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Face recognition systems are used to identify a person’s face by detecting
patterns in their facial features. It is possible to throw off the FR system by
deliberately obfuscating the facial patterns the FR system looks for, while
at the same time keeping the image unchanged to the human eye. Due to
the large range of potential adversarial attack methods, the goal of this
research is to improve robustness of FR systems by training the model using
obfuscated images as well as regular images, instead of just regular images.

Additional Key Words and Phrases: Identity obfuscation, de-identification,
adversarial attack, face recognition.

1 INTRODUCTION
Uploading a face image on social media entails much more than
one might think. While it appears to be an innocent act of sharing a
photo with friends, the social media platform or a third party, could
be "scraping" your face for their gain, using a face recognition (FR)
system. For example, ClearView AI [8] has gathered a database con-
taining billions of photos posted on various social media platforms
without anyone’s knowledge, by developing their own FR model.

Because these FR systems are trained to identify a person’s face
by detecting patterns in their facial features, they are vulnerable to
any obfuscations made to an image designed to mask these patterns.
Additionally, this method keeps the visual change to the photo to
a minimum, such that the photo still looks the same to the human
eye. These adapted images can be referred to as de-identified images,
obfuscated images or adversarial attacks. However, these obfuscation
methods can also be used maliciously to compromise beneficial FR
systems, like photo tagging in social media or automated border
control.

Furthermore, obfuscation methods can have a wide ranging com-
plexity: from simply changing only one pixel in an image[15] (this
is not effective however), to using a Generative Adversarial Net-
work (GAN) to generating a "mask" which is added to the image[3].
Due to this large range of potential adversarial attack methods that
can be used to fool widely used FR systems, it is essential to make
FR systems more robust to small perturbations of their inputs[14].
Therefore, the goal of this research is to improve robustness of FR
systems by training the model using obfuscated images as well as
regular images, instead of just regular images.
Achieving this will improve upon recent research, in which it is

shown that two different, regular images of the same person can
accurately be verified by FR systems. However, when the FR system
is given a regular image and an obfuscated image, or the two images
are both obfuscated before being inputted into the FR system, it can
easily be fooled [9, 16].
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1.1 ResearchQuestions
This leads to the following research question:
How will training an FR model using obfuscated images affect the
ability of said model to correctly verify a given obfuscated face
image?

In order to help answer this question, or to help solidify the
findings in this research, these questions will be answered as well:

• How does a popular FR model trained with only regular im-
ages perform against a specific adversarial attack?

• If an FR system is trained with images generated by one
obfuscation method, is it more robust to other methods as
well?

2 BACKGROUND

2.1 Related Work
As it is essential to keep ahead of the developing obfuscation meth-
ods, in order to protect the FR systems, there is plenty of research
being done in this field. In the paper written by Goodfellow et al.[5] ,
the possibility of using adversarial images to improve the robustness
of FR systems is first introduced.

The principle of incorporating adversarial images in the training
stage has been research extensively since then. These are some
notable developments in the field:
Defense-GAN[11] proposes a defense mechanism based on a

GAN: trained on unaltered images, one model is trained to detect
whether a given image is adversarial or not. The other model is
trained to generate these inputted images with the goal to prevent
the first model from labelling it as adversarial.

Akhtar et al. [1] propose, amongst other defense methods, a way
to effectively train their model using a combination of unaltered
images in combination with images containing adversarial pertur-
bations generated with multiple algorithms. This model is then used
to detect whether or not a given image is perturbed.

Parseval Networks [2] has developed another defense method by
training a neural network using gradient descent and adversarial
images. As a result, the system matches the state-of-the-art in terms
of accuracy, while being more robust to adversarial attacks.
PixelDefend [13] combines adversarial training with ’feature

squeezing’, a form of pre-processing: Before the classification, all im-
ages are reduced in color range and smoothed, leading to an increase
in robustness. In the same paper, another defense method developed
byWarde-Farley & Goodfellow [6] is explored. This method is called
’label smoothing’ and softens the ground-truth labels in the training
data in an attempt to prevent overfitting. However, the paper proved
that this method is only effective against simple attacks, making it
less robust than the other approaches.

2.2 Obfuscation Methods
There are two approaches when it comes to generating obfuscated
images. The first approach is to generate a specific perturbation for
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each image, the other approach is to train a model which generates
an obfuscated image for any given image.
Optimisation method

The optimisation method is based on an optimization algorithm:
For a given image, a lower-dimensional representation of the image
is created, called an embedding. This embedding is then used to
explore the latent space. The latent space is a representation of a
dataset in which items, in this case images, resembling each other
are positioned closer to one another. The optimization algorithm
generates an embedding in the latent space that differs from the
original embedding as much as possible.

Fawkes, Adversarial Privacy-preserving Filter (APF) and One Per-
son One Mask (OPOM)[12, 16, 17] are models designed to generate
obfuscated images using a ’cloaking’ algorithm. For a given image,
it computes a small set of perturbations in the form of minor pixel
changes, to shift the embedding of the image in latent space. The
goal is to move the embedding of the original image to the latent
space of a another image of a different person, making the classifier
give the image the incorrect label or in the case of verification, move
the embedding as far away from the original image as possible. In
the case of Fawkes, the algorithm will add image-specific cloak pat-
terns throughout the user’s images in order to make it even more
difficult to identify/verify the images.
Learning method

AdvFaces and the method developed by Kelly et al. [3, 9] both gen-
erate obfuscated images by training a model. AdvFaces uses a GAN
approach, whereas Kelly et al. focus on training a model to move
an image’s embedding in latent space as much as possible, similar
to models like Fawkes. The advantage of the learning method is
that, once a model is trained, it can be easily shared and is able to
generate obfuscated images faster compared to the optimisation
method.

2.3 ArcFace
ArcFace [4] is a state-of-the-art FR system, obtaining higher veri-
fication accuracy than similar systems. The reason for this is the
ArcFace Loss function used to train the model. As shown in figure
1, Softmax, another loss function, is able to seperate the identities,
however the boundary regions are unclear. ArcFace, on the other
hand, is able to make this clear by penalizing intra-class distance
during training, making the predictions more accurate.

A problem with ArcFace, however, is that it is not trained on any
obfuscated images. This makes the model vulnerable to obfuscation
attacks, as is displayed in the AdvFaces paper [3].

3 PROPOSED SYSTEM
In this research we will take ArcFace as a basis, and re-train the
model with the aim that this ’finetuned’ version of ArcFace will be
more robust against adversarial attacks compared to the standard
model. we will re-train ArcFace on a regular dataset, as well as an
obfuscated version of the same dataset. The reason for taking two
datasets instead of just the one obfuscated dataset is to prevent
the model from being overfitted; the model should still be able to
correctly verify normal images.

(a) Norm-Softmax (b) ArcFace

Fig. 1. Figure taken from ArcFace paper [4] used to illustrate the difference
between Softmax and ArcFace loss on 8 identities with 2D feature represen-
tation.

The first step for re-training the ArcFace model is to reshape
the final layers to have the same number of outputs as the number
of classes in the datasets we are using. This is due to the fact that
ArcFace is trained as a classifier (suited for identification) on a
different dataset, containing a different number of identities. In
order to use the finetuned model for verification, we will remove
the classification layer after training.

The second step is to create a suitable optimizer:While re-training
the model, during each epoch the model’s weights need to be modi-
fied and the loss function needs to be minimized. An optimizer is a
function that modifies the attributes of the network, such as weights
and biases. This will help in reducing the overall loss and improve
the accuracy [7]. We will use the Adam optimizer [10] because it is
known as a benchmark for optimization algorithms.
The final step is to define a loss function, we will use Cross

Entropy Loss as this is what ArcFace uses, and run the training
function:

Algorithm 1 Pseudocode for training function

1: for each 𝑒𝑝𝑜𝑐ℎ do
2: for each 𝑏𝑎𝑡𝑐ℎ ∈ D𝑎𝑡𝑎𝑠𝑒𝑡1 do
3: - set images’ gradients to zero
4: - forward images through ArcFace
5: - forward images through classifier
6: - compute CrossEntropyLoss
7: - perform BackPropagation
8: - perform optimization step
9: end for
10:
11: for each 𝑏𝑎𝑡𝑐ℎ ∈ D𝑎𝑡𝑎𝑠𝑒𝑡2 do
12: . . . ⊲ repeat the same steps for 2nd dataset
13: end for
14: end for
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Fig. 2. Top row: Some example images of the FRGC dataset. Bottom row:
Obfuscated counterparts (using AdvFaces).

3.1 Training datasets
Trough-out this research we will be using several normal datasets,
as well as obfuscated ones. To re-train the ArcFace model, we will
be using two datasets:

• The Face Recognition Grand Challenge (FRGC) dataset. This
dataset contains roughly 20000 images of 482 different identi-
ties. The images themselves are all the same size; cropped to
fit the face, have a similar, single-color background and are
centered. The identities are all photographed in portrait mode,
but facial expressions differ. Also, the lighting is variable.

• The second dataset is generated by obfuscating each image in
the FRGC dataset, using the AdvFaces [3] obfuscation method.
As shown in Fig. 2, to the human eye the images remain
mostly unchanged (when looking closely some differences
can be spotted). However, these images will provide a lot
of information gain to the model, as structurally they have
changed as much as possible due to the obfuscation.

3.2 Evaluation Metrics
In order to measure the performance of a model, we can compute
the Equal Error Rate (EER) using these formulas (Eq. 1, 2):

𝐹𝑎𝑙𝑠𝑒𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 =
#𝐹𝑎𝑙𝑠𝑒𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠

#𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
(1)

𝐹𝑎𝑙𝑠𝑒𝑅𝑒 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
#𝐹𝑎𝑙𝑠𝑒𝑅𝑒 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

#𝑉𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
(2)

The False Acceptance Rate (FAR) and the False Rejection Rate (FRR)
can be used to compute the Equal Error Rate:

𝐸𝑞𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝐹𝐴𝑅 + 𝐹𝑅𝑅

2
(3)

The Equal Error Rate (EER) indicates that the amount of false ac-
ceptances is equal to the amount of false rejections. Therefore, the
lower the equal error rate value, the higher the accuracy of the
system.

Each time a model is tested on a validation dataset, a correspond-
ing histogram is generated. The histogram plots the distributions of
the genuine and impostor comparison scores. This graph acts as a
visualization of the EER, so combined they can be used to compare
the performances of different models.

Fig. 3. Some example images of the PUT dataset.

Another metric for measuring performance is the Attack Success
Rate (ASR).

𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
#(𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑠 < 𝜏)

𝑇𝑜𝑡𝑎𝑙#𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
(4)

Here, 𝜏 is the decision threshold at which the FRR of the corre-
sponding FR system is minimal under the constraint that the FAR <
0.1%.

3.3 Validation datasets
Once the model has been re-trained, we will use several validation
datasets to help answer the research questions:

• Another part of the FRGC dataset containing roughly 3000
images of 86 identities, of which none of the identities are in
the training dataset.

• Two datasets generated by obfuscating each image in the
FRGC validation dataset using the Fawkes [12] obfuscation
method, as well as the one create by Kelly et al. [9].

• A dataset similar to the FRGC dataset, but with new identities,
backgrounds, facial expressions and some images captured
from different angles. This dataset is called the PUT dataset.

• A dataset generated by obfuscating each image in the PUT
dataset using the AdvFaces [3] obfuscation method.

4 EXPERIMENTS
We re-train the the model for 10 epochs, with a batch size of 32 and
a learning rate of 0.0001. The values of these parameters are mainly
found using a trial-and-error approach, i.e. changing values until
the performance no longer increases. Once the finetuned model is
finished, we can compare its performance with the regular ArcFace
model.

4.1 Results of Additional Training
In this experiment we first obtain a baseline by testing the perfor-
mance of the regular ArcFace model on the FRGC validation dataset
and the obfuscated FRGC validation dataset. Additionally, in order
to test how the model handles the problem of comparing a regular
image to an obfuscated image, we use both of the datasets together
to intertwine regular images with obfuscated images.
Looking at Fig. 4, as the ArcFace model is trained on regular

images only, it can verify regular images with extreme accuracy
(Fig. 4a). However, once the model is tested on obfuscated images it
becomes apparent how effective the AdvFaces obfuscation method
is, due to the significant increase in EER (Fig. 4c).
Afterwards, we run the finetuned model on the same datasets.

Compared to the regular ArcFace model, even though a minor bit
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(a) EER = 0.165% (b) EER = 0.181%

(c) EER = 5.769% (d) EER = 0.353%

Fig. 4. Performances of ArcFace model (left column) and re-trained model
(right column) on FRGC validation datasets. Top row: normal vs. normal.
Bottom row: normal vs. obfuscated.

of performance is lost on the regular FRGC dataset (Fig. 4a, b), the
results show a drop in EER (Fig. 4c, d). Additionally, by using the
obfuscated FRGC dataset, the AdvFaces method obtains an Attack
Success Rate of 91.0% on the ArcFace model, whereas the finetuned
model obtained an ASR of 0.55%, indicating the proposed training
method is effective.

4.2 Testing robustness on new data
The ArcFace [4] model is trained extensively on a dataset containing
millions of images, leading to high robustness. Since the datasets
we use are comparatively much smaller in size, the model has been
limited in its training data therefore it is generally more difficult to
obtain the same level of accuracy. Following this, we test whether
the finetuned model has retained its original robustness. Similar to
the previous experiment, we use the PUT dataset, the obfuscated
PUT dataset, then we combine the two datasets to test regular vs
obfuscated image scenarios. In Fig. 5 the results of the ArcFace
model compared to the finetuned model are shown.
The first observation is that both models are less successful on

the PUT datasets (Fig. 5) compared to the FRGC datasets (Fig. 4).
It is especially surprising that the ArcFace model is performing
significantly worse on the regular PUT dataset (Fig. 5a) compared
to the regular FRGC dataset (Fig. 4a). An explanation for this could
be the fact that the PUT dataset contains more variety in their
face images than the FRGC dataset, including photos taken under
pose, instead of frontally. Comparing these straight angles with side
angles could be more difficult for the model.

Looking at Fig. 5b, d, f, in each histogram the EER has increased
compared to performances on the FRGC datasets (Fig. 4b, d, f). This

(a) EER = 0.843% (b) EER = 1.567%

(c) EER = 9.623% (d) EER = 1.771%

Fig. 5. Performances of ArcFace model (left column) and re-trained model
(right column) on PUT validation datasets. Top row: normal vs. normal.
Bottom row: normal vs. obfuscated.

shows that the finetuned model has lost some of the robustness,
being less competent in verifying new types of face images.

When comparing the ArcFace model (Fig. 5a, c) against the fine-
tuned model (Fig. 5b, d), the results show that the finetuned model
is considerably more capable of verifying obfuscated images as well
verifying normal images against obfuscated images. Using AdvFaces
again to create the obfuscated PUT dataset, an Attack Success Rate
of 76.7% on the ArcFace model is obtained. On the finetuned model,
the ASR was 7.9%. This shows that the proposed model was effec-
tive to some degree, but compared to the ASR of the FRGC dataset
(experiment 1), it is clear some robustness has been lost. However,
we hypothesize using bigger datasets for training could have lead
to increased performances on the PUT datasets.

4.3 Testing robustness on new obfuscation methods
The previous two experiments have shown that an FR model can
verify obfuscated images relatively well when it is trained on ob-
fuscated data, especially compared to a model trained on regular
images only. As another test of robustness we experiment on two
different obfuscation methods to find out whether the finetuned
model can still perform accurately. For this experiment we use an
optimisation-based obfuscation method, namely Fawkes [12], and a
learning-based obfuscation method, the method developed by Kelly
et al. [9].

Looking at the results (Fig. 6, 7) the finetuned model significantly
outperforms the ArcFace model in both cases. This is confirmed
by the Attack Success Rates we obtained from the corresponding
obfuscation methods. Firstly, the Fawkes method obtained an ASR
of 90.7% on the ArcFace model and an ASR of 0.65% on the finetuned
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(a) EER = 2.537% (b) EER = 0.319%

(c) EER = 1.748% (d) EER = 0.364%

Fig. 6. Performances of ArcFace model (left column) and re-trained model
(right column) on obfuscated FRGC validation dataset using Fawkes. Top
row: obfuscated vs. obfuscated. Bottom row: normal vs. obfuscated.

model. Additionally, the method from Una et al. obtained an ASR
of 99.0% on the ArcFace model and 77.4% on the finetuned model.
Once again, this shows that the additional training was effective.
However, Fig. 7 and the Attack Success Rate of 77.4% show that this
obfuscation method was still able to fool the finetuned model at a
high rate.

5 CONCLUSION
In this research we showed that a Face Recognition model trained
only on regular images is vulnerable to adversarial attacks. This
highlights the effectiveness of state-of-the-art obfuscation methods,
as the model could neither reliably verify obfuscated vs. obfuscated
images, nor normal vs. obfuscated images.

We then re-trained the same Face Recognition model on regular
images, as well as obfuscated images. After comparing the perfor-
mances of this re-trained model to the original, it showed the new
training approach was successful. The re-trained model was able
to perform on a similar level on regular images. However, when
comparing obfuscated images, especially when comparing normal
images against obfuscated images, the re-trained model outperforms
the regular model.

In order to fully test the finetuned model’s robustness, we experi-
mented on a slightly different dataset containing some more difficult
angles and facial expressions. Additionally, we experimented with
two obfuscation methods the finetuned model was not trained on,
in order to see whether the re-training would lead to an increase in
performance against these obfuscation methods as well. The results
of these experiments showed that in each case, the finetuned model

(a) EER = 16.247% (b) EER = 6.311%

(c) EER = 20.994% (d) EER = 10.065%

Fig. 7. Performances of ArcFace model (left column) and re-trained model
(right column) on obfuscated FRGC validation dataset using method from
Kelly et al. Top row: obfuscated vs. obfuscated. Bottom row: normal vs.
obfuscated.

performed significantly better at verifying obfuscated images com-
pared to the regular model. However, in some cases the Equal Error
Rate was not low enough to call the model completely robust and
the corresponding Attack Success Rates confirmed this.

This research has lead to some potentially useful insights, worth
exploring further. For example, re-training the FR model with a
more extensive dataset could lead to an increase in robustness of the
model. Furthermore, using a different loss function that supports the
volatility of training on alternating regular images and obfuscating
images more might lead to promising results.
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A APPENDIX

ArcFace Finetuned
FRGC normal vs. obfuscated (AdvFaces) 91.0 0.55
PUT normal vs. obfuscated (AdvFaces) 76.7 7.90
FRGC normal vs. obfuscated (Fawkes) 90.7 0.65
FRGC normal vs. obfuscated (Una et al.) 99.0 77.4

Table 1. Table giving an overview of all the Attack Success Rates obtained
in this research (in %).

(a) EER = 1.616% (b) EER = 0.307%

(c) EER = 3.279% (d) EER = 2.615%

Fig. 8. Additional scores of obfuscated vs. obfuscated comparisons. Perfor-
mances of ArcFace model (left column) and re-trained model (right column)
on... Top row: FRGC validation dataset. Bottom row: PUT validation dataset.
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