IOTA-MSS: A Pay-per-Play Music Streaming
System based on IOTA

Daniel Melero Martinez
EEMCS
University of Twente
Enschede, Netherlands
d.meleromartinez @ student.utwente.nl

Abstract—Over the past few years, music streaming has
become the main way for users to listen to their favorite songs.
Music Streaming Services (MSS) have become the most influential
companies over the music industry, with Spotify reaching 406
million monthly active users as of the end of 2021. Unfortunately
many artists argue that MSS have created a system which
do not fairly reward their music. To address the matter, this
paper proposes the implementation of a Pay-per-Play Music
Streaming System called IOTA-MSS using the IOTA distributed
ledger technology (DLT). This technology provides a secure
and scalable platform to perform micro-transactions. IOTA-MSS
takes advantage of these characteristics to create a platform in
which users can play and distribute music synchronously with
the corresponding payments set by its right holders.

I. INTRODUCTION

Since 2017, Music Streaming Services (MSS) have become
the foremost contributor to the global recorded music indus-
try’s revenue. In the coming years, the number of MSS is
expected to continue increasing due to the involvement of large
technology companies while the number of physical sales keep
decreasing [1]].

The best example of a music streaming platform is Spotify,
which currently leads the music industry due to its large
amount of monthly active users which reached 406 million
at the end of 2021 [2]. As opposed to its competition (Ap-
ple, Google and Amazon), Spotify only focuses on audio-
streaming. Part of its revenue comes from advertising but
the large majority comes from premium subscriptions. The
way Spotify rewards the right holders of the music in their
platform is based on a service-centric model where “an artist’s
royalty is calculated by taking the number of his or her Spotify
streams divided by the total number of Spotify streams. Then,
seventy percent of the revenue is given to the rights holder
(often a record label or publisher), based on the artist’s own
royalty rate” [3]. Many argue that this model do not adequately
serve the musician or their audiences, these critics are further
explored in the following subsections.

A. User’s privacy

Most MSS also contain free services to attract new users and
hopefully convert them into paying subscribers. As MSS user-
bases grow their operational costs do too and unfortunately
many platforms have difficulties increasing the number of
paying users which produces the majority of their income.

To stay competitive “streaming platforms have increasingly
refashioned themselves as enterprises whose business extends
beyond music-related services to encompass the collection,
aggregation, and exchange of user data” [4]]. This problem
can be seen in Spotify, the largest music streaming platform,
which in 2015, changed their privacy policies to allow their
application to collect a variety of personal information from
their users’ devices. This example shows that the current
service-centric system used by most MSS may not be adequate
enough to maintain the privacy that music audiences require.

B. Musician’s compensation

Some argue that the current system do not benefit music
right owners either, as it risks compromising a fair envi-
ronment for the music industry due to “the nature of the
royalty arrangements with the streaming platforms, the role
of playlists, access to critical data, and the strong negotiating
power of the major labels” [S]]. This anti-competitive behaviour
which is currently in place tends to put at a disadvantage
independent musicians which do not have the resources offered
by major labels. In most MSS, the main ways for musicians
to increase their revenue are mostly out of reach. They can try
to get a better contract with the right holders of their music,
which should technically be achievable by themselves. But the
other existing ways: increasing the overall revenue of MSS or
convincing the MSS to share a larger portion of their revenues
with right holders, are not directly in their power specially
for independent musicians [6]. This is a good example of
how musicians are not in control of how their music is being
distributed and monetized.

C. User’s inability to support musicians

The lack of a sense of control can also be said for the users
of these platforms as they are required to pay a monthly fee
which do not correlate with their use of the platform. ”In the
present service-centric system, even if that user never played a
single recording by superstars such as Drake or Taylor Swift,
a proportion of that user’s subscription fee would go to the
owners of rights to those superstars’ recordings and underlying
compositions” [6]. This means that even if musicians have
an established audience willing to pay for their music, they
might still be unable to support themselves only through their
published material.

D. Research Questions

Clearly the current state of MSS do not seem to adequately
benefit the producer nor the consumer of the music industry.
The right holder of the music has no say on the value of their
product and the user cannot control who will benefit from
their monthly subscription. It can be argued that to improve
the competitive environment of the music industry “creations
should be rewarded by either their mass appeal or their ability
to command a higher price from the consumer” [3]. This is
a known consequence of other models as the one based on
voluntary payments where it was concluded that users are
willing to pay a fair price for the music they enjoy based
on “retailer’s personality (values and culture) and the level of
reciprocity in the retailer-consumer interaction” [7].

A decentralised solution is deemed to be necessary as the
urge to generate profits for shareholders, which seem to be
the origin of the mentioned critics, cannot affect the way
the platform runs. This paper proposes a novel decentralised
music streaming application based on a pay-per-play model.
The solution is implemented using the distributed ledger IOTA
which provides a secure and scalable platform to perform
micro-transactions. The solution allows music right holders
to decide the value of their music and users to only pay for
the music they listen to. The goal of this paper is to provide
a thorough response to the following question:

How can IOTA benefit both the supply and demand sides of
the music industry?

To reach a detailed conclusion the paper first responds to
the following questions:
o How can IOTA smart contracts be used to perform rapid
high-throughput transactions?
e How can data be transmitted in parallel with its corre-
sponding payment?
o How can IOTA be used to ensure user’s privacy?

The structure of this paper is as follows, Section [[T|describes
the methodology used to answer the research questions. Sec-
tion [[II] covers a literature review on proposed solutions to
similar problems. Section provides a detailed explanation
of the solution proposed by this paper and Section [V] collects
the results of the analyses ran on the implementation. Finally,
Section [VI| concludes the paper and discusses some ideas for
future research to improve the proposed solution’s security and
reliability.

II. METHODOLOGY

To provide a thorough answer to the previously established
research questions, a literature review was first conducted. This
step provides a wide understanding on the different solutions
used by academic literature to address similar questions. An
overview of the IOTA white papers was then performed
to be able to understand the inner workings of the tangle
[8] as well as the IOTA Smart Contract Protocol [9]. The
main takeaways from this research were used to implement a
working prototype which could perform the basic functionality

required. Using the implementation, an analysis of the general
performance of the proposed solution was conducted. The
results of which are used to answer the different research
questions.

III. RELATED WORKS

There exist a few proposed decentralized applications aimed
at music streaming in the literature. However none of these
existing solutions uses the IOTA distributed ledger.

The most relevant work is [10] which proposes a pay-per-
play music application based on IOTA. This application uses
the Ethereum blockchain to manage the payment transactions
and the IPFS protocol to distribute the music. The blockchain
is only used to keep track of transactions as well as to publish
smart contracts that manages the different intended recipients.
In the model described by this paper, the user is able to listen to
the songs for free with the option of tipping the artist, for each
new block mined in the blockchain 25% of the earnings are
divided between the artists in a per-stream basis and the rest is
rewarded to the miners. Finally, the songs are stored in IPFS
nodes that would be maintained by the artists themselves. This
project takes advantage of the Ethereum Smart Contracts to
create a system in which music right owners can be rewarded,
almost in real time, based on the amount of streams that they
receive. Unfortunately, the disadvantage of using Etheureum is
that the platform is not scalable and therefore could not replace
the current music streaming platforms. Also because the users
do not have to pay directly for each stream it means that the
current click-fraud that affects major streaming platforms [3]]
would also be detrimental to the proposed system.

Even though there is no proposed solution for music stream-
ing based on IOTA, there exist some research that proposes
data marketplaces based on IOTA. In a data marketplace there
are two types of users, [oT devices’ owners which have access
to a large amount of sensor data and users who are interested in
the sensors’ data. These marketplaces do not require to stream
the data but are still comparable to music streaming platforms
as the data transferred could also be audio files.

First, using IOTA 2.0 Smart Contracts, a decentralized
marketplace to trade energy in interconnected micro grids is
proposed in [[L1]]. In this project an IOTA Smart Contract (ISC)
is implemented to allow users to perform uniform double-
auctions with their excess energy as the product. The project’s
setup consists of a separate wasp chain holding the main ISC
for each micro grid. both the seller and the buyer are allowed
to place bids on the price of energy for their micro grid at each
time slot. Finally the same ISC implementation is tested oft-
ledger in both IOTA and Ethereum and it is determined that
IOTA is better suited for the platform as the cost to interact
with the ISC is fixed and considerably lower than the Ethereum
gas fees. Also thanks to the dynamic Proof of Work used in
IOTA 2.0 each transaction consumes much less energy than
transactions in the Ethereum blockchain.

Also using IOTA 2.0 Smart Contracts, [12] documents the
potential implementation of a data marketplace based on the
IOTA Smart Contract Protocol (ISCP) which main focus is

on preserving the privacy of its users. To achieve privacy, the
use of a decentralized data storage like IPFS or Swarm to
store the encrypted data sold in the marketplace is proposed
as a medium that do not require buyers and sellers to interact
directly. To achieve security, the use of a distributed certificate
authority is necessary to ensure data authenticity. Finally the
application’s logic would be implemented into three different
L2 chains, each holding a different Smart Contract. There
would be the buyers’ SC and the sellers’ SC which would
run in a public permissionless environment and would allow
buyers and sellers to interact with the platform. The third
SC is called the broker and it is an intermediary between
the buyers’ SC and the sellers’ SC. The broker would run
in a permissioned environment which is technically not a
decentralized solution but it would allow to separate events
concerning buyers and sellers making the task of tracing
the different data deals really difficult and therefore ensuring
users’ privacy.

IOTA 1.5 is used in [[13] to create a new protocol called
Streaming Data Payment Protocol (SDPP). This paper doc-
uments the design of this application layer protocol which
“enables a buyer and seller to easily connect and transact
with each other using micropayments for streaming [oT data”.
This protocol uses three different channels of communication.
The application layer of a standard TCP connection is used to
transmit the sold data. Also, IOTA value transfers are used to
perform the multiple transactions which covers the payment
channel as well as the record medium. Finally the paper offers
an implementation of the protocol which is determined to be
quite slow for streaming due to the IOTA tangle not being
mature enough technology as of 2018. This project uses IOTA
1.0 and therefore do not have access to Smart Contracts as
other solutions do in the literature. Instead the researches use
Masked Authenticated Messaging (MAM) to implement the
record medium.

The same research team that produced the previous pro-
tocol, then used it in [14] to develop a Decentralized Data
Marketplace. This research paper documents its development
and provides the source code of the decentralized application.
In this project, IOTA is only used as the payment channel.
In contrast with the protocol’s first implementation, IPFS and
Ethereum Smart Contracts are used to store the different
product offers and to keep a record of each transaction. The
final result of this research is a working prototype in the form
of a web application. Just like the last research paper, this
project also uses IOTA 1.0 and therefore do not have access
to Smart Contracts in IOTA. To compensate for this, The
Ethereum blockchain is used to run the main smart contract
which serves as a data structure to keep track of the existing
product as well as offering the functionality of adding new
products. The downside of using the Ethereum blockchain
is that there are fees with each new interaction with the
smart contract. It is therefore consider quite expensive to store
information on-chain that is why they have to use a distributed
file storage to store most of the product information increasing
the processing overhead.

In [15] a P2P file-sharing system is created by integrating
BitTorrent with IOTA. The protocol described in this paper

is able to perform basic BitTorrent functions on an IOTA
distributed ledger. The protocol allows users to publish, seed
and download files in an environment of higher security
inherited by IOTA’s advantages. The paper also shows that
the protocol reduces the number of unnecessary transaction
searches making it faster for users to seed files and produce
heartbeats. This project is also done entirely using IOTA
1.0, which means that the main functionalities are performed
by personalized IOTA nodes and MAM transactions. It only
focus on facilitating the main BitTorrent which means that the
tangle is used to keep track of the files being shared as well
as its seeders but do not takes advantage of IOTA’s micro
transactions. The researchers do mention in the conclusion
their plan of using IOTA 2.0 smart contracts to transform their
system into a P2P file trading system instead. This idea would
make sense as smart contracts would allow the BitTorrent
functionalities to be performed directly in the IOTA network
instead of by a single node.

There also exist many other proposed decentralized market-
places that are not based on IOTA. The most relevant is [16].
In this paper the use of different blockchains is discussed.
IOTA is decided to not be adequate “due to centralization
concerns and persistent storage needs” which were problems
that the Distributed Ledger had in 2018, the date of publication
of this paper. Also the researchers of this paper aim for an
“always-on” marketplace which requires the application logic
to run directly in the blockchain in the form of a smart
contract which IOTA did not have in its first version. It is
concluded that a combination of Ethereum Smart Contracts
and Swarm, a decentralized storage service similar to torrent,
should be used. The paper provides a detailed explanation
of the action flow between vendor and customer as well as
the Smart Contract’s code. The entire application logic is
contained in one Smart Contract (SC) and both vendor and
customer have to interact with it to perform a trade. The
data sold in the marketplace is first encrypted and stored
in the Swarm storage system before registering it through
the SC. Customers request data to the SC which notifies
the vendor. The vendor then sends the decryption key to the
customer which then decrypts the requested data with it. This
project successfully implement a decentralized marketplace
using Ethereum, the researchers mention a few disadvantages
of using the Ethereum blockchain. Mainly that block creation
times are slow and each transaction requires a small fee
which makes it impossible to perform high amounts of micro
transactions, the project uses payment channels which is an
off chain solution that reduces the latency as well as the fee
costs.

IV. IMPLEMENTATION

This section will first give an overview in of the
different technologies used by the platform and how these
interact between each other. Then, a more detailed explanation
of how the user interact with the platform is given in
and how transactions are managed within the smart contract
is detailed in Finally, the main actions that the users can

execute and how they affect the state of the smart contract are
explained in more depth. In how creating user accounts
works, in how music is uploaded to the platform and in
how sessions are used to listen or download music.

A. Platform Overview

The platform can be divided into two different groups: the
back-end and the front-end. The following diagram shows the
different technologies which form each group and how these
interact with each other.

Figure 1: Diagram of the proposed solution

Front-end

On the left side of Figure [I] are placed the technologies
required to run the smart contract. The Hornet node version
2.0-rc is the software that constitutes the IOTA ledger LI,
also called the tangle. The Wasp node version 0.4.0-alpha.2
constitutes the blockchain in which the EVM runs the smart
contract, this ledger is also called L2 and is anchored to the
previously mentioned ledger L1. Both of these technologies
would be running on multiple computers to ensure the ledger
consensus but on this implementation only one of each runs
on the same local network for testing purposes.

On the right side of Figure [I] are placed the technologies
used by different stakeholders of the platform to interact with
the smart contract and the two ledgers. First, there is the
administrator’s front-end which is formed by the tools used
to manage the platform. In this group, MetaMask 10.23.3 and
Remix IDE Online 0.29.2 are used to compile and deploy
the smart contract as well as to perform low level transac-
tions. Secondly, there is the user’s front-end which is formed
by the python client. This program connects to the EVM
using the python library Web3.py 6.0.0b9, establishes TLS
encrypted connections with other clients and plays the music it
receives using python-vlc 3.0.18121. Finally, the wallet wasp-
cli v0.4.0-alpha.2 is used by both administrators and users to
set up new chains and transfer funds from the ledger L1 to
the ledger L2.

Both front-end and back-end forms the infrastructure behind
the proposed music streaming platform, the implementation
of which is open source. In https://github.com/DanielMelero/
IOTA-MSS, the source code of the python client can be found
as well as the smart contract code and instructions on how to
set up and deploy the platform on a local network.

B. Platform’s Action Flow

All users interact with the platform through the python
client which is a command line interface used to perform basic
actions intuitively. The following image shows the main menu
of the client and therefore all the possible actions.

Figure 2: Screenshot of IOTA-MSS platform menu

LA I
NN - N N D)
AANY AN I A I
1 I I N N N VA R
A B O B 1 I VA W o VA IR W WY
P N N A A 2 W N I B M A |

connected to chain
Welcome Daniel!
Your chain address is @x5T1583F131266B263925F38184DA5565T@C0A71b

Balance sheet:
On-Chain: ©.999329 Mi
on-Contract: ©.@ Mi

Choose an action:
(1) Listen
d) Download
) serve
) Monitor server
) Upload
) Transfer
) Exit

(

(s
(m
(u
(t
(e

>1

All users first have to deposit some funds to their chain
address as these are necessary to pay the fees required to
perform any action. Then they will create an account with
their name and a description. Once the user has an account, the
main menu in Figure [2]is available. The user can upload music
with option "u” by selecting a mp3 file, entering the name of
the song and its price. the uploaded material can be listened
or downloaded with option ”1” or ’d” once it is available on
the platform, to do so the user’s On-Contract balance must be
higher than the stated price which is achieved by transferring
the On-Chain funds with option ”t”. If a song is uploaded or
downloaded, the user can then choose to serve it to other users
with option ”’s” which will be rewarded with 10% of the song’s
price for each full playback. Finally, the user can monitor the
activity of the server with option ”m” and withdraw the funds
generated or unused with option "w”.

These individual actions modify the state of the smart
contract which simply means that the data of the program is
updated acting as a sort of database. The main data structures
and how they are used is explained in the next sections. The
following code shows the data structure as defined in the smart
contract.

https://github.com/DanielMelero/IOTA-MSS
https://github.com/DanielMelero/IOTA-MSS

address owner = msg.sender;

uint DIST_FEE = 10;
mapping (address => User) public users;
mapping (bytes32 => Music) public music_map;

mapping (bytes32 => Session) public sessions;
mapping (bytes32 => uint) distributor_index;
bytes32[] public music_list;

struct User {
bool exists;

O 00 NN AW —

10 string username;

11 string description;
12 string server;

13 uint balance;

14 bool is_validator;

15 }

16 struct Music {

17 bool exists;

18 bool is_valid;

19 address author;

20 string name;

21 uint price;

22 uint length;

23 uint duration;

24 bytes32[] chunks;

25 address[] distributors;
26}

27 struct Session {

28 bool active;

29 address listener;

30 address distributor;
31 bytes32 music;

32 uint price;

33 uint balance;

34 bool[] is_chunk_paid;

Listing 1: Smart Contract’s data structure

C. Real-time compensation

A problem that can arise from performing micro-
transactions in the blockchain is that the increasing amount of
transactions can rapidly reduce the efficiency of the platform
as well as increase the gas costs of the rest of transactions. To
deal with this potential issue, transactions between users are
abstracted within the smart contract in the form of accounting.

Users first have to transfer their MIOTAs, currency of the
tangle, to their chain address. During this process, the tokens
are transferred to the chain’s wallet which holds it and provides
the user’s address in the chain with the equivalent amount.
Then they can deposit these funds into their smart contract
account using the payable function deposit () which means
that the currency sent in the transaction is transferred to the
smart contract address which holds it and keep track of the
user’s balance as a variable.

When a user pays for the music they listen to, a non-
monetary transaction is sent to the smart contract which
executes the function that takes care of the accounting cor-
responding to the payments. This process highly reduces the
amount of transactions in the system as only one is required
and the tokens never leave the smart contract address.

Finally the user can decide to withdraw their account
balance using the function withdraw(uint amount) which
will transfer their account balance to their address in the tangle
in MIOTAs. In this process the smart contract sends the tokens
to the EVM contract which in turn initiates a transaction from

the chain’s wallet to the user’s address in the tangle with the
corresponding MIOTA tokens.

Therefore, the actual transactions with IOTA tokens only
occur when the user decides to withdraw their account balance.
Users can always choose to withdraw every time their balance
increases which would be equivalent to real-time compensa-
tion but this do not happen by default to allow for rapid high-
throughput exchanges. Further details about user accounts in
this solution are detailed in the following section.

D. User creation

The user structure in line [§] is capable of holding all the
necessary information about a given user. When a user account
is created a new instance of this structure is entered to the users
map in line[3] this variable type maps the chain address of the
user who sent the request to its corresponding information.
Initially the structure only contains the name, the description
and exists is set to True, the rest is either set to 0, False or
empty string.

The server field can be updated at any point to include the
information needed to reach the user’s server where the music
will be distributed. The balance field is used to keep track
of the user’s funds in the contract and it is the value that
appears in the client menu in Figure |[2|as On-Contract balance.
It can be increased by transferring funds from the user’s On-
Chain balance using function deposit (), when the uploads are
played or by serving music. The balance can also be decreased
by withdrawing funds using function withdraw (uint amount)
or by using the funds to listen to others’ music.

Finally the concept of validation behind the last field of the
user structure corresponds to the ability to upload music and
it is further explained in the following section.

E. Music uploading and distribution

The data structure in line[T6]is used to store all the necessary
information about a given music file. As done with users, when
a music file is uploaded a new instance of this structure is
mapped to its id in line @] This identification value correspond
to the keccak256-hash value of the music’s name and the
address of the owner which allows for multiple files with
the same name to be uploaded. The id is then added to the
list of files in line [7] so that users know that it is available.
The information required to upload a music file is defined by
function upload_music (string _name, uint _price, uint
bytes32][] The au-
thor field is set to the user’s chain address and the name and
price are set by the user itself. The rest of the information
is metadata processed by the client using the provided mp3
file. The length corresponds to the amount of bytes and the
duration is the music’s play time in seconds. The file is divided
into chunks to be paid individually and therefore the chunks
field corresponds to the list of keccak256-hash values of each
chunk. All this metadata is later used by the users to verify
the authenticity of the file received.

Once the file is uploaded, it is not directly available to
prevent users from sharing music which they do not own
the rights which would infringe most countries’ copyright

_length, uint _duration, _chunks).

laws based on the World Intellectual Property Organization
(WIPO) Copyright Treaty [17]. The responsibility of deciding
which files can be shared is, therefore, delegated to the smart
contract’s deployer. The owner variable is set to its chain
address in line [I] and it allows this person to define users
as validators using the function manage_validators (address

user). files then can be granted or denied validation by these
users using the function manage_validation (bytes32 music
).

The status “valid” means that the music file can be listened
and distributed by others. The author of the music file is set as
a distributor because, at first, it is the only one in the platform
to have the mp3 file. Other users can also sign up to be
distributors using the function distribute (bytes32 music)
which will add their address to the music’s list of distributors.

To distribute a file, users will have to own the mp3 file them-
selves. They, therefore, require the entire file to be transmitted
to them by creating a session and requesting each chunk. This
process is further explained in the following section.

F. Session management

Sessions are used to manage the distribution of valid music
between two users, a listener and a distributor. This process
must be performed efficiently to allow for a decent user
experience that is why both users should be using the python
client. The sequence diagram in Figure [3| shows an overview
of how both clients interact with the back-end and with each
other.

Figure 3: Sequence diagram of music streaming

Listener EVM
(client) chain

Distributor (client)

| start_server()

edit_url(url)
TX hash

A

distribute(song_id) T

TX hash \JJ

get_rand_distributor(song_id)
returns distributor

y

create_session(song_id, distributor)
TXhash

4

R e R W

gen_session_id(sender, distributor, song_id)

Y

returns session_id

users(distributor)
returns User

= get_chunksession_id, chunk_index)
TX hash

. y

request_chunk(session_id, chunk_index, signature)
}‘ sessions(session_id)

LJ refurns Session

| is_chunk_paid(session_id, chunk_index)
| &
U‘ returns boolean

A

validate_session()

returns chunk
T
check_chunk(song_id, index, chunk) |

returns boolean

close_session(session_id) J

TX hash

g5 T

Before any session can be created, at least one user having
the mp3 file must sign up to distribute the song. First, the
client will start a server and publish the relevant information
to its user account using the function edit_url (string url).
The url string will contain the server’s ip and port as well as

the public key certificate used to encrypt all connections. With
the server up and running the client signs up for distribution.

On the other side, the listener, having decided on a song,
starts the process of creating a session. First, a distributor must
be selected, the user might have a preference on which distrib-
utor to contact based on its previous experiences, but in case
there is no preference the function get_rand_distributor (
bytes32 music) 1S available. Then, a session is created us-
ing the function create_session (bytes32 music, address
distributor) which maps the session id with the correspond-
ing session structure. This identification value corresponds to
the keccak256-hash value of the listener’s and the distributor’s
address as well as the song’s id which allows the listener to
create multiple sessions with different distributors for the same
music. This can become useful to maintain a song playing even
if one distributor disconnects during the session. When the
session is created the price of the song gets stored in the data
structure in case it is modified while the session is running.
Also, the price amount as well as 10% more, the distributor
fee, is transferred from the listener’s balance to the session’s
balance. This assures the distributor that the entirety of the
song could potentially be paid and, therefore, incentivizes him
to maintain an efficient interaction which won’t drive away the
listener.

Finally, the transmission of the file is a repetitive process
in which the listener pays for a chunk of the song and
then request it to the distributor. The payment can simply be
done using the function get_chunk (bytes32 session, uint

chunk_index) Which transfers, from the session balance, a
fraction of the price to the author’s balance and a fraction
of the distributor fee to the distributor’s. Then, the listener
establishes a TLS connection to the distributor’s server which
is encrypted using its public key certificate. The listener sends
the chunk request which includes the session id, the index
and a signature using its chain address to prove its identity.
The distributor then retrieves the session information from
the smart contact checks that the index is paid and that the
listener’s address corresponds with the signature. If everything
is correct, the distributor sends the requested chunk back. The
listener finally checks that the chunk’s keccak256-hash value
corresponds to the one uploaded by the author to make sure
the data received is authentic. This process is repeated for each
chunk necessary to play the song.

When the user finishes or stops the song, the session is
closed using the function close_session (bytes32 session).
Doing so will return any funds that were not used during the
session to the user’s account. If the listener never closes the
session, the distributor is also allowed to do so because there
is a possibility that the chunks will continue to be requested
and appear as paid.

This whole process ensures that music can be distributed
between users of the platform at the same time that the listener
rewards both the author and the distributor. Each connection
between clients is encrypted to ensure privacy as well as to
defend users from tampering or man-in-the-middle attacks.

V. ANALYSIS

The proposed implementation, mentioned in the previous
section, was tested on the local network of a single computer.
The back-end consisted of a Hornet node and a Wasp node
connected to each other. The front-end consisted of two
python programs running in parallel, one taking the role of
the distributor and the other the role of the listener. The
objective of the following analysis was to measure the two
most important metrics of this platform. First, the amount
of gas users have to pay to perform basic actions as it is
a variable which is not decided by the users themselves but
that can affect drastically their experience using the platform.
And second, the execution time to perform basic actions as
it is also a variable not controlled by users which, if results
are excessive, could affect their experience and it might even
prevent the platform from offering proper music streaming.

The first metric to measure is the price paid by users
to send transactions to the blockchain and interact with the
smart contract. The concept of gas is always going to be
necessary because nodes protecting the blockchain must be
rewarded for the resources they provide. The exact amount
can differ a lot from chain to chain, unfortunately , it was
impossible to estimate the gas costs of the implementation
in a realistic environment due to the development state of
IOTA. The Web3.py library function to estimate gas costs, as
of January 2023, is not compatible with the EVM implemented
by IOTA as it does not yet have a way to retrieve historical gas
information. MetaMask is able to estimate the costs without
this information but the results cannot be considered a realistic
estimation as they are based on the Ethereum blockchain
[18]. As IOTA continues to develop the Wasp node, ways
to properly calculate gas-based fees are being tested on their
networks [19]. Therefore, a realistic analysis on the gas costs
of this paper’s proposed solution cannot be made until a
definitive solution is implemented.

The other important metric to measure is the time to execute
any basic action. These values must be kept at a minimum
to ensure a decent user experience. After analysing different
executions times common to all actions, it is clear that func-
tions that require the most attention are the ones that involve
interaction with the smart contract. CPU execution times in
the front-end are negligible as the python code used do not
perform any complex computation. And the times measured
for transmission of data between users are also negligible as
the testing environment is a local network. Interaction with the
back-end can be divided in two groups: calls which are used to
get the value of variables in the current smart contract state and
transactions which are used to modify the smart contract state.
Table |I| shows the measured times for each type of interation
from the moment the client sends the request to the moment
it receives an answer.

Interaction ‘ Result ‘

Call

Transaction

~ 0.1s
~ 0.9s

Table I: Execution times of smart contract interaction

It is clear that blockchain transactions are the processes
that really increment the execution times. This might not be
an issue for basic actions that only require one transaction
as is the case for creating an account, transferring funds or
uploading a song. But it can become problematic for managing
a session due to the large amount of transactions required. To
be precise, when a user listens to a full song, it is required
to send one transaction to create the session, then as many
transactions as the song has chunks, and finally a last one to
close the session. The exact amount is therefore determined
by the number of chunks that in turn is determined by how
much data the client decides to include in each chunk when
processing the mp3 file.

Data in KB | Transactions Result
5 410 ~ 10min
15 138 ~ 6min
30 70 ~ dmin
60 36 ~ 2min

Table II: Music file transmission depending on data per chunk

It is important to determine an optimal number of bytes per
chunk as it will allow the platform to transmit songs faster as
well as allowing the user to only pay for the chunks used. To
determine this value a test was conducted in which a 5 minute
song, from a 2 MB mp3 file, was uploaded to the platform
using multiple different amounts of bytes per chunk. In Table
the different uploads were then fully transmitted and the
number of transactions as well as the complete duration of
execution was measured. The objective of this analysis was to
find the smallest value allowing for the file to be transmitted
faster that the song’s duration. The results of this analysis
determined that 30 KB per chunk is the value that will allow
for the song to be divided into the most chunks while still
allowing for the song to be transmitted faster that it can be
listened to.

The analysis’ results show that the proposed solution is
able to offer music streaming and at the same time manage
the corresponding payments. The results also show that the
encryption of transmitted data to ensure user’s privacy do still
allow the platform to function efficiently.

On the other hand, many critics can be made of this
analysis. Mainly that the testing environment consisting of
a local private network do not simulate the solution on a
realistic environment. That it why, it is important to state that
further analyses must be conducted that more closely simulate
reality to reinforce the validity of the proposed solution.
Finally, further analyses must also be conducted concerning
the measurement of gas cost using future implementations of
I0TA.

VI. CONCLUSION AND FUTURE WORK

Using the distributed ledger IOTA it is possible to stream
music synchronously with the corresponding payments set by
its right holders. Each research question that was raised at the
beginning of this paper was successfully answered. First, [OTA

smart contracts can be used to store users’ funds and keep
a reliable accounting of the different exchanges, therefore,
reducing the amount of necessary transactions to allow the
platform to run efficiently. Then, data can be transmitted
between users in parallel with its corresponding payments by
using the smart contract as an intermediary to keep track of the
paid chunks. IOTA can also be used to store servers’ public key
certificates that are in turn used to encrypt TLS connections
between users therefore ensuring their privacy.

Finally, the main research question is also answered as the
solution proposed by this paper benefits both the musicians
and their audiences. Users are able to listen to their favourite
songs, only pay for the parts they request and distribute them
to others for a fair compensation. It also benefits musicians
themselves as they are able to share their music, have full
control over its market price and be rewarded in real-time as
users enjoy them.

A problem that can be observed in the proposed implemen-
tation is that music only becomes available once it has been
validated by a user with special permissions. This part of the
solution is necessary to avoid copyright infringements but it
might constitute a bottleneck in efficiency and a centralised
single point of failure. This matter only affects the process of
uploading music but it could be crucial to ensure a decent user
experience, therefore, future research should be conducted to
address the problem.

Another issue that could arise with the proposed solution is
the one of privacy. The information of which music each user
requests is public on the blockchain. This is not a problem by
itself as users’ identity is limited to a wallet address which acts
as a pseudonym. The problem is that nodes and distributors
can read the IP addresses of users that interact with them.
The ability to link both values might become an issue as it
is well known that music audiences’ behaviour is marketable
information. Future research should also address this matter.

REFERENCES

[1] R. A. Rahimi and K.-H. Park, “A comparative study of internet ar-
chitecture and applications of online music streaming services: The
impact on the global music industry growth,” in 2020 8th International
Conference on Information and Communication Technology (ICoICT),
pp. 1-6, 2020.

[2] M. Johnston, “How Spotify makes money: Premium Service generates
the biggest share of revenue.” |https://www.investopedia.com/articles/
investing/120314/spotify-makes-internet-music-make-money.asp, Mar
2022. [Accessed 29-Jan-2023].

[3] J. Dimont, “Royalty inequity: Why music streaming services should
switch to a per-subscriber model,” Hastings Law Journal, vol. 69,
pp. 675-700, 02 2018.

[4] E. A. Drott, “Music as a technology of surveillance,” Journal of the
Society for American Music, vol. 12, no. 3, p. 233-267, 2018.

[5] D. Antal, A. Fletcher, and P. Ormosi, “Music streaming: Is it a level
playing field?,” CPI Antitrust Chronicle, 2 2021.

[6] D. Hesmondhalgh, “Is music streaming bad for musicians? problems
of evidence and argument,” New Media & Society, vol. 23, no. 12,
pp. 3593-3615, 2021.

[71 T. Regner, “Why consumers pay voluntarily: Evidence from online
music,” Journal of Behavioral and Experimental Economics, vol. 57,
pp. 205-214, 2015.

[8] S. Popov, “The tangle,” White paper, vol. 1, no. 3, p. 30, 2018.

[9] E. Drasutis, “IOTA Smart Contracts.” https://files.1ota.org/papers/ISC_
WP_Nov_10_2021.pdf. [Accessed 29-Jan-2023].

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

S. Chavan, P. Warke, S. Ghuge, and R. V. Deolekar, “Music streaming
application using blockchain,” in 2019 6th International Conference on
Computing for Sustainable Global Development (INDIACom), pp. 1035—
1040, 2019.

C. Mullaney, A. Aijaz, N. Sealey, and B. Holden, “Peer-to-peer energy
trading meets iota: Toward a scalable, low-cost, and efficient trading
system,” 2022.

H. Farahani and H. R. Shahriari, “A privacy preserving iot data market-
place using iota smart contracts,” 2022.

R. Radhakrishnan and B. Krishnamachari, “Streaming data payment
protocol (sdpp) for the internet of things,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1679—
1684, 2018.

G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari, “To-
wards a decentralized data marketplace for smart cities,” in 20/8 IEEE
International Smart Cities Conference (ISC2), pp. 1-8, 2018.

L.-Y. Hou, T.-Y. Tang, and T.-Y. Liang, “Iota-bt: A p2p file-sharing
system based on iota,” Electronics, vol. 9, no. 10, 2020.

K. R. Ozyilmaz, M. Dogan, and A. Yurdakul, “Idmob: Iot data market-
place on blockchain,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT), pp. 11-19, 2018.

“WIPO Copyright Treaty (WCT) — wipo.int.” https://www.wipo.int/
treaties/en/ip/wct/. [Accessed 29-Jan-2023].

“MetaMask User Guide: Gas.” https://metamask.zendesk.com/hc/en-us/
articles/4404600179227-User-Guide-Gas, [Accessed 29-Jan-2023].
“IOTA Smart Contracts Release 0.3.0.” https://blog.shimmer.network/
iota-smart-contracts-release-030/, Sep 2022. [Accessed 29-Jan-2023].

https://www.investopedia.com/articles/investing/120314/spotify-makes-internet-music-make-money.asp
https://www.investopedia.com/articles/investing/120314/spotify-makes-internet-music-make-money.asp
https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf
https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf
https://www.wipo.int/treaties/en/ip/wct/
https://www.wipo.int/treaties/en/ip/wct/
https://metamask.zendesk.com/hc/en-us/articles/4404600179227-User-Guide-Gas
https://metamask.zendesk.com/hc/en-us/articles/4404600179227-User-Guide-Gas
https://blog.shimmer.network/iota-smart-contracts-release-030/
https://blog.shimmer.network/iota-smart-contracts-release-030/

	Introduction
	User's privacy
	Musician's compensation
	User's inability to support musicians
	Research Questions

	Methodology
	Related Works
	Implementation
	Platform Overview
	Platform's Action Flow
	Real-time compensation
	User creation
	Music uploading and distribution
	Session management

	Analysis
	Conclusion and future work
	References

