Toxic Comment Classification In Discord

Zaed Magzoub
EEMCS
University of Twente
Enschede, The Netherlands
z.magzoub @student.utwente.nl

Abstract—In March 2020, the COVID-19 pandemic forced ed-
ucational institutions to close their campuses and move all
educational activities to online education. In addition, social
media platforms were the leading platforms for communication
between people. While it was easier to shift to online lectures,
one aspect that took more work to deal with was student-
student communication. In offline education, students interact
in a real-life environment where students can ask questions and
receive feedback more efficiently. In order to achieve better
online education, educational institutions have decided to use
the platforms the students are familiar with, Discord being one
of these popular platforms. However, sharing toxic comments is
hard to control in Discord since there is no feature in Discord to
detect toxicity in shared messages. In this paper, various machine
learning models were trained to classify toxic messages shared
on University’s discord servers. Machine learning-based solutions
were used because they can achieve better results than traditional
rule-based approaches.

Index Terms—CNN, LSTM, FastText, SVM, TF-IDF, Word Em-
beddings, Deep Learning

I. INTRODUCTION

After March 2020, people had a massive fear of the COVID-
19 pandemic and feared being infected when they came into
contact with someone with COVID-19. In addition, lockdowns
and restrictions pushed people to use social media more
because social media platforms were the best place for people
to interact and be entertained without having any infection
risk. July 2020 saw a rise of 10.5% in social media usage,
compared to July 2019, according to a GlobalWeblIndex
survey!. Furthermore, the pandemic affected education, and
to minimize the losses of students, educational institutions
had to shift from offline education to online education.

In order to achieve better online education, many universities
have used common communication platforms among students.
Such a famous platform is Discord. The issue with Discord
is that it is difficult to control what the students share on
it, a deluge of contributions is added in many channels, and
it is hard for the teachers and teaching assistants to control
what is being shared. Some students share comments that
contain sarcasm or toxicity. However, sharing toxic comments
on the Discord server intended for educational purposes is
inconvenient.

1 GlobalWebIndex

The drawback of Discord is that it has no built-in feature
to control what is being shared in text channels. However,
developers can build bots and add them to servers. Discord
bots are Al-driven tools that can help automate tasks on
Discord servers. By integrating a trained model with a
Discord bot, it will be able to classify shared messages
on text channels. The bot’s main functionality is to hide
messages with potential toxic probability and add them to a
queue. Afterward, the teacher can review and accept/reject
the messages.

Three different approaches were used to classify toxic
comments. First is Convolution Neural Network (CNN)
with FastText word embeddings. Second, Long Short Term
Memory (LSTM) with FastText word embeddings. Lastly,
Support Vector Machine (SVM) with TF-IDF embeddings.
There are two types of classification used in the research.
The first type is multi-class classification, where the goal is
to classify a comment into different categories. The second
type of classification is binary, meaning that the comment
will be classified as toxic or non-toxic.

The dataset used is Jigsaw’s data set hosted on Kaggle for
the Toxic Comment Classification Challenge competition?.
Jigsaw’s dataset contains many labeled comments by
humans for toxic behaviors. The types of toxicity are toxic,
severe_toxic, obscene, threat, insult, and identity hate. The
models were ultimately tested and compared using multiple

evaluation metrics to select the best one for classification.

II. RESEARCH QUESTIONS

The research problem has led to the following research ques-
tions:

1- What are the most effective machine learning methods
for classifying toxic comments in discord-based education
environments?

2- How will the performance of the models differ when testing
them on educational data?

3- How to integrate a machine learning model in the Discord
bot?

2Kaggle Toxic Comment Classification Dataset

https://www.gwi.com/
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data

III. RELATED WORK

Natural language processing (NLP) has been an attractive
research field for many years due to the spreading of the
world wide web and digital libraries [12]. Therefore, much
research has been found related to toxic comment classifica-
tion. There are multiple machine learning methods used to
classify toxic comments. Most of the research has used more
than one approach to classify toxic comments and compare
the performances in the research results. Most papers used
deep neural networks, and the rest used more straightforward
traditional methods. Table I below shows the methods used in
the selected papers.

Approach Paper

[21.[41.[6]
[71,[10]
[31,[91,[10]
[11.[2],[10]

[41.[11]

Convolutional neural network (CNN)

Logistic regression classifier

Long Short Term Memory (LSTM)
Bidirectional long short-term memory
(BILSTM)

Bidirectional Gated Recurrent [4].(8]
Unit Networks (Bidirectional GRU) ’
Recurrent Neural Network (RNN) [41,15],[6]
Bi-GRU-LSTM [8]
Bidirectional Encoder Representations (8]
from Transformers (BERT)

Random Forest [9]
Support Vector Machine (SVM) [9]
Naive Bayes [9]
Decision tree 9]
KNN classification [9]

TABLE I: Approaches used in previous research

The most used dataset is Jigsaw’s data set hosted on Kaggle
for the Toxic Comment Classification Challenge competition.
Jigsaw’s dataset contains many labeled comments by humans
for toxic behaviors. The dataset includes around 150K
comments for training, and for testing the model, around
60K comments. The types of toxicity are toxic, severe toxic,
obscene, threat, insult, and identity hate.

Much research has been done on toxic comment classification
using different approaches. However, applying these
approaches in Discord-based educational environments
has lacked. This research used multiple machine learning
approaches used in previous research using different
implementations to achieve higher performance and integrate
the best approach into Discord by building a bot that will
automate detecting toxic messages.

IV. DATA ANALYSIS

A. Dataset

The dataset used for training and testing the models was
created by the Conversation Al team, a research group
founded by Jigsaw and Google. Their objective is to help

improve online conversation. The comments presented in the
dataset were collected from Wikipedia’s talk page edits. The
dataset is used for Toxic Comment Classification Challenge
launched by Kaggle?.

In the Toxic Comment Classification Challenge dataset,
there are 159571 samples for training and 63978 samples
for testing. Each sample has a text comment labeled by
human raters. Each comment has one or more labels from six
different types of toxicity. In more detail, the six labels are
toxic, severe toxic, obscene, threat, insult, and identity hate.
If a comment contains any of the six types, it has a label of
1 for one or more types and 0 otherwise.

B. Classes Of Toxicity

Toxicity can have many different types. In the adopted
dataset, there are six types of toxicity presented. Each of
the six types represents a different toxicity level; based on
that, the comment is classified. In the following, definitions
are given according to Perspective API (a product of a
collaborative research effort by Jigsaw and Google’s Counter
Abuse Technology team.)[14]

a) Toxic: is a “rude, disrespectful, or unreasonable comment
that is likely to make people leave a discussion.”

b) Serve Toxic: is a “very hateful, aggressive, disrespectful
comment or otherwise very likely to make a user leave a
discussion or give up on sharing their perspective.”

¢) Obscene: Obscene or vulgar language such as cursing”

d) Threat: ‘“describes an intention to inflict pain, injury, or
violence against an individual or group.”

e) Insult: 1is an “insulting, inflammatory, or negative
comment towards a person or a group of people.”

f) Identity Hate: are “negative or hateful comments targeting
someone because of their identity.”

C. Classification Types

a) Multi-class classification: uses all the six labels mentioned
in the dataset to train the models. The model will predict a
probability for each of the six classes to show whether the
comment has potential toxicity for each class. Figure 1 shows
how many comments are labeled with 1 for each class.

b) Binary classification: a new label is created called
“toxic”. The value of the label will be 0 or 1. The label’s
value will be 1 if the comment is from any of the six classes
and O otherwise. 2 shows how many comments are toxic or
clean.

3Kaggle is a web platform known for hosting competitions based on
machine learning tasks

Number of comments per class

7877

values

toxic

severe_toxic obscene threat
classes

insult identity_hate

Fig. 1: Number of comments per class

Number of comments by binary classification

140000 A

120000 A

100000 A

80000 -

values

60000

40000 4

20000

0 A
Toxic

Clean

classes

Fig. 2: Number of clean and toxic comments

D. Data Preprocessing

Data pre-processing plays a crucial role in NLP classification
problems. The reason for that is that data pre-processing has
an essential effect on the performance of the models [4]. In
pre-processing, the intention is to clean the data and convert it
into a valuable and efficient format. In addition, computers do
their operations and understand only numbers, so data should
be represented in vectors instead of text. Scientists commonly
use pre-processing techniques that should not be applied in
toxic classification, such as stemming or stopword removal,
because that can lead to the loss of beneficial information
that can help the model perform better [8].

Before starting pre-processing, the data should be understood
first to know how to pre-process it. After doing some data
analysis, it appeared that the data contained non-English
words, emojis, numbers, extra spaces, HTTP/HTTPS links,

and decorated English words, both upper/lower letters.
According to the observations, the pre-processing procedure
has been carried out:

1) Converting emojis to text: removing emojis is
not good because emojis have meaning. Therefore,
emojis are replaced with the corresponding words. For
example, © will be replaced by slightly smiling face”.

2) Lower casing: converting all upper case letters to
lower case. For example, "HeLLo” will be converted to
“hello”.

3) Correction of toxic words: if a comment contains a
toxic word and some letters of the word were replaced
by a * or #, then it will be converted back to its original
word. For example, ”id*ot” will be converted to idiot”

4) Decontraction of word: A contraction is a word made
smaller by combining two words. Example for that is
”T will” will be “T’ll”. In decontraction we mean the
opposite so "you’re” will be “you are”.

5) Removing http/https links: if a comment contain an
URL link then it will be removed.

6) Removing numbers, tabs (\n) and newline (\n).

7) Removing non-English characters/symbols: that
includes punctuation, mathematical symbols and non-
English letters.

8) Removing extra spaces: after finishing all the previous
steps, there might be extra spaces present so they were
removed.

Figure 3 shows an example of the complete pre-processing
procedure.

E. Word Embeddings

Representation of words is vital in NLP. The default approach
of representing words as discrete symbols is deficient for
many NLP tasks. For example, the words “cat” and “dog”
are entirely unrelated, considering the letters represent them.
However, we can, as humans, know that "cat” and “dog”
are both “pets”[15]. Therefore, we use word embeddings
to represent the meaning of words in fixed-dimensional
vectors. These word vectors capture semantic and syntactic
similarities between words. Word embeddings are essential
in various Natural Language Processing (NLP) tasks[17]. We
used different types of word embeddings depending on the
model uses:

a) FastText: The deep learning models implemented in this
research use FastText word embeddings to represent the

Hey!You're a very Stup*id person &
please visit this link https://www.youtube.com

Converting emojis to words

of joy

Hey! You're a very Stup*id person face with tears
please visit this link https://www.youtube.com

Apply the rest of prebrocessing functions

hey you are a very stupid person face with tears
of joy please visit this link

Fig. 3: Example of preprocessing a toxic comment

input words as vectors of 300 dimensions. We need word
embeddings for our models because they do not accept the
text as input. FastText is a word embeddings open-sourced
project. FastText main goal is to consider not the word’s
representations but the internal structure of words [16].
FastText is similar Word2Vec. The main difference between
Word2Vec and FastText is that FastText also learns vectors for
subparts of words, and this will guarantee that, for example,
the words “love”, ”loved”, and “beloved” will all have the
same vector representations [18].

b) Term Frequency-Inverse Document Frequency (TF-IDF):
TF-IDF is another approach for converting text into vectors.
TF-IDF is a mathematical measure used to determine how
important a word is to a comment in the dataset [20]. The
term frequency (TF) measures the frequency of a word in a
comment and is calculated as the number of times a word
appears in a comment divided by the total number of words
in the comment. The inverse document frequency (IDF) is a
measure of how important a word is in the whole dataset, and
it is calculated using the following equation:

N
documentsContain(word)

IDF(word) = log() (D)

Where N is the total number of comments.

V. MODELS

After preprocessing our dataset, the train data set is used
to train our models. We are using deep learning because
deep learning algorithms have improved accuracy regarding
text classification problems [23]. The deep learning neural
network approaches used are Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN) with long-
term, short-term memory (LSTM). Both approaches were
used for multi-class classification and binary classification.
We also tried a more straightforward traditional method for
binary classification: the Support Vector Machine (SVM). For
our deep learning approaches, we used FastText to represent

the vocabulary as vectors of 300d. Conversely, the Term
Frequency-Inverse Document Frequency (TF-IDF) represents
our vocabulary.

A. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a type of deep-
learning neural network [10]. CNN is widely used for image
classification tasks and was proposed by Yann Lecun when
he applied CNN for handwritten character recognition [21].
CNN was first proposed for text categorization tasks by Yoon
Kim in 2014 and was applied using a single-layer convolution
neural network and achieved perfect classification results [22].
CNN is a multilayer neural network consisting of multistage
trainable Neural Networks architectures. Each stage consists of
Embedding Layer, Convolutional Layers, Pooling Layers, and
a Fully Connected Layer [7]. Figure A.1 shows the architecture
of the CNN model used. The architecture in figure A.1 is used
for multi-class classification. The only difference for binary
classification is that the output is 1 for the last Dense layer.

B. Long Short Term Memory (LSTM)

Recurrent Neural Network (RNN) is a type of deep learning
neural network structure that consists of a loop [23]. The
architecture of RNN offers a tool to search for hidden patterns
in textual data [24]. RNN can maintain information transferred
through multiple layers within the recurrent network module.
In other words, for every input, the output of the hidden
layer depends on the past computation [23]. As a result,
long-term dependency problem arises. Long-term dependency
refers to the difficulty that recurrent neural networks (RNNs)
have in remembering information from a long sequence of
inputs. Sepp Hochreiter and Juergen Schmidhuber have pro-
posed Long Short Term Memory (LSTM) neural networks to
avoid long-term dependence on recurrent neural networks [19].
The architecture in A.2 is used for multi-class classification.
It differs only with the last Dense layer, where in binary
classification, it has only one output.

C. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine
learning algorithm for classification and regression problems
[13]. Standard SVM is used for binary classification tasks,
which means that for each input, SVM predicts which of the
two classes the input might be [12]. There are two types of
SVM, linear and non-linear. In this research, we used linear
kernel SVM because we applied SVM to linearly separable
data.

The main idea behind linear SVM is to find the best
hyperplane that separates the data points into two classes
[25]. The hyperplane should have the maximum margin,
which is the distance between the hyperplane and the closest
data points of each class. After finding the best hyperplane,
classification is done by checking which side the new data
fall on [25]. Figure A.3 shows an example of an SVM model
with linearly separable data.

VI. MODELS EVALUATION

We have evaluated our models by making use of multiple
evaluation metrics. Since we are working with an imbalanced
dataset for our problem, we are using different evaluation
metrics to compare the performances of our models. The eval-
uation metrics are calculated using the following acronyms:

TP = true positive, the number of toxic comments correctly
identified as toxic.

FN = false negative, the number of toxic comments predicted
as clean comments.

FP = false positive, the number of clean comments incorrectly
identified as toxic comments.

TN = true negative, the number of clean comments correctly
identified as clean comments.

Evaluation metrics:

a) Accuracy:

Accuracy = IP+TN 2)
Y“TPY{TN+FP+FN
b) Precision:
TP
Precision = ——————
recision TP+ FD 3)
c) Recall:
TP
= ——— 4
Recall TP+ FN 4)
d) F1 Score:

Precision x Recall
F1S8 =2 5
core * Precision + Recall)

We used micro averaging for multi-class classification to
calculate precision, recall, and Fl-score. Micro averaging
is a method of evaluating the performance of multi-class
classification models. The model’s overall precision, recall,
and Fl-score are obtained by summing the true positives,
false positives, and false negatives across all classes and then
computing the metrics using equations 3, 4 and 5.

Evaluating the models is done in two phases. First, all
the models are tested and compared using Jigsaw’s dataset.
Second, the best models are chosen and tested on educational
data from Discord.

A. Evaluate Models On Jigsaw’s Dataset

The models are evaluated using the 63978 testing samples of
Jigsaw’s dataset. Table II shows the results of the metrics used.
From the results, we can conclude that according to the F1
score, CNN for multi-classification was slightly better than
LSTM. Regarding binary classification, SVM performed the
best compared to CNN and LSTM.

Model Accuracy | Precision | Recall | Fl1-score
CNN Multi 0.880 0.611 0.704 0.654
CNN Binary 0.904 0.506 0.891 0.645
LSTM Multi 0.874 0.589 0.733 0.653
LSTM Binary 0.910 0.523 0.847 0.646
SVM Binary 0.928 0.596 0.812 0.687

TABLE II: Comparison of models performances
B. Evaluate Best Models On Educational Data

In this phase, we tested CNN for multi-class classification
model and SVM for a binary classification model on educa-
tional data from two different Discord servers of the University
of Twente. We tested the models on 2865 samples from dif-
ferent channels. Figure 4 and 5 indicate the confusion matrix
and the evaluation metrics of CNN and SVM, respectively.

2500

o True Neg False Pos
5 2789 8
N 97.65% 0.28% 2000
z
K] - 1500
o
2
E
- 1000
© False Neg True Pos
£ - 10 49
< 0.35% 1.72%
500
' |
Zero One

Predicted label
Accuracy=0.994
Precision=0.860
Recall=0.831
F1 Score=0.845
Fig. 4: Evaluation metrics on educational data using CNN-

multi

2500

. True Neg False Pos
g 2791 6
N 97.72% 0.21% 2000
g
2 - 1500
o
I~
=
- 1000
© False Neg True Pos
£ - 22 37
o 0.77% 130
- 500
| |
Zero One

Predicted label

Accuracy=0.990
Precision=0.860
Recall=0.627
F1 Score=0.725

Fig. 5: Evaluation metrics on educational data using SVM

VII. DISCORD BOT

Discord is a popular platform used for voice and text
communication. A community can create a server on Discord
consisting of text and voice channels. In many courses
at the University of Twente, it has been decided to use
Discord for communication between students and teachers
because almost all students are familiar with it. In order to
automate functionalities in Discord servers, Discord allows
server owners to build what are called Discord Bots. Discord
bots are automated programs that can act as users and do
various tasks. Discord Bots can be programmed using many
programming languages. We used Python to program our bot
by using the Discord.py? library.

After evaluating our models, CNN multi-class classification
is chosen to integrate into the bot. Multi-class classification is
used because it allows for more distinctions between different
types of toxicity. Furthermore, it gives detailed reporting and
analysis, as it can determine which type of toxic behavior is
present in a given comment. Finally, when the models were
tested on educational data, the performance of multi-class
classification was better than binary classification.

ToxiClean is the name we defined to name our bot.
ToxiClean can be invited to any server using the invite link
generated from the Discord developer portal. When a message
is sent it will be preprocessed according to IV-D. Afterwards,
the model will predict whether the message contains toxic
language. If the message is toxic, the bot will hide the
message and send it to a queue channel to be reviewed by
the server owners.

A. Features

In this section, we explain the features of ToxiClean and how
it controls messages shared on text channels:

a) Classification: When the bot is run, all pre-processing
functions and the trained machine learning model will be
loaded depending on which classification is selected. When a
message is sent on any text channel, it will be pre-processed
and used as input to the trained model. The model will print
the toxicity scores on the console. Figure 6 shows an example
of a message shared on a text channel called general and the
result of pre-processing.

Fig. 6: Example of message preprocessing

Depending on the type of classification, the model will
return per class the probability as a value between 0 and 1
that the message is from that class. We convert the output
to percentage to make the prediction results more readable

3Discord.py is a Python library that allows you to control a Discord bot
and create applications that utilize the functionality of the Discord platform

than probability values between 0 and 1. Figure 7 shows an
example of prediction based on six classification classes. If

r 'Hey! How are you id

Identity Hate: :

Fig. 7: Example of multi-classification using CNN

any of the classes has a prediction result greater than 50%,
then the message will be hidden and posted in the toxic queue.

b) Toxic queue channel: is a hidden channel accessible
only by users with the teacher role in Discord (teachers
and teaching assistants). The main idea of this channel is to
act as a queue for toxic messages. The model may classify
messages incorrectly by considering them toxic, but they are
not. Therefore, if a message is classified as toxic, then the
bot will post the message in the toxic queue channel, where
it can be reviewed later by teachers or teaching assistants.

The message will be posted in the toxic queue associated
with multiple attributes. The attributes are essential for the
teacher to know who shared the message and where it was
posted.

toxic-queue

ToxiClean |BoT

Nickname : None

Username : ZZ#3525

User ID : 591412002711273474
Channel name : general

Channel ID : 1052377349234106409
Message : Hey! How are you idi*ot? @

Fig. 8: Example of a message posted in the toxic queue
channel

c) Accept/reject message: After the bot posts a message to
the toxic queue channel, it will be reviewed by the teacher
to decide whether the message is classified correctly or not.
Accepting and rejecting messages can be done by reacting to
the message with specific emojis. The teacher must react with
to accept a message and with ¥ to reject a message using
the built-in emojis of Discord. Figures 9 and 10 shows both
cases.

Depending on the teacher’s reaction, the message will be either
deleted from the queue and re-posted in the channel where the
original message was posted or deleted from the queue only.

VIII. CONCLUSION AND FUTURE WORKS

Toxic comment harms individuals. In this paper, we have
proposed five approaches for detecting toxic comments. We

https://discordpy.readthedocs.io/

toxic-queue

ToxiClean (BOT, v,

Nickname : None

Username : ZZ#3525

User ID : 591412002711273474

Channel name : general

Channel ID : 1052377349234106409

Message : Hey! How are you idi*ot? @
v 1

Fig. 9: Example of accepting a message

toxic-queue

ToxiClean (BOT| v,
Nickname : None
Username : ZZ#3525

User ID : 591412002711273474

Channel name : general

Channel ID : 1052377349234106409

Message : Hey! How are you idi*ot? @
1

Fig. 10: Example of rejecting a message

used Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) with Long Short Term Memory
(LSTM) as deep learning approaches and Support Vector
Machine as a simpler traditional classification method. We
can conclude from the results that CNN is more effective than
LSTM for multi-class classification. SVM performed the best
among CNN and LSTM for binary classification. In Discord,
we integrated CNN with multi-class classification to classify
messages into six categories. Massages classified as toxic
will be hidden and queued to be approved by the teachers.
If the teacher approves a message, it will be re-posted in the
channel where it was initially shared.

For future work, we suggest working with a more balanced
dataset to achieve higher performance [27]. Training a
classifier with a balanced dataset will reduce biases because
imbalanced data sets will cause the classifier to be biased
towards the majority class [26]. The concept of bias is
related to toxic comment classification because when the
Conversation Al team first built machine learning models
to detect toxicity, they discovered biases and incorrectness
in learning [8]. Comments that contain terms of frequently
attacked identities were considered toxic. The models
predicted a high toxicity likelihood for comments containing
those identities, even when the comments were not toxic [8].
We also suggest extending the features of the ToxiClean bot
by, for example, warning or muting users who repeatedly

make toxic comments.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

H. Almerekhi, H. Kwak, J. Salminen, B. J. Jansen, Are These Comments
Triggering? Predicting Triggers of Toxicity in Online Discussions,
Proceedings of The Web Conference 2020, Taipei, Taiwan, Apr. 2020,
pp. 3033-3040.

M. Anand, R. Eswari, Classification of Abusive Comments in Social
Media using Deep Learning, 2019 3rd International Conference on
Computing Methodologies and Communication (ICCMC), Erode, India,
Mar. 2019, pp. 974-977.

S. Carta, A. Corriga, R. Mulas, D. R. Recupero, R. Saia, A supervised
multiclass multi-label word embeddings approach for toxic comment
classification, IC3K 2019 - Proceedings of the 11th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, Vienna, Austria, 2019, pp. 105-112.

A. G. D’Sa, L. Illina, D. Fohr, Towards non-toxic landscapes: Automatic
toxic comment detection using DNN, ArXiv191108395 Cs Stat, Nov.
2019, Accessed: Jul. 03, 2020. http://arxiv.org/abs/1911.08395.

S. Deshmukh, R. Rade, Tackling Toxic Online Communication with
Recurrent Capsule Networks, 2018 Conference on Information and
Communication Technology (CICT), Jabalpur, India, 2018.

A. Elnaggar, B. Waltl, I. Glaser, J. Landthaler, E. Scepankova, F.
Matthes, Stop Illegal Comments: A Multi-Task Deep Learning Ap-
proach, ACM International Conference Proceeding Series, 2018, pp. 41-
47.

S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, V. P. Plagianakos,
Convolutional Neural Networks for Toxic Comment Classification, Pro-
ceedings of the 10th Hellenic Conference on Artificial Intelligence,
Patras, Greece, Jul. 2018, pp. 1-6.

S. Morzhov, Avoiding Unintended Bias in Toxicity Classification with
Neural Networks, 2020 26th Conference of Open Innovations Associa-
tion (FRUCT), Yaroslavl, Russia, Apr. 2020, pp. 314-320.

Rahul, H. Kajla, J. Hooda, G. Saini, Classification of Online Toxic
Comments Using Machine Learning Algorithms, 2020 4th International
Conference on Intelligent Computing and Control Systems (ICICCS),
Madurai, India, May 2020, pp. 1119-1123.

M. A. Saif, A. N. Medvedev, M. A. Medvedev, T. Atanasova, Clas-
sification of Online Toxic Comments Using the Logistic Regression
and Neural Networks Models, Proceedings of the 44th International
Conference Applications of Mathematics in Engineering and Economics,
Sozopol, Bulgaria, 2018.

S. Srivastava, P. Khurana, Detecting Aggression and Toxicity using a
Multi Dimension Capsule Network. Stroudsburg: Assoc Computational
Linguistics-Acl, 2019, pp. 157-162.

Murty, M.. (2008). Text Document Classification basedon Least Square
Support Vector Machines with Singular Value Decomposition. Interna-
tional Journal of Computer Applications. Vol 27. 21-26.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to
support vector classification.

Perspective Developers. (2023). Perspectiveapi.com.
https://developers.perspectiveapi.com/s/about-the-api-attributes-and-
languages?language=en_US

Levy, O., & Goldberg, Y. (2014, June). Dependency-based word embed-
dings. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers) (pp. 302-308).

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching
word vectors with subword information. Transactions of the association
for computational linguistics, 5, 135-146.

Anke, L. E., & Schockaert, S. (2018, August). SeVeN: Augmenting word
embeddings with unsupervised relation vectors. In Proceedings of the
27th International Conference on Computational Linguistics (pp. 2653-
2665).

(18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

[26]

(271

I. Santos, N. Nedjah and L. de Macedo Mourelle, ”Sentiment anal-
ysis using convolutional neural network with fastText embeddings,”
2017 IEEE Latin American Conference on Computational Intelli-
gence (LA-CCI), Arequipa, Peru, 2017, pp. 1-5, doi: 10.1109/LA-
CCI.2017.8285683.

Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory.
Neural computation, 9(8), 1735-1780.

Aizawa, A. (2003). An information-theoretic perspective of tf—idf mea-
sures. Information Processing & Management, 39(1), 45-65.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11), 2278-2324.

Yoon Kim. (2014). Convolutional Neural Networks for Sentence Classi-
fication. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1746-1751, Doha,
Qatar. Association for Computational Linguistics.

Luan, Y., Lin, S. (2019, March). Research on text classification based
on CNN and LSTM. In 2019 IEEE international conference on artificial
intelligence and computer applications (ICAICA) (pp. 352-355). IEEE.

Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., & Baik, S. W. (2017).
Action recognition in video sequences using deep bi-directional LSTM
with CNN features. IEEE access, 6, 1155-1166.

Pradhan, A. (2012). Support vector machine-a survey. International
Journal of Emerging Technology and Advanced Engineering, 2(8), 82-
85.

Afzal, Z., Schuemie, M. J., van Blijderveen, J. C., Sen, E. F., Sturken-
boom, M. C., & Kors, J. A. (2013). Improving sensitivity of machine
learning methods for automated case identification from free-text elec-
tronic medical records. BMC medical informatics and decision making,
13(1), 1-11.

Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect
prediction using ensemble learning on selected features. Information and
Software Technology, 58, 388-402.

A. Appendix A

APPENDIX

Models architecture of CNN and and LSTM used.

mput: | [(None, 363)]
InputLayer -
output: | [(None, 363)]
Y
mput: one, 363
Embedding L ®)
oufput: | (None, 363, 300)
Y
mput: one, 363, 300
ConvlD L ™ -)
output: | (None, 363, 128)
Y
input: one, 363, 128
MaxPoolingl D 1 ®)
} output: | (None, 121, 128)
Y
. mput: | (None, 121, 128)
GlobalMaxPoolingl D
output: {None, 128)
Y
mput: one, 128
BatchNormalization 1 ™)
output: | (None, 128)
Y
mput: | (None, 128)
Dense
oufput: | (None, 50)
Y
mput: | (None, 50)
Dropout
output: | (None, 50)
Y
mput: | (None, 50)
Dense
output: | (None, 6)

Fig. A.1: Architecture of CNN model

mput: | [(None, 359)]
InputLayer
output: | [(None, 359)]
A
mput: one, 359
Embedding i Gl)
output: | (None, 359, 300)
y
mput: one, 359, 300
LSTM ! l)
output: | (None, 359, 60)
Y
mput: one, 359, 60
MaxPoolingl D ! l)
) output: | (None, 119, 60)
Y
. mput: | (None, 119, 60)
GlobalMaxPoolingl D
output: (None, 60)
Y
mput: one, 60
BatchNormalization 1 l -)
output: | (None, 60)
Y
mput: | (None, 60)
Dense
output: | (None, 50)
Y
mput: | (None, 50)
Dropout
output: | (None, 50)
Y
mput: | (None, 50)
Dense
output: | {None, 6)

Fig. A.2: Architecture of LSTM model

Support Vectors

X
S o (@}
[=§
~
o
. o
B ~
s LJ\
~ ™ o
N "
Rt
- ha .
g \\ \\ wx—b=+1
e - R
e . wx—b=0
' E
e N
S
wXx—b=+1

Fig. A.3: SVM model[25]

	Introduction
	Research questions
	Related work
	Data analysis
	Dataset
	Classes Of Toxicity
	Classification Types
	Data Preprocessing
	Word Embeddings

	Models
	Convolutional Neural Network (CNN)
	Long Short Term Memory (LSTM)
	Support Vector Machine (SVM)

	Models Evaluation
	Evaluate Models On Jigsaw’s Dataset
	Evaluate Best Models On Educational Data

	Discord Bot
	Features

	Conclusion And Future Works
	References
	Appendix
	Appendix A

