
Improving Nothingness: Refactorings on Whitespace
RUTGER WITMANS, University of Twente, The Netherlands

Esoteric languages are known for being unique, clunky to code in and gen-
erally not used for real-life applications. However, as an experimentation
tool, they can be powerful to find out certain answers. Refactoring is a sys-
tematic process of improving code without creating new functionality that
transforms a mess into clean code and simple design. This powerful process
creates code which can be used long-term and is better to understand. In
this paper, we are presenting which refactorings are possible in the mini-
mal setting that the programming language Whitespace offers, where only
comments describe what the program does. After showing the refactorings
that are possible on Whitespace, we will then present a tool which auto-
mates some of these refactorings. Finally, we will present the tests we have
performed on the tool to check its validity.

Additional Key Words and Phrases: Whitespace, Refactoring, esoteric, pro-
gramming language

1 INTRODUCTION
"Refactoring is a systematic process of improving code without cre-
ating new functionality that can transform a mess into clean code
and simple design" [1]. Refactoring is an important part of being a
programmer. Refactoring unclutters code, creates more optimized
code and refactoring gives the programmer an easier time coding
later. There are over 60 refactoring methods [1] all of which can
improve the code quality of programming projects.
Furthermore, if your language of choice has a small instruction set,
it is then important to keep clarity in your code to maintain the code
base. Some esoteric languages for instance are designed to keep the
number of allowed characters in the language to a minimum. Two
of these examples include Brainf*ck and Whitespace.
Brainf*ck, designed in 1993 by Urban Müller [6], was created to
have the smallest possible compiler that exists for a language. The
language consists of only eight characters which together are Tur-
ing complete and are thus able to solve any computational problem
like most other programming languages.
As the name suggests,Whitespace is a programming languagewhere
the only characters recognized by the compiler are whitespace char-
acters [3]. Every other character is ignored by the compiler. A pro-
gram designed in this language only consists of tabs, spaces and line
feed (new line) characters. This means that working Whitespace
programs to us humans look like empty files while in reality, these
files contain all sorts of functionality. Thus if you would like to show
others what you want to do, you need to add comments to the file.
Whitespace thus shows in a way the importance of commenting. In
most projects, we work with large code bases. If there are barely
any comments, it can be difficult to grasp how some things work
together. Commenting improves this lack of clarity and gives the
programmer a better idea of how everything works. This language

TScIT 38, Februari, 2023, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

is also Turing complete and is thus able to solve any computational
problems like most other programming languages.
It might seem pointless to refactor Whitespace code because of the
lack of real-life applications. However, as stated before refactoring
has more benefits next to clean code. The refactored code is safer,
better optimized and easier to maintain.
First, we will look at different refactorings and look at which of
these refactorings are possible within the scope ofWhitespace. After
finding out which refactorings are possible on Whitespace, we will
create a solution which seeks out these refactoring possibilities and
applies them to the code.
Our goal can then be defined as creating a tool which finds and
applies refactorings on a given Whitespace program. The following
research questions will help achieve our goal:

• RQ 1: Which refactorings are possible on Whitespace code?
• RQ 2: Can we create a validated tool which detects and applies
the possible refactorings on Whitespace?

2 RELATED WORK
Because Esoteric languages are not designed to be used in real-life
applications, people use these languages to experiment and chal-
lenge certain existing ideas to see whether there are better options
available in the future [9]. Languages such as Three Star Program-
mer explore ideas on what is needed to have a Turing complete
language [9].
Refactoring has first been coined by Opdyke et al. [8], yet refactor-
ing was by then already a big part of the programming cycle. One
big contributor to the popularization of most refactoring methods
is the book Refactoring - Improving the Design of Existing Code [7].
This book first stresses the importance of refactoring code. Next to
an introduction to refactoring, this handbook provides a catalogue
of dozens of tips for improving code with the use of refactorings
methods. The importance of refactoring can not be understated.
Refactoring has multiple benefits, such as making your code eas-
ier to test [12]. Next to being able to refactor as the coder, there
exist tools which refactor code for programmers instead of the pro-
grammer performing the refactorings. One paper presents a tool
that is able to refactor large c++ code bases using clangMR [11].
In Another paper, Baqais et. al performed a systematic literature
review that suggests, proposes or implements an automated refac-
toring process [2]. Finally, there is different work on the detection
of possible refactorings. Tsantalis et al. argue that the placement of
different class methods and class attributes is guided by metrics and
conceptual criteria [10]. The paper proposes a methodology which
decides how effective different placements of classes and attributes
are. The method is semi-automatic since the user still has to decide
if the refactoring should be applied.
While refactoring of esoteric languages has little research into it,
we believe it is important to see which refactorings are possible on
such a minimal language.

1



TScIT 38, Februari, 2023, Enschede, The Netherlands Rutger Witmans

3 METHODOLOGY AND APPROACH
First, we will find out which refactorings exist and can be deployed
on the language Whitespace. We will then create a Whitespace
program which serves as a baseline program where refactorings are
going to be applied too. Finally, we will build a tool which finds and
tries to apply refactorings to improve the quality of the Whitespace
program.

4 POSSIBLE REFACTORINGS

4.1 Refactoring categories
We first looked at what refactoring categories are possible. The
following categories were available [1]:

• Composing Methods
• Moving Features between Objects
• Organizing Data
• Simplifying Conditional Expressions
• Simplifying Method Calls
• Dealing with Generalization
• Code Smells

We are ruling out everything that has to do with object program-
ming patterns since Whitespace is an assembler-like language. Such
languages generally miss the object programming data structures
needed to perform such refactorings. Thus Moving features between
objects, organizing data and dealing with generalization are high-
level refactorings which we will not go over. Whitespace does have
instructions which are called labels. These labels are points in the
code you can jump to where a certain piece of code gets executed.
This functionality borrows some refactoring ideas from the sim-
plifying method calls and composing methods. Whitespace also has
instructions for conditional jumps. This makes some of the ideas
for simplifying conditional expressions possible. Next to this, we will
look at some code smells and perform refactorings. We will thus be
looking through the following categories:

• Composing Methods
• Simplifying Conditional Expressions
• Simplifying Method Calls
• Code Smells

4.2 Possible refactoring methods
With these chosen categories, we have created a list of refactorings
which can be performed on Whitespace code. The following list is
the refactorings we found that are possible on Whitespace code:

• Extract method
• Inline method
• Rename method
• Consolidate conditional expression
• Consolidate duplicate conditional fragments
• Remove dead code
• Remove duplicate methods

4.2.1 Extract method. The extract method refactoring is a refactor-
ing where a grouped sequence of instructions gets extracted into
its own method so that this new method describes with its method
name what the sequence of instructions is supposed to do. This is
useful when you have a large method which does multiple sub-tasks

to perform its functionality. Making it clear what the function does
in these sub-steps is nice for the next reader of the code, so the
readers are able to easily deduce what your code does.

4.2.2 Inline method. The inline method refactoring is the opposite
of this. If some functionality of a method is small, there is the possi-
bility of performing that function on the spot. Refactoring code with
this method gets rid of code which clutters the program without
bringing new functionality. We see that these first two methods of
refactoring have opposite ideas in mind, yet both methods are able
to be utilized exclusively from each other. For some methods, you
might have made use of too many methods. This makes it unclear
how the method works. On the other hand, using too few methods
overwhelms the reader and makes the reader get lost in certain
details which are not important. Because of this balance, it will be
tricky to automate this process. While it is possible to automate this
based on self-defined predicates, we will not be doing this in our
paper because this is beyond the scope of this research.

4.2.3 Consolidate conditional expression. The consolidate condi-
tional expression refactoring is a refactoring method where one
looks at all the different branches and then checks what branches
lead to the same instructions. We then group these branches into a
singular conditional statement that performs these actions. Group-
ing these conditionals gives clarity to code, especially if you name
this expression. While this can be done in whitespace using labels
and performing the conditional logic under one of these labels, we
would like to argue that this refactoring is still too subjective. We
cannot easily decide whether a conditional statement is complex
and needs changing. We have thus decided not to implement this
refactoring into the tool.

4.2.4 Consolidate duplicate conditional fragments. The consolidate
duplicate conditional fragments refactoring checkswhether all branches
execute the same piece of code and then extracts this piece out of the
branches. This refactoring makes clear what piece of code always
needs to be executed no matter what conditional branch you might
have taken. This clears up confusion about what the if-statement
tries to separate resulting in cleaner code. We have chosen not to
implement this method.

4.3 Chosen refactorings for automation
After eliminating those refactorings, we have come to the following
three refactorings we will automate:

• Rename method
• Remove dead code
• Remove duplicate methods

4.3.1 Rename method. The rename method refactoring is quite self-
explanatory. The purpose of this refactoring normally is to rename
the method in order to make it more clear what the method does.
In the case of Whitespace, this is impossible. Labels do not have
ordinary names. Instead, they are made up of a combination of tabs
and spaces. Because of this, the naming of labels is purely there to
keep uniqueness. However, since the naming does not matter, we
instead rename the labels to keep them as small as possible. Not
only will this increase the number of labels we will have available

2



Improving Nothingness: Refactorings on Whitespace TScIT 38, Februari, 2023, Enschede, The Netherlands

to us, but it will also allow us to keep the Whitespace code as small
as possible.

4.3.2 Remove dead code. To explain removing dead code, we will
first explain what dead code is. "Dead or inactive code is any code
that has no effect on the application’s behaviour" [5]. With this
definition, we see that we want to remove code that has no effect
on the application we are writing. While this is trivial to do as a
human, as a robot it is quite hard to notice when code is unused.
Because of this, we will eliminate unused methods instead, to keep
complications lower.

4.3.3 Remove duplicate methods. Last up, we will be removing du-
plicate methods. Duplicate methods are two methods which have the
exact same functionality. Our tool is going to remove these methods
since duplicate methods only cause confusion and do not have any
benefits to a programmer.

5 AUTOMATIC REFACTORING
For an automatic refactoring tool to work, we need to be able to
perform the following steps:

• Reading a Whitespace file and constructing the Whitespace
code into an intermediate representation which is easier to
work with.

• Performing checks on the intermediate representation and
then performing refactorings based on those checks

• Transforming the results from the refactorings back into
Whitespace code.

5.1 Whitespace library
For our research, we need a tool which parses Whitespace code and
turns it into an intermediate representation and after the refactor-
ings turn the newly refactored intermediate representation back
into Whitespace code. We have decided to use the Rust library
"whitespacers" [4]. This tool has all the features necessary for test-
ing, creating and transforming Whitespace code. The library has
created its own intermediate representation, thus saving us the has-
sle of coming up with such a representation. The library is able
to run our Whitespace programs, giving us the ability to test for
changes in behaviour.
One more feature this library has which was unexpected was the
ability to minimize label names. Since we already decided that we
wanted to perform this action in our tool, we have decided to use
the implementation of the tool for this, thus achieving our first
refactoring.

5.2 Intermediate Representation
To show what our Intermediate Representation (IR) looks like, we
first have to explain how Whitespace works. Whitespace has five
different types of commands. These types all have a different Instruc-
tion Modification Parameter (IMP). The IMP is a unique sequence
of whitespace characters that selects one of these instruction types.
After choosing an instruction type, you now enter the correspond-
ing combination of whitespace characters to select the instruction
you want. Some of these instructions have parameters, which are a

Fig. 1. The IR of Whitespace

sequence of tabs and spaces, terminated with a Line Feed charac-
ter. All Whitespace programs end with three line feed characters,
indicating that there is no more code to parse. Combining all these
instructions gives us a total of 24 instructions in the Whitespace
language.
With this in mind, in figure 1 you will see the IR of the Whitespace
library we have decided to use. The 24 commands all have their own
unique and human-understandable name. Using this IR, we are able
to create our refactorings in an easier-to-understand language.

5.3 Example program with whitespace
In 2, you will see a complete working program inWhitespace, specif-
ically, a "Hello, world!" program. In the example, you see a combi-
nation of spaces (the vertical stripes), tabs (the horizontal stripes)
and line-end characters at the end of each line. For most people, it
is not clear how this program should behave. For example, some
lines contain more than one instruction. That is why we would like
to use the IR. In 3, we find the IR version of the same Whitespace
program. Here it becomes clear that every letter first gets pushed
onto the stack by their ASCII code and then printed. When it finally
finished printing the last character, the program exits. Using the IR
to create Whitespace programs was convenient for us since it sped
up the time it took to create and analyze test programs.

3



TScIT 38, Februari, 2023, Enschede, The Netherlands Rutger Witmans

Fig. 2. Hello, world! program in whitespace

5.4 Removing dead code
For our dead code removal, we have created a plan to detect unused
methods and then remove these methods. Our plan is as follows:

• Look at all our jump instructions and store to what label they
jump to.

• If there is a label which is not jumped towards, we will elimi-
nate this label with the code corresponding with this label.

Using this approach we are easily able to detect if methods are not
called. There are some downsides to this method which we will now
point out.
If there are two methods which will reference each other that are
not called through the main method, they will both still be seen

Fig. 3. Hello, world! program in whitespace

as used code. This can be fixed by storing the label in which the
method is called, and seeing whether this name space is reached
via the main method. If it is, then this piece of code is not dead,
otherwise, you can mark it as dead code.
That would not fix the second issue, however. If the code mentions a
jump to a certain label, but it would never take this jump, then this
called method would still be seen as a used piece of code. However,
This cannot be true since this part of the code is never reached. One
would have to guarantee that this piece cannot be reached using
more complicated techniques.
Finally, we are just looking at dead methods and not dead code in
general. If code is specifically told to stop the execution and there
are calls to other methods after stopping execution, these called

4



Improving Nothingness: Refactorings on Whitespace TScIT 38, Februari, 2023, Enschede, The Netherlands

methods should be seen as dead. However, since we have not put in
checks to detect this behaviour, these methods are not removed.

5.5 Removing duplicate methods
For removing duplicate methods, we have created a plan to detect
these instances. Our plan is as follows:

• Analyze the code of all the methods.
• Group methods that have duplicate code.
• Remove grouped methods until there is one left.
• Change all jumps from the removed labels to the grouped
method that is left.

With this, we have created a way to remove duplicate code without
changing behaviour. There is one issue left with this implementation.
If two instructions are swapped which are interchangeable, this plan
would not be comprehensive to detect all method duplication. The
way to fix this interchangeable code problem is to find all patterns
where code can be interchanged without changing behaviour and
detect duplicate code using these patterns.

5.6 Writing test programs
With all of the refactorings finished, we needed some test programs
to test whether the refactorings are applied correctly and kept their
behaviour. This turned out to be a problem, since writing valid
Whitespace code is not human-friendly. However, we solved this
problem by writing in the format of the library their IR. The library
was then able to recognize this format and transform the IR into a
whitespace-encoded file, solving the issue of writing Whitespace
code.

6 TESTING
For testing, we will be highlighting the two different refactoring
methods. We will first show an equivalent problem in a python
program, and then show equivalent code in theWhitespace IR before
and after the refactoring. Finally, we will show you the difference in
the Whitespace code. In both tests, there are initially long labels. In
both tests, these labels get renamed to the smallest possible unique
label.

6.1 Testing of removal dead code
In 4 we see a python program which contains two methods. FuncA
is in use and funcB is never used in the program. Since funcB does
not do anything, we would like to recognize this method as being
dead and eliminate it.
In 9 we see the IR of whitespace code before and after refactoring.
Before the refactoring, we see big label names with a method which
is never called in the lifetime of the program. Since this method is
not used, it is marked as dead code by the tool. After refactoring, we
subsequently see that this method has been removed. We also see
that the labels of the methods have been shortened to the smallest
possible unique names. In 6 we see the difference in the whitespace
that has been generated.

6.2 Testing of duplicate methods removal
In 5 we see a python program which has two methods and both
methods are being called in the main function. When we look closer,

Fig. 4. Example of unused methods in Python

we see that both methods achieve the same thing, printing one letter
and returning back to the calling place. Ideally, the tool should mark
that these methods achieve the same functionality. It should then
remove one of the two methods and replace all calls to the method
with the left-over method.
In 7 we see the IR of whitespace code before and after refactoring.
Before the refactoring, we see big label names and two methods
which achieve the same functionality. In the main method, both
methods are called and then the program exits. Our tool will mark
both methods, and removes one of the two methods. The tool then
replaces all of the method calls to the remaining method. We see
that after refactoring, this is indeed what has happened to the file.
We see only one function with a smaller label, and both jumps are to
this remaining method. In 6 we see the difference in the whitespace
that has been generated.

7 CONCLUSION
In this paper, we have presented a tool that checks and performs
refactorings on Whitespace code. To answer research question one,
we first looked at different refactoring categories. From there we
found seven refactorings that are possible on the Whitespace lan-
guage. To answer research question 2, we first chose three refactor-
ings we wanted to implement into the tool. We then implemented
a tool which reads Whitespace code, performs refactorings on this
code using the generated IR, and transforms the IR back into White-
space code. This shows that it is possible to create a tool which
detects and applies possible refactorings on Whitespace. This work
shows that even with minimal circumstances, it is always possible
to refactor code. Furthermore, refactoring code is always useful, be
that code clarity or a minimal code footprint. We conclude that refac-
toring Whitespace code is possible and that refactoring Whitespace
code improves the readability and usability of such code.

8 FUTURE WORK
There are several areas for future research that can build upon the
work presented here. In this section, we will discuss potential ex-
tensions to our approach.

5



TScIT 38, Februari, 2023, Enschede, The Netherlands Rutger Witmans

Fig. 5. Example of duplicate methods in Python

The refactorings proposed in this paper are a work in progress and
further research and development are needed to fully realize the
functionality. Next to this, more refactorings can be implemented,
such as the different conditional refactorings mentioned in section
4.2 "Possible refactoring methods".
Furthermore, while some testing has been performed, there could
be more tests added. Generating tests to show results that accu-
rately depict the tool is something worth considering to be done.
Finally, doing some tests on the speed of the tool and looking
where it is the slowest and why will also benefit the usability of
the tool and future additions. For anyone who would like to look
at the tool or work on it further, you can find the tool over at
https://github.com/rwitmans/whiteref/tree/master/whiteref.

REFERENCES
[1] 2022. Refactoring: clean your code. https://refactoring.guru/refactoring [Online;

accessed 22. Nov. 2022].
[2] Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb. 2020. Automatic

software refactoring: a systematic literature review. Software Qual. J. 28, 2 (June
2020), 459–502. https://doi.org/10.1007/s11219-019-09477-y

[3] Edwin Brady. 2022. Whitespace. https://web.archive.org/web/20150623025348/
http://compsoc.dur.ac.uk/whitespace [Online; accessed 23. Nov. 2022].

[4] CensoredUsername. 2023. whitespace-rs. https://github.com/CensoredUsername/
whitespace-rs [Online; accessed 19. Jan. 2023].

[5] Cato de Kruif. 2022. Using d-NFGs to identify and eliminate dead code in C
programs. http://essay.utwente.nl/91890/

[6] Brandee Easter. 2020. Fully Human, Fully Machine: Rhetorics of Digital Dis-
embodiment in Programming. Rhetoric Review 39, 2 (April 2020), 202–215.
https://doi.org/10.1080/07350198.2020.1727096

[7] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA.

[8] William F. Opdyke and Ralph E. Johnson. 1993. Creating Abstract Superclasses
by Refactoring. ResearchGate (Jan. 1993), 66–73. https://doi.org/10.1145/170791.
170804

[9] Daniel Temkin. 2017. Language without code: intentionally unusable, uncom-
putable, or conceptual programming languages. 1. 9, 3 (Sept. 2017), 83–91.
https://doi.org/10.7559/citarj.v9i3.432

[10] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of Move
Method Refactoring Opportunities. IEEE Trans. Software Eng. 35, 3 (Jan. 2009),
347–367. https://doi.org/10.1109/TSE.2009.1

[11] HyrumK.Wright, Daniel Jasper, Manuel Klimek, Chandler Carruth, and Zhanyong
Wan. 2013. Large-Scale Automated Refactoring Using ClangMR. In 2013 IEEE
International Conference on Software Maintenance. IEEE, 548–551. https://doi.org/
10.1109/ICSM.2013.93

[12] Morteza Zakeri-Nasrabadi and Saeed Parsa. 2022. An ensemble meta-estimator
to predict source code testability■. Appl. Soft Comput. 129, C (Nov. 2022). https:
//doi.org/10.1016/j.asoc.2022.109562

6

https://github.com/rwitmans/whiteref/tree/master/whiteref
https://refactoring.guru/refactoring
https://doi.org/10.1007/s11219-019-09477-y
https://web.archive.org/web/20150623025348/http://compsoc.dur.ac.uk/whitespace
https://web.archive.org/web/20150623025348/http://compsoc.dur.ac.uk/whitespace
https://github.com/CensoredUsername/whitespace-rs
https://github.com/CensoredUsername/whitespace-rs
http://essay.utwente.nl/91890/
https://doi.org/10.1080/07350198.2020.1727096
https://doi.org/10.1145/170791.170804
https://doi.org/10.1145/170791.170804
https://doi.org/10.7559/citarj.v9i3.432
https://doi.org/10.1109/TSE.2009.1
https://doi.org/10.1109/ICSM.2013.93
https://doi.org/10.1109/ICSM.2013.93
https://doi.org/10.1016/j.asoc.2022.109562
https://doi.org/10.1016/j.asoc.2022.109562


Improving Nothingness: Refactorings on Whitespace TScIT 38, Februari, 2023, Enschede, The Netherlands

Appendices

A BEFORE AND AFTER RESULTS OF REFACTORING
WHITESPACE CODE

A.1 The refactoring of duplicate method

Fig. 6. Before and after refactoring the test file for duplicate method

Fig. 7. Before and after immediate representation of the duplicate method
refactoring

7



TScIT 38, Februari, 2023, Enschede, The Netherlands Rutger Witmans

A.2 The refactoring of unused method

Fig. 8. Before and after refactoring the test file for unused method

Fig. 9. Before and after immediate representation of the duplicate method
refactoring

8


	Abstract
	1 Introduction
	2 Related work
	3 Methodology and approach
	4 Possible refactorings
	4.1 Refactoring categories
	4.2 Possible refactoring methods
	4.3 Chosen refactorings for automation

	5 Automatic refactoring
	5.1 Whitespace library
	5.2 Intermediate Representation
	5.3 Example program with whitespace
	5.4 Removing dead code
	5.5 Removing duplicate methods
	5.6 Writing test programs

	6 Testing
	6.1 Testing of removal dead code
	6.2 Testing of duplicate methods removal

	7 Conclusion
	8 Future work
	References
	A Before and after results of refactoring Whitespace code
	A.1 The refactoring of duplicate method
	A.2 The refactoring of unused method


