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Need for Convergence Speed: How do graph metrics
influence the convergence speed of Markov chains?
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I. INTRODUCTION

Markov chains are systems that can describe the probabili-
ties of going from one state to another. Usually, they are drawn
using graphs or transition matrices. Markov chains have real-
world applications that can help us predict the future based on
recent data. Forecast predictions [6] and Google search results
[3] are a few examples of where Markov chains are being used.

It has been researched how to converge Markov chains [1,
2] but there has not been any research on how graph metrics
influence the convergence speed of Markov chains. Discrete-
Time Markov Chains (DTMC) models are probabilistic sys-
tems, that eventually converge to an equilibrium state. The
convergence speed measures how long it takes to reach this
equilibrium. This is an important parameter because it also
plays a role in the robustness of a system: if the convergence
is fast, then the system will return to equilibrium quickly.

To conduct this research I will try to find and analyse real-
world examples of DTMC. I will look at these matrices to try
and generate matrices that are similar enough to real-world
data. I need to generate some data because I was not able to
find a lot of publicly available Markov chains and I needed a
larger dataset to work with. For all of these matrices, I need
to identify and extract important metrics that could influence
the convergence speed. Finally, I will use Pearson Correlation
Coefficient (PCC) analysis to identify the correlation between
the convergence time and the different metrics.

I will first explain some definitions and ground truths
about the Markov chains. Then, I will go through the data
collection/generation for the experiment. Finally, I will explain
what conclusions I was able to make based on my experiments.
I found out that the graph metrics with the largest correlation
were the diameter, the radius, and the Second-Largest Eigen-
value (SLE). Surprisingly, graph size turned out to play no
role in the convergence speed. Overall, this study suggests
that the number of states of a Markov chain is not important
for its convergence speed, a more important metric to take into
account is the longest hop count between any two states and
the SLE.

As we will see, this study suggests that some graph-theoretic
metrics can have a strong influence on the convergence speed
and some do not.

II. DEFINITIONS & THEOREMS

A. Markov Chains

Markov chains are stochastic models that show the possible
sequence of events. In these Markov chains, the probability of

going from one state to the other only depends on the previous
state - Markov property [7]. More formally: a Markov chain
consists of a finite number of possible states I (also known
as the state space). A Markov chain can be represented by a
|I|×|I| = n×n transition matrix P that shows the probability
of going from one state to another. Each row of the transition
matrix sums up to 1 (i ∈ 1, . . . , n;

∑n
j=1 pij = 1, where pij

is the probability of going from state i to state j, and n is the
number of states: |I| = n)

P =


p11 p12 · · · p1n
p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 . . . pnn

 (1)

If x(n) is a probability vector representing the state of the
system at time t, then the state of the system at time t + 1
is given by x(n+1) = x(n)P . Then if we have the probability
distributions x(0), x(1), . . . , x(n), . . . at some time t the distri-
bution x(t) will become a stationary vector (Definition II.1).
This is when the Markov chain has converged. This stationary
vector is independent of the original input vector. Each column
in this final vector represents the average probability of being
in that state. The sum of the vector is equal to 1, as the
total sum of all probabilities should be 100% (law of total
probability).

Definition II.1. A distribution x is called a stationary distri-
bution of a Markov chain P if xP = x.

Not all Markov chains can converge. We need to establish
whether a Markov chain is convergent or not. A sufficient
condition is ergodicity, which is defined as follows:

Definition II.2 (Ergodicity). An ergodic graph is a graph that
is both aperiodic and irreducible.

A graph is irreducible if from any state you can reach any
other state in any number of transitions. In the case of Markov
chains, this means that there is a larger than zero chance to
get from any state to any other state. A more formal definition
would be:

Definition II.3 (Irreducibility). A Markov chain is irreducible
if for all states i, j ∈ I , there exists a t ≥ 0 such that ptij > 0,
where if pij is the distribution at time 0, then ptij is pijP

t.

The Greatest Common Divisor (GCD) of the time periods,
in which the probability of going from state i back to state i is
larger than 0, is the period of that state. A state is considered
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aperiodic when its period is 1. If all states in a Markov chain
are aperiodic then the Markov chain itself is aperiodic. This
can be described more formally in the following definitions:

Definition II.4. Let T (i) = {t ≥ 1 : ptii > 0} be the set of
all time steps for which a Markov chain can start and end in
a state i. Then the period of state i is gcdT (i).

Definition II.5. If P is irreducible, then the period of all states
is equal, or gcdT (i) = gcdT (j),∀i, j ∈ I .

Definition II.6. An irreducible Markov chain is called ape-
riodic if its period is equal to 1, or equivalently, gcdT (i) =
1,∀x ∈ I .

For many Markov chains, convergence can occur for all
initial distributions x(0) and the stationary distribution that
is reached is the same for all of them. In other words, the
stationary distribution is unique. Definition II.7 says that to
have a unique stationary distribution the Markov chain must be
irreducible [5]. This would be satisfied if the graph is ergodic.

Definition II.7. If P is irreducible, then it has a unique
stationary distribution x with x(i) > 0,∀i ∈ I .

Because convergence can take too long to finish I will
consider the process done even without explicitly reaching
a stationary vector but a vector within some small error
margin ε. I measure the distance between the distribution I
have calculated so far x(n), and the stationary distribution
xstationary and the first iteration where ∥x(n)−xstationary∥ =∑n

i=1 |x
(n)
i − xstationary

i | < ε is satisfied I consider the
process complete and measure it in seconds and the number
of iterations. The choice of ε is arbitrary and in my case, I
chose ε = 1 ∗ 10−4. If the time required for my process to
finish was too short I would have chosen a smaller ε, as this
would have helped me visualize the results better. If it was
taking too long I would have increased ε.

B. Graph Metrics

Converting from a matrix P to a graph is trivial. From the
original matrix P that is of size n×n we know that the graph
will have n states. Then each transition is from row to column,
for example, if row 2 of a 3×3 matrix has the values 0, 0.25,
and 0.75 in that order we know that the probability of state 2
going to state 1 is 0%, the probability of going back to state
2 is 25%, and the probability of going to state 3 is 75%. So,
to go from a matrix to a graph we need to traverse the whole
matrix and convert the values in the matrix to transitions.

From the matrices, I extracted the number of nodes and
edges, diameter, radius, average deg, max in- and out-deg, and
the Second-Largest Eigenvalue (SLE). The number of nodes is
the number of states because the states are represented using
nodes in the graph version of a Markov chain. The edges are
the transitions between the nodes. These two metrics are easy
to get from any matrix representation - one dimension of the
matrix is the number of states and the number of transitions is
the amount of non-zero values in the matrix. The eccentricity
of a matrix is the longest hop count from any state to any other
state [4]. The diameter and the radius are the longest and the

shortest eccentricity, respectively. The average in- and out-
degree are the same and so I put them into a single variable
called ”average degree”. It is the sum of all edges divided
by the number of states. The max in- and out-degree are the
largest in-degree for all of the states and the largest out-degree
for all of the states.

I chose the SLE because the largest eigenvalue is always 1
and that would not be an interesting value to consider. Also,
the SLE should be the slowest eigenvalue to converge. A lot
of the eigenvalues were complex numbers so I normalized
them using

√
a2 + b2, where a+ i ∗ b would be the complex

number. Then I compared every graph metric to the time
it took the matrix to converge by using a scatter plot. I
also made a comparison to the number of iterations it took
each matrix to converge. Finally, I calculated the Pearson
correlation coefficient between every graph-theoretic metric
and the convergence speed/number of iterations.

C. Pearson Correlation Coefficient

To analyze the results, I used Pearson Correlation Coeffi-
cient. It is a way to analyze the linear relation between two
variables. The PCC is a value between −1 and 1 [10]. If the
value is −1, it means that with the increase of the variable x,
the variable y decreases. If it is 0, it means that there is no
linear correlation between the two variables. If the value is 1
with the increase of variable x, variable y also increases.

There is a theorem by Wielandt [9] to verify if a matrix is
ergodic:

Theorem 1. Markov chain is ergodic if and only if all elements
of Pm are positive, where m = (n− 1)2+1, n is the number
of states, and P is the transition matrix.

III. DATA COLLECTION & GENERATION

I want my research to be as useful as it could be for real
applications and for that my data analysis should be on as
much real-world data as possible. Unfortunately, there is not
enough public data on real-world Markov chains. For that
reason, I decided to generate matrices myself. The idea is to
make a wide variety of matrices with many different metrics
so that I can cover any possible case.

A. Real-World Data

I wanted to use real-world DTMC examples as my data
from [8], but I was restricted in two ways. First, I was not
able to use some of the Markov chains because they required
too much memory and time to convert from a file to a Python3
matrix. For example, the largest one is the ”Bluetooth Device
Discovery” dataset which consists of over 3.4 billion states.
The other restriction was that the smaller dataset consisted of
matrices that were not ergodic. That meant that I cannot use
them for this research.

B. Data Generation

I generated two sets of matrices from size 10 × 10 up to
200×200. For each matrix size, I also generated 10 matrices,
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to generate some randomness. The first set of matrices is
generated with a certain percentage of the row containing 0s.
For example, I would start the first of the ten matrices of size
100×100 with 25% of the row as 0s. Each new one would have
more 0s than the last one up to 75% of the row is 0s. I did this
because the first matrices that I generated did not require any
number of 0s on a row and this caused most of my matrices
to be complete. This means that the complete matrices of the
same size had the same values for all graph-theoretic metrics
and as such did not provide much information to analyse.

The second set of matrices was generated by first connecting
all nodes in a circle. This helped me not have to worry if the
generated matrices are irreducible as each node can reach any
other node. Then on each row, I added a random number of
edges between 1 and 10. This helped me get more diverse
values for the radius and diameter. In the previous set, the
values for these two metrics were constants (all values were
either 2 or 3). All of the data and code can be found at https:
//github.com/KalinD/ResearchProject.

IV. RESULTS

To visualize the results I plotted them using scatter plots.
Figure 1 (1k) and (1l) shows that with the increase in the
number of nodes, the convergence time almost does not
change. This is further shown after checking the PCC for this
metric: −0.04 for the number of iterations. A PCC value that
is close to 0 means that there is no linear relation between the
variables.

The following metrics turned out to have a high positive (if
x increases so does y) correlation - the diameter, the radius,
and the normalised Second-Largest Eigenvalue. I expected
the SLE because this should be the slowest eigenvalue to
converge, and so the larger it is the slower the convergence
should be. In this case, this means that more iterations were
expected. The PCC for these metrics is between 0.69 and 0.75
and they are the only graph-theoretic metrics with a positive
correlation. The high PCC of the radius and diameter can be
explained by what they represent. The longer hop count from
any state to any other state means that it will take longer for
the convergence to reach all states from any random initial
state.

The rest of the metrics - edges, average degree, and max
in- and out-degree, seem to have a negative (if x increases,
then y decreases) correlation. This makes sense as the number
of edges is increased so are the other three metrics. Also, if
the number of edges is increased the radius and diameter will
decrease. This explains the negative correlation compared to
the positive one from the radius and diameter. The negative
correlation of these metrics is not that big (the largest negative
correlation is −0.39). So, they do not seem to have a big
influence on the number of iterations.

Table I contains the PCC for all graph metrics that I have
analysed. The graphs in Fig. 1 visualize some of the relations
between the graph-theoretic metrics. For Fig. 1 the y-axis is
the number of iterations it took for the matrix to converge and
the x-axis is the metric corresponding to the label under the
graph.

(a) Average Degree (b) Log Scale Average Degree

(c) Diameter (d) Log Scale Diameter

(e) Number of Edges (f) Log Scale Edges

(g) Max In-Degree (h) Log Scale Max In-Degree

(i) Max Out-Degree (j) Log Scale Max Out-Degree

https://github.com/KalinD/ResearchProject
https://github.com/KalinD/ResearchProject
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(k) Number of Nodes (l) Log Scale Number of Nodes

(m) Radius (n) Log Scale Radius

(o) SLE (p) Log Scale SLE

Fig. 1: Relation Between Graph Metrics and Number of
Iterations to Converge (the blue dots are from the first dataset
and the red ones are from the second dataset)

For the graphs and analysis, I decided to focus on the
number of iterations rather than the convergence time be-
cause the number of iterations is a more consistent variable.
Convergence speed can depend on other factors such as the
processor, whether there are other processes active, etc. Even
running the same matrix on the same machine produced
differences in timing. Meanwhile, the number of iterations for
a specific matrix will be the same on any machine under any
circumstances.

TABLE I: Pearson Correlation Coefficients

# Nodes # Edges Diameter Radius
Conv. Speed 0.657474 0.927393 −0.258087 −0.220808
# Iterations −0.040890 −0.305138 0.751935 0.738339

Avrg Deg Max In-Deg Max Out-Deg Norm. SLE
Conv. Speed 0.850529 0.850400 0.855699 −0.471324
# Iterations −0.380435 −0.381875 −0.392037 0.690957

V. CONCLUSION

In conclusion, when wanting to return fast to an equilibrium
state for Markov chains a few important graph-theoretic met-
rics to consider are the diameter, the radius, and the Second-
Largest Eigenvalue. The smaller these three metrics are, the
faster the system can return to an equilibrium state.

VI. FUTURE WORK

A downside to my research is that I only used generated
matrices. Real-world Markov chains could have slightly dif-
ferent properties and results. To further develop this paper one
might find and analyze Markov chains that were generated
from real-world events and compare their findings to mine.
Another option is to try and determine the parameter values
of benchmark DTMCs to generate similar DTMCs that are
also ergodic.
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