Crowd Analysis on Edge Devices: A Comparative Study of Neural

Networks on Blurred Images

SAMUEL COSTE, University of Twente, The Netherlands

Crowd counting is an important task in various applications such as public
safety, traffic management, and surveillance. In recent years, edge devices
have become increasingly popular for crowd counting due to their low cost
and high efficiency. However, traditional image processing techniques for
crowd counting often struggle to handle images taken in challenging environ-
ments, such as low light or crowded scenes. In this paper, we propose a new
approach for crowd counting on edge devices using blurred images. The use
of blurred images allows for crowd counting in challenging environments
while also preserving privacy. This paper will com- pare the performance
of different neural network architectures on a data set of blurred images of
crowded scenes and evaluate their accuracy, robustness, and efficiency. We
also examine the impact of different factors on the performance of our ap-
proach, such as image resolution, blur type and blur level. Our results show
that crowd counting on edge devices using blurred images is a promising
approach with potential applications in various fields such as crowd man-
agement in public events, retail, transportation, surveillance and security,
public health, and emergency and disaster management.

Additional Key Words and Phrases: Crowd Analysis; Neural Networks;
YOLOvV7; TensorFlow; Edge Devices; Blurred Images

1 INTRODUCTION

In recent years, the use of neural networks for image analysis has
gained significant attention in various fields such as surveillance,
crowd management, and traffic monitoring. One of the challenging
tasks in image analysis is counting the number of objects, partic-
ularly humans, in blurred images. In this research paper, we aim
to investigate the best neural network architecture for counting
humans in blurred images. We will compare the performance of
different neural network architectures on a data set of blurred im-
ages of crowded scenes and evaluate their accuracy, robustness, and
efficiency. This research will provide insights into the best practices
for using neural networks for counting humans in blurred images
and can be applied in various real-world applications. This research
was motivated by the lack of insight in the usage of public spaces.
One of the problems this paper aims to solve is to provide this in-
sight in spaces like university libraries. By using blurred images
in image analysis, it can help to maintain the privacy of individ-
uals. This is because the (physical) blurring of the images makes
it difficult to recognise individuals and their characteristics, such
as facial features, which can be sensitive information. Therefore,
using blurred images in image analysis can be a valuable solution
for maintaining privacy while still achieving the goal of counting
the number of humans present in the scene. Additionally, the use
of physically blurred images could be an effective way to respect
the privacy laws and regulations and to comply with the data pro-
tection standards. The main question that will be answered in this

TScIT 38, Februari 3, 2022, Enschede, The Netherlands

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

paper is: How does the use of blurred images affect the accuracy
and efficiency of crowd counting on neural networks when running
on edge devices? To answer this a comparison of different neural
network architectures will be made, as well as an evaluation of their
performance on blurred images using edge devices. In the conclu-
sion section other ideas for real-world scenarios that could benefit
from these techniques will be proposed.

2 APPROACH
2.1 Research Design

For this research we used an experimental design to perform a com-
parative study. The basis was the collection of images, which would
be blurred using different techniques and degrees of blurring, which
would then each be assessed by several neural network models,
to determine the effect the blurring had on the accuracy and per-
formance of the models. The purpose of doing it this way was to
isolate one variable at the time, making it possible to pinpoint which
cause-and-effect relationships existed between the variables and the
obtained results.

2.2 Tools used

Several tools were used to perform this research, in this subsection
we will briefly discuss each, explain the choices made, and their
contribution to this project.

2.2.1 Data sets. Two data sets were used during this research. The
most relevant one for the main use case was the Mall data set first
introduced in a paper by Chan et al. (2015) [7]. The data set includes
a total of 2000 images, each with a resolution of 640x480 pixels. The
images were captured by a webcam in a shopping mall, resulting in
pictures with similar lighting conditions. They contain all contain
people in different postures and sometimes partially covered. The
number of people present in each frame ranges from 15 to 48, making
it perfectly suited for this research. An example of a untreated image
can be found in Appendix A.2, fig.5.

These picture were then modified, using Adobe Photoshop’s Batch
functionality, applying different blurring techniques and degrees.
This resulted in new data sets that could be used to evaluate the
ability of the neural networks to analyse them. As a Gaussian Blur
is a good approximation for a lens which is out of focus [9] this was
the primary blurring technique used. Another Photoshop filter that
was used was one called "Lens Blur", but because it is not clear by
the Adobe Documentation what this blurring effect exactly does,
it was not possible to judge if this could be replicated physically.
The same holds for the "Box Blur" technique, which was abandoned
for these reasons after the initial tests. By varying the radius of the
blur different blurring degrees could be achieved. This ranges from
a very light blur where people are easily recognised as can be seen
in fig.6 to images where it is difficult even for humans to identify
the shapes of persons.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TSclIT 38, Februari 3, 2022, Enschede, The Netherlands

The second data set was called ‘Human Crowd Dataset’ [1] and
it was used to verify the initial results. The data set is a collection
of over 16.000 images of various groups of people in very varying
settings. It was only tested using a Gaussian blur with a radius set to
3px. In the discussion section this specific choice will be elaborated.
An example picked at random after the blurring was applied can be
found in Appendix A.2, fig.18.

2.2.2  Hardware. As mentioned before, Adobe Photoshop was used
to achieve a blurring effect on the images, this was running on a
powerful PC as it does take a lot of computing power to process
all these images. All the results gathered during this research came
from a Raspberry Pi 4 Model B with 1GB of RAM. This was of course
limiting the selection of models that could be chosen from, which
will be further elaborated on in the next subsection. The results
were then imported back on a PC, where Excel was used to analyze
the results and plot the graphs.

2.2.3  Neural Networks. As this research was completely performed
on a Raspberry Pi, the neural networks explored were chosen with
this limitation in mind. The first model used was YOLOv7-tiny (For
the purpose of readability, we will refer to Yolov7-tiny as "Yolo"
throughout this paper). This model was chosen for it’s known ac-
curacy on the COCO-Dataset as can be seen here: [3]. Because of
the high performance and accuracy of this model, as well as the
availability of code [5] this model was used. Because the full model
would be to heavy for the Pi, a smaller version of Yolov7, Yolov7-tiny
[18] was used. This model uses fewer layers and parameters, which
allows it to run on edge devices such as the Raspberry Pi.

2.2.4 TensorFlow Lite. TensorFlow and TensorFlow Lite are open
source frameworks that were developed by Google. These frame-
works include tools for building, training and running neural net-
work models. TensorFlow Lite is a lightweight version of Tensor-
Flow, specifically designed for edge devices. As these devices have
less power and memory, it was designed to be more efficient than
TensorFlow (both in terms of power and memory). More details
about TensorFlow Lite and the optimisation techniques it offers can
be found in these papers: [5, 16, 24]. TensorFlow Lite was used to
run two different models, both developed by Google. The first [10]
is based on SSD Mobilenet [17]. This model had some limitations, as
it would not detect more than ten objects in an image. The second
one, the "Google Mobile Object Localizer" [11] was capped at 100
object, making it much better suited for our application.

3 RESULTS

The results collected during this research were for each image the
count as perceived by the neural networks, and to be able to confirm
that the objects detected were indeed persons, the annotated images
with bounding boxes around each detected person were saved as
well. This was used to compare the accuracy of each run against
the labeled data for each set. The results were then imported in
Excel to calculate the average accuracy and standard deviation. The
complete sheet with all the data points is available on GitHub [2].
The results are represented in the three box plots [1, 2, 3], one for
each algorithm. In the graphs abbreviations are used to denote the
blurring techniques applied. The ’Control’ label is for the unaltered

Samuel Coste

version of the image, this batch has not been modified from it’s
original image definition. ’GB’ stands for ’Gaussian Blur’, which
is followed by the pixel radius, the degree of blurring, at which it
was applied. 'LB’ means "Lens Blur’ and the same logic was used to
define it’s degree of blurring.

3.1 Yolo

The first results will cover running Yolo on the Mall Data set. In
these results the pictures were ordered in descending order based
on the number of people present.

On the results graph [1] we can see for each blurring technique
and blurring degree applied to the data set how many persons were
detected by Yolo. We can clearly observe that when the degree of
the blurring is increased the neural network is less likely to give an
accurate count. For these tests a probability threshold of 0.1 was used.
Meaning Yolo would count a human starting from 10% certainty.
This was used because the certainty of Yolo goes down very quickly
when analysing a blurred image. The downside to this technique is
that Yolo might count non-humans as being humans, which explain
that on some images the counted number of people surpasses the
actual number of humans as stated in the labels. A balance has to
be found, depending on the blurring degrees to find a appropriate
probability threshold which will exclude things like mannequins
(often miscounted in these examples) from real humans.

The graph also shows results higher than 100%. This shows that
for some blurring degree the acceptance threshold was to low, re-
sulting in objects being counted as persons.

The accuracy is not impacted by the amount of people in the
pictures, as for each blurring technique the percentage of missed
people stays constant.

3.2 SSD Mobilenet

As can be seen in our graph [2] this model never exceeds 10 persons
detected per image. As our data ranges from 15 to 48 people per
image this is insufficient. This results in very skewed results. The
model seems to perform better on images with less persons in them,
but this can not be verified, as it the results are mainly caused by the
model being capped at 10 persons. It is interesting to see that this
model performs better than Yolo when applied to a high blur. Where
Yolo almost incapable of detecting persons, The SSD Mobilenet still
manages to identify a few.

3.3  Google Mobile Object Localizer

The results for the Object Localizer were more similar to the results
achieved on when running Yolo. However, when looking at the
images with the bounding boxes it is clear that the Object Localizer
spotted a lot of objects and counted them as humans. This has not
been accounted for in the results table, but the effects are visible in
the Standard Deviation Table, as the deviation is a lot higher for the
Object Localizer compared to Yolo.

4 DISCUSSION
4.1 Blurring Techniques

During this research the main blurring technique applied was a
Gaussian Blur. This choice, as stated in the Approach section was



Crowd Analysis on Edge Devices: A Comparative Study of Neural Networks on Blurred Images

Table 1. Average Accuracy of each algorithm applied on the different blur-
ring techniques. Each cells indicates the average accuracy, defined as a
percentage of identified persons on the total number of persons in the
image, + the Standard Deviation of the algorithm as applied on the set of
images with the blurring degree/ technique mentioned in the first column.
For every row, the highest score has a green background and the lowest
score is red. The last row is the average performance measured in ’Frames
Per Second’ for each algorithm performing the detection on a set of 6000
images

Blurring Technique YOLO SSD Mobilenet | Object Localizer
Control 83,2% £ 12,3 76,1% * 43,8

Gaussian Blur 1px 76,0% + 10,4 56,4% + 31,8

Gaussian Blur 2px 64,7% + 11 34,4% + 8,6

Gaussian Blur 3px 48,6% + 11,4 33,3% + 8,1

Gaussian Blur 4px 18,6% + 10,6 29,0% + 7,4

Gaussian Blur 5px 27,8% + 82 10,8% + 5,6

Gaussian Blur 6px 29,2% +9,1 57% + 3,3

Gaussian Blur 7px 31,7% +9,5 4,6% 2,1

Gaussian Blur 8px 34,6% + 10,6 4,4% + 1,7
Lens Blur 2px 83,2% + 12,3 76,1% + 43,8
Lens Blur 4px 79,4% + 11,7 64,7% * 38,7
Lens Blur 6px 71,5% + 10,3 52,4% * 29,2
Performance 6,27 FPS 12,9 FPS

HControl MGBrl MGBr2 [MGBr3 WGBr4 WGBr5
MGBr6 MGBr7 MGBr8 ELBr2 N LBr4 W LBr6

120

100 .
80
60

40

.
20
.
; R
. i b

Fig. 1. Box plot showing the results of Yolo on the different blurring degrees.
This shows a clear drop in accuracy when going from GBr3 to GBr4.

made to closely match real world experiments that could follow. A
three pixel blurring radius was chosen to test on the larger data set,
as at this degree of blurring Yolo was still able to detect around 50%
of the persons present. After experimenting with various probability
thresholds and examining the results, it was concluded that a 10%
certainty threshold on the blurred images performed best for Yolo
and SSD Mobilenet and 18% was best suited for the Object Localizer.
Going lower than these thresholds would lead to a big increase
in false positives, while increasing this threshold would cause the
accuracy to drop too quickly on blurred images.

TSclIT 38, Februari 3, 2022, Enschede, The Netherlands

H Control MGBrl WGBr2 [EGBr3 MWGBr4 MGBr5
MGBr6 MGBr7 HGBr8 WLBr2 M LBrd4 W LBr6

120

100

W Lo

Fig. 2. Box plot showing the results of SSD Mobilenet on the different
blurring degrees. Because the algorithm is capped at detecting 10 objects
the results are limited.

M Control MGBrl MGBr2 MWGBr3 MWGBr4 MGBr5
MGBr6 MGBr7 MGBr8 HLBr2 HLBr4 MLBr6

120

100

- T

Fig. 3. Box plot showing the results of Object Localizer on the different
blurring degrees. The high standard deviation shows that the precision is
low. On the same blurring degree the model will vary a lot in accuracy.

+$;;

4.2 Neural Networks

This research used Yolo, based on a convolutional neural network
(CNN), as well as two models based on a Vision Transformer (ViT).
The average accuracy for these models was highly dependent on
the situation. For clear images Yolo was the best performing, but
at higher degrees of blurring the Object Localizer would perform
better. The SSD Mobilenet was very difficult to judge due to it’s
cap on ten objects detected simultaneously. It should be noted that
these were all light versions of the models because they had to run



TSclIT 38, Februari 3, 2022, Enschede, The Netherlands

on a Raspberry Pi, and the performance of the full models could be
different.

4.3 Limitations and Future Research

This brings us to the limitations of this research. First of all, research
should be performed on the blurring degrees to define how much
blurring is needed to protect someone’s privacy. During this research
it did not make sense to use a blurring degree higher than three
pixels for a Gaussian Blur, as the accuracy would go down very
quickly, and comparing results beyond this threshold was difficult
as the rate of false positives would go up. But this does not mean
that a blurring radius of three pixels is sufficient to render someone
unrecognisable.

Another limitation that could be researched further are the models
used. The SSD Mobilenet used was very limited, but maybe that the
full version running on a powerful enough computer would boast
great accuracy. DINO is momentarily the state-of-the art object
detector as tested on the COCO data set [24], but was not tested in
this research due to lack of available code.

Due to time constraints, the models used were all pre-trained mod-
els, but maybe that a model specifically trained on blurred images
could outperform these models both in accuracy and performance.

5 CONCLUSION
5.1 Summary

In this research we compared a three neural networks performing
crowd counting on blurred images using a Raspberry Pi. It is clear
that blurred images have a significant impact on the accuracy of the
researched models. The models are still able to detect persons in
the images, but especially smaller people (at the back of the images)
were hard to detect in blurred circumstances. It can be concluded
that an edge device such as the Raspberry Pi is able to run a well
performing model to count persons on non-blurred images (83.2%
accuracy), but the affects of blurring are very noticeable, with the
accuracy quickly dropping as low as 1.2% on a Gaussian Blur with a
radius of 6px.

The performance of the models was unaltered when running
on blurred images versus non blurred images. For all three models
the performance would be good enough to run this in a real-time
application, updating once every second.

5.2 Practical Applications

Several practical applications can be thought of. The reason for this
research paper was the usage in (university) libraries. But this can of
course be used in many different settings. Some real-world scenarios
where this would be applicable could be as follows:

1. Public Events: Monitor Crowd Density and ensure Public Safety.
During public events it would be beneficial to monitor the density
of crowds. This type on non intrusive monitoring could help munic-
ipalities when large events are organised to react in a more timely
manner. This could help them manage large crowds and avoid dis-
asters like the Seoul Halloween Crowd Crush.

2. Retail: Monitor Customer Traffic, optimise Staffing. By using
crowd analysis shops could optimise their staffing depending on
the time and day of the year, as well as fore large surfaces where

Samuel Coste

employees could be dispatched to locations with more customers to
be more efficient. Another idea would be to use this data to optimise
the product placements in shops based on where people spend most
of their time.

3. Surveillance: The same technology could be use in surveillance
to detect the presence of persons without compromising the privacy
of your own personnel.

ACKNOWLEDGMENTS

Papers that helped me in my research but I did not cite explicitly in
this paper: [4, 6, 8, 12-15, 19-23]

REFERENCES

[1] [n.d.]. Human Crowd Dataset. https://www.kaggle.com/datasets/hilongnguyn/
human-crowd-dataset Accessed on: January 20, 2023.

[2] [n.d.]. Mod-12. https://github.com/Samuel-FC/Mod-12 Accessed on: January 26,

2023.

[n.d.]. Object Detection on COCO. https://paperswithcode.com/sota/object-

detection-on-coco accessed January 29, 2023.

[4] Maha Hamdan Alotibi et al. 2019. CNN-Based Crowd Counting through IOT:
Application for Saudi Public Places. Procedia Computer Science 158 (2019), 095-102.
https://doi.org/10.1016/j.procs.2019.12.095

[5] Alexey Bochkovskiy. 2021. YOLOv7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. arXiv preprint arXiv:2104.13647 (2021).

[6] Mathilde Caron, Hugues Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging Properties in Self-Supervised
Vision Transformers. arXiv preprint arXiv:2104.14294v2 (2021).

[7] Sam Kwong Chan, Xiaogang Wang, and Chen Change Loy. 2015. A data set
and benchmark for crowd counting in still images. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR).

[8] K Chen, CC Loy, S Gong, and T Xiang. 2012. Feature Mining for Localised Crowd
Counting. In Proceedings of the British Machine Vision Conference. BMVA Press,
21.1-21.11. https://doi.org/10.5244/C.26.21

[9] JC Dainty. 1984. Modeling the point spread function in optical microscopy. Journal
of the Optical Society of America A 1, 6 (1984), 624-630.

[10] Google. 2018. SSD Mobilenet. https://storage.googleapis.com/download.
tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant 2018 _06_29.zip
Accessed on January 27, 2023.

[11] Google. 2021. Google Mobile Object Localizer. https://tfhub.dev/google/lite-

model/object_detection/mobile_object_localizer_v1/1/default/1 Accessed on Jan-

uary 27, 2023.

Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding. In

International Conference on Learning Representations. 1-12.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2018.

Structured pruning of convolutional neural networks. In International Conference

on Learning Representations. 1-14.

P Jawale, H Patel Chaudhary, and N Rajput. 2020. Real-Time Object Detection

using TensorFlow. Journal name volume (2020), pages.

H Jiang and S Wang. 2016. Object Detection and Counting with Low Quality

Videos. (2016).

[16] T Lin, W Liu, C Shen, and J Jia. 2021. Internlmage: Exploring Large-Scale

Vision Foundation Models with Deformable Convolutions. arXiv preprint

arXiv:2104.13865 (2021).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.

In European Conference on Computer Vision. Springer, Cham, 21-37. https://doi.

0rg/10.1007/978-3-319-46448-0_2

Qengineering. 2022.  YoloV7-ncnn-Raspberry-Pi-4. https://github.com/

Qengineering/YoloV7-ncnn-Raspberry-Pi-4 accessed January 15, 2023.

Mohamed Sayed and Gabriel Brostow. 2021. Improved Handling of Motion Blur

in Online Object Detection. In Proceedings of the Computer Vision Foundation

Conference, Vol. volume. pages.

Mingxing Tan, Quoc V Le, and Boging Gong. 2019. EfficientNet: Rethinking model

scaling for convolutional neural networks. In International Conference on Machine

Learning. 6105-6114.

Google AI Team. 2019. TensorFlow Lite: A lightweight library for deploying

TensorFlow models on mobile and embedded devices. https://www.tensorflow.

org/lite

Google AI Team. 2020. TensorFlow Lite Micro: A Lightweight Edge TensorFlow

Library for Microcontrollers. https://www.tensorflow.org/lite/microcontrollers

3

[12

[13

[14

oy
&

[17

[18

[19

[20

[21

[22


https://www.kaggle.com/datasets/hilongnguyn/human-crowd-dataset
https://www.kaggle.com/datasets/hilongnguyn/human-crowd-dataset
https://github.com/Samuel-FC/Mod-12
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://doi.org/10.1016/j.procs.2019.12.095
https://doi.org/10.5244/C.26.21
https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip
https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip
https://tfhub.dev/google/lite-model/object_detection/mobile_object_localizer_v1/1/default/1
https://tfhub.dev/google/lite-model/object_detection/mobile_object_localizer_v1/1/default/1
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://github.com/Qengineering/YoloV7-ncnn-Raspberry-Pi-4
https://github.com/Qengineering/YoloV7-ncnn-Raspberry-Pi-4
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/microcontrollers

Crowd Analysis on Edge Devices: A Comparative Study of Neural Networks on Blurred Images TScIT 38, Februari 3, 2022, Enschede, The Netherlands

1% 67.9%

 51.07%]

Fig. 9. YOLOv7-tiny result with Gaussian Blur r = 4px

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems. 5998—6008.

[24] W Wang, ] Dai, Z Chen, Z Huang, Z Li, X Zhu, X Hu, T Lu, L Lu, H Li, X Wang,
and Y Qiao. 2022. InternImage: Exploring Large-Scale Vision Foundation Models
with Deformable Convolutions. arXiv preprint arXiv:2211.05778v2 (2022).

A APPENDICES
A1 Appendix A1

These are samples from the data sets showing the blurring and the
bounding boxes drawn by the different neural networks.

Fig. 5. YOLOv7-tiny result on the control image.



TSclIT 38, Februari 3, 2022, Enschede, The Netherlands Samuel Coste

Fig. 13. YOLOvV7-tiny result with Gaussian Blur r = 8px

Fig. 15. YOLOv7-tiny result with "Lens Blur" r = 2px

Fig. 18. Example from the Human Crowd set



	Abstract
	1 Introduction
	2 Approach
	2.1 Research Design
	2.2 Tools used

	3 Results
	3.1 Yolo
	3.2 SSD Mobilenet
	3.3 Google Mobile Object Localizer

	4 Discussion
	4.1 Blurring Techniques
	4.2 Neural Networks
	4.3 Limitations and Future Research

	5 Conclusion
	5.1 Summary
	5.2 Practical Applications

	Acknowledgments
	References
	A Appendices
	A.1 Appendix A.1


