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ABSTRACT
As crowd-sensing infrastructure becomes increasingly widespread,

researchers are developing technologies such as bicycles with sen-

sors for providing information about road quality. These technolo-

gies can accomplish this by processing data collected by the sen-

sors attached to the bicycles. However, while location sensors and

cameras are widely considered as privacy-sensitive data sources,

seemingly innocuous sensors like accelerometers might also leak

sensitive information such as the cyclist’s weight. This research

aims to investigate if sensitive data, such as the cyclist’s weight,

can be extracted from these seemingly innocuous sensors. First, it

will consider the positioning of the sensing hardware devices on

the bicycle. Next, users with varying weights will test the bicycle

under controlled conditions. Finally, it will analyze the data and

implement machine learning solutions to determine if the user’s

weight can be inferred. This research is expected to contribute to

the knowledge of privacy considerations in the field of opportunis-

tic and pervasive sensing. This especially true as crowd-sensing

infrastructure becomes increasingly widespread and technologies

such as these are developed.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators; •
Security and privacy → Privacy protections.

KEYWORDS
privacy, sensitive insight, bicycle, accelerometer, weight, inference,

data analysis, road quality

1 INTRODUCTION
Crowd-sensing is a type of data collection that relies on the partici-

pation of a large number of individuals to gather data from various

sources. This data is then used to gain insights into various phenom-

ena such as traffic patterns, environmental conditions, and even

human behavior. Bicycles can be considered as a mobile sensor plat-

form, as they are able to move through different areas, collecting

data on various aspects of the environment. Crowd-sensing appli-

cations can be beneficial for a wide range of stakeholders, including
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governments, businesses, and researchers. However, it is impor-

tant to ensure that the data collected is used in a responsible and

ethical manner. This includes considering the privacy and security

of personal data, as well as addressing any potential biases in the

data collection process. As the use of bicycles as a data collection

platform becomes more prevalent, it is important to investigate

the potential implications of this trend and to develop methods for

ensuring the responsible and ethical use of this data.

In 2016, about 25% of daily transportation occurred via bicycle in

the Netherlands [7]. Thus, we must maintain the infrastructure sup-

porting cyclists to ensure safety, efficiency, and comfort. However,

it is difficult and timely to manually measure the quality of roads.

This is because professional inspectors must perform a check ac-

cording to a strict manual
1
. To solve this, we can collect data about

road quality by using sensors placed on bicycles instead of manually

inspecting the roads. This solution for road quality monitoring is a

form of a crowd-sensing application. With this, municipalities can

gain insights into road quality conditions through people traveling

via bicycle in an opportunistic way
2
.

To provide some key background information, a distinction be-

tween personal information and sensitive information [2] will be

provided. Personal information is quite a broad term which in-

cludes any information relating to an individual or someone who

can be identified without difficulty. Personal information includes

name, date of birth, and address. Sensitive information refers to any

personal information that can harm an individual if not handled

properly; for example religion, political beliefs, and sexual prefer-

ences. This is due to the fact that if others learned that info, then it

could be used in some manner to bring harm.

Value Sensitive Design (VSD) is a paradigm which can help in

safeguarding the private and sensitive information of an individual.

It calls for human values to be translated into design requirements.

Often times, designers already include in this implicitly, even when

it may not be their main focus [13]. However, VSD is a framework

that would benefit all stakeholders if it becomes more of a conscious

decision. Certainly not all end users share the same values, or even if

they do, they may value them to varying degrees. But when a user’s

values have clearly been considered, then that can be reflected in

the success of a product.

The main objective of this study is to conduct proof-of-concept

research to investigate the feasibility of inferring the weight of a

cyclist from IMU bicycle-mounted sensors. We will create machine

learning algorithms to test the limits of inferences with this sensor

data. This will ensure the protection of cyclists using bicycles with

sensors. The paper has been structured in nine different sections:

Section 3 presents the related work, Section 4 the research back-

ground, and Section 5 highlights the methodology. In Section 6, the

1
Inspection Manual

2
Bicycle Lights with sensors
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different experiments conducted will be explained; of which the

results can be found in Section 7. Finally, in Sections 8 and 9, the

discussions, conclusions, and future work can be found.

2 PROBLEM STATEMENT
The current state of research on the collection of data using bicycles

is limited. And we need to investigate the use of motion sensors

mounted on a bicycle to estimate the weight of a cyclist. Meanwhile,

researchers have conducted research on sensitive insights from

smartphones [3, 8]. The use of accelerometer sensors on bicycles

has the potential to provide a wide range of insights based on

the movement of the bicycle. These include the cyclist’s weight,

speed, and tire pressure. However, there is currently no known

literature that can demonstrate a correlation between this data

and the cyclist’s weight. Or even to infer sensitive information

from the data. Protecting an individual’s privacy can increase user

satisfaction and prevent GDPR regulation problems.

From research, we suspect that accelerometer sensors provide

a wide range of insights based on the bicycle movement. Empiri-

cally, we should correlate the data with the cyclist’s weight, speed,

and tire pressure. There is no known literature that can demon-

strate this correlation, or even to infer sensitive information from

the data. We will investigate this problem by trying to estimate

the cyclist’s weight. This will further motivate the need for more

privacy-sensitive methods in crowd-sensing applications.

One issue related to the use of motion sensors on bicycles is

the issue of accuracy. While the data collected by the sensors may

provide insights into the cyclist’s weight and other metrics, it is

important to ensure that the data is accurate and reliable. This is

especially important in a scenario where the data is used for medical

or insurance purposes. This is because inaccurate data could lead

to incorrect conclusions about an individual’s health or insurance

rates. Additionally, it’s important to consider the potential for bias

in the data collection process. Factors such as the type of bicycle or

the rider’s physical characteristics may affect the accuracy of the

data. Thus, it’s necessary to investigate and validate the accuracy of

the sensor data before using it to infer sensitive information about

the cyclist.

2.1 Research Question
In order to solve the issues mentioned in the problem statement;

investigate if accelerometer data can be used to infer sensitive

information of a cyclist, a research question has been constructed,

that will be the basis of this research work:

How can the cyclist’s weight be inferred from IMU sensors mounted
on a bicycle?
This leads to the following sub-questions:

(1) In which positions/orientations should the sensors be fas-

tened to the bicycle?

(2) How can the cyclist’s weight be extracted from the sensors?

(3) How does the system perform in terms of accuracy?

3 RELATEDWORK
In this section we will go over some of the related work in the

area of sensitive information inference. We will also discuss some

literature that uses sensors on bicycles for various purposes.

Kroger et al. [6] introduce accelerometer data collection and the

accompanying potential for inference. They discuss the possible

damaging implications of tracking factors such as identification,

health, and even activity. In a more specific paper from 2022, Naval

et al. use smartphone sensors to reveal personal four-digit PIN

numbers by password input movement [8]. They accomplished

by using a machine learning algorithm and the motion sensors

which give insight into how the phone shakes, tilts, and moves.

In a 2021 paper, Tahir et al. researched how wearable sensors on

the wrist can be used to recognize human activities [12]. These

publications are examples of inference attacks using accelerometer

data. They can be used to inspire the data processing and model

creation methodology of this paper.

Table 1: Inference using related sensors in literature

Sensor(s) Information Source

Accelerometer+

Motion Sensor

PIN of Smartphone Naval et al. [8]

Accereometer+

Speaker

Speech Anand et al. [1]

Accelerometer+

Gyroscope

Human Activity

Hernandez et al.[5]+

Tahir et al. [12]

Research has also been conducted into the placement of sen-

sors (such as an IMU) on a bicycle. Springer et al. [11] have also

conducted a similar study, measuring road quality. In their paper,

they deeply consider the architecture of the sensing device used to

gather information. They design an IMU sensor to measure vertical

acceleration at a rate of 50Hz, and place it on the handlebar of the

bicycle. In addition, they mount a sensor box to the frame of the

bicycle (between the seat and handlebars) that contains an addi-

tional IMU sensor among others. We will use these positions in the

design of the experimental methodology to discover the most ap-

propriate placement for the IMU sensor. A similar paper by Owens

et al. [9] employs a sensor package over the front wheel attached

to the bicycle head. One of the goals of that paper was to measure

kinematic road data, which is the same type of data that we will

use in this paper. Finally, Patil et al. use an IMU sensor with both

an accelerometer and gyroscope to measure the roll of a bicycle

[10]. While this paper will focus on vertical acceleration, it is useful

to know how the sensor package was attached to the system in

related work.

In summary, we will use previous examples of sensor usage to

extract information as a guide for our methodology. In deciding

how to place sensors for this research, we will consider similar

studies of bicycle-mounted sensor placement.

4 METHODOLOGY
This section will detail the methods used in order to perform this

research project. In order to address the main research question–

How can the cyclist’s weight be inferred from IMU sensors mounted

on a bicycle?–the following steps were taken. First, we performed

2
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Table 2: Relevant Thingy:52 Specifications
Device Thingy:52
Data streaming BLE

Sampling rate (hz) 5-200

Powered 1440 mAh rechargeable battery

Sensor parameters x,y,z acceleration axes

a literature review in order to find the optimal placement for the

sensor used. We followed this closely with an investigation on

collecting and pre-processing the sensor data. Twomain approaches

explored the second sub-question proposed in Related Work. First,

we performed a manual inspection of the collected data in order to

find ways to estimate the weight of a cyclist. Next, we explored a

machine learning approach through literature and tuning for the

purpose of proof of concept. Finally, we evaluated the success of

these approaches in order to find the most accurate and feasible

approach to weight inference.

4.1 Sensor Configuration
In this section, we will explain the methodology we followed to

find the best sensor placement, configure it, and collect/pre-process

data.

4.1.1 Sensor Placement. The sensing device chosen for this

project is the Nordic Thingy:52. See this Table 2 for some spec-

ifications of this sensing device.

As mentioned in Related Work, similar research using bicycles

with sensor for various crowd-sensing purposes have been con-

ducted. Sensing devices have been placed on the handlebar [11, 9]

or on the front wheel [4]. Each of these studies yielded promising

results, justifying their reasons for sensor placement. However, a

key difference is that those studies typically focus on road mea-

surement data, while the purpose of this research is on the cyclists

themselves. We found that most of the weight of a cyclist is located

in the back of the bicycle; on the back wheel in particular
3
. Thus,

we decided to place the sensor on the back wheel under the cyclist

as that is where the weight should have the most impact on the

measured acceleration. Figure 1 shows the end configuration of

the sensor on the bicycle. The sensor is attached next to the back

wheel. We place a phone on the bicycle that is easily accessible to

the cyclist, and is also close enough in proximity for BLE to transfer

captured data.

4.1.2 Data Collection & Pre-processing. Because the Thingy
uses BLE, we decided to create an android application in order to

facilitate the data collection process. The first step was to scan

for the Bluetooth device and establish a connection. This required

usage of Nordic Semiconductor’s Android Library
4
. After this step,

we sent configuration metrics such as the desired sampling rate of

200Hz from the android application to the sensing device. Because

a Bluetooth connection can sometimes be dropped, we displayed

the status of the connection.

Once we had established a secure connection, we then collected

data with some pre-processing. The first step of this pre-processing

3
Investigating Weight Distribution on a Bicycle

4
Android Nordic Thingy Git Repository

Figure 1: Bicycle System with Thingy Sensor and Phone

was calibration of the accelerometer sensor. We observed that the

accelerometer data had noise (or fluctuation), even when it was

in a standstill with no motion. Therefore, before collecting data,

it is necessary to keep the sensor still and allow it to collect a

noise average for each axis. This will then subtract from any values

observed in the data.

Additionally, we calculated the magnitude of the acceleration

vector during collection and sent to the mobile device alongside

the raw data. The magnitude was calculated using Formula 1. The

magnitude of the acceleration allows for an observation of the over-

all amount of acceleration that is acting on the sensor. This is a

valuable feature for this type of data. This is calculated using the x,

y, and z axes from the accelerometer.

|𝛼 | =
√︂
𝑥2 + 𝑦2 + 𝑧2 (1)

After pre-processing, the BLE connection constantly sent data to

the mobile device with the timestamp. However, the device only

saves data from when the rider signals the beginning to the end

of data collection. When the rider presses the button to end data

collection, the data from this interval compiles into a .csv file and

saved to the storage of the android device.

This section discussed themethodology for where the sensor was

placed.We conducted a literature review after weighing the benefits

of using the Nordic Thingy:52 device.We then decided that based on

previous research and information about the weight distribution on

a bicycle, the sensor should be placed on the back wheel under the

cyclist. This placement should optimize the influence the rider has

on the measured accelerometer data. Additionally, we’ve shown the

methods used for collecting data with the sensor and pre-processing

data were also shown.

4.2 Weight Inference
In this section we will discuss the two methods through which we

attempted to estimate the weight of a cyclist using the collected data.

The results obtained from these two methods will show whether

it is indeed possible to infer the weight of a cyclist using mounted

sensors.

3
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Table 3:Weight ranges corresponding to classes

Class Weight (Kg)

low 63-79

avg 80-86

high 87-110

4.2.1 Data Inspection & Analysis. First, we performed an in-

spection and analysis of the data. This approach allows us to in-

vestigate whether it is possible to infer weight without machine

learning and instead by doing it in an algorithmic fashion. We

created graphs and charts using parts of the data set and looked

for relationships and correlations. For example, by plotting the x

(vertical) axis of the accelerometer data and the weight of several

participants, we may be able to observe a trend that could be used

to create a function for weight estimation. However, even if it is

not possible without machine learning, this method will give us

insights into which parts of the data set can be used as valuable

features for building the models.

4.2.2 Machine Learning. The first step towards implementing a

machine learning algorithm was deciding which type and model

to use. There are many applications of machine learning, such as:

regression, classification, and clustering. For the purpose of this

research, the task of regression would be likely to output the most

accurate estimation of an individual’s weight (assuming that it is

possible). However, due to the limited scope of this project, we

decided to instead use classification. This is because the purpose is

not to create a highly accurate estimation of a cyclist’s weight, but

rather to investigate if it is at all possible.

The classes that were used can be seen in Table 3. We chose

the ranges of weights such that each class had a similar amount of

samples based on the final data set. We decided to use three classes

as that should be sufficient to show that there is a relationship

between the accelerometer data and weight (if the model can accu-

rately classify the weight of an individual in these classes). After

identifying which classes to use, we chose four classification models

from literature that have distinct strengths and weaknesses that can

apply to this data set. First, we implemented logistic regression
5
.

Logistic regression is a very strong classifier for time series data,

and when we extracted more quality features that are indepen-

dent, the classifier performed very well. Second, we implemented

the K-Nearest Neighbours classifier. This model is attractive due

to its simplicity and ability to handle large amounts of training

data. The drawback of KNN having a high computation time can

be disregarded in this research, as there is no time constraint for

this computation. Next, we implemented a Support Vector Machine

using a linear function. Finally, we implemented a decision tree.

We implemented them in Python using the scikit-learn library.

After selecting the classification models, we split the data into

features which we tuned through manual inspection. We also split

the data into two-second windows of 400 points (200 points per

second) with step sizes of 200 points. We labeled these windows by

the most-occurring category of weight present in that interval. By

splitting the data set into windows, we artificially created a larger

5
Example logistic regression implementation using time series data

Table 4: IV/DV
Independent Variable Unit Dependent Variable Unit

Weight of Cyclist Kg Acceleration g (9.8m/s
2
)

sample of data for training the models. This allowed for higher

performance in terms of accuracy by these classifiers.

Finally, we also split the data into a training set and a testing

set. To maximize performance, we split this data set such that there

was an equal proportion of similar data in each set. We split the

data into 3:1 training to testing data. We did this by using the first

eight participants for training, and the last four for testing.

To summarize, we used two methods to estimate the weight of

a cyclist. The manual inspection of the data had the potential to

infer weight without machine learning. It also provided necessary

information for tuning and increasing the performance of the ML

that we implemented. We chose classification due to the scope and

purpose of this paper as a proof of concept.

4.3 Inference Evaluation
To determine if we can accurately obtain insights into this sensitive

data, we must show consistent performance in realistic conditions.

We evaluated each of the models against one another to see which

one performed best. The metric we used to compare the models

was their classification accuracy. As previously mentioned, there

was no time constraint for this calculation. So we did not consider

the memory and time costs of the models in this evaluation.

5 EXPERIMENT
This section will describe the experiment that we designed and

executed to answer the second sub-research question: How can

we extract the cyclist’s weight from the sensors? It is important

to include a detailed outline of the experiment to ensure that the

results can be replicated and verified. We will first outline the

variables that we considered, followed by the hypotheses that we

tested. Next, we will describe the setup of the experiment and the

tools we used. Finally, we will explain howwe gathered participants

and how we treated their data.

5.1 Variables
Here, we outline the variables that we explored in the experiment.

First, we derive the independent and dependent variables from the

sub-question based on the relationship between weight and sensor

data. These variables can be seen in Table 4.

The next set of variables that should be discussed are the extra-

neous variables. It is key in an experiment to consider any external

factors which may have an effect on the results of the experiment.

Table 5 shows those selected for this experiment, along with a plan

for this.

5.1.1 Hypotheses. We outlined the hypotheses that we consid-

ered for the experiment. Both the null and alternate hypotheses

can be seen in Table 6. It is important to include a null and alter-

nate hypothesis to ensure that the experiment is not one-sided or

biased. As this research is exploratory in nature, the outcome can

be difficult to predict.

4
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Table 5: Extraneous Variables
Extraneous Variable Plan to mitigate / control it

Speed Display speed being traveled on the app

so that the cyclist can self regulate their

speed to a set bound.

Type/quality of road All data will be gathered in the same

stretch of the same road.

Distance cycled The participants will be informed to cycle

a set distance between two marked loca-

tions

Tire pressure The pressure of the tires will be measured

before each data collection session to en-

sure it does not vary between tests.

Weight distribution Participants will be instructed to

straighten their backs and bend forward

only as necessary to use the handlebars.

This is to keep their weight mostly

centered on the seat of the bicycle.

Temperature Temperature can have an effect on the cy-

clist and the tires, and we will measure

this for consideration each time.

Table 6: Hypotheses
Null Hypothesis (H0) Alternate Hypothesis (H1)

The weight of a cyclist and the

sensor data measured do not

have a correlation.

As the weight of the cyclist in-

creases, the magnitude of the

vertical acceleration will de-

crease.

Table 7: 3x3 Factorial Design
Weight/Speed Slow Normal Fast

+0 Kg 3 trials 3 trials 3 trials

+ 5 Kg 3 trials 3 trials 3 trials

+10 Kg 3 trials 3 trials 3 trials

5.1.2 Treatment. The Table below shows a 3x3 factorial design in

which we modify both the weight and speed of the participants.

We modify the weights by adding weight to the participants with

a backpack, and the participants control the speed on the bicycle.

We measure three trials for each variation of the weight and speed

modifications, for a total of 27 measurements per participant (see

Table 7).

5.2 Tools
This section highlights the tools that we used in this experiment

and, where necessary, their specifications.

We developed an android application for the collection and pre-

processing of data. The application had two main interfaces, labeled

"Scan BLE Devices" and "Data Collection". The first interface fea-

tured a button that would list any broadcasting devices that the

mobile phone could detect. Once the participant selected the Thingy

from this list, the second interface would appear. This interface in-

cluded a text box displaying the status of the Bluetooth connection,

a button for calibrating the sensor, a text view showing the cycling

speed (in km/h), a button for starting and stopping data recording,

Table 8: Bicycle Specifications
Brand/Model Riverside 120

Weight 14.6 Kg

Frame Steel

Tire width 28 mm

Tire pressure 2-4 BAR

Tire size 700x19C

Suspension None

Figure 2: Cone setup overview

and a text input box for naming the data file. After collecting and

pre-processing the data for each trial, the system exported a .csv

file with the provided name to the storage of the mobile device.

For the sake of organization, this file-naming convention was as

follows:

<participant-no>_<added-weight>_<speed-cat>_<timestamp>.csv

The specifications of the bicycle used can be seen in Table 8.

5.3 Setup
This section describes the steps which we followed prior to per-

forming the experiment.

The researcher will firmly attach the sensor to the frame of the

bicycle by the back wheel, using zip ties and duct tape. This is

because most of the weight is distributed toward the back wheel of

the bicycle
6
. Therefore, this area is where the weight will have the

most impact on any readings from the Thingy device.

We will use a device that can attach to the handlebars to mount

the smartphone that will connect to the thingy sensor and display

the speed to the cyclist. This can be seen in Figure 1 holding the

smartphone on the handlebars.

Measure tire pressure using a tire pump before each session to

ensure consistency. For the bicycle in this experiment (See Tools),

the tire pressure was 3 bar as measured by the pressure gauge

attached to the pump.

The participant collected data in a 20m segment of a lane with a

width of 1.5 meters. See Figure 2 for an overview of this design.

5.4 Participation
The experiment requires human participation. We needed to col-

lect the weight of each participant at the time of participation to

establish a ground truth for comparison. Therefore, following the

guidelines of the TCS ethics committee
7
, we created a participation

6
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consent form. The form explains the procedure and purpose of the

experiment to participants, provides a means for them to withdraw

consent by contacting the researcher, and assures them that their

data will be anonymous and secure.

5.5 Procedure
The procedure of the experiment for each participant was:

(1) Measure tire pressure of bicycle and adjust as necessary.

(2) Use a scale to measure the weight of the participant and note

the ground truth.

(3) Connect the smartphone application to the sensor and cali-

brate it.

(4) When the participant reaches the first set of cones, they will

press the start collecting button, and between the inner pair

and outer pair of the last set of cones they will press the stop

collecting button. During this moment they should ensure

that their speed is consistent and within the set category

boundaries.

(5) The participant will repeat this procedure three times for

each speed category. Once this has been completed with no

additional weight, weight, the participant will wear a 5Kg

weight (in a backpack). And they will repeat the procedure.

(6) Finally, after another nine trials, another five kilograms will

be added to the backpack and the procedure will be repeated.

In conclusion, we designed an experiment to collect data from

participants at varying speeds and weights under controlled condi-

tions.

6 RESULTS
In this section, we will present an overview of the data set that we

collected. Afterward, we will present and discuss the results of the

experiment. Our findings will determine whether we can use our

method to infer the weight of a cyclist.

6.1 Data set
Twelve participants volunteered for this research. We conducted

tests with additional weight (five and ten kilograms) for each par-

ticipant, resulting in a data set of 36 weights (3 per person). The

distribution of the weights can be seen in Figure 3. Although the

range of nearly 50 kilograms is satisfactory, the data was not evenly

distributed. This resulted in uneven splits for the classes in terms

of the range for each class. This means that the model will be most

accurate for weights near the mean (82.1Kg), and less accurate near

the maximum and minimum.

6.2 Data Inspection & Analysis
Using the data, we investigated the relationship between the mag-

nitude of the acceleration and the weight of the participants during

the experiment. The magnitude of the acceleration vector gave us

insight into a general relationship, which we later focused by look-

ing at the specific axes of acceleration. Our investigation produced

promising results. We observed a trend by plotting the magnitude

of the acceleration vector over time for each participant. The mag-

nitude of the acceleration consistently decreased as the weight of

the participant increased (via added weight), as seen in Figure 4.

Figure 3: Data Histogram

Figure 4:Magnitude as weight increases for two participants

This trend held true for the slowest speed category and for higher

speeds as well.

While this seems promising, there are some caveats in this trend

as a whole which we should note. First, the actual value of the

magnitude does not seem to correlate with the participant’s actual

weight. Figure 4 shows that if we compare the data for Participants

1 and 5, there is over a twenty kilogram weight difference between

them. But the acceleration magnitudes that we observed are quite

similar to start. The next detail that requires attention is that the

change in magnitude with added weight is not consistent. On av-

erage, the magnitude for Participant 5 decreased by 0.7%, while

for Participant 1, this decrease was around 0.3%. We found the

mean change in magnitude with added weight to be 0.2%, which

6
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Figure 5: Average Magnitude for all participants at a single speed

also makes Participant 5 an outlier in this regard, according to the

1.5*IQR rule.

While there seems to be a clear relationship between weight and

measured acceleration for a single participant, viewing the data

set with all participants in mind makes it much less clear. Figure 5

shows this, where we have plotted the average acceleration for all

participants at the slowest speed. We also found randomness for

the other speeds.

6.3 Weight Classification Model
After conducting a manual inspection and some preliminary analy-

sis of the collected data, we decided to explore a machine learning

solution. As previously mentioned in Related Work, the state of the

art for inferences such as this paper feature machine learning imple-

mentations. Using the previously outlined methods, we extracted

key features from the data.

In total, we identified 64 features that provided useful informa-

tion for training the models. We carefully refined these features

by plotting them and testing whether a human could observe dif-

ferences for the three classes. Additionally, we extracted features

using reasoning. For example, we found that the z axis of the ac-

celeration was not very useful, as the vertical (x axis) and–to a

lesser degree, the horizontal-acceleration (y axis) were the most

useful for the information that they provided. In addition to using

time domain features, we performed a Fourier transformation and

extracted some additional features in the frequency domain.

We focused on accelerometer data as the main source of motion

data collected from the Thingy. But we also collected gyroscope

data. We experimented with using the gyroscope data as a feature

to improve accuracy. However, it did not provide any additional

information, and instead lowered accuracy by confusing the models.

We observed the resulting accuracy for each model in Table 9.

Both the KNN and decision tree models performed poorly, with

accuracies below 50%. We should note that the baseline accuracy

for this research is 33%, or 1 in 3. This is because any accuracy

above guessing randomly for the three classes adds value to this

system. Therefore, we see that both the SVM and logistic regression

models significantly improve upon this baseline.

In Figure 6, you can observe the confusion matrix for the best

logistic regression model. It performed at the highest accuracy. We

observe that the medium weight class often gets confused with

higher and lower weights. To correct this, we tried creating gaps in

Table 9: sklearn accuracy score for each model

Model Accuracy Score
KNN ~0.33

Decision Tree ~0.43

SVM ~0.68

Logistic Regression ~0.72

Figure 6: Logistic Regression confusion matrix

the weights between the classes to remove confusion on the bound-

aries between them. However, this approach caused the accuracy

to drop significantly, likely due to the loss of data for training. As a

small test, we retrained the models with the weights separated into

only two classes: low and high. In this case, the models performed

much worse, and the results were discarded.

Empirically, we have found that these models perform better

when they are trained on larger sets of data. This is not in the

sense of over-fitting. However, while preserving the 75/25 split and

simply reducing the amount of data available to the models, they

perform significantly worse.

In this section, we conducted two different methods to estimate

a cyclist’s weight. Initially, we performed an inspection and anal-

ysis of the data. This check suggested a relationship between the

acceleration and the weight of a participant. Next, we implemented

some machine learning classification models using some of the

knowledge from the previous method. After extracting and refining

features from the collected data, we trained the models and pre-

sented the results. The highest accuracy attained was roughly 72%

from the logistic regression model.

7 DISCUSSION
This section will explain and evaluate our findings.

Based on the results from the previous section, we have found a

relationship between the weight of a cyclist and accelerometer data.

The performance of the models did not reach levels such as those

observed in either state-of-the-art literature or some of the research

from Related Work. However, it is not so low as to discard. Being

able to do a ballpark estimate of a cyclist’s weight with even a 72%
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accuracy is already concerning for people who value the protection

of their privacy.

We controlled many variables which could have otherwise had a

large impact on the results. Such variables would not be controlled,

as they were in the context of a real world cyclist. On the other hand,

we drew the results using only one type of sensor data: motion.

Some electric bicycles also include a pedal pressure sensor, which

could be used in addition to motion sensor data.

8 CONCLUSIONS & FUTUREWORK
In modern western society, people are becoming increasingly aware

of how companies handle their data. Companies must respect the

potential harm that sensitive data can bring if mishandled. This is

also combined with the fact that the field of crowd-sensing technolo-

gies is expanding. While there have been other studies inferring

sensitive information, none so far have focused on cycling. Consid-

ering how crucial bicycle infrastructure is to the Netherlands, and

that experts are developing new crowd-sending solutions to road

quality measurement, we must incorporate privacy into the design

of these systems. This paper aimed to prove the existence of a rela-

tionship between a cyclist’s weight and accelerometer data from a

sensor attached to the back wheel of the bicycle. We conducted an

experiment with participants of varying weights under controlled

conditions. Then, we analyzed the data and implemented machine

learning solutions.

An investigation revealed that placing the Nordic Thingy:52 near

the axle of the back wheel is appropriate. This sensor allowed for

BLE communication that we paired with an android phone for data

collection and pre-processing. The results proved the existence

of a relationship between acceleration and weight on a bicycle.

The nature of this relationship also showed that as the weight

increases for a participant, the overall acceleration felt by the back

wheel decreases. This verifies our alternative hypothesis: As the

cyclist’s weight increases, the magnitude of the vertical acceleration

decreases. Our research could serve as a basis for improving these

findings and creating a more accurate estimation of a cyclist’s

weight.

Due to time constraints and the nature of our experiment, the

amount of data was rather low. We conducted the experiment out-

doors, in the winter, when it often rains. This makes volunteering

to participate in the experiment quite daunting. Participants also

had to consent to having their weights recorded, which could have

turned away some participants and affected the distribution of their

weights. We should consider that someone insecure about their

weight may be less likely to volunteer for research. Given more

time, we would prioritize a larger amount of more diverse data.

This would allow the model to perform more reliably for a random

person and potentially more accurately with more data upon which

to train.

Another consideration for future work is how we added weights

to participants. We only had two 5 kilogram weights available to

use for the experiment, but lower weights such as 2.5 kilograms

would have been more ideal. This would have allowed for an even

greater amount of artificial data by adding both weight and more

subtle weight increments for the participants, rather than large 5Kg

intervals.

In conclusion, we have proven the existence of a relationship

between the weight of a cyclist and accelerometer data. Motion

sensors such as those found in the Thingy:52 can provide insights

into sensitive information when placed on a bicycle. These find-

ings highlight the importance and need for value-sensitive design

in crowd-sensing technologies that have the potential to collect

personal sensitive information.
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