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Computer analysis of human speech can enrich our human-computer inter-

actions. Aside from automatic speech recognition, which is about translating

speech into text, there are other speech analysis tasks, that include predict-

ing social or emotional characteristics about a speaker based on certain

properties of the sound they produce. This research will investigate the

application of various machine learning methods to predict different kinds

of characteristics from acoustic features that are computed from speech

audio signals.
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1 INTRODUCTION

1.1 Motivation
Social interaction certainly is an important aspect of human life, and

speech is possibly the most natural form of communication. People

may speak, on average, more than 15 thousand words every day

[40]. However, speech consists not only of words themselves. The

way in which those words are spoken can convey a subtext, attitude

or emotion that was not apparent from the selection of words alone.

Think of how different it can sound to hear the same words said

with confidence as opposed to hesitation, or with sarcasm instead

of sincerity. Or when an adult talks to an infant, they tend speak in

a particular way, which can positively influence the development

of the infant [23]. Humans intuitively change acoustic features in

their speech depending on emotional or social context, and listeners

naturally pick up these patterns to understand some of this context

[3, 36].

This intuitive decoding of acoustic features in speech to under-

stand context is no trivial task, and even our own perception of

speech can be subjective [34]. Yet, automatic analysis of human so-

cial interactions based on these auditory features could be useful for

human-computer interaction, as these features could provide more

information than just the spoken words [17]. For example, robots

employed in assisted-living environments could alert staff members

when users show signs of distress, or chatbots could stop bothering

users when they sense that their interactions are not appreciated.

Furthermore, it could be used to make computer-generated speech

sound more appropriate and natural for a given social or emotional

context [17].

1.2 Objective
This research will investigate different methods of predicting emo-

tional or social contexts based on certain acoustic features extracted

from recorded speech. We will use acoustic features as defined in

the extended Geneva Minimalist Acoustic Parameter Set (eGeMAPS)

[21], which was developed to perform well on a variety of speech

analysis tasks whilst containing a minimal amount of features. The

extent to which the feature set has been applied to multiple datasets
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in direct comparison, however, has been limited. We will apply

multiple machine learning techniques to train classifiers on these

features and compare how effective they are at human social inter-

action understanding tasks. We will expand on existing research by

analyzing the performance of five different classification algorithms,

including our proposed neural net architecture based on long short-

term memory (LSTM) [32], to six different speech analysis tasks.

Moreover, we will investigate the effect that applying volume nor-

malization as audio preprocessing technique has on classification

performance for classifiers using eGeMAPS features.

1.3 ResearchQuestion
We will address the objective using the following research question:

RQ: How does the eGeMAPS acoustic feature set perform on a
variety of tasks within the topic of human social interaction
understanding?

To aid in answering the main research question, we propose two

subquestions:

SQ1: Which supervised learning model for classification performs
best across the different tasks?

SQ2: Does audio volume normalization have an impact on classifi-
cation performance for the eGeMAPS feature set?

2 RELATED WORKS
Within the topic of understanding human social interactions from

speech, speech emotion recognition (SER) is the most researched

subtopic, having been studied for more than 25 years [55]. Other

related tasks include the prediction of perceived personality from

speech [22], recognizing social relationships from speech [60], as

well as predicting characteristics such as social attitude [24].

Speech analysis based on audio signals is traditionally accom-

plished by extracting several acoustic features from the audio signal,

before applying a machine learning classifier to those features. The

acoustic features can relate to properties of the audio signals, such

as pitch, energy, fundamental frequency or the signal’s spectrogram,

or they could consist of prosodic characteristics such as speech

rate or syllable rate [62]. Such features can potentially capture the

information needed for certain speech analysis tasks, while being

much smaller than the entire audio signal.

The selection of these features is an important aspect, and dif-

ferent feature selection methods have been applied, without any

such method being generally accepted as the best one [1]. These

approaches to feature selection include the use of predetermined

parameter sets such as eGeMAPS [21] (88 features), ComParE [54]

(6373 features), emobase [20] (988 features), or IR-09 [53] (384 fea-

tures). The eGeMAPS feature set in particular is useful due to its low

cardinality, which allows classification algorithms to be more com-

putationally efficient when compared to other feature sets, while

offering similar performance [18]. Hence, we adopt the eGeMAPS
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set for the purposes of this research. This feature set was primar-

ily developed for analyzing emotionality in speech, but has been

applied to other tasks as well, including autism spectrum disorder

detection [6] and bipolar disorder detection [57]. Feature sets can

additionally be combined with feature selectionmethods [38] that at-

tempt to eliminate features that contribute little to the classification

accuracy.

Many traditional classifiers have been used for speech analy-

sis based on preprocessed audio features, such as Hidden Markov

Models (HMM) [5, 52], Gaussian Mixture Models (GMM) [50, 13],

Support Vector Machines (SVM) [15, 12], Multi-Layer Perceptrons

(MLP) [42] and the 𝑘-Nearest Neighbors algorithm (KNN) [16, 7]

[19]. Other classifiers include Bayesian Networks (BN) [47] and

Random Forests (RF) [31, 43]. Out of these classifiers, the HMM has

been the most often used for SER [19].

Instead of extracting features over an entire utterance at a time,

some methods preserve the time dimension of the original audio

data. This can be achieved, for example, by using audio spectrograms

(or transformations thereof such as MFCC) [27] as inputs to the

machine learning models, which typically apply convolutions to the

input features. Such methods are generally more computationally

intensive than the traditionally used classifiers, but can be capable

of achieving better classification performance due to their ability

to capture temporal dynamics within speech [45]. For instance,

the deep convolutional TIM-Net architecture [63], using MFCC as

input, achieved recent state-of-the-art results for speech emotion

recognition on the RAVDESS [37] and SAVEE [28] datasets.

Alternatively, traditional features, such as from the eGeMAPS

feature set, can be extracted from temporal segments (sometimes

called frames or windows) of the audio signal, which allows recur-

rent neural networks such as LSTM [32] or GRU [14] to be used [2].

This approach could potentially allow classifiers to leverage the tem-

poral information in the input features, while possibly benefiting

from the ability of the features to efficiently encode properties that

are relevant to the speech analysis task. However, such approaches

have not been studied extensively.

Some previous research using the eGeMAPS parameter set has

used volume normalization before feature extraction to eliminate

difference in recording setup between utterances [26, 25]. However,

eGeMAPS includes multiple features related to loudness [21], and a

speaker’s volume can be related to their emotional state. Hence, we

will compare classification performance between setups with and

without volume normalization.

3 METHODOLOGY

3.1 Audio Normalization
Before extracting eGeMAPS features from audio samples in our

datasets, we normalize the sampling rates of all audio samples to

16kHz. Additionally, we normalize the volume of each audio sample

such that each sample has a maximum amplitude of 1. Both resam-

pling and amplitude normalization techniques are performed using

the librosa Python library [39]. Later, we will leave out the volume

normalization step on some experiments to measure the impact of

this normalization.

3.2 Feature Extraction
Using the openSMILE library [20], we extract 88 acoustic features

defined in the eGeMAPS feature set [21] from the audio signals

in the datasets, after applying the audio normalization methods

mentioned in section 3.1.

3.2.1 Regular feature extraction. The most straightforward method

of feature extraction is to extract 88 features from every audio

sample as a whole. These 88-dimensional feature vectors can be

used directly as input to the regular classifiers (see section 3.3.1).

3.2.2 Segmented feature extraction. In addition to extracting fea-

tures from utterances as a whole, we can also split each audio seg-

ment into multiple windows and extract eGeMAPS features from

each window separately. Using this method of extracting features,

we obtain 88-dimensional time series data from every audio sample,

which allows us to use a recurrent neural network for classification

and compare its performance to the classifiers that use the regular

features for each sample. Each utterance is segmented by splitting

it into windows of a fixed length (window size), where the starts of

each segment are separated by another fixed length (hop size). Only

the last window of each utterance is smaller than the window size

in length, to ensure that the end of the last window coincides with

the end of the sequence. Using a hop size smaller than the window

size results in overlapping segments. We use the features extracted

from each series of windows as input to our proposed recurrent

model (see section 3.3.2). Since the number of windows generated by

the segmentation method may differ between utterances of varying

lengths, we ensure that the recurrent model is able to use sequences

of varying lengths as inputs.

3.3 Model Optimization
We fit two types of classifiers to the features as obtained in the

feature extraction stage. Four regular classifiers are fit to the 88

features extracted by the regular feature extractor, and the recurrent

model is trained on the time series features as extracted from the

segmented audio. Hyperparameters are tuned using 25 iterations of

Bayesian optimization, and performance metrics are evaluated with

5-fold cross-validation.

3.3.1 Regular classifiers. On the 88 features as extracted by the

regular feature extraction method (section 3.2.1), we fit four regular

classifiers: Random Forest (RF), C-Support Vector Machine (SVM),

𝑘-Nearest Neighbors (KNN) and Multi-Layer Perceptron (MLP). Im-

plementations from the scikit-learn library [48] version 1.1.3 are

used. The support vector machine uses the nonlinear radial basis

function (rbf) as kernel, as is the default in its scikit-learn imple-

mentation. Other classifiers also use default scikit-learn parameters

except for certain parameters that are tuned with Bayesian opti-

mization using the scikit-optimize library [29]. An overview of the

search space for these tuned parameters is provided in table 1. The

multi-layer perceptron classifier uses only a single hidden layer

between its input and output layers. The input features for each

model are scaled using the StandardScaler from scikit-learn, except
for the random forest classifier since feature scaling does not affect

this algorithm.
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Table 1. Hyperparameter search space of regular classifiers

Model Parameter Search Space Search Scale
SVM C (10−3, 104) logarithmic

gamma (10−4, 1) logarithmic

KNN n_neighbors (1, 30) linear

p [1, 2] categorical

RF n_estimators (1, 800) linear

criterion [‘gini’, ‘entropy’, ‘log_loss’] categorical

MLP hidden_layer_sizes [10, 30, 50] categorical

activation [‘tanh’, ‘relu’] categorical

optimizer [‘sgd’, ‘adam’] categorical

max_iter 1024 constant

3.3.2 Recurrent model. On the time series data as obtained from

the segmented feature extraction method (see section 3.2.2), we

train a recurrent neural network implemented using the Pytorch

framework [46]. Instead of the StandardScaler used by the regular

classifiers, batch normalization [33] is applied to the model’s inputs,

such that every feature is normalized across all timesteps in a batch.

These normalized features from each timestep are separately fed

into a fully connected ‘embedding’ layer with ReLU activations.

Thus, for input features from one timestep 𝑥 (𝑡 ) , we compute the

embeddings as ℎ (𝑡 ) = max(0, 𝑥 (𝑡 ) ·𝑊 +𝑏), with𝑊 and 𝑏 being the

weight and bias matrices of the layer, respectively. The rest of the

network architecture consists of three stacked bidirectional LSTM

[32, 56] layers, followed by a fully-connected layer with softmax ac-

tivations to predict class probabilities. The number of output classes

differs between the datasets. During model training, we employ

regularization techniques by adding dropout [30] after the embed-

ding layer and after each LSTM layer, and we apply label smoothing

[58]. During model evaluation, we use the argmax function on the

output class probabilities to select the class with highest probability

as output. The model’s weights are updated during training using

the Adam optimizer [35], with categorical cross-entropy as the loss

function. Default parameters are used for the optimizer except for

the learning rate, which is tuned. Like the regular classifiers, hyper-

parameters are tuned using 25 iterations of Bayesian optimization,

although the Ax [4] library is used instead of scikit-optimize [29].
An overview of the search space in which parameters are tuned is

provided in table 2.

Table 2. Hyperparameter search space for recurrent model

Parameter Search Space Search Scale
Learning rate (10−5, 10−2) logarithmic

LSTM hidden size (32, 128) linear

Dropout rate (0.0, 0.5) linear

Label smoothing (0.0, 0.25) linear

Embedding size (64, 128) linear

LSTM layers 3 constant

Batch size 4096 constant

Training epochs 512 constant

4 EXPERIMENTAL SETUP

4.1 Datasets
Five datasets are used for the experiments. Each dataset contains

speech utterances labeled with classes describing the speaker’s emo-

tion, sentiment or attitude. Some of the datasets may contain ad-

ditional modalities such as text transcripts or video recordings to

accompany the audio, but these are not used for this research. Addi-

tionally, some datasets contained a predefined division of data into

train, validation and test splits. However, the experiments only use

the train splits of the datasets where applicable. For every dataset, we
define a set of groups such that every utterance belongs to one group.

This division of the dataset is used for generating cross-validation

splits in the experiments.

SAVEE. The Surrey Audio-Visual Expressed Emotion database

(SAVEE) [28] consists of 480 utterances recorded from 4

British male actors. There are 30 unique English sentences

spoken in one of seven acted emotions: anger, disgust, fear,

happiness, neutral, sadness and surprise. The utterances

are grouped by the spoken sentence for the experiments,

yielding 30 groups.

CREMA-D. The Crowd-sourced Emotional Multimodal Ac-

tors Dataset (CREMA-D) [11] contains 7442 utterances of

91 different actors. Each recording is one of twelve English

sentences acted in one of six emotions: happy, sad, anger,

fear, disgust, and neutral. The labels also specify a levels

of emotional intensity (low, medium, high, or unspecified)

but this information is not used in this research, since it

would require a different kind of classification task than the

other datasets. Each utterance is assigned one of 1089 groups

based on the combination of actor and sentence.

Emo-DB. The Emo-DBDatabase of German Emotional Speech

[10] holds 535 recordings by ten actors, all in German. The

recordings are labeled with the following emotions: anger,

boredom, disgust, fear, happiness, sadness and neutral. The

utterances are grouped by the unique combination of speaker

and sentence, of which there are 100.

MELD. The Multimodal EmotionLines Dataset (MELD) [49]

consists of footage from the Friends TV sitcom. The train

set contains a total of 9989 utterances from 1039 different
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dialogues. Every utterance contains speech from one actor,

but may contain additional sound such as scene transition

music or laughter from the audience. Sound waveforms were

extracted from video files using the ffmpeg library [59].

The dataset provides two labels for each utterance. Each

recording is labeled by the speaker’s emotion out of anger,

disgust, sadness, joy, neutral, surprise and fear. Every record-

ing also has the speaker’s sentiment annotated, as either

positive, negative or neutral. From these two sets of labels we

can create two different classification tasks: speech emotion

recognition as well as speech sentiment recognition, which

we will refer to as MELD_emotion and MELD_sentiment, re-
spectively. The recordings are grouped by the dialogue in

which they appear, so there are 1039 different groups.

Att-HACK. Att-HACK: An Expressive Speech Database with

Social Attitudes [41] is a dataset of French speech labeled

with social attitudes as opposed to primary emotions. The

dataset contains 36634 utterances by 25 speakers, with the

four social attitudes friendly, seductive, dominant, and dis-

tant. Each utterance is grouped by its sentence, of which

there are 100.

4.2 Data Visualizations
4.2.1 Principal component analysis. From the features extracted

using the regular feature extraction method (see section 3.2.1), we

applied principal component analysis (PCA) [8] as dimensional-

ity reduction technique to allow for data visualization. PCA was

performed with three principal components that were plotted as

3-dimensional scatter plot, using as input the extracted features nor-

malized using the scikit-learn [48] StandardScaler, This was repeated
for each dataset, both with and without volume normalization (sec-

tion 3.1) before feature extraction. The resulting plots are available

in figures 1 and 2 in the appendix.

For the smaller datasets SAVEE and Emo-DB in figure 1, we can

observe from the PCA plots that the principal component values

might be somewhat correlated with some of the labels, suggesting

that the eGeMAPS features can be used to recognize labels to some

extent. However, the labels do not form well separated clusters,

especially for the SAVEE dataset, which suggests that some classi-

fiers may not be able to accurately predict labels on every example.

Additionally, we may observe for all datasets except Emo-DB that

the feature space for volume-normalized audio samples differs from

the feature space where no volume normalization was applied. For

Emo-DB, there appears to be little difference between both PCA

plots, which could be caused by volume normalization or a simi-

lar technique being potentially already applied to the dataset by

the dataset’s authors. Unfortunately, the PCA plots for the larger

datasets may seem as though they consist mostly of a single label.

This is not the case, but results from the way the plots were made.

Because the labels were processed one by one, data points from the

last label added to the plot obscure the other labels. For this reason,

we include an additional silhouette analysis, which does not suffer

from this issue.

4.2.2 Silhouette analysis. In addition to principal component anal-

ysis, we applied silhouette analysis [51] on the same extracted fea-

tures normalized using the StandardScaler. The silhouette coefficient

of every sample in the dataset represents how similar it is to samples

of the same label and how dissimilar it is to samples of other labels.

This score ranges from a value of −1 (the sample is very similar to

samples from other labels) to 1 (the sample is very similar to other

samples of the same label). A value of 0 means that a sample lies on

the decision boundary between its own label’s cluster and another

cluster. The plotted silhouette scores can be found in figures 3 and

4 of the appendix.

From the plots, we can observe howwell features for labels in each

dataset lie in nonoverlapping clusters. The plots for the Emo-DB

dataset show the highest mean silhouette coefficient out of all plots,

which could mean that the eGeMAPS features work relatively well

to distinguish between labels. In general, we might expect labels

with higher average silhouette values to be more easily recognized

by the classifiers.

4.3 Validation Metrics
Classifier performancemetrics are evaluated for each classifier using

the best hyperparameters as found through Bayesian search. On a

5-fold cross-validation split, we measure the balanced accuracy [9],

(unbalanced) accuracy and F1-macro [44] scores across each fold.

4.4 Implementation Details
Each classifier training run consists of training 5 times using 5-fold

cross-validation. The folds are obtained by shuffling the training

data and splitting it into five equally sized folds. The folds are strati-

fied, so they contain the same number of examples per output class

(class ratios are preserved as much as possible). Additionally, the

splits preserve the groups that were defined for each dataset (see

section 4.1), such that no group spans multiple folds. The purpose of

this grouping is to ensure that the models are not able to ’remember’

as easily how certain sentences or speakers sound for certain emo-

tions. This forces the classifiers to generalize to unseen sentences

or combinations of speaker and sentence, as determined by the

grouping of each dataset. For each cross-validation split, the mod-

els are fitted to data from four folds and validated against the one

remaining fold. We find the best hyperparameters for each model

with 25 iterations of Bayesian optimization, taking a new random

cross-validation split every iteration. The Bayesian search attempts

to maximize the balanced accuracy for each classifier.

5 RESULTS

5.1 Regular Classifiers
The best hyperparameters for the four regular classifiers were found

using Bayesian optimization. An overview of the best hyperparame-

ters found is available in table 4 in the appendix, and cross-validation

metrics for these hyperparameters are available in table 3 in the

appendix. The experiments were repeated on each dataset, both

with and without applying volume normalization to the audio be-

fore extracting the eGeMAPS features (see section 3.1). Performance

metrics for an additional ‘dummy’ classifier were added for compar-

ison of classifier performance to random guessing, with the dummy
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classifier using the same cross-validation method as the other mod-

els. The dummy classifies used stratified random sampling of the

target classes, such that the chance of selecting any class is the

same as the frequency that the class appears in the data. Since the

stratification is based on on the class ratios of the train data obtained

from the cross-validation split, and not the validation fold, there

may be some variation in the dummy’s classification performance,

although the cross-validation splitting strategy attempts to keep the

class ratios consistent across all folds.

The performance metrics in table 3 show the widely varying

performance of the classifiers between the different datasets. Out

of the different classifiers, the SVM classifier seemed to perform

best in general, although the MLP achieved the single highest bal-

anced accuracy, scoring 77.4% on the Emo-DB dataset with volume

normalization. For every dataset, each classifier achieved higher

performance than the dummy classifier. However, for the datasets

MELD_emotion and MELD_sentiment, no classifier was able to

improve over the dummy classifier’s balanced accuracy by more

than 6 percent. Every regular classifier achieved higher balanced

accuracy on the dataset where no volume normalization was ap-

plied, compared to the experiments with volume normalization. The

exception to this is the Emo-DB dataset, where two regular classi-

fiers happened to perform better with volume normalization, and

two regular classifiers happened to perform better without volume

normalization, with regard to the balanced accuracy scores.

In figure 5, we additionally provide confusion matrices for the

SVM’s predictions on each dataset, without volume normalization

being applied. The figures show the model’s predicted labels com-

pared to the ground truth labels. These matrices show us the fre-

quency of some misclassifications. For instance, we can see that,

for the Emo-DB dataset, speech labeled with ‘happiness’ was most

commonly misclassified as ‘anger’ by the SVM.

5.2 Recurrent model
The recurrent model was trained and tuned using the segmented

features extracted from the SAVEE, Emo-DB and CREMA-D datasets

(see section 4.1). Audio without volume normalization was used,

and the experiments were repeated for segmentation windows with

sizes of both 1000 ms and 500 ms, taking half the window size as

hop size (see section 3.2.2). An overview of the hyperparameters

found in the experiments and the achieved cross-validation scores

is available in table 5 in the appendix. From these results we can see

that the window size of 500 ms performed better than 1000 ms on

the SAVEE and CREMA-D datasets, but not on Emo-DB. The highest

achieved balanced accuracy by the recurrent model was 74.5% on

Emo-DB, using 1000 ms window size. On the CREMA-D dataset, the

recurrent model using 500 ms window size outperformed all regular

classifiers by at least 1.9% balanced accuracy.

6 DISCUSSION

6.1 ResearchQuestions

SQ1: Which supervised learning model for classification
performs best across the different tasks?
First, we will comment on the difficulty of the different speech anal-

ysis tasks. Then, we will discuss the performance of the classifiers,

and compare the best performing regular classifier to the recurrent

classifier.

By comparing the results across all datasets, it becomes appar-

ent that some datasets were much more difficult to classify using

eGeMAPS features than others. Whereas all classifiers achieved over

65% balanced accuracy on the Emo-DB datasets (much higher than

the dummy classifier, which scored about 15%), none of the mod-

els were able to improve by much over the dummy for the MELD

datasets, on both its tasks. The eGeMAPS parameter set was devised

to work well for speech emotion analysis tasks on many datasets,

but was tuned specifically on a handful of German, English and

French speech datasets. One of these datasets was Emo-DB itself, so

it is no surprise that the classifiers perform relatively well on this

dataset.

If we compare the general classification performance achieved by

each classifier, it seems that the SVM generally achieved the best

results across the six different tasks. The SVM has already been

widely used for speech emotion recognition research [1], and these

results seem to confirm its effectiveness.

The recurrent neural net architecture as proposed in section 3.3.2

was unfortunately not trained on all datasets, but only on the small-

est three. This was due to an unfortunate bug in our implementation

which caused a memory leak for larger datasets. Combined with

time constraints put upon this research, we were unable to run the

Bayesian optimization on those datasets. Since deep neural models

tend to require more data to achieve high performance, the recurrent

approach may have worked better on larger datasets. By extracting

the features as time-series data from multiple segments, recurrent

classifiers can take into account the changes in acoustic features

throughout an entire utterance to potentially make more accurate

predictions about emotion. Although this approach requires much

more computation, both in the feature extraction stage as well as

during model training and inference, this is somewhat counteracted

by the small dimensionality of the eGeMAPS feature set.

Out of the three different datasets and two different segmentation

parameters used for training the recurrent models, the recurrent

strategy performed worse than the support vector machine on all

but one combination of dataset and segmentation parameters. For

the CREMA-D dataset, using a segmentation window size of 500

ms and hop size of 250 ms, the recurrent network outperformed

all four regular classifiers on all three metrics by more than 15

percent. However, we cannot determine with certainty whether the

recurrent model with window size 500 ms and hop size 250 ms is

truly better than the SVM on the CREMA-D dataset without volume

normalization, since the difference in balanced accuracy could have

been caused by the different random cross-validation splits used

for the experiments (the recurrent model could have theoretically

performed no better than the SVM, but gotten ‘lucky’ with the cross-

validation splits it used for performance evaluation). Nevertheless,

the results do suggest that such a segmented strategy could be

used to improve classification performance with eGeMAPS features

in some situations. Especially given more epochs for training, the

LSTM-based recurrent model might obtain better results.
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SQ2: Does audio volume normalization have an impact on
classification performance for the eGeMAPS feature set?
Volume normalization changes some of the features as extracted

from the samples. This difference is apparent from the PCA plots and

silhouette scores of features using volume normalization, compared

to features extracted without volume normalization applied (see

figures 2, 3, 1, 4). With the exception of the MLP classifier on the

Emo-DB dataset, all classifiers obtained higher balanced accuracy

without volume normalization on every dataset. Using a one-tailed

pairwise Wilcoxon signed-rank test [61], we can determine whether

volume normalization significantly diminished balanced accuracy

for the four regular classifiers (excluding the dummy classifier) on

the six evaluated datasets. We use the balanced accuracy scores

(disregarding the standard deviations measured across folds) from

KNN, SVM, RF and MLP on all six classification tasks, pairing the

scores achieved using features with volume normalization applied

to the non-normalized audio features from identical combinations

of classifier and dataset. The test shows that for these datasets,

the regular classifiers perform significantly better when using the

features without volume normalization applied, in terms of balanced

accuracy (𝑁 = 24, 𝑍 = −3.5286, 𝑝 = 0.00021 < 0.01).

We should note that, although volume normalization hurt perfor-

mance on these datasets, volume normalization still may improve

performance in other settings. The reason for applying volume

normalization is to reduce loudness variation between different

recording settings, and this may still be beneficial for other datasets.

RQ: How does the eGeMAPS acoustic feature set perform on a
variety of tasks within the topic of human social interaction
understanding?
In general, the eGeMAPS parameters seem well suited for speech

analysis tasks, as they achieved decent results across different datasets

and classifier algorithms. Moreover, the low number of features

allowed for training models with lower memory usage when com-

pared to models using larger parameter sets. Especially deep neural

networks, such as our recurrent architecture, may benefit from the

smaller input sizes. However, the feature set might not be useful

for every speech analysis task. On the MELD dataset, no classifier

was able to improve much over random guessing. Utterances in the

MELD dataset did not just contain speech, but contained sounds

from multiple different sources in some cases, which may have

reduced the effectiveness of eGeMAPS features.

6.2 Limitations
For this research, samples in the datasets were grouped (see sec-

tion 4.1), and these groupings were used in generating the cross-

validation splits to make the classifiers less prone to memorization

of specific combinations of e.g. speaker and sentence. Intuitively,

this makes the classification tasks more difficult, and we would

expect to obtain lower performance on the tasks as a result of this

grouping. However, it is unclear to what extent this impacts classifi-

cation scores. Without the effect of the grouping to classification

performance being known, it is difficult to directly compare classifi-

cation metrics to other research where the same grouping strategy

was not applied.

Moreover, the experiment setup may have led to high variation

between measured performance metrics. Each classifier used 5-fold

cross-validation to compute classification performance, but the di-

vision of the data into the 5 folds was different every time, which

may have resulted in some performance variance. The standard

deviations for the performance metrics that are included in the re-

sults (tables 3 and 5) were computed only from the 5 trials on a

single 5-fold cross-validation split and thus do not capture this vari-

ation across different splits. This is also the reason why we cannot

determine with certainty from our results whether the recurrent

model using a window size of 500 ms and hop size of 250 ms truly

outperformed the SVM on the CREMA-D dataset without volume

normalization. Furthermore, it may have introduced noise that could

have negatively impacted the ability of the Bayesian search strategy

to find the optimal hyperparameters. These issues could be allevi-

ated by using the same cross-validation splits for every experiment,

albeit that the selection of splits may introduce some potentially

undesired bias.

6.3 Future Work
Future research could include the evaluation of the recurrent models

on larger datasets, since these models tend to benefit from more

data. Alternatively, data augmentation techniques could be used

to increase the amount of data available. Only two segmentation

parameter settings were tested in this research, and more could be

tried to determine an optimal window and hop size for the recur-

rent model. However, such an approach would require re-extraction

of the acoustic features on every change of the segmentation set-

tings, which might render a Bayesian search of the optimal window

and hop sizes unfeasible. Although volume normalization dimin-

ished classification performance in our experiments, the technique

could potentially still be useful for datasets with large variations

in amplitude. As an alternative to volume normalization, future

research could analyze the effectiveness of dynamic range compres-

sion, which might reduce difference in amplitude without removing

the variation altogether.

7 CONCLUSION
In this research, the performance of various classification methods

for speech emotion recognition, sentiment recognition and atti-

tude recognition were evaluated for different datasets, using the

eGeMAPS feature set. We proposed a recurrent architecture for

processing eGeMAPS features as time series data by segmenting

the input audio, and found a case in which this approach may have

improved classification performance over traditional approaches.

Moreover, we found in our experiments that applying volume nor-

malization to audio signals before extracting eGeMAPS features

significantly diminishes classification performance.
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Fig. 1. Principal Component Analysis plots for datasets SAVEE, Emo-DB, CREMA-D
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Fig. 2. Principal Component Analysis plots for datasets MELD, Att-HACK
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Fig. 3. Silhouette plots for datasets SAVEE, Emo-DB, CREMA-D
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Fig. 4. Silhouette plots for datasets MELD, Att-HACK
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Table 3. Cross-validation metrics for various tuned classifiers and standard deviation (𝑁 = 5) across folds, including dummy classifier.

SAVEE (audio normalized) SAVEE (not normalized)

Classifier Balanced Accuracy Accuracy F1 macro Classifier Balanced Accuracy Accuracy F1 macro

KNN 0.593 ± 0.037 0.621 ± 0.022 0.591 ± 0.042 KNN 0.630 ± 0.048 0.649 ± 0.036 0.632 ± 0.043

SVM 0.646 ± 0.043 0.668 ± 0.041 0.648 ± 0.042 SVM 0.650 ± 0.048 0.681 ± 0.029 0.654 ± 0.051

RF 0.644 ± 0.052 0.688 ± 0.047 0.655 ± 0.056 RF 0.670 ± 0.034 0.707 ± 0.038 0.674 ± 0.041
MLP 0.578 ± 0.039 0.597 ± 0.049 0.568 ± 0.037 MLP 0.610 ± 0.059 0.634 ± 0.063 0.602 ± 0.055

Dummy 0.122 ± 0.013 0.127 ± 0.014 0.121 ± 0.012 Dummy 0.125 ± 0.040 0.146 ± 0.045 0.121 ± 0.040

Emo-DB (audio normalized) Emo-DB (not normalized)

Classifier Balanced Accuracy Accuracy F1 macro Classifier Balanced Accuracy Accuracy F1 macro

KNN 0.679 ± 0.049 0.712 ± 0.049 0.678 ± 0.049 KNN 0.692 ± 0.036 0.722 ± 0.045 0.691 ± 0.037

SVM 0.752 ± 0.048 0.759 ± 0.037 0.747 ± 0.045 SVM 0.764 ± 0.022 0.768 ± 0.027 0.766 ± 0.026
RF 0.739 ± 0.039 0.765 ± 0.033 0.738 ± 0.041 RF 0.730 ± 0.043 0.759 ± 0.036 0.734 ± 0.047

MLP 0.774 ± 0.040 0.782 ± 0.043 0.768 ± 0.040 MLP 0.738 ± 0.040 0.743 ± 0.037 0.735 ± 0.032

Dummy 0.138 ± 0.042 0.143 ± 0.047 0.131 ± 0.040 Dummy 0.159 ± 0.037 0.163 ± 0.046 0.152 ± 0.039

CREMA-D (audio normalized) CREMA-D (not normalized)

Classifier Balanced Accuracy Accuracy F1 macro Classifier Balanced Accuracy Accuracy F1 macro

KNN 0.484 ± 0.008 0.479 ± 0.009 0.458 ± 0.009 KNN 0.496 ± 0.008 0.491 ± 0.008 0.473 ± 0.006

SVM 0.562 ± 0.010 0.561 ± 0.010 0.559 ± 0.011 SVM 0.571 ± 0.011 0.570 ± 0.011 0.567 ± 0.011
RF 0.529 ± 0.016 0.527 ± 0.016 0.513 ± 0.017 RF 0.537 ± 0.017 0.533 ± 0.016 0.521 ± 0.017

MLP 0.539 ± 0.015 0.539 ± 0.015 0.537 ± 0.015 MLP 0.550 ± 0.009 0.549 ± 0.010 0.547 ± 0.009

Dummy 0.168 ± 0.010 0.169 ± 0.010 0.168 ± 0.010 Dummy 0.174 ± 0.006 0.175 ± 0.006 0.174 ± 0.006

MELD_emotion (audio normalized) MELD_emotion (not normalized)

Classifier Balanced Accuracy Accuracy F1 macro Classifier Balanced Accuracy Accuracy F1 macro

KNN 0.160 ± 0.005 0.394 ± 0.012 0.148 ± 0.007 KNN 0.163 ± 0.006 0.398 ± 0.015 0.153 ± 0.009

SVM 0.165 ± 0.009 0.319 ± 0.004 0.163 ± 0.009 SVM 0.170 ± 0.011 0.360 ± 0.009 0.169 ± 0.011
RF 0.148 ± 0.007 0.287 ± 0.012 0.148 ± 0.006 RF 0.160 ± 0.005 0.471 ± 0.023 0.132 ± 0.013

MLP 0.164 ± 0.009 0.381 ± 0.012 0.160 ± 0.014 MLP 0.170 ± 0.004 0.403 ± 0.012 0.166 ± 0.004

Dummy 0.144 ± 0.012 0.286 ± 0.010 0.143 ± 0.011 Dummy 0.144 ± 0.009 0.283 ± 0.008 0.144 ± 0.009

MELD_sentiment (audio normalized) MELD_sentiment (not normalized)

Classifier Balanced Accuracy Accuracy F1 macro Classifier Balanced Accuracy Accuracy F1 macro

KNN 0.371 ± 0.009 0.452 ± 0.011 0.345 ± 0.013 KNN 0.373 ± 0.009 0.462 ± 0.014 0.343 ± 0.009

SVM 0.370 ± 0.014 0.448 ± 0.014 0.356 ± 0.017 SVM 0.384 ± 0.012 0.464 ± 0.020 0.369 ± 0.015
RF 0.372 ± 0.007 0.472 ± 0.009 0.333 ± 0.009 RF 0.382 ± 0.010 0.481 ± 0.012 0.346 ± 0.011

MLP 0.377 ± 0.008 0.468 ± 0.015 0.349 ± 0.017 MLP 0.391 ± 0.006 0.487 ± 0.008 0.360 ± 0.017

Dummy 0.329 ± 0.010 0.359 ± 0.011 0.329 ± 0.010 Dummy 0.336 ± 0.008 0.366 ± 0.008 0.336 ± 0.008

Att-HACK (audio normalized) Att-HACK (not normalized)

Classifier Balanced Accuracy Accuracy F1 macro Classifier Balanced Accuracy Accuracy F1 macro

KNN 0.560 ± 0.006 0.561 ± 0.006 0.562 ± 0.006 KNN 0.616 ± 0.010 0.617 ± 0.010 0.616 ± 0.010

SVM 0.639 ± 0.011 0.639 ± 0.011 0.639 ± 0.012 SVM 0.686 ± 0.018 0.686 ± 0.018 0.686 ± 0.018
RF 0.602 ± 0.009 0.601 ± 0.009 0.600 ± 0.009 RF 0.666 ± 0.009 0.666 ± 0.009 0.666 ± 0.009

MLP 0.614 ± 0.010 0.613 ± 0.010 0.613 ± 0.010 MLP 0.664 ± 0.010 0.664 ± 0.010 0.664 ± 0.010

Dummy 0.248 ± 0.008 0.248 ± 0.008 0.248 ± 0.008 Dummy 0.248 ± 0.005 0.248 ± 0.005 0.248 ± 0.005
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Table 4. Hyperparameters found by Bayesian optimization for regular classifiers.

Hyperparameters found for dataset (audio volumes normalized)

Model Parameter SAVEE Emo-DB CREMA-D MELD_emotion MELD_sentiment Att-HACK
SVM C 42.993294 10000.0 10000.0 10000.0 780.590539 56.538504

gamma 0.009697 0.002096 0.0001 0.014551 0.002897 0.00466

KNN n_neighbors 1 13 30 7 16 30

p 1 1 1 1 1 1

RF n_estimators 800 484 614 1 88 800

criterion ‘log_loss’ ‘entropy’ ‘entropy’ ‘gini’ ‘log_loss’ ‘entropy’

MLP hidden_layer_sizes 50 50 30 50 10 50

activation ‘relu’ ‘relu’ ‘relu’ ‘tanh’ ‘relu’ ‘tanh’

optimizer ‘adam’ ‘adam’ ‘sgd’ ‘adam’ ‘adam’ ‘sgd’

Hyperparameters found for dataset (no volume normalization)

Model Parameter SAVEE Emo-DB CREMA-D MELD_emotion MELD_sentiment Att-HACK
SVM C 3507.290038 157.772406 23.963558 80.898058 10000.0 2.203558

gamma 0.013161 0.01177 0.002701 0.014317 0.000363 0.02889

KNN n_neighbors 1 14 23 7 19 30

p 1 1 1 1 1 1

RF n_estimators 659 291 657 89 80 770

criterion ‘gini’ ‘entropy’ ‘log_loss’ ‘gini’ ‘entropy’ ‘entropy’

MLP hidden_layer_sizes 30 50 30 50 10 50

activation ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘tanh’ ‘relu’

optimizer ‘adam’ ‘sgd’ ‘sgd’ ‘adam’ ‘sgd’ ‘sgd’

Table 5. Metrics with standard deviation (𝑁 = 5) across folds and found hyperparameters for segmented model (no volume normalization).

Dataset SAVEE Emo-DB CREMA-D
Segment window size 1000 ms 500 ms 1000 ms 500 ms 1000 ms 500 ms

Segment hop size 500 ms 250 ms 500 ms 250 ms 500 ms 250 ms

Learn rate 0.00141 0.001771 0.003293 0.001021 0.001992 0.001987

LSTM hidden size 105 100 32 75 128 82

Dropout rate 0.065976 0.32155 0.429366 0.263525 0.259807 0.174893

Label smoothing 0.152388 0.247527 0.25 0.235065 0.024273 0.145705

Embedding size 75 104 119 121 77 100

Balanced accuracy 0.510 ± 0.026 0.560 ± 0.054 0.745 ± 0.056 0.708 ± 0.031 0.562 ± 0.010 0.590 ± 0.006
Accuracy 0.561 ± 0.058 0.595 ± 0.061 0.752 ± 0.045 0.721 ± 0.034 0.561 ± 0.009 0.587 ± 0.007
F1 macro 0.503 ± 0.027 0.546 ± 0.053 0.728 ± 0.062 0.694 ± 0.033 0.561 ± 0.008 0.587 ± 0.006
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Fig. 5. Confusion matrices for predictions on each dataset by SVM classifier using tuned hyperparameters (no volume normalization).
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