A Comparative Analysis of Network Data Distribution in Active DNS
Measurements. ZDNS vs OpenINTEL.

THALIS STAVROPOULOS, University of Twente, The Netherlands

The Domain Name System (DNS) plays a critical role in the proper function-
ality of the Internet. Subsequently, a number of tools have been created to
take measurements that can be used to understand better how it operates
in practice. One aspect of the design of such tools is the query distribution
among nameservers. While the designers of the tools do take into consid-
eration and discuss this, there seems to be a lack of in-depth analysis of
how the queries are distributed. In this paper, we make a comparison of two
active DNS measuring tools, OpenINTEL and ZDNS, and how their recursive
resolvers distribute queries. Despite their different objectives and design
choices we try to make a fair comparison. We captured enough network
traffic and analysed it. By scanning a million domain names we were able
to capture enough network traffic to analyse. Based on the data collected
we set a few key metrics to examine the extent to which the distribution of
queries is fair, meaning more even. This study concludes that OpenINTEL
has an overall more even distribution of queries which is indicated by the
majority of metrics.

Additional Key Words and Phrases: Internet, DNS, active measurements

1 INTRODUCTION

The Domain Name System (DNS) is a crucial component of the
Internet which translates domain names into Internet Protocol (IP)
addresses. As the number of devices on the Internet increases over
the years, reaching over a billion, so does the importance of a well-
functioning DNS infrastructure [3]. Essentially, every device con-
nected to the Internet becomes unreachable if there is a DNS outage
since it will be practically impossible to determine a host’s IP ad-
dress.

For said reason, DNS can be a big target for malicious actors that
might attempt to attack part of the infrastructure, examples of such
attacks are DDoS, Fraud, Worms, Botnets, and Spam [11]. In fact, in
January 2019 the Cybersecurity and Infrastructure Security Agency
and the Department of Homeland Security issued a warning about
a series of incidents in which attackers were able to tamper with
the DNS infrastructure and redirect internet traffic to malicious
websites [6].

To combat such malicious activity it is possible to find patterns
in the activity of malicious actors by analysing DNS data. There
have been a number of studies that, using DNS datasets, develop
algorithms and Artificial Intelligence (AI) to detect and prevent
attackers before they can take action [5] [10] [12] [15].

For the data to realistically reflect on how the DNS infrastructure
operates, a high volume of it is needed. Such a volume of data re-
quires the collaboration of experts and organizations since taking on
such tasks can prove to be challenging regarding both the collection
and storage of the data. A number of tools have been developed that
are specifically designed to scan the DNS infrastructure on such a

TScIT 38, Feb 3, 2023, Enschede, The Netherlands

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

scale. OpenINTEL and ZDNS are two of these tools which will also
be the focal point of this paper.

Typically, when a comparison between two software tools is made
the main attribute evaluated is performance. However, the focus of
this paper will be a comparison of the two in terms of query/data
distribution. ZDNS and OpenINTEL were designed to scan a large
part of the Internet. Therefore, we investigate how these queries are
distributed among the various nameservers. To achieve this, active
measurements will be taken using said tools and analysis will be
performed to determine how evenly the data is distributed.

2 BACKGROUND
2.1 Terminology

Before continuing we establish a few keywords that will be used
throughout the paper. The fairness of the distribution is meant to
represent how evenly the data and queries are spread. The more
"fair" is considered, the more even the distribution will be.

Authoritative name servers are servers which have the authority
to serve certain information. This information can be the IP you are
looking for or other information needed to find that server. In this
paper, we refer to them as nameservers.

Later on, in the results, we split the data between Top Level
Domains (TLDs) and domain name nameservers. The TLD name-
servers are the nameservers directly below the root servers. Such
nameservers are for the .com, .nl, .org and other TLDs. All other
nameservers that are below the TLDs are referred to as domain
name servers.

When taking measurements of the DNS there are two methods
that can be used, these can be either passive or active.

Passive measurements involve observing the traffic at some point
between the client and the nameservers. This can be at the name-
server, the recursive resolver or the client itself.

Active measurements on the other hand entail actively sending
the queries and storing the results. In our case both ZDNS and
OpenINTEL take active DNS measurements.

2.2 Motivation

Measuring the DNS infrastructure can prove to be an effective way
to better understand it and improve its security. However, this has
to be done responsibly since the tools developed can also be used
for malicious practices.

In their paper Kountouras et al., creators of Active DNS Project,
gathered both passive and active DNS measurements in their uni-
versity’s network [5]. They noted that with the active DNS mea-
surements, they got a lot more addresses, an order of magnitude
larger and argued that active DNS measurements are more in-depth.
This is to be expected since passive DNS measurements are highly
affected by the cyber-behaviour of their users. Thus, addresses that
are not popular among the users of the network will not appear in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TSclIT 38, Feb 3, 2023, Enschede, The Netherlands

the capture. On the other hand, less popular addresses and addresses
that are not active yet are being captured by active measurements.
This kind of measurement can be particularly useful in finding ways
to detect domain names that are created by malicious actors that
have not taken action yet.

Other than the security aspect, the DNS measurements can be
used to further improve the functionality of the DNS infrastructure.
By looking at the data we can identify which parts can be improved
or are not operating as planned, either because of malicious intent
or unintentionally, because of a lack of technical skills to solve the
problem. Weaver et al. in their paper in 2001 took active measure-
ments of the DNS infrastructure network and found problems, such
as result wildcarding where recursive resolvers alter the responses
that returned an error to direct users to third-party websites [14].
The paper concluded with a number of recommendations for DNS
implementers and DNS API users.

This paper explores how ZDNS and OpenINTEL, two active DNS
measurement tools, handle the scheduling of queries. Although their
goals might differ to some degree, they both were designed to scan
a very large number of domain names. It is therefore important to
study their behaviour and the impact they can have on the DNS
infrastructure.

2.3 Tools

Before defining the goals of this study it is important to provide
some information on the two tools this paper will be based on.

2.3.1 OpenINTEL.

OpenINTEL is a project that started in 2015 [13]. At the start, the
goal of the project was to collect DNS data of the top 3 largest
TLDs and store them. The project has been going on until this day,
actively collecting DNS measurements every 24 hours. There have
been numerous additions to the list of TLDs covered. The data is
stored and can be requested by researchers who need to use it to
better understand DNS.

The authors of the paper set a number of goals which affected
their decision on the architecture of the system. The system must
be able to take measurements of every domain specified every day
consistently. The reason is that for the data to be meaningful there
should be no gaps between measurements. Furthermore, the system
is designed with scalability in mind. The addition of more TLDs
should also be feasible without major work required. They achieve
this by having a cluster manager per TLD which divides the domain
names into chunks and adds them to a pool in which workers can
get a chunk and process it. Afterwards, the result will be returned
to the cluster manager which will add some more data and store it.
This approach allows for scalability. If a new TLD is to be added, a
new cluster manager can be set up and a number of workers will
be assigned to it. Additionally, if the number of domains under a
TLD is increased, new workers can be assigned to the appropriate
cluster manager. Most importantly, they address the challenge of
query pacing and discuss how there was a trade-off between speed
and the impact on the DNS infrastructure.

One thing to consider is that OpenINTEL uses Unbound!, an
open source resolver which acts as a local recursive resolver. This

Uhttps://github.com/NLnetLabs/unbound

Thalis Stavropoulos

intends to take the burden off the recursive resolvers that would
perform such a task.

Finally, they address the issue of sending an excessive number of
queries to the same nameservers. Large-scale providers will most
likely hold records for a large number of domain names. Conse-
quently, these servers will receive more queries than others. In
their analysis regarding the workload the scanning poses on the
nameserver, they concluded that it is not excessive. It is, however, a
significant amount and they warn that it could pose a problem if
other researchers start running similar measurements.

2.3.2 ZDNS.

ZDNS? is a command-line tool developed to perform DNS lookups
[4]. The goal was to create a high-performance tool that is also easily
extensible. The creators have evaluated the performance of ZDNS
to be greater than other similar tools. In their paper, Izhikevich
et al mention that they have implemented an internal recursive
resolver that researchers could use. The decision was made so as to
not burden ISP-based and public recursive resolvers.

The creators of ZDNS warn users that it should be used with
caution. By default, ZDNS creates 1000 threads, and they recom-
mend 1000-5000 threads for most systems, which might cause some
DNS providers to be overwhelmed. For that reason, it is possible to
configure ZDNS to use fewer threads. Nevertheless, they suggest
first communicating with network administrators before running
any large-scale scans.

ZDNS was designed to be publicly available since most other tools
are closed-sourced and results in researchers having to implement
their own tools from scratch[8]. Additionally, the authors of the
paper mention that Unbound has over 30 features requested but
have not been resolved for years. Therefore, ZDNS was designed as
a base framework that researchers could use to develop tools that
satisfy their needs.

3 RELATED WORK

There have been a number of papers that make use of ZDNS and
OpenINTEL worth mentioning.

In 2017 Paul et al. created a system called Iris that focuses on the
detection of DNS manipulation. The system makes use of ZDNS to
perform PTR lookups of all the open DNS resolvers that were found
using ZMAP [1]. Another example of the use of ZDNS is the paper
by Dimova et al [2]. In their paper, they discuss anti-tracking evasion
techniques used to bypass anti-tracking measures by making use of
CNAME records. The measurements for retrieving CNAME and A
records were done using ZDNS.

Ramin et al. made use of the active DNS measurements of Open-
INTEL to detect suspicious domains that use Unicode homoglyph
characters. The Internationalized Domain Name (IDN) allows the
use of Unicode characters in the domain name. This can be exploited
to trick people into visiting third-party websites by replacing char-
acters in the domain name with ones that look identical. Sommese et
al. have used the active DNS measurements provided by OpenINTEL
to investigate the impact of DDoS attacks on the DNS infrastruc-
ture. Their findings show that although millions of domain names

Zhttps://github.com/zmap/zdns

https://github.com/zmap/zdns

A Comparative Analysis of Network Data Distribution in Active DNS Measurements. ZDNS vs OpenINTEL.

were the target of a DDoS attack, the DNS infrastructure was not
impacted by it [10].
Both tools have contributed to the research of the DNS ecosystem.

4 RESEARCH GOALS

The goal of this research paper is to study how fair ZDNS and
OpenINTEL are regarding the distribution of queries.

ZDNS and OpenINTEL are both active DNS measurement tools.
However, they were designed with different objectives in mind.
Thus, it will be interesting to investigate how fair is the distribution
of queries.

A few Research Questions are defined to guide this research.

Research question 1: How much data/queries were sent and to
how many nameservers?

Looking at the total data and queries sent to the nameservers
will give us a good first impression of the load that was sent to the
nameservers in total. It will also enable us to see any potential ab-
normalities in the amount of data sent. The number of nameservers
could also be used as a first impression of the distribution of queries.

Research question 2: How evenly are the queries distributed
among nameservers?

To answer this question a few metrics will be used to make a
comparison between the two tools. Thereafter, we will be able to
determine which of the two tools is overall fairer.

Research question 3: Which nameservers received the highest
number of queries/data and how much did they receive?

After looking at the overall distribution, we will further inves-
tigate the group of nameservers that received the most data. The
goal is to check whether there are a handful of nameservers that
receive the majority of traffic. We want to further examine what
the distribution between these nameservers is and which of the two
tools is fairer.

5 METHODOLOGY

For the collection of data, the same method was used for both tools.
The goal was to get the A records of the domain names. A sample of
1 million domain names was used as input. This number of domain
names would be high enough for the results to reflect on how the
scheduling is done but low enough to not have a significant impact
on the DNS infrastructure. The list of the 1 million domain names
was obtained by Tranco?, a research-oriented domain name ranking
list hardened against manipulation [7]. The list came as a csv file
with each entry being the ranking and the domain name. For ZDNS
the ——alexa option was specified which indicates that the input
format is an Alexa Top Million list. Moreover, the list was first
randomized before being used as input. Because the top domain
names were mostly .com, and then others followed, the list was first
randomized to even out the frequency at which domain names in
the .com zone were queried.

For a number of reasons, it was decided to run ZDNS on a more
powerful machine than OpenINTEL (see appendix B). Firstly, be-
cause one of the goals of OpenINTEL is to not have a big impact on
the DNS infrastructure, it was designed to send queries at a slow
pace. Consequently, it does not require a powerful machine. On

Shttps://tranco-list.eu/

TScIT 38, Feb 3, 2023, Enschede, The Netherlands

the other hand, ZDNS was designed to run on a powerful machine
that could make use of its processing power for better performance.
Even so, the machine used was not as powerful as the one Izhike-
vich et al used in their paper [4]. This might have been the reason
for an issue that will be shortly mentioned. The only hint on how
to choose the right configuration was that in the README file of
ZDNS they suggest using 1000 to 5000 go threads?. It was therefore
decided to keep the default configuration, see appendix B. It is of
high importance to mention that OpenINTEL and ZDNS do not
have the same concept of caching. Thus, matching the cache size
would not necessarily provide a more fair comparison. The most
important aspect which could affect the performance was that both
can reuse sockets and are able to make use of large number of ports.

Both scans were scheduled for 01:00 UTC time(02:00 local time).
Users are not very active during that time, thus making sure the
measurements do not have a significant impact on the infrastructure.

While the scheduled measurements were ongoing the network
traffic on port 53 was captured, with 53 being the port used for DNS
resolution. Once the measurement was finished the information
needed was filtered. We are only interested in the outgoing traffic
since we want to see the data sent by the tools and do not have
control over the data received. In addition, the NS and A records
were filtered. Occasionally, we would observe other queries being
sent such as DNSSEC queries, which acted as noise. Although it did
not add up to a significant amount of data it was decided to filter
them out.

Once the data was collected and filtered the analysis was per-
formed to extract useful information regarding the distribution of
data to the nameservers. Specifically, each unique nameserver was
mapped to the number of queries and the amount of data it was
sent to it.

Afterwards, when it was required the root zone file was used
to make the distinction between TLD nameservers and non-TLD

nameserverss.

5.1 Challenges faced

While running ZDNS scan the following challenge was faced. When
running the measurement for 1 million domain names about 5%
of the domain names resulted in ITERATIVE_TIMEOUT error.
This information was extracted from the metadata of the ZDNS
measurement results. This would not be the case if the input was not
as large, at about 10 thousands domain names. There was an attempt
to lower the error rate by trying to change the configuration of
ZDNS. However, the result was a considerably slower performance
without consistently lowering the error rate. Thus, it was decided
to use the previous configuration and accept the error rate. We
speculate that the error might be the cause of the machine not being
as powerful as required.

The first measurement taken with OpenINTEL revealed that the
recursive resolver would favour nameservers with IPv6 addresses.
This was an issue because ZDNS exclusively sends queries to name-
servers with IPv4. While it seemed that OpenINTEL had a more even
distribution, it could be the case that some of the pairs of IPv4 and

*https://github.com/zmap/zdns/
Shttps://www.internic.net/domain/root.zone

TSclIT 38, Feb 3, 2023, Enschede, The Netherlands

IPv6 addresses could correspond to the same machine, also called
"siblings". There are a number of techniques to identify IP sibling
relationships [9], but implementing them would introduce some
unwanted uncertainty. For that reason, it was decided to disable
querying IPv6 nameservers for OpenINTEL.

6 RESULTS

While both the number of queries and data were analysed, it was
decided to present only the figures for the number of queries. This
decision was made to improve the readability of the paper. Fig. [1]
and Fig.[2] represent the number of queries and the amount of data
sent respectively. In appearance, the two graphs have no significant
difference. The only difference is the order of magnitude. For the
data, the order of magnitude is 10° whereas for the queries it is 10°.
This was the case for all graphs concerning the relation between
data and queries for both OpenINTEL and ZDNS.

100000

80000 4

60000

40000

Number of queries

20000 4

0 20 40 60 80 100
Ranking

Fig. 1. OpenINTEL Query Distribution

le6

Data (bytes)

0 20 40 60 80 100
Ranking

Fig. 2. OpenINTEL Data Distribution

6.1 Overall Data and nameservers

ZDNS and OpenINTEL sent comparatively the same amount of data,
with OpenINTEL sending 5% more than ZDNS[1]. It is interesting to

Thalis Stavropoulos

point out that despite OpenINTEL sending more data it sends fewer
packets overall, making the mean length of packets for OpenINTEL
86 bytes and 75 bytes for ZDNS. Thus, answering Research Question
1.

total nameservers total data sent total queries sent

ZDNS 141,446
OpenINTEL 163,494

213.05MB 2.85M
224.02MB 2.62M

Table 1. Data table

The excess data is due to the optimization settings of OpenINTEL,
sending some additional information with every query which results
in sending more data in total. However, it needs to be confirmed
that this is indeed the reason for the excess data, perhaps in future
work. Despite that, it has an insignificant impact on the results since
the result for queries and data are almost identical showing.

In total, ZDNS sent queries to 141k unique nameservers and
OpenINTEL to 163k. Since the domain names that were used as
input to the two tools were not equally distributed to different TLDs
it would make sense that some received more traffic than others.
For instance, around 50% of the domain names were part of the .com
TLD.

Further investigating the nameservers of the .com TLD showed
that they received the majority of queries out of all the others.
Looking at the root zone file revealed that the nameservers for .com
are also responsible for the .net TLD. Thus it was not possible to
distinguish between the two by only looking at the destination IP.
For OpenINTEL the .com/.net nameservers received 22.7% of data
and 22.6% of queries. For ZDNS the .com/.net nameservers received
23.6% of the data and 23.4% of queries. This further justifies that
there were no anomalies.

Distinguishing the .com/.net nameservers in the top 100 (Fig.[3]
and Fig.[4]) distribution makes it clear that these nameservers re-
ceived most of the traffic. Furthermore, isolating the .com/.net name-
servers also makes it apparent that OpenINTEL has a more even
distribution, sending nearly the same number of queries to all 13
nameservers [5]. ZDNS on the other hand looks to prefer a specific
nameserver over the other 12.

With this, we have a first view of the data. OpenINTEL and ZDNS
sent comparatively the same amount of data with no anomalies
detected. OpenINTEL also sent data to more nameservers in total
which could hint to OpenINTEL being fairer.

Coming back to Research Question 1, we see how much data and
the number queries sent overall by OpenINTEL and ZDNS compar-
atively the same with OpenINTEL sending a bit more. However,
looking at the destination of the data, we notice that OpenINTEL
sends to more unique nameservers in total. The results are summa-
rized in table [1].

6.2 TLD and domain name nameservers

It was interesting to investigate the difference in data between the
domain name servers and the TLD nameservers since .com/.net
proved to have received about a quarter of all data and queries sent.

A Comparative Analysis of Network Data Distribution in Active DNS Measurements. ZDNS vs OpenINTEL.

Name servers - .com/.net(green)

100000

80000 4

60000

40000

Number of queries

20000 4

0 20 40 60 80 100
Ranking

Fig. 3. ZDNS Query Distribution with .com/.net nameservers marked

Name servers - .com/.net(green)
100000

80000 -

60000 -

40000

Number of queries

20000 1

B N—

0 20 40 60 80 100
Ranking

Fig. 4. OpenINTEL Query Distribution with .com/.net nameservers marked

== ZDNS
W= OpenINTEL
80000

60000

40000

Number of queries

20000

1 2 3 4 5 6 7 8 9 10 1 12 13
.com Name server Ranking

Fig. 5. OpenINTEL Query Distribution with .com/.net nameservers marked

Overall, ZDNS sent queries to 141k nameservers of which 2,779 were
TLD nameservers. Similarly, OpenINTEL sent queries to a total of
163,494 unique nameservers of which 3,086 were TLD nameservers.
Although the TLD nameservers amounted to only 1.96% they were
responsible for about 48% of the total data sent to nameservers. This
was the case for both OpenINTEL and ZDNS without any significant

TScIT 38, Feb 3, 2023, Enschede, The Netherlands

difference. Looking at the number of unique TLD and domain name
nameservers ranked by the amount of data sent also confirms this
trend (see appendix A).

Further looking into the TLD nameservers that received most
data we find that .com/.net nameserver received the majority. For
OpenINTEL the .com/.net nameservers received 22.6% of the queries
and for ZDNS then 23.4%.

Looking at Research Question 2 we can say the the TLD name-
servers received more data than the domain name servers. Further-
more, the .com/.net TLD nameservers received the majority out of
all other nameservers.

6.3 Cumulative distribution function and Gini coefficient

Another aspect to look at is the cumulative distribution function of
the queries sent over the number of nameservers. Moreover, it is
possible to determine the percentage of nameservers that contribute
to the majority of the queries sent. Fig.[6] shows the cumulative
distribution for OpenINTEL and ZDNS. A point of interest would
be the 90% point, where the number of nameservers that received
90% of the total queries is pointed out. That 90% is distributed to
27k for OpenINTEL and 10k for ZDNS.

1.0+

0.8 1

0.6

Percentage

0.24

— ZDNS
— OpenINTEL

0.04

T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 160000
Number of name servers

Fig. 6. OpenINTEL and ZDNS Cumulative distribution function

top 13 top 100 90% of data
ZDNS 0.002 0.574 0.799
OpenINTEL 0.128 0.627 0.787

Table 2. Gini Coefficient

An additional way to calculate the difference in distribution be-
tween OpenINTEL and ZDNS is the Gini coefficient. The Gini coef-
ficient measures the fairness in distribution mostly used to measure
the fairness of wealth distribution in countries. In this paper it will
be used to calculate the inequality between the queries and data sent
to the nameservers. The lower the value the fairest the distribution.

TSclIT 38, Feb 3, 2023, Enschede, The Netherlands

A coefficient of 0 indicates a perfectly even distribution whereas a
coefficient of 1 total inequality.

As seen in the cumulative distribution function the upper 10% of
the queries are spread over a large number of nameservers. For that
reason, the Gini coefficient was calculated for the top nameservers
that received 90% of the data and queries. The coefficient was also
calculated for the top 13 nameservers and the top 100 [2].

For the nameservers that received 90% of the queries both ZDNS
and OpenINTEL have a large coefficient. This can be justified by
the uneven number of domain names used as input. The TLD of the
domain names that were queried were unequal, with 50% of all do-
main names being in the .com TLD. Consequently, it is not possible
to have a perfectly even distribution between the nameservers.

For the top 13 nameservers, which are all .com/.net nameservers,
OpenINTEL has a significantly more even distribution with a Gini
coefficient of 0.002 which is very close to 0. ZDNS also has a rela-
tively low coefficient of 0.128.

For the top 100 ZDNS appears to have a more even distribution
with a coefficient of 0.574 against OpenINTEL with 0.627.

Lastly, the numerical finding of this study, namely the Gini coef-
ficient and the cumulative function, allow us to answer Research
Question 3.

7 DISCUSSION

Most metrics indicate that OpenINTEL is overall fairer than ZDNS.

Both the Gini coefficient and the Cumulative distribution function
show us that OpenINTEL distributes the queries more evenly. The
cumulative distribution in Fig.[6] shows how the distribution for
OpenINTEL is more smoothed out with a less sharp corner than
ZDNS. Furthermore, OpenINTEL sends 90% of its queries to more
than double the number of nameservers that ZDNS does, which
indicates that the distribution of queries is fairer.

It becomes even more clear when looking at the query distri-
bution for the top 13 nameservers. These nameservers are all of
the .com/.net TLD. Fig. [5] shows OpenINTEL having a more even
distribution, sending almost the same number of queries to all the
nameservers. ZDNS seems to prefer one of the servers more than
the others, with the nameserver ranked 13th having been sent less
than half the queries the nameserver ranked 1st was sent.

Unlike the other metrics, the Gini coefficient for the top 100,
ZDNS appears to have a more even distribution with a coefficient of
0.574 against OpenINTEL with 0.627. The reason is that OpenINTEL
has a few big jumps in queries sent because of the difference in
TLD. As previously mentioned .com/.net nameservers receive the
most queries compared to all other nameservers. Therefore, the
14th nameserver which is not .com/.net receives considerably less
data. Because OpenINTEL has a more even distribution between
nameservers of the same TLD the difference between the 13th and
14th nameserver is greater for OpenINTEL than ZDNS. This is in
turn interpreted as a less even distribution by the Gini coefficient.
Perhaps it would be more appropriate to group the nameservers and
calculate the Gini coefficient among the same TLD nameservers,
but due to the time limit, it was not possible.

This is not to say that ZDNS does not handle the distribution well.
The primary goal of ZDNS is to allow researchers to have a fast tool

Thalis Stavropoulos

that they can easily extend to fit their needs. In that case, it might
be more beneficial to sacrifice some fairness for performance.

As the OpenINTEL authors explained in their paper there was a
trade-off between performance and the pacing of queries. Having
to run the scan every day could pose a significant workload to the
nameservers. Therefore, performance was sacrificed to have less of
an impact on the DNS infrastructure.

7.1 Limitations

Although the results showed that OpenINTEL has a more even
distribution there are a few things to consider. This is important to
think of since there could have been some pitfalls that affected the
result.

Firstly and most importantly, the data that was gathered was the
result of a single scan. It is therefore possible that the data gathered
in the study does not reflect how the tools would operate and more
samples are required.

As discussed, a number of queries resulted in an error is unclear
how this could have affected the results. Furthermore, the hardware
limitation along with the configuration of both tools could have
also affected the overall result. That is to say that a combination of
better hardware and different configuration settings could change
the results of the fairness of ZDNS. The error codes we received
could have been the result of not having enough power from the
hardware. To overcome this a more powerful machine would be
required that matched the specs of the machine Izhikevich et al.
used in their paper.

7.2 Future work

For future work, it would be appropriate to take more measurements
using the tools to confirm our findings. As mentioned the data used
was collected from running only a single scan session. Lastly, it
would be interesting to investigate the distribution between name-
servers that belong to the same TLD. The top 13 nameserver which
were all of the .com/.net TLD clearly showed that OpenINTEL had
a more fair distribution.

8 CONCLUSION

Looking at the results and the metrics used in this study; it is fair
to say OpenINTEL has a more fair distribution than ZDNS. This is
evident looking at the distribution of the top 13 nameservers, which
are of the same TLD. It clearly indicating OpenINTEL having a more
even distribution with each nameserver receiving almost the same
number of queries. However, it is important to keep in mind that
they have different objectives which have influenced their design
choices. Further studies will have to be carried out to confirm the
results.

REFERENCES

[1] [n.d.]. Global Measurement of DNS Manipulation | USENIX. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/pearce

[2] Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter Joosen, and Tom Van Goethem.
[n.d.]. The CNAME of the Game: Large-scale Analysis of DNS-based Tracking
Evasion. ([n.d.]), 2021. https://sub.example.com/

[3] ICANN Security and Stability Advisory Committe. 2019. SAC105 The DNS and
the Internet of Things: Opportunities, Risks, and Challenges. (2019).

[4] Liz Izhikevich, Gautam Akiwate, Briana Berger, Spencer Drakontaidis, Anna
Ascheman, Paul Pearce, David Adrian, and Zakir Durumeric. [n.d.]. ZDNS: A

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://sub.example.com/

A Comparative Analysis of Network Data Distribution in Active DNS Measurements. ZDNS vs OpenINTEL. TScIT 38, Feb 3, 2023, Enschede, The Netherlands

Fast DNS Toolkit for Internet Measurement. ([n.d.]), 11. https://doi.org/10.1145/ 107

3517745.3561434

Athanasios Kountouras, Panagiotis Kintis, Chaz Lever, Yizheng Chen, Yacin Nadji,

David Dagon, Manos Antonakakis, and Rodney Joffe. 2016. Enabling network 0.8 1

security through active DNS datasets. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

9854 LNCS (2016), 188-208. https://doi.org/10.1007/978-3-319-45719-2{ }9

Christopher C Krebs and Russell T Vought. 2019. CISA CY-

BER+INFRASTRUCTIJRE. (2019). https://www.us-cert.gov/ncas/current-

activity/201

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczy,

Wouter Joosen, and Ku Leuven. [n. d.]. TRANCO: A Research-Oriented Top Sites

Ranking Hardened Against Manipulation. ([n.d.]). https://doi.org/10.14722/ndss.

2019.23386

Jiarun Mao, Michael Rabinovich, and Kyle Schomp. 2022. Assessing Support

for DNS-over-TCP in the Wild. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

13210 LNCS (2022), 487-517. https://doi.org/10.1007/978-3-030-98785-5{ }22/ 0.0-

TABLES/4

Quirin Scheitle, Oliver Gasser, Minoo Rouhi, and Georg Carle. 2017. Large-Scale

Classification of IPv6-IPv4 Siblings with Variable Clock Skew. Technical Report.

[10] Raffaele Sommese, K. C. Claffy, Roland van Rijswijk-Deij, Arnab Chattopadhyay, . _ . . _
Alberto Dainotti, Anna Sper};tto, and Mattijs Jonker. 2022. Investigaﬁing};h}; Fig. 8. Opt?nlNTEL TLD(dark blue) - other domain name(light blue) name
impact of DDoS attacks on DNS infrastructure. Proceedings of the ACM SIGCOMM servers ratio
Internet Measurement Conference, IMC (10 2022), 51-64. https://doi.org/10.1145/
3517745.3561458

[11] Olivier Van Der Toorn, Moritz Miiller, Sara Dickinson, Cristian Hesselman, Anna
Sperotto, and Roland Van Rijswijk-Deij. 2022. Addressing the challenges of
modern DNS a comprehensive tutorial. Computer Science Review 45 (2022), 100469.
https://doi.org/10.1016/j.cosrev.2022.100469

[12] Olivier van der Toorn and Anna Sperotto. 2018. Threat Identification Using Active 0.8 q
DNS Measurements. 12th International Conference on Autonomous Infrastructure,
Management and Security, AIMS 2018 - Proceedings (2018), 1-5.

[13] Roland Van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko Pras. 2016. A
High-Performance, Scalable Infrastructure for Large-Scale Active DNS Measure-
ments. (2016). https://doi.org/10.1109/JSAC.2016.2558918

[14] Nicholas Weaver, Christian Kreibich, Boris Nechaev, and Vern Paxson. [n.d.].
Implications of Netalyzr’'s DNS Measurements. ([n.d.]). http://netalyzr.icsi.
berkeley.edu.

[15] Ramin Yazdani, Olivier Van Der Toorn, and Anna Sperotto. 2020. A Case of
Identity: Detection of Suspicious IDN Homograph Domains Using Active DNS 021
Measurements; A Case of Identity: Detection of Suspicious IDN Homograph
Domains Using Active DNS Measurements. (2020). https://doi.org/10.1109/
EuroSPW51379.2020.00082

92%

[5

—

o
o
L

G

—

Percentage

7

—

2
ES
L

[8 0.2 1

=

top 10 top 50 top 100 top 500 top 1000

[0 Ranking

=

1.0

Percentage
o
o

<2
ES
L

. 0.0
Appendix A top 10 top 50 top 100 top 500 top 1000

Ranking

Fig. 9. ZDNS TLD(dark blue) - other domain name(light blue) data ratio

1.0 7 1.0
0.8 - 0.8
v 0.6 o 0.6 1
(=] (=]
I ©
= =
s 3
& 0.4 1 & 0.4 4
024 0.2 1
0.0~ 0.0-
top 10 top 50 top 100 top 500 top 1000 top 10 top 50 top 100 top 500 top 1000
Ranking Ranking
Fig. 7. ZDNS TLD(dark blue) - other domain name(light blue) nameservers Fig. 10. OpenINTEL TLD(dark blue) - other domain name(light blue) data
ratio ratio

https://doi.org/10.1145/3517745.3561434
https://doi.org/10.1145/3517745.3561434
https://doi.org/10.1007/978-3-319-45719-2{_}9
https://www.us-cert.gov/ncas/current-activity/201
https://www.us-cert.gov/ncas/current-activity/201
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1007/978-3-030-98785-5{_}22/TABLES/4
https://doi.org/10.1007/978-3-030-98785-5{_}22/TABLES/4
https://doi.org/10.1145/3517745.3561458
https://doi.org/10.1145/3517745.3561458
https://doi.org/10.1016/j.cosrev.2022.100469
https://doi.org/10.1109/JSAC.2016.2558918
http://netalyzr.icsi.berkeley.edu.
http://netalyzr.icsi.berkeley.edu.
https://doi.org/10.1109/EuroSPW51379.2020.00082
https://doi.org/10.1109/EuroSPW51379.2020.00082

TSclIT 38, Feb 3, 2023, Enschede, The Netherlands

Thalis Stavropoulos

Appendix B
Option Selected Description
cache-size 10000 (default) how many items can be stored in internal recursive cache
go-processes 8 (default GOMAXPROCS) number of OS processes with GOMAXPROCS being all available cores
iteration-timeout 4 (default) timeout for resolving a single iteration in an iterative query
iterative true Perform own iteration instead of relying on recursive resolver
max-depth 10 (default) how deep should we recurse when performing iterative lookups
mx-cache-size 1000 (default) number of records to store in MX -> A/AAAA cache
recycle-sockets true (default) Create long-lived unbound UDP socket for each thread at launch and reuse for all (UDP) queries
retries 1 (default) how many times should zdns retry query if timeout or temporary failure
threads 1000 (default) number of lightweight go threads
timeout 15 (default) timeout for resolving an individual name
Table 3. ZDNS configuration settings
0os RAM CPU # of cores
ZDNS Ubuntu 20.04 16GB 2.4GHz 8
OpenINTEL Ubuntu 18.04 2GB 23GHz 1

Table 4. Hardware specs

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Motivation
	2.3 Tools

	3 Related Work
	4 Research Goals
	5 Methodology
	5.1 Challenges faced

	6 Results
	6.1 Overall Data and nameservers
	6.2 TLD and domain name nameservers
	6.3 Cumulative distribution function and Gini coefficient

	7 Discussion
	7.1 Limitations
	7.2 Future work

	8 Conclusion
	References

