 𝑃𝑜 which is a

virtual actuator between grid lines. This example is illustrated in

Figure 1. 𝑃𝑙 and 𝑃𝑟 are virtual actuators created on the grid lines

to allow for the illusion of 𝑃𝑜 . 𝑃𝑙 and 𝑃𝑟 are not physical actuators,

they are simulated using the physical actuators. In this case 𝐴𝑙𝑡 and

𝐴𝑙𝑏 for 𝑃𝑙 and 𝐴𝑟𝑡 and 𝐴𝑟𝑏 for 𝑃𝑟 . This way by activating 𝐴𝑙𝑡 , 𝐴𝑙𝑏 ,

𝐴𝑟𝑡 , and 𝐴𝑟𝑏 the funneling illusion allows for the illusion of 𝑃𝑜 .

4 ALGORITHM DEVELOPMENT
The goal of the algorithm is to extend the expressiveness of the

touch communication as mentioned in the Discussion and Recom-

mendation section of C. Stork’s paper on the development of the

sleeve [7]. To achieve this the algorithm will simplify the drawing

into straight strokes and send these to the sleeve.

4.1 Existing mouse-movement to vector algorithms
Literature research was conducted to find algorithms that approxi-

mated computer-mouse movement using vectors. While this search

was by no means exhaustive, no articles were found on real-time

computer-mouse movement approximation using vectors. Most

articles that turned up in the computer-mouse movement search

referenced predicted computer-mouse movement towards specific

targets either on or off the screen. For examples see [6] [8].

2

Can You Feel My Sign? TScIT 38, February 3, 2023, Enschede, The Netherlands

4.2 Requirements
To develop an algorithm the requirements need to be identified. The

algorithm needs to be responsive enough to allow for unobstructed

drawing on the screen. This is needed for the near real-time require-

ment as mentioned in the introduction. Since the sleeve works over

MQTT the algorithm will need to send MQTT messages that the

sleeve can process without errors. A given requirement is to use

the Processing language, which is geared towards user interaction.

Processing is designed as a programming sketchbook [2] with basic

methods that make graphic-based user interaction easily accessible.

This makes the language a good fit for the development of this user-

made drawing to polygon algorithm. To summarise, the algorithm

should:

• Take computer-mouse-like input

• Be responsive enough to allow for unobstructed drawing

• Communicate with the haptic sleeve over MQTT

• Interface with the haptic sleeve without errors

• Send correct messages to the haptic sleeve for functional

haptic sleeve output

• Be implemented in Processing

4.3 Early iterations
There were various iterations before the algorithm described in this

paper was developed. In this section the two main versions before

the final algorithm will be discussed.

4.3.1 Averaging angles. The first version of the algorithmwas based

on an intuition from sketching. The program would create a line

for the mouse movement between each frame. These separate lines

would then be averaged in angle, whilst adding the lengths, to create

a line that approximates the total mouse movement. To determine

when a new line should start the end point of the line would be

compared to the current mouse position. If the end of the averaged

line and the actual mouse position were more than a certain distance

apart a new line would be started. This algorithm slowed down

significantly as the run time progressed. Next to that the distance

based cut-off made it difficult to predict how the program would

react to various drawing speeds. The lines produced were of varying

accuracy as the drawing speed had more influence over the accuracy

than the degree to which the line approximated the drawing.

4.3.2 Adding angles. A second version of the algorithm is closely

related to the final version. In this algorithm the mouse movement

between the first two frames is taken as the initial line. Then for

each frame the difference in angle between the new movement and

the existing line is added to the angle of the existing line. For the

length of the line the distance of the mouse-movement is added. This

algorithm results in a line that follows the mouse on screen and does

not slow down as run time progresses. To determine whether a new

line should be started the difference in angle between the existing

line and latest movementwere compared to a cut-off angle difference.

This made the algorithm vulnerable to unnecessarily short vectors

especially at lower drawing speeds. Next to this the achieved line

was very similar to a line drawn from the starting point, usually

where the first click happened, to the current mouse position. This

suggested there may be a more efficient way of achieving the same

line.

4.4 The developed algorithm
The final version of the algorithm is significantly simpler than the

previous iterations. Upon the start of a drawing or new line the

start x and y positions of the mouse are saved. For each frame a

new line is constructed from the start position to the current mouse

position and the current position is saved. Every n frames a check is

performed. This checks if the line for the last n frames and the line

from the start position to the current position differ more in angle

than a maximum angle a. If the angle difference is bigger than a,
a new line is started and the line from the last check is sent to the

sleeve. The new line will have the mouse position of n frames ago

as the start position. If the angle difference is smaller than a, the
program continues with the current start position for the line. The

full pseudo-code for the algorithm can be found in the appendix in

subsection B.4.

4.5 Implementation
The algorithm was implemented using Processing extended by Java

elements. Processing was chosen for its focus on user interaction

as also described in subsection 4.2. Java was chosen both for being

based on the Java PApplet class and developer familiarity. For the

main program Processing was used. MQTT was implemented using

Java and the org.eclipse.paho.client.mqttv3 library. Next to this three

new exceptions were made in Java:

• ImproperPointSaveException: Thrown when the X and Y lists

for saved mouse positions are not the same length. Recovery

is attempted by dropping the last item of the longer list, if

unsuccessful the program stops using a RunTimeException.

• NotEnoughDistanceException: Thrown when the vector to

be sent is too short for the sleeve. No recovery, vector is not

sent. The program continues.

• NotEnoughDurationException: Thrown when the vector’s

duration is too short for the sleeve. No recovery, vector is not

sent. The program continues.

For the duration and distance exceptions the minimum variables are

set at program initialisation. These minimum values will depend

on the used haptic display and the algorithm used to create haptic

illusions. The minimum duration is greater than or equal to the

minimum actuator activation duration. A stroke with a shorter

duration than this will not allow the actuator to reach the needed

intensity to simulate it. The minimum distance is the distance at

which the user will perceive a stroke rather than pressure at a single

point. The final program works on PC with any computer-mouse-

like input. It was tested both on Ubuntu 22 and Windows 11. As

both Processing and Java are available for Mac-OS and no operating

system commands were used, the program is assumed to work on

Mac-OS as well.

5 VERIFICATION
To verify that the algorithmworks as intended a number of trial runs

have been conducted. Within these trial runs a computer-mouse as

well as a drawing tablet connected to a computer were used to draw

3

TScIT 38, February 3, 2023, Enschede, The Netherlands Kiona Bijker

various shapes. See Figure 2 for some of the trial run outputs on

the graphic side. This shows that the algorithm successfully breaks

up the lines drawn by the user into straight lines, which can be

simulated as strokes. When sending these strokes to the sleeve the

test run showed no errors and the actuators activated as intended.

The delay between the drawing and the activation of the motors is

approximated to be a second long. It is unknown whether this delay

is caused by the implementation of the algorithm or the sleeve or

caused by external factors such as network speed.

Fig. 2. Graphical outputs from the algorithm

6 EXPERIMENT DESIGN
The experiment is designed to answer the following questions:

SQ2.3 At what resolution can the user no longer accurately deter-

mine the figure they feel?

SQ2.4 What is the difference between various shapes in the needed

resolution to accurately recognise the shape, if any?

These questions can be answered through a short user test. Within

this test various shapes would be given to participant with varying

accuracy. The participant is then asked to determine the shape they

received. After the experiment the data should be anonimised to

protect participant privacy. This experiment could not be conducted

due to project time constraints. The designed procedure is described

in subsection 6.1.

6.1 Procedure of the experiment
(1) The participant receives the haptic sleeve and is asked to put

it on. Any required help is provided.

(2) The participant is asked whether the sleeve is comfortable

and any needed adjustments will be made to make the sleeve

fit as comfortably as possible.

(3) The researcher sends a set of predetermined shapes to the

sleeve with various numbers of vectors for each shape. After

each shape the participant is asked what shape they think

they felt (without options given), if any.

(4) Once the set of shapes is completed the participant will be

given a questionnaire to asses how comfortable the use of the

sleeve was.

7 COMPLEXITY AND EFFICIENCY
A full analysis of the complexity and efficiency of the algorithm

was not possible within the time frame of this project. However,

one can reason about a general complexity. The goal was to reach

real-time complexity. In this section the reasoned complexity for

the implemented functions will be discussed, a full argumentation

can be found in Appendix C. These functions are ranked based on

reasoned complexity and the number of calls to the function. This

ranked list will indicate for which functions an improvement in

complexity will impact the overall time for the algorithm the most.

7.1 Reasoned complexity
The algorithm takes a mouse position per frame as input, this makes

input n unlikely to grow. Next to this not all tasks are performed

for every frame. To allow for comparing of task costs the approx-

imate workload per second will be considered. This allows for a

comparison between tasks that takes both per-call workload and

call frequency into account. For tasks with an unknown frequency,

such as the repairing of lists, the workload per call will be multiplied

with "numberOfCalls". Only code written within this project will

be considered. This excludes functions from Processing and the

used libraries. Environmental variables outside code control, such

as network delay, are also excluded.

In the ranked list as seen in Table 1 it is assumed that a high

accuracy and high number of frames per second are desired. The

functions are ranked from most to least expensive regarding these

variables. For readability frames per second is shortened to fps.

7.2 Profiler
Due to the way the program was designed it is difficult to test

for the same input multiple times with limited changes. To still

allow for some analyses of the trial runs a profiler was used. The

used profiler was the built-in ’Intellij Profiler’ from Intellij by Jet-

Brains. Within the profiler flame-graph and method call tree the

program ’shapeToVector’, which is the project program, takes up

approximately half of the total run time. This section’s run time is

mostly the draw() function, which according to the reasoning on

the complexity is the most costly. A surprising cost is found in the

setup() function which initialises all variables and the MQTT for

the Processing sketch. Upon closer inspection it was found that the

MqttClient constructor from the eclipse.paho.client.mqttv3 library

is the main contributor to that cost. This is illustrated in one of the

profiler outputs as seen in Figure 3.

8 DISCUSSION

8.1 Limitations of the project
Many of the research questions within this project were unknown

at the start. This resulted in an expanding project. It gives many

opportunities for further research, as not all questions could be

answered within this project’s allotted time frame.

8.2 Limitations of the algorithm
This algorithm has limited accuracy to the drawings made by the

user as it works on a frame-by-frame basis. Next to that the accuracy

is limited by the real-time nature of the algorithm. An algorithm

that simplifies the finished drawing would likely be more accurate

than the algorithm developed in this project. However, only sending

finished drawingswouldmake the characteristics of the sleeve closer

4

Can You Feel My Sign? TScIT 38, February 3, 2023, Enschede, The Netherlands

Table 1. Functions ranked from most to least expensive regarding approximate workload

Rank Task Approximate relative workload per second Approximate working memory load

1 Drawing a frame 𝑥 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠 + 1) ∗ 𝑓 𝑝𝑠 6 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠) + 4

2 Updating currentVector (𝑦 + 2) ∗ 𝑓 𝑝𝑠 6 + 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟
3 Resets (10 +𝑤) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒) 8 + 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟
4 Accuracy checks (𝑧 + 1) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒) 6 + 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟
5 Recovering after a failed check (6 + 𝑛𝑒𝑤𝑃𝑉𝑒𝑐𝑡𝑜𝑟) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒) 6 + 𝑃𝑉𝑒𝑐𝑡𝑜𝑟 + 2 ∗ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒

6 A passed check (𝑣 + 2) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒) 2 + 𝑃𝑣𝑒𝑐𝑡𝑜𝑟

7 Sending a vector (5 + 𝑢) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒) 13+ (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠 ∗4) +𝑆𝑡𝑟𝑖𝑛𝑔
8 Repair of broken position list (8 + 𝐹𝑙𝑜𝑎𝑡𝐿𝑖𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝐶𝑎𝑙𝑙𝑠 2 + 2 ∗ (𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 + 1)

Fig. 3. The flame-graph and method call tree of one of the profiler runs

to an instant messenger rather than a real-time display to be used

next to phone or video calls.

8.3 Limitations of the hardware
The grid used in the haptic sleeve was 12 vibro-tactile actuators (3

in the y direction, 4 in the x direction) in size with a length of 12cm

and a height of 9cm. This limits the possibilities for detailed touch

drawings. Each of the used vibro-tactile actuators has a minimum

activation time. This is the minimum time needed between the

actuator being activated and being deactivated to notice a vibration.

This limits the speed of touch drawings.

8.4 Contribution
Within this project the ability to send unique touch drawings to the

sleevewas added.With this new featuremore research opportunities

open up.

9 CONCLUSIONS
In this paper an algorithm was developed to extend the sleeve made

by C. Stork [7] with shapes. This algorithm is expected to be linear

in complexity and trial runs suggest a real-time performance for

drawing with a short delay between drawing and haptic display

activity. This answers SQ1. Regarding SQ2 the tentative conclusion

can be reached that the requirements include: a minimum duration

greater than the minimum activation time of the used vibro-tactile

actuators and an unknownminimum distance. For themain research

question (RQ) this means that an algorithm was developed to send

shapes from user input to the haptic display. Further research is

required to determine the best values for the parameters used in the

program to allow for accurate shape representation.

10 OUTLOOK

10.1 Answering SQ2
Since SQ2.3 and SQ2.4 could not be answered, SQ2 could not be

fully answered. The parameters of the developed algorithm allow

for scaling in the resolution of the output polygons. This enables

future researchers to answer SQ 2.3, SQ2.4 and with that SQ2.

10.2 Complexity
While a reasoning for the expected complexity of the algorithm was

given in section 7, a full analysis and optimisation is still needed. A

more optimised algorithm can run on devices with fewer computa-

tional resources, opening up more applications for the sleeve.

10.3 User Interface
The present algorithm implementation has a very limited user in-

terface, only allowing the user to draw. A user interface should be

added that allows the user to determine the accuracy and whether

the screen is cleared on a new touch or click. This makes the product

easier to use since the user no longer needs to adjust the source

code or request adjustments.

REFERENCES
[1] Inductive Automation. [n. d.] What is mqtt? Retrieved Jan 19 2023 from https://i

nductiveautomation.com/resources/article/what-is-mqtt.

[2] The Processing Foundation. [n. d.] Overview. Retrieved Jan 27 2023 from https:

//processing.org/overview.

[3] Gijs Huisman, Aduén Darriba Frederiks, Johannes Bernardus Fransiscus van

Erp, and Dirk K.J. Heylen. 2016. Simulating affective touch: using a vibrotactile

array to generate pleasant stroking sensations. English. In Haptics: Perception,
Devices, Control, and Applications (Lecture Notes in Computer Science). 10th

EuroHaptics Meeting 2016, EuroHaptics ; Conference date: 04-07-2016 Through

07-07-2016. Springer, Netherlands, (July 2016), 240–250. isbn: 978-3-319-42323-4.

doi: 10.1007/978-3-319-42324-1_24.

5

https://inductiveautomation.com/resources/article/what-is-mqtt
https://inductiveautomation.com/resources/article/what-is-mqtt
https://processing.org/overview
https://processing.org/overview
https://doi.org/10.1007/978-3-319-42324-1_24

TScIT 38, February 3, 2023, Enschede, The Netherlands Kiona Bijker

[4] Gijs Huisman, Aduén Darriba Frederiks, and Dirk K. J. Heylen. 2013. Affective

touch at a distance. 2013 Humaine Association Conference on Affective Computing
and Intelligent Interaction, 701–702.

[5] Ali Israr and Ivan Poupyrev. 2011. Tactile brush: drawing on skin with a tactile

grid display. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems.

[6] Atsuo Murata. 1998. Improvement of pointing time by predicting targets in

pointing with a pcmouse. English. Plastics and Rubber Processing and Applications,
10, 1, (Dec. 1998), 23–32.

[7] Connor A. Stork. 2021. Haptic Wearable for Affective Mediated Touch. Bachelor’s
Thesis. University of Twente, Enschede, Netherlands.

[8] Kazuki Takashima, Sriram Subramanian, Takayuki Tsukitani, Yoshifumi Kita-

mura, and Fumio Kishino. 2008. Acquisition of off-screen object by predictive

jumping. English. In Computer-Human Interaction - 8th Asia-Pacific Conference,
APCHI 2008, Proceedings (Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

8th Asia-Pacific Conference on Computer-Human Interaction, APCHI 2008 ;

Conference date: 06-07-2008 Through 09-07-2008, 301–310. isbn: 3540705848.

doi: 10.1007/978-3-540-70585-7_34.

[9] Fei Tang and Ryan P. McMahan. 2019. The syncopated energy algorithm for

rendering real-time tactile interactions. Frontiers in ICT, 6. doi: 10.3389/fict.2019
.00019.

A SLEEVE REFERENCE

A.1 Setup
To set up the sleeve connect the pi to a PC using an ethernet cable.

Use SSH to connect to the pi and enter sudo raspi-config. Then
connect the pi toWiFi using SSID and a password if required. Due to

the limitations of the pi non-enterprise networks are recommended.

The MQTT server parameters are in Main.py starting on line 161.

Main.py is located in the Documents/Haptic_Code folder. The size

of the sleeve and distance between the actuators can be adjusted

in line 13: tactileBrush = TactileBrush(3, 4, 3.0). Within this

TactileBrush constructor the variables, in order, are: number of

actuators on y axis, number of actuators on x axis, and distance in

cm between actuators. If the number of actuators is changed then

also change line 26-40 by adding or removing actuators. tca and

tca1 are the multiplexers used in this project. To run the code enter

in the command line:

• cd Documents/Haptic_Code

• python Main.py

The console should output connected successfully. You can now

start sending messages to the pi.

A.2 Standard MQTT message
The topic used by default by the sleeve is "deviceOne/line" . The

standard message expected by the sleeve consists of:

startX float; x coordinate within the sleeve grid for the starting point

of the stroke

startY float; y coordinate within the sleeve grid for the starting point

of the stroke

endX float; x coordinate within the sleeve grid for the end point of

the stroke

endY float; y coordinate within the sleeve grid for the end point of

the stroke

duration foat; duration of stroke in milliseconds, used to determine

the stroke speed

The message is expected as a string with the following format:

startX,startY,endX,endY,duration

A.3 Common errors and problems
A.3.1 Point not in grid. This error happens when the given coordi-

nates are not within the coordinate bounds of the sleeve. Often the

cause is either a scaling error or an off by one error. Remember that

these coordinates start at 0 on the first actuator.

A.3.2 MQTT messages not received. If the pi is connecting to the
MQTT server but not receiving messages, check that messages are

sent to the correct topic.

B ALGORITHM REFERENCE

B.1 Setup
There is a number of different constructors with various combina-

tions of the following variables:

• frameMax: int : The maximum line duration, make sure to

set this to be higher than or equal to fps. Set to 0 to disable

maximum line duration

• checkFrame: int : The number of frames between checks for

vector accuracy, minimum value of 2

• maxAngleDifDeg: int : The maximum angle difference in de-

grees between the current vector and the new mouse move-

ment

• fps: int : The number of frames per second

• clickClear : boolean : Whether a new mouse click should clear

the screen

• recover : boolean : Whether the algorithm should attempt to

make a line out of the mouse position for the frames between

a passed and a failed check. Set to true if you start notice gaps

in the drawing.

• sleeveX : int : The number of actuators the sleeve is wide,

starting count at 0

• sleeveY : int : The number of actuators the sleeve is high,

starting count at 0

• screenX : int : The number of pixels the UI screen is wide

• screenY : int : The number of pixels the UI screen is high

• minimumDuration : float : The minimum needed vector dura-

tion in milliseconds

• minimumSize : float : The minimum needed vector size on

screen

With the most minimal constructor the assumed default values are:

• frameMax: 0
• checkFrame: 5
• maxAngleDifDeg: 20
• fps: 60
• clickClear : true
• recover : true

• sleeveX : 3
• sleeveY : 2
• screenX : 1920
• screenY : 1080
• minimumDuration: 6.1F
• minimumSize: 0.1F

Once initialised simply run the main function.

B.2 MQTT
Within the sketch on line 35 to 43 are used for the MQTT variables.

They are:

• serverURI : String : The link to the MQTT server

• user : String : The username used for the MQTT server

6

https://doi.org/10.1007/978-3-540-70585-7_34
https://doi.org/10.3389/fict.2019.00019
https://doi.org/10.3389/fict.2019.00019

Can You Feel My Sign? TScIT 38, February 3, 2023, Enschede, The Netherlands

• pass: String : The password used for the MQTT server

• topic: String : The topic used for the MQTT messages, this

should be the same as the topic for the sleeve

If you wish to use an MQTT server without a username and pass-

word simply remove the username and password from the con-

structor for MQTTHandler in line 232 in setup(). This will call the

alternative constructor for this purpose

B.3 Common errors and problems
B.3.1 NotEnoughDistanceException. When this error shows up it

will not crash the program but may cause a gap in the drawing.

This error tends to show up for drawings that are more detailed

than the sleeve can represent or when the accuracy requirements

are to high. Tweak the checkFrame and maxAngleDif to adjust the

accuracy. Make sure minimumSize is set to the correct value for

your haptic display.

B.3.2 NotEnoughDurationException. When this error shows up it

will not crash the program but may cause a gap in the drawing.

This error tends to show up for drawings that are drawn quickly or

more detailed than the sleeve can represent or when the accuracy

requirements are to high. Tweak the checkFrame and maxAngleDif
to adjust the accuracy. If you set the frameMax to a number that is

lower than your fps set it to be at least equal. frameMax determines

the maximum duration of your strokes so setting it at less than a

second can cause issues. Make sure minimumDuration is set to the

correct value for your haptic display.

B.3.3 Screen too full to draw or drawing keeps disappearing. The
boolean clickClear determines whether the screen will be cleared on

a mouse-click or start of a touch. When true, the screen is cleared,

when false the drawings will persist. Check that clickClear is set to
the correct value for your use.

B.4 Pseudo-code
Below is the pseudo-code for the algorithm.

i n i t s l eeveX , s l e eveY , screenX , screenY , frameMax , checkFrame ,

maxAngleDif , f ramesS inceCheck , f r amesVec tor ,

c u r r en tVe c t o r , l a s t V e c t o r , s t a r tX , s t a r t Y , l a s tX , l a s t Y ,

r e c ov e r

whi l e (f rames be ing rende red) {

i f (new mouse bu t ton p r e s s) {

s t a r tX , s t a r t Y = l a s tX , l a s t Y = mouseX , mouseY

}

i f (mouse bu t ton i s p r e s s e d) {

i f (f r amesS inceCheck >= checkFrame) {

i f (ang l e between (cu r r en tVe c t o r , v e c t o r (l a s tX , l a s t Y

to mouseX , mouseY)) > maxAngleDif) {

send l a s t V e c t o r

i f (r e c ov e r) {

c u r r e n tV e c t o r = v e c t o r (l a s tX , l a s t Y to

mouseX , mouseY)

s t a r tX , s t a r t Y = mouseX , mouseY

}

e l s e {

s t a r tX , s t a r t Y = l a s tX , l a s t Y

}

f r amesVec to r = f ramesS inceCheck

}

e l s e {

l a s t V e c t o r = c u r r e n tV e c t o r . copy

l a s tX , l a s t Y = mouseX , mouseY

}

f r amesS inceCheck = 0

}

c u r r e n tV e c t o r = v e c t o r (s t a r tX , s t a r t Y to mouseX , mouseY)

f r amesVec to r ++

f ramesS inceCheck ++

i f (f r amesVec to r > frameMax) {

send cu r r e n tV e c t o r

s t a r tX , s t a r t Y = mouseX , mouseY

f r amesVec to r = 0

}

}

draw p r e v i o u s l y s en t v e c t o r s

draw cu r r e n tV e c t o r

}

C COMPLEXITY REASONING FOR SEPARATE TASKS

C.1 Drawing a frame
For each frame, all vectors in the sent vector list are drawn, as well

as the currentVector. This makes the work load per frame linear with

the list of sent vectors. The size of this list depends on how long

the program has been running as well as the accuracy requirements

(checkFrame, frameMax, maxAngleDif). As the accuracy increases,

so does the number of vectors. Let us take x as the work load to

draw a single vector. Then the work load for the drawing of a single

frame is𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑𝑟𝑎𝑤 = 𝑥 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠 +1) For the
workload relative to other functions this is simply multiplied by fps.

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑑𝑟𝑎𝑤 = 𝑥 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠 + 1) ∗ 𝑓 𝑝𝑠

The work memory load consists of 4 floats per vector drawn from

the list. There are 2 added floats from simple arithmatic operations

needed to determine the line end coordinates. The currentVector
requires just 4 floats. This memory can be reused for the next frame.

This totals to a work memory load of approximately

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑑𝑟𝑎𝑤 = 6 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠) + 4

C.2 Updating the current vector
Updating the current vector consists of making a new vector from

the startX, startY to the latest mouse position. This happens for

every frame rendered, thus the workload is linear with the number

of frames per second. A new vector is constructed and copied using

4 variables for each frame and two simple arithmetic operations.

Simple arithmetic is seen as O(1). Naming the constructing and

copying of a vector y, the workload per frame is:𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑢𝑝𝑑𝑎𝑡𝑒 =

𝑦 + 2. For the workload relative to other functions this is multiplied

by fps.

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑢𝑝𝑑𝑎𝑡𝑒 = (𝑦 + 2) ∗ 𝑓 𝑝𝑠

The work memory load consists of 4 float reads, a PVector copy, a

PVector construction, and 2 integers per frame. For simplicity int

and float are assumed to be the same size of 1 in memory. Since

a PVector construction and copy are both the size of a PVector

in memory this will be taken as 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟 . The variables used
in the construction of the PVector are already taken into account

in the 4 floats. This memory can be reused making the total load

approximately:

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑢𝑝𝑑𝑎𝑡𝑒 = 6 + 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟

7

TScIT 38, February 3, 2023, Enschede, The Netherlands Kiona Bijker

C.3 Accuracy checks
An accuracy check consists of making a new vector, calculating

the angle between two vectors and comparing it to a given angle.

Comparison has a workload of O(1). For readability the construction

of a new vector and calculation of the angle are named z. This makes

the workload per check𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑐ℎ𝑒𝑐𝑘 = 𝑧 + 1. The number of

checks within a certain run time for the program are determined by

𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 . This makes the relative workload:

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑐ℎ𝑒𝑐𝑘 = (𝑧 + 1) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒)

The work memory load consists of a float from an angle calculation,

a constructed PVector from 4 floats, the PVector currentVector, and
a given angle, which is also a float. This memory can be reused at

the next check. Again taking the memory load of a float to be 1, the

work memory load approximates:

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑐ℎ𝑒𝑐𝑘 = 6 + 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟

C.4 Resets
This task contains all the operations needed to start a new vec-

tor, such as assigning a new starting point, clearing position his-

tory and resetting counters to 0. This consists of 8 assignments, 2

PVector copies, 2 arithmetic operations, and 2 lists that are cleared.

Simple arithmetic operations and assignments are assumed to be

O(1). The workload of PVector copies and list.clear is unknown

but may be represented as w. This makes the workload per reset

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑟𝑒𝑠𝑒𝑡 = 10 + 𝑤 The workload compared to other tasks

depends on the number of times this reset is performed. Since this

task is performed on a failed check the accuracy and the number of

frames per second determine the workload. This is at worst linear

with 𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 , which would mean every check fails. The

reset task is also performed when a mouse button is pressed or when

the maximum vector duration, frameMax is reached. If frameMax
is set lower than checkFrame, but not 0, the work load becomes

linear with (𝑓 𝑝𝑠÷ 𝑓 𝑟𝑎𝑚𝑒𝑀𝑎𝑥). If a user clicks more frequently than

𝑓 𝑝𝑠÷𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 and 𝑓 𝑝𝑠÷ 𝑓 𝑟𝑎𝑚𝑒𝑀𝑎𝑥 the work load is linear with

the number of clicks. This gives three options for the work load

compared to other functions:𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑟𝑒𝑠𝑒𝑡 = (10 +𝑤) ∗ (𝑓 𝑝𝑠 ÷
𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒) or𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑟𝑒𝑠𝑒𝑡 = (10 + 𝑤) ∗ (𝑓 𝑝𝑠 ÷ 𝑓 𝑟𝑎𝑚𝑒𝑀𝑎𝑥)
or𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑟𝑒𝑠𝑒𝑡 = (10 +𝑤) ∗𝑚𝑜𝑢𝑠𝑒𝐶𝑙𝑖𝑐𝑘𝑠 . The typical use case

will likely have an fps of 30 or 60 with a checkFrame of half the fps
and a frameMax of a multiple of the fps. This makes the most likely

workload:

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑟𝑒𝑠𝑒𝑡 = (10 +𝑤) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒)

The working memory load consists of 2 integer writes, 6 float writes,

6 float reads and 2 PVector copies. For this section we assume

list.clear has no memory load as no list elements need to be saved.

The memory can be reused for each call. Taking again floats and

integers to have a memory load of O(1) the memory load approxi-

mates:

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑟𝑒𝑠𝑒𝑡 = 8 + 2 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟

C.5 Recovery after a failed check
This task consists of checking that the position saving lists are

the same size and then using those lists to construct a new vec-

tor. The workload consists of 2 list.size calls, comparison of 2 in-

tegers, and creating a new PVector with 2 simple arithmetic oper-

ations. FloatList.size() is O(1) since the size of a list within Java is

stored. Again assuming int comparison and simple arithmetic are

O(1), this makes the workload approximately 6 + 𝑛𝑒𝑤𝑃𝑉𝑒𝑐𝑡𝑜𝑟 per

call.Assuming recover is set to true this happens on every failed

check. This makes the number of calls equal to (𝑓 𝑝𝑠 ÷𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒)
for the worst case where every check fails. Thus the total workload

compared to other tasks approximates:

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑟𝑒𝑐𝑜𝑣𝑒𝑟 = (6 + 𝑛𝑒𝑤𝑃𝑉𝑒𝑐𝑡𝑜𝑟) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒)
The working memory load consists of 2 int reads, 2 float reads

from 2 FloatLists (total 4 reads), and a PVector write. The lists used

are lists of mouse positions between checks, each list has a size of

checkFrame or less. The memory can be reused every time the task

is performed. Again, assuming an int and a float are memory load

O(1), the memory load approximates

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑟𝑒𝑐𝑜𝑣𝑒𝑟 = 6 + 𝑃𝑉𝑒𝑐𝑡𝑜𝑟 + 2 ∗ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒

C.6 Repairing broken position lists
If the lists of past mouse positions for X and Y are not the same

size the last element of the longer list is dropped so the program

can continue. Then the list sizes are checked again. If the sizes

still differ a RuntimeException is thrown. Here we will reason

up to the throwing of an exception. The workload consists of 5

FloatList.size calls, 2 int comparisons, a simple arithmetic operation,

and a FloatList.remove call. As seen before this can be simplified to

5 + 2 + 1 + 𝐹𝑙𝑜𝑎𝑡𝐿𝑖𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒 = 8 + 𝐹𝑙𝑜𝑎𝑡𝐿𝑖𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒 . The number

of times this task will be done is unknown.

Theworkingmemory load consists of 2 integers from FloatList.size

and a FloatList.remove call. It is assumed that FloatList.remove has a

memory load of the length of the list +1 for the index of the element

to remove. The length of these lists is at most equal to checkFrame.
The memory used in this operation can be reused. This results in a

total working memory load approximating:

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑟𝑒𝑝𝑎𝑖𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 = 2 + 2 ∗ (𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 + 1)

C.7 Passed check
When a check is passed the currentVector is copied to lastVector,
the lastX and lastY are updated, and the position lists cleared. This,

assuming assignments are O(1), gives an approximate workload

per call of𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑝𝑎𝑠𝑠𝑒𝑑𝐶ℎ𝑒𝑐𝑘 = 𝑃𝑣𝑒𝑐𝑡𝑜𝑟 .𝑐𝑜𝑝𝑦 + 2 + 2 ∗ 𝑙𝑖𝑠𝑡 .𝑐𝑙𝑒𝑎𝑟 .
𝑃𝑉𝑒𝑐𝑡𝑜𝑟 .𝑐𝑜𝑝𝑦+2∗𝑙𝑖𝑠𝑡 .𝑐𝑙𝑒𝑎𝑟 is renamed to v giving𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑝𝑎𝑠𝑠𝑒𝑑𝐶ℎ𝑒𝑐𝑘 =

𝑣 + 2 per call. This task can happen up to 𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 times.

This makes the workload compared to other tasks approximately

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑝𝑎𝑠𝑠𝑒𝑑𝐶ℎ𝑒𝑐𝑘 = (𝑣 + 2) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒)
The working memory load consists of 2 floats and a PVector copy.

List.clear is again assumed to have no or negligible load for the work-

ing memory. The memory can be reused. This means the working

memory load approximates

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑝𝑎𝑠𝑠𝑒𝑑𝐶ℎ𝑒𝑐𝑘 = 2 + 𝑃𝑉𝑒𝑐𝑡𝑜𝑟

8

Can You Feel My Sign? TScIT 38, February 3, 2023, Enschede, The Netherlands

C.8 Sending a vector
This task consists of multiple checks followed by the formatting

of the MQTT message. The duration is calculated using a float

division. This is followed by a float comparison. The distance is

based on the PVector components x and y, which are floats. These

are compared to floats to check that the line is long enough. This

brings us to a total of 3 float comparisons of O(1). The end points of

the line are calculated using the PVector components and startX and

startY. A new float[] is made consisting of startX, startY, endX, and
endY. These 4 floats are then each multiplied with scaleX or scaleY.
The float[] is added to the list of sent vectors and the message is

formatted as a String. The workload of this function approximates

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠𝑒𝑛𝑑 = 𝑓 𝑙𝑜𝑎𝑡𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 + 3 + 4 ∗ 𝑃𝑉𝑒𝑐𝑡𝑜𝑟 .𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 + 2 +
4 ∗ 𝑓 𝑙𝑜𝑎𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑡𝑟𝑖𝑛𝑔𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑖𝑛𝑔 = 5 + 𝑓 𝑙𝑜𝑎𝑡𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 +
𝑆𝑡𝑟𝑖𝑛𝑔𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑖𝑛𝑔+4∗(𝑃𝑉𝑒𝑐𝑡𝑜𝑟 .𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡+ 𝑓 𝑙𝑜𝑎𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
per send. For readability the 𝑓 𝑙𝑜𝑎𝑡𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑡𝑟𝑖𝑛𝑔𝑓 𝑜𝑟𝑚𝑎𝑡𝑡𝑖𝑛𝑔 +

4 ∗ (𝑃𝑉𝑒𝑐𝑡𝑜𝑟 .𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 + 𝑓 𝑙𝑜𝑎𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛) is renamed to u,
resulting in𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠𝑒𝑛𝑑 = 5 + 𝑢. The number of times a vector is

sent can be frameMax or 𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒 or the number of clicks.

This depends on each case as also seen in subsection C.4. Again the

typical use case will result in a workload of approximately

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠𝑒𝑛𝑑 = (5 + 𝑢) ∗ (𝑓 𝑝𝑠 ÷ 𝑐ℎ𝑒𝑐𝑘𝐹𝑟𝑎𝑚𝑒)
The working memory load consists of 9 floats, a float[] of size 4,

the vectorsSent list to which an element is added, and a String (the

MQTT message). We assume the memory load of a float is O(1)

and the memory load of a float[] or list is equal to its length. The

memory load of the vectorsSent list is equal to 4 times its length as

each element in the list is a float[] of size 4. We may approximate

the working memory load as:

𝑀𝑒𝑚𝑜𝑟𝑦𝐿𝑜𝑎𝑑𝑠𝑒𝑛𝑑 = 13 + (𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆𝑎𝑣𝑒𝑑𝑉𝑒𝑐𝑡𝑜𝑟𝑠 ∗ 4) + 𝑆𝑡𝑟𝑖𝑛𝑔

9

	Abstract
	1 Introduction
	Acknowledgments
	2 Working principle of the used haptic display
	2.1 Phantom tactile sensation
	2.2 Apparent tactile motion
	2.3 Extension to 2D grid

	3 The haptic sleeve
	3.1 Original sleeve
	3.2 Code adjustments

	4 Algorithm development
	4.1 Existing mouse-movement to vector algorithms
	4.2 Requirements
	4.3 Early iterations
	4.4 The developed algorithm
	4.5 Implementation

	5 Verification
	6 Experiment design
	6.1 Procedure of the experiment

	7 Complexity and efficiency
	7.1 Reasoned complexity
	7.2 Profiler

	8 Discussion
	8.1 Limitations of the project
	8.2 Limitations of the algorithm
	8.3 Limitations of the hardware
	8.4 Contribution

	9 Conclusions
	10 Outlook
	10.1 Answering SQ2
	10.2 Complexity
	10.3 User Interface

	A Sleeve reference
	A.1 Setup
	A.2 Standard MQTT message
	A.3 Common errors and problems

	B Algorithm reference
	B.1 Setup
	B.2 MQTT
	B.3 Common errors and problems
	B.4 Pseudo-code

	C Complexity reasoning for separate tasks
	C.1 Drawing a frame
	C.2 Updating the current vector
	C.3 Accuracy checks
	C.4 Resets
	C.5 Recovery after a failed check
	C.6 Repairing broken position lists
	C.7 Passed check
	C.8 Sending a vector

