
A Parser Generator for Visibly Pushdown Languages: Translating
between VPLs
MICHAEL JANSSEN, University of Twente, The Netherlands

Parsers often use the language class of Context-Free Grammars. This class

has limitations, as it is not guaranteed to parse in polynomial time. In con-

trast, regular grammars can be parsed in linear time but are so restricted

that many practical applications can not be modelled as a regular grammar.

A language class has been proposed which adds some features to regular

grammars that allow it to be used in a wide array of languages, such as

JSON and XML. There is no publicly available language translator for this

class, and there is a flawed parser generator. This paper introduces and

expands upon a new parser generator and translator for the language class

of Visibly Pushdown Grammars, using existing algorithms and concepts of

both automata construction and language translation.

Additional Key Words and Phrases: Visibly Pushdown Languages, Visibly

Pushdown Automata, Parser Generation, Language Translation

1 INTRODUCTION
In Computer Science, formal grammars serve as a method for de-

scribing languages. They are widely utilized, from identifying pat-

terns in a text through regular expressions to compiling program-

ming language code using a context-free grammar. The Chomsky

hierarchy, introduced by Chomsky [3], categorizes grammars into

four types, ranging from Type-0 to Type-3. Type-3 is the most re-

strictive of the classes yet can be modelled through a Finite State Ma-

chine. Since Chomsky’s initial introduction of these types, various

classes of grammars have been proposed that fall between them. For

example, Type-2 grammars, also known as Context-Free Grammars

(CFGs), can be non-deterministic. There is a deterministic subset of

Context-Free Grammars, referred to as Deterministic Context-Free

Grammars (DCFGs). The advantage of utilizing DCFGs is that they

can be modelled through a Deterministic Pushdown Automaton [4]

and therefore have linear parsing time. In contrast, Context-Free

Grammars (CFGs) can be modelled through a Non-Deterministic

Pushdown Automaton and are not guaranteed to parse linearly.

The Visibly Pushdown Grammars(VPGs) class was first intro-

duced by Alur and Madhusudan [2]. The language class is more

restrictive than Type-2 grammars, even DFCGs, but less restrictive

than Type-3 grammars, the regular languages. With the addition

of nesting, it can parse languages that regular grammars can not.

HTML, XML, JSON and other structured languages are examples of

Visibly Pushdown Languages. Due to the more restrictive nature,

it has more closure properties than CFGs; it is closed under Union,

Intersection and Complement [2]. This class of grammars is unre-

stricted enough for parsing languages such as XML and HTML, as

those are too complex for regular languages. Also, automata parsing

TScIT 38, February 3, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

VPLs, Visibly Pushdown Automata, have a linear time complexity

compared to their input string.

Current solutions for Visibly Pushdown Grammars are still being

explored. The only publicly available parser generator for Visibly

Pushdown Grammars is Owl, which is expanded later. Next to this,

no translator from one VPG to another was found. A translator can

transform a string from one language to another. Such a translator

can transform to and from semantically-similar languages, such as

document languages like XML and JSON, in linear time.

Looking at the current gap in currently available parser gener-

ators and translators for the language class of Visibly Pushdown

Gramamrs, this research introduces a solution which can do both.

This paper shows how the solution is constructed and verifies the

linear parsing time claim. First related work is introduced, then the

requirements of the solution are discussed, after which existing so-

lutions are discussed, continuing to the solution proposed, verifying

the results and concluding with discussing the current limitations

and potential future work.

2 RELATED WORK
In this section, work related to this research is discussed. Specifically,

the language class of Visibly PushdownGrammars is expanded upon,

the language translation is explained, and a quick introduction to

regular expressions is given.

2.1 Visibly Pushdown Grammars
The language class of Visibly Pushdown Grammars are an extension

to Regular Grammars. Compared to Regular Grammars, it allows

a different rule in a grammar 𝐿𝑖 →< 𝑎𝐿𝑗 > 𝑏, where < 𝑎 is a call

symbol, and 𝑏 > is a return symbol. This rule allows for tracking

if a call symbol is closed; otherwise, the grammar would not allow

it. A call symbol can be the symbol
′ (′ and the return symbol

′)′,
allowing matching brackets in the language. The grammar specifi-

cation in [2] was defined as follows:

A context-free grammar 𝐺 = (𝑉 , 𝑆, 𝑃) over 𝜎 is a Visibly Push-

down Grammar with respect to the partitioning Σ̃ = (Σ𝑐 , Σ𝑟 , Σ𝑙 ) if
the set 𝑉 is partitioned into two disjoint sets 𝑉 0

and 𝑉 1
, such that

all the productions in 𝑃 are of one the following forms:

• 𝑋 → 𝜖 ;

• 𝑋 → 𝑎𝑌 , such that if 𝑋 ∈ 𝑉 0
then 𝑎 ∈ Σ𝑙 and 𝑌 ∈ 𝑉 0

;

• 𝑋 → 𝑎𝑌𝑏𝑍 such that 𝑎 ∈ Σ𝑐 and 𝑏 ∈ Σ𝑟 and 𝑌 ∈ 𝑉 0
and if

𝑋 ∈ 𝑉 0
then 𝑍 ∈ 𝑉 0

.

The variables in 𝑉 0
derive only well-matched words with a one-

to-one correspondence between calls and returns. The variables in

𝑉 1
derive words that can contain unmatched calls and unmatched

returns. The symbols of the language are split into three distinct

sets: (Σ𝑐 , Σ𝑟 , Σ𝑙 ). Σ𝑐 corresponds to the call symbols, Σ𝑟 . A Visibly

Pushdown Automaton is an automaton which can recognize a VPL.

Like a Pushdown Automaton(PDA), it has a stack. However, unlike a

1



TScIT 38, February 3, 2023, Enschede, The Netherlands Michael Janssen

PDA, actions to the stack are limited to the call and return symbols.

Only a call symbol may push to the stack, and only a return symbol

may pop. When a call symbol is read, it will be pushed to the stack;

when a return symbol is read, it will pop from the stack. In practice,

the stack contains the current nesting depth of the word being

parsed. Dyck languages[5] can be modelled as a VPG, shown by

Alur and Madhusudan [2].

2.2 Translation
Syntax-directed translation(SDT) [1] is commonly used in compiler

construction to convert source code to a target language. Irons [6]

was one of the first to use the technique for a compiler for ALGOL60.

It is done by defining for all rules of a grammar 𝐺 a permutation

of the nonterminals on the left-hand side. When a text has been

parsed to a tree, the tree is modified at each node by:

• deleting descendants with terminal labels,

• reordering the nonterminal descendants according to the

fixed rule, and

• introducing descendants labelled by output symbols.

For example, take the following grammar, where the translation is

defined after the⇒.

𝐿 → 𝐴𝐵 ⇒ (𝐵𝐴)

𝐴→ 𝑎 ⇒ 𝑎

𝐵 → 𝑏 ⇒ 𝑏

The permutation of the parse tree is (2, 1), as the first nonter-

minal, 𝐴, is moved to index two of the parse tree, and the second

nonterminal, 𝐵, is moved to index one. The symbols
′ (′ and ′)′ are

introduced on indices zero and three. The parse tree can now be

traversed depth-first to get the translated string. In this example,

the input "ab" would be translated to "(ba)".

2.3 Regular Expressions
Regular expressions, introduced by Kleene [8], express Regular

Languages. In Computer Science, it was introduced to computers

by Thompson [11] for the IBM7094. They are widely used in various

applications, such as websites and embedded systems. However, the

most widely-used syntax and libraries for Regular Expressions are

not guaranteed to run in linear time due to the inclusion of features

like backreferences and look-ahead. In contrast, some libraries, such

as the ’regex’ crate
1
in Rust, have a parsing complexity of 𝑂 (𝑚𝑛),

where𝑚 ∼ 𝑟𝑒𝑔𝑒𝑥 and 𝑛 ∼ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑒𝑥𝑡 , and are therefore linear for

the search text because they do not have the non-regular functions.

These libraries use advanced and often hand-written optimization

and minimization techniques to get the most performance out of

the regular expression parser.

3 REQUIREMENTS
This section describes the requirements that are set for the solution.

Generally, it is a parser generator that takes a language specified in

a specific syntax that describes the input language’s recognition and

translation. It then creates a parser and translator for this language

1
https://docs.rs/regex/latest/regex

to the specified output language. More specifically, the following

requirements are set:

3.1 Syntax
A requirement is that the syntax of the input language is easy to

write. Specifically, the syntax can use regular expressions, which

are well-known to programmers and easy to write. This allows the

solution to use existing regular expression libraries for parts of the

parsing, speeding up parsing times. It can use regular expressions

and nested words as easily as possible. Because ease of writing is a

subjective measure, this research shows several example grammars

of nested word languages in the next section, which tries to convince

the reader that the syntax is easy to write.

3.2 Language class
For the solution, this paper restricts the original definition by Alur

and Madhusudan [2] to not allow for pending calls and returns, as

this is often not desired by practical applications. XML, for exam-

ple, is considered malformed if an opening tag is not closed [10].

To achieve this, the production rules for the grammar are more

restricted than the definition in subsection 2.1, and all transitions

are in𝑉 0
. Because𝑉 1

is now empty, the rules can be updated to the

following:

• 𝑋 → 𝜖 ;

• 𝑋 → 𝑎𝑌 , such that 𝑎 ∈ Σ𝑙 and 𝑌 ∈ 𝑉 ;

• 𝑋 → 𝑎𝑌𝑏𝑍 such that 𝑎 ∈ Σ𝑐 and 𝑏 ∈ Σ𝑟 and 𝑌 ∈ 𝑉 and

𝑍 ∈ 𝑉 .

Because all productions 𝑃 of this class are also applicable to VPGs,

as all rules in the matching class correspond to the rules applying

to 𝑉 0
, they are a subset of VPGs.

3.3 Parsing Complexity
One of the key advantages of the class of Visibly Pushdown Gram-

mars is that their input can be parsed with linear complexity: If the

input text doubles, the parsing time also does. This is in contrast to

Context-Free Grammars, which have no such guarantee. Therefore,

the requirement is set that the generated parser parses input texts

with linear complexity. The parsing speed is tested extensively with

several language features, which are expanded upon in section 6.

Note that this does not mean that the complexity of the parser gen-

eration is linear, as this is done beforehand and is only needed once

per parser, and thus can be used for multiple input texts.

4 EXISTING SOLUTIONS

4.1 Owl
Owl

2
is a parser generator for VPLs, written in C. Important to note

here is that it does not have language translation, only parsing. It is,

to the extent of our knowledge, the only publicly available parser

generator for VPLs. Research has been done into the speed of the

automata construction of Owl [12]. This research also showed that

2
https://github.com/ianh/owl

2

https://docs.rs/regex/latest/regex
https://github.com/ianh/owl


A Parser Generator for Visibly Pushdown Languages: Translating between VPLs TScIT 38, February 3, 2023, Enschede, The Netherlands

it had some quirks, such as unexpectedly crashing when grammar

sizes were too big and problems with ambiguity.

4.2 Language-specific translators
Language transformation is an important topic in Computer Sci-

ence, they are found everywhere[9]. Compilers fall under them,

translating input code to a specific assembly language. There are

also language-specific translators for VPLs, such as a JSON to XML

transformer. These are often hand-written and are, therefore, more

performant than general solutions. A significant advantage that a

general solution has is that once designed, it can write a translator

between any two VPLs that are semantically similar. Especially for

more obscure languages, this can be useful, as it might take much

work to come by translators for those languages specifically.

5 SOLUTION
This section discusses several parts of the solution. It starts with

the syntax in which the grammar and translations are specified and

how it is parsed. It continues with the elaboration phase, where the

restrictions of the input language are introduced to ensure that it

can be compiled into a VPA. Afterwards, the process of transforming

the input language to a recognizer in a VPA is described. Finally,

the translation is described. The solution is built using the Rust

language
3
. The full source code can be found online[7]

5.1 Syntax & Parsing
The grammar is described using a set of nonterminals. Each non-

terminal can have one or more rules. Each rule consists of a list of

terminals and nonterminals. The terminals, call and return symbols

can all be written using regular expressions. If a part of the regu-

lar expression needs to be used in the translation (for example, if

the inside of a string value needs to be extracted), named capture

groups can be used. A complete overview of the syntax that can

be used in the regular expressions can be found in the documen-

tation of the Rust regex crate
4
. The only additional restriction is

that capture groups are not allowed to start with the characters

"RESTRICTED_", which the solution uses internally to decide which

rule of a nonterminal is applicable.

If a nonterminal needs to be used to make the grammar recursive,

that is, if that nonterminal is the same or higher in order, then a

nested call and return are required. This can be indicated as follows:

[𝐶𝑎𝑙𝑙 𝑛𝑜𝑛𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛], where 𝐶𝑎𝑙𝑙 and 𝑅𝑒𝑡𝑢𝑟𝑛 are regular ex-

pressions.

The translation is defined by adding an arrow (->) to each rule of

each nonterminal and specifying how that rule is translated. This

can be any combination of strings and identifiers if each identifier

is mapped once to an identifier on the left-hand side. Identifiers

include the nonterminals used in the rule and the capture groups

used in the terminals of that rule.

The input file is converted to an Abstract Syntax Tree using a

parser combinator library
5
. An example grammar is the following:

Rule:

3
https://www.rust-lang.org

4
https://docs.rs/regex/1.7.1/regex/#syntax

5
https://docs.rs/nom/latest/nom/

["\(" Rule=R "\)"] -> "[" R "]"
String=S -> S

String:
"\"(?P<Value>.*)\"" -> Value

This grammar takes a string which consists of string values, extracts

the string value from the quotes and changes the brackets to square

brackets. Note that in the regular expressions, the brackets needed

to be escaped because regular expressions require this. The string

’(("abc"))’ would, for example, be translated to ’[[abc]]’.

5.2 Elaboration
For the input grammar to be able to be compiled into a VPA, several

restrictions are made on the language. These restrictions make

sure that the grammar is Visibly-Pushdown. Next, there are several

checks to see if the grammar is well-formed.

Well-formed. This is a simple check that all identifiers used in

a rule are defined in the grammar. Next, it checks if all identifiers

used in the rule translation are defined in the rule. It also checks if

there is a one-to-one mapping between the left and right sides.

VPA-correctness. The compiler requires that every nonterminal

used in a rule is defined after the rule it is used in. This ensures that

the grammar is not recursive and, therefore, not Visibly-Pushdown,

where recursion is only allowed with call and return symbols. Next

to this, currently, the implementation also only allows identifiers at

the end of a rule.

Capture Groups. As described earlier, there is a simple check

whether named capture groups are not starting with RESTRICTED_,
as this is used internally and is therefore not allowed to be used.

5.3 Automata Construction
To construct the VPA, several steps need to be done. First, all rules of

the grammar need to be normalized to the form described in subsec-

tion 3.2. The solution does this by making every step of a rule a state

in the automaton. The specific steps can be seen in Algorithm 1.

The 𝑐 function takes a regular expression as an argument and re-

turns a compiled automaton for the provided regular expression. If

multiple are supplied, it creates a regular expression that combines

all supplied arguments, with all arguments being separately caught

in capture group RESTRICTED_0 ... RESTRICTED_N. For example, if

the arguments ”𝑎𝑏𝑐” and ”𝑑𝑒 𝑓 ” are supplied, it combines them into

(?P<RESTRICTED_0>abc)|(?P<RESTRICTED_1>def). This is used in

the starting state of a nonterminal, where all first expressions of

each rule of that nonterminal are combined into one regular expres-

sion, and the capture group that is captured decides which rule is

chosen.

The algorithm also considers a special case: If the starting expres-

sion is an identifier, which means it is the only nonterminal of that

rule, the starting expressions of that nonterminal are all added as

an option for this nonterminal. This is done recursively. Because

a rule can only reference a nonterminal lower in the ranking than

itself, this expansion eventually ends. The solution also labels this

transition, as otherwise, the parse tree can not be constructed.

Formally, while parsing, the input text is transformed into an

annotated version of itself, which indicate if it is an internal, call or

3

https://www.rust-lang.org
https://docs.rs/regex/1.7.1/regex/#syntax
https://docs.rs/nom/latest/nom/


TScIT 38, February 3, 2023, Enschede, The Netherlands Michael Janssen

Algorithm 1 Automata construction of input syntax

1: 𝑠𝑡𝑎𝑡𝑒 ← 𝑁𝑇𝑠.𝑙𝑒𝑛𝑔𝑡ℎ + 1
2: 𝑛𝑒𝑥𝑡 ← ∅
3: 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ← ∅
4: function AddReg(𝑟𝑒𝑔)

5: if 𝑅𝑒𝑔.𝑡𝑦𝑝𝑒 = 𝑁𝑒𝑠𝑡𝑒𝑑 then
6: 𝑛𝑒𝑥𝑡 [𝑠𝑡𝑎𝑡𝑒] ← (𝑐 (𝑁𝑒𝑠𝑡𝑒𝑑.𝑐𝑎𝑙𝑙), 𝑁𝑒𝑠𝑡𝑒𝑑.𝑖𝑑.𝑖𝑛𝑑𝑒𝑥))
7: 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ← (𝑐 (𝑁𝑒𝑠𝑡𝑒𝑑.𝑟𝑒𝑡𝑢𝑟𝑛), 𝑛𝑒𝑥𝑡)
8: else if 𝑅𝑒 𝑓 .𝑡𝑦𝑝𝑒 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 then
9: 𝑛𝑒𝑥𝑡 [𝑠𝑡𝑎𝑡𝑒] ← (𝑐 (𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙), 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒)
10: end if
11: end function
12: for 𝑁𝑇 ∈ 𝑁𝑇𝑠.𝑟𝑒𝑣𝑒𝑟𝑠𝑒 () do
13: 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠 ← ∅
14: for 𝑅𝑢𝑙𝑒 𝑖𝑛 𝑁𝑇 do
15: 𝑠𝑡𝑎𝑡𝑒𝑎 𝑓 𝑡𝑒𝑟 ← 0

16: if 𝑅𝑢𝑙𝑒 [−1] .𝑡𝑦𝑝𝑒 == 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 then
17: 𝑠𝑡𝑎𝑡𝑒𝑎 𝑓 𝑡𝑒𝑟 ← 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 .𝑖𝑛𝑑𝑒𝑥

18: end if
19: for 𝑅𝑒𝑔 𝑖𝑛 𝑅𝑢𝑙𝑒.𝑠𝑘𝑖𝑝 (1) .𝑟𝑒𝑣𝑒𝑟𝑠𝑒 ().𝑠𝑘𝑖𝑝 (1) do
20: 𝐴𝑑𝑑𝑅𝑒𝑔(𝑟𝑒𝑔)
21: end for
22: if 𝑅𝑢𝑙𝑒 [0] .𝑡𝑦𝑝𝑒 = 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 then
23: 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠 ← 𝑔𝑒𝑡_𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠 (𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 )
24: else if 𝑅𝑢𝑙𝑒 [0] .𝑡𝑦𝑝𝑒 = 𝑁𝑒𝑠𝑡𝑒𝑑 then
25: 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠 ← (𝑐 (𝑁𝑒𝑠𝑡𝑒𝑑.𝑐𝑎𝑙𝑙), 𝑛𝑒𝑥𝑡)
26: 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ← (𝑐 (𝑁𝑒𝑠𝑡𝑒𝑑.𝑟𝑒𝑡𝑢𝑟𝑛), 𝑛𝑒𝑥𝑡)
27: else
28: 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠 ← (𝑐 (𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙), 𝑛𝑒𝑥𝑡)
29: end if
30: 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒 ← 𝑠𝑡𝑎𝑡𝑒

31: 𝑠𝑡𝑎𝑡𝑒 ← 𝑠𝑡𝑎𝑡𝑒 + 1
32: end for
33: 𝑛𝑒𝑥𝑡 [𝑁𝑇 .𝑖𝑛𝑑𝑒𝑥] ← (𝑐 (𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠.𝑟𝑒𝑔), 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑟𝑒𝑔𝑠.𝑛𝑒𝑥𝑡)
34: end for
35: 𝑛𝑒𝑥𝑡 [0] ← (𝑐 (𝑒𝑝𝑠𝑖𝑙𝑜𝑛.𝑟𝑒𝑡𝑢𝑟𝑛), 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.𝑛𝑒𝑥𝑡)

return symbol. When the parser parses a new text part, the automa-

ton’s state decides if it is annotated as an internal, call, or return

transition. This allows the input grammar to have an intersection

between the call, return and internal symbols because the symbols

are not ”𝑎” ∈ Σ𝑐 , ”𝑎” ∈ Σ𝑖 , but (”𝑎”, 𝑐) ∈ Σ𝑐 , (”𝑎”, 𝑖) ∈ Σ𝑖 .
As an example, take the following grammar:

A:
"b" B
["a" A "a"]

B:
"a"

This grammar has both ”𝑎” ∈ Σ𝑐 , ”𝑎” ∈ Σ𝑖 . But during parsing, the
VPA annotates the call symbol ”𝑎” as (”𝑎”, 𝑐) and the internal symbol

”𝑎” of nonterminal B to (”𝑎”, 𝑖). Thus, the resulting automaton is

still Visibly Pushdown.

5.4 Translation
The solution uses the SDT approach [1] to transform the parse tree

into the translation tree. As described in the syntax, the transduction

is done by specifying a list of identifiers and constant strings on

the right-hand side of a rule. The identifiers on the right-hand

side and the left-hand side need to have a one-to-one mapping.

During recognition, the VPA constructs a parse tree of the input

text. Afterwards, the translator transforms the parse tree to the

translation tree by changing the order of the elements of the parse

tree corresponding to the mapping and adding the constant strings

as leaves of the tree. Finally, the translation tree is traversed by depth-

first search, and the output string is constructed by concatenating

the encountered terminal strings together.

Take, for example, the following grammar:

A:
"d" B -> B "d"
["\(" A "\)"] -> "[" A "]"

B:
"(?P<value>[abc]*)" -> value

The input text ”((𝑑𝑎𝑏𝑐𝑎𝑏𝑐))”, which translates to ”[[𝑎𝑏𝑐𝑎𝑏𝑐𝑑]]”
would generate a parse tree as follows, where the nodes are identi-

fiers and the index of the rule that is applied: A depth-first search of

(a) Parse tree of input string (b) Parse tree after transformation

Fig. 1. Example transformation of the parse tree for translation

this tree would result in the string ”[[𝑎𝑏𝑐𝑎𝑏𝑐𝑑]]”, which is indeed

the expected translation.

5.5 Limitations & Ambiguity
Because of the choices made for the solution, there are several ways

in which ambiguous grammars are parsed wrongly. Take this, for

example:

4



A Parser Generator for Visibly Pushdown Languages: Translating between VPLs TScIT 38, February 3, 2023, Enschede, The Netherlands

A: "a*" B
B: "a"r

This is a problem because the solution compiles each regular ex-

pression separately and does not keep state, allowing backtracking

(as this would make the parser non-linear). The first regular expres-

sion would consume all 𝑎 characters in this case. When it arrives at

nonterminal B, it does not have any 𝑎 characters left to consume

and consequently fails the parsing. This is currently a limitation of

the solution and relies on the grammar writer not to allow for this.

Another way in which ambiguity would arise is in the following

example:

A:
"a" B
"a" C

...

This is ambiguous because the automaton needs to know which

nonterminal, B or C, is next. In these cases, the solution picks the

first matching expression, the default behaviour of the regular ex-

pressions it uses internally. If B does not match the input, the parser

fails, even if C does match. This requires attention from the writer.

6 VERIFICATION

6.1 Language class of the solution
Currently, the solution only covers part of the language class of

Visibly Pushdown Languages. It is trivial to show that it does cover

Regular Languages, as that only requires one rule in which the entire

regular expression for that language is written down. However, the

allowed rules for nested words are not expressive enough. Take,

for example, a Visibly Pushdown Language, a simple bracketed

language with multiple items. In a valid word in this language,

items are enclosed by brackets and items inside those brackets

can be separated by commas. ((𝑎, 𝑏, 𝑐), (𝑎, 𝑏)) is a valid word in

this language. The solution currently has no way of modelling this

grammar. This is because of the following restrictions:

• Identifiers may only be used inside a nested word, or at the

end of a rule

• After a call, only an identifier is allowed (e.g. ["call" A "re-
turn"])

If any of these restrictions were lifted, it would be possible to model

the described grammar in the solution. This restriction is also why

JSON and XML cannot be modelled currently.

6.2 Parsing speed
This section goes over the performance of the solution. It introduces

several different grammars which can be easily increased in size.

Each grammar is generated in increments of 100 rules, starting at

100 and ending at 10000. The methodology of each test is the same:

Samples are created, and the recognizer and translator are tested

with each set of rules on a valid input string. All benchmarks are run

using the ’criterion’ crate in Rust
6
. The method of generating gram-

mars based on templates is based on the method used by Zaytsev

[13]

6
https://github.com/bheisler/criterion.rs

6.2.1 Regular languages. This test creates a language which creates

𝑛 rules in the following way

regular(n): "z" regular(n-1)
...
regular1: "b" regular0
regular0: "a"

The results can be found in Figure 2.

Fig. 2. Testing the regular language

Looking at this result, the solution seems to be nearing linear

complexity. After 2000 rules, the parsing time increases linearly with

the number of rules. It also shows that adding language translation

adds extra cost to parsing time. There are also some outliers, such

as near 6200 rules for the translator. This can probably be attributed

to the fact that the tests were not run in a sanitized environment,

but on a bare-metal machine.

6.2.2 Deeply Nested languages. This test creates a language which
creates 𝑛 rules in the following way

nested(n): ["(" nested(n-1) ")"]
...
nested1: ["(" nested0 ")"]
nested0: "a"

The results can be seen in Figure 3. Like the Regular words, the

solution seems near linear complexity in parsing times. Next to this,

several outliers can be spotted again. The extra time it takes to parse

compared to the Regular words can be attributed to the fact that

the input string is twice as long, indicating that whether a rule is

internal or nested, this does not impact parsing speed much.

6.2.3 Nested identifier languages. This test creates a languagewhich
creates 𝑛 rules in the following way

nested_i(n): nested_i(n-1)
...
nested_i1: nested_i0
nested_i0: "a"

5

https://github.com/bheisler/criterion.rs


TScIT 38, February 3, 2023, Enschede, The Netherlands Michael Janssen

Fig. 3. Testing the nested language

Fig. 4. Testing the nested identifier language

This makes it so that only the string "a" is valid here. The results

can be seen in Figure 4. This shows that the recognition speed of

the automaton is not affected by the depth of the rules. And when

translation is done, the depth level adds some parsing time. This is

expected, as for translation, a parse tree needs to be constructed,

which gets bigger with the number of rules.

6.3 Generation speed
This benchmark tests the speed of the generation of the VPA and

translator. This is expected to be linear with the number of rules.

The test is executed on the same grammar as the ’nested’ grammar

in subsubsection 6.2.2. The results can be seen in Figure 5. These

results show that the solution generates the automata and translator

in linear complexity compared to the size of the input grammar.

Fig. 5. Testing the generation speed

7 CONCLUSIONS
From the benchmarks, it can be concluded that the current im-

plementation is a linear parser and translator for a subset of the

language class of Visibly Pushdown Grammars. The translation does

not have much overhead, and the generated parser can work fast.

With this in mind, it is important to discuss the current limitations

of the solution. The current implementation only partially covers

Visibly Pushdown Languages. Specifically, it covers the entirety of

Regular Languages, but some VPLs can not be modelled in the cur-

rent solution, as shown in subsection 6.1. They include languages

such as JSON and XML. This is a significant limitation of the so-

lution. Future work could consider removing this limitation and

allowing all VPLs to be modelled and used in this solution.

Next to this, the current implementation generates wrong parsers

for some inputs, as discussed in subsection 5.5, which arise from

the fact that the final automaton consists of several sub-automata,

each containing a regular expression and a global call stack for the

nested words. Future work could look into compiling this syntax

into one combined automaton, which could increase speed as the

entire automaton can be minimized and optimized and use a parsing

technique that handles ambiguity.

REFERENCES
[1] A. V. Aho and J. D. Ullman. 1971. Translations on a context free grammar. Inform.

And Control (Shenyang) 19, 5 (Dec. 1971), 439–475. https://doi.org/10.1016/S0019-

9958(71)90706-6

[2] Rajeev Alur and P. Madhusudan. 2004. Visibly pushdown languages. In STOC ’04:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
Association for Computing Machinery, New York, NY, USA, 202–211. https:

//doi.org/10.1145/1007352.1007390

[3] N. Chomsky. 1956. Three models for the description of language. IRE Trans. Inf.
Theory 2, 3 (Sept. 1956), 113–124. https://doi.org/10.1109/TIT.1956.1056813

[4] Seymour Ginsburg and Sheila Greibach. 1965. Deterministic context free lan-

guages. In 6th Annual Symposium on Switching Circuit Theory and Logical Design
(SWCT 1965). IEEE, 203–220. https://doi.org/10.1109/FOCS.1965.7

[5] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to

automata theory, languages, and computation. Acm Sigact News 32, 1 (2001),

60–65.

6

https://doi.org/10.1016/S0019-9958(71)90706-6
https://doi.org/10.1016/S0019-9958(71)90706-6
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/FOCS.1965.7


A Parser Generator for Visibly Pushdown Languages: Translating between VPLs TScIT 38, February 3, 2023, Enschede, The Netherlands

[6] Edgar T. Irons. 1961. A syntax directed compiler for ALGOL 60. Commun. ACM
4, 1 (Jan. 1961), 51–55. https://doi.org/10.1145/366062.366083

[7] Michael Janssen. 2023. vpl-parser-generator. https://github.com/Michael-Janssen-

dev/vpl-parser-generator [Online; accessed 28. Jan. 2023].

[8] S. C. Kleene. 1956. Representation of Events in Nerve Nets and Finite Automata.

In Automata Studies. Princeton University Press, Princeton, NJ, USA, 3–41. https:

//doi.org/10.1515/9781400882618-002

[9] Ralf Lämmel. 2004. Transformations everywhere. Sci. Comput. Programming 52,

1 (Aug. 2004), 1–8. https://doi.org/10.1016/j.scico.2004.03.001

[10] J. Rosenberg. 2007. Extensible Markup Language (XML) Formats for Representing

Resource Lists. https://doi.org/10.17487/RFC4826 [Online; accessed 20. Jan.

2023].

[11] Ken Thompson. 1968. Programming Techniques: Regular expression search

algorithm. Commun. ACM 11, 6 (June 1968), 419–422. https://doi.org/10.1145/

363347.363387

[12] Luc Timmerman. 2022. Performance Testing Owl, Parser Generator for Visibly
Pushdown Grammars. Ph. D. Dissertation. http://essay.utwente.nl/91958

[13] Vadim Zaytsev. 2019. Event-based parsing. In REBLS 2019: Proceedings of the 6th
ACM SIGPLAN International Workshop on Reactive and Event-Based Languages
and Systems. Association for Computing Machinery, New York, NY, USA, 31–40.

https://doi.org/10.1145/3358503.3361275

7

https://doi.org/10.1145/366062.366083
https://github.com/Michael-Janssen-dev/vpl-parser-generator
https://github.com/Michael-Janssen-dev/vpl-parser-generator
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1016/j.scico.2004.03.001
https://doi.org/10.17487/RFC4826
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
http://essay.utwente.nl/91958
https://doi.org/10.1145/3358503.3361275

	Abstract
	1 Introduction 
	2 Related work 
	2.1 Visibly Pushdown Grammars
	2.2 Translation 
	2.3 Regular Expressions 

	3 Requirements
	3.1 Syntax
	3.2 Language class 
	3.3 Parsing Complexity

	4 Existing solutions
	4.1 Owl 
	4.2 Language-specific translators

	5 Solution
	5.1 Syntax & Parsing 
	5.2 Elaboration 
	5.3 Automata Construction 
	5.4 Translation 
	5.5 Limitations & Ambiguity

	6 Verification
	6.1 Language class of the solution 
	6.2 Parsing speed
	6.3 Generation speed

	7 Conclusions
	References

