
Calculating the Modernity of Popular Python Projects
CHRIS ADMIRAAL, University of Twente, The Netherlands

Fig. 1. Official Python code for parsing code into an AST

Python has undergone a lot of (syntax) changes throughout all its versions.
We present a static analysis method which calculates a modernity signature
for a Python project, which determines its age. This also allows us to discuss
how often and quick the adoption of a certain Python version/feature is by
developers.

Additional Key Words and Phrases: Python, Modernity, Vermin, AST

1 INTRODUCTION
The programming language Python has undergone a lot of changes
throughout the past 20+ years. The most (breaking) changes oc-
curred when major version 3 came out [15]. For example: print
was not a keyword anymore, but a function; behaviour in integer
division changed; and strings were Unicode by default instead of
ASCII. In contrary to minor versions, major versions of Python are
not backward compatible.
Recently in Python 3.10 new syntax features have been added.

The most important being, Structural Pattern Matching [9]. All
these new (syntax) features allow programmers to write their code
structurally differently.

With all these (syntax) changes to the language, there are multiple
ways of writing code that functionally behave the same. So, writing
the same algorithm 10 years ago will (most likely) look different
then if it was written today with the newest features. This research
focuses on this difference, any may tell us how old, and maybe
therefore how maintained, a particular Python project is.

Similar research has been in the PHP domain [19], which we
would like to replicate in Python. In that research one grammar

TScIT 38, February 3, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

was constructed (usable for all PHP versions) to generate an AST
(Abstract Syntax Tree) which was used to generate the modernity
signature.

The first problem arises from the fact that we would like to com-
pare Python 2 and Python 3 code in this research. This way we can
see how many features that were introduced in Python 2, are still
used nowadays (compared to the past). To compare both versions,
we would like to have one grammar that parses both languages.
Grammars that parse Python 2 and Python 3.0 till 3.9 do already
exists. For example, Vavrová and Zaytsev used a combination of two
existing ANTLR grammars, but the Python 3 grammar has not been
updated at this point in time [4, 22]. Also, third party grammars
such as Parso, which parses both Python 2 and 3 code into the same
AST, have not succeeded to do so [17]. This AST differs from the
built-in ast Python module [16].

The main reason these grammars do not support Python versions
3.9 and above, is the introduction of the PEG (Parsing Expression
Grammar) parser in Python 3.9 which replaced the LL(1)-based
parser. A grammar can be said to be LL(1) if it can be parsed by
an LL(1) parser, which in turn is defined as a top-down parser that
parses the input from left to right, performing leftmost derivation of
the sentence, with just one token of lookahead [21]. A PEG grammar
differs from a context-free grammar (like the old Python grammar)
in the fact that the way it is written more closely reflects how the
parser will operate when parsing it. The fundamental technical
difference is that the choice operator is ordered. And in Python 3.10
new keywords match and case were introduced, which were made
soft, so that they are recognized as keywords at the beginning of a
match statement or case block respectively but are allowed to be
used in other places as variable or argument names [2]. But this
means the current Python grammar may not (trivially) be written
in a LL(1) grammar.
Presumably this PEG-problem could be solved by convergence

of both major grammars [11, 23], which has been done before with
Python [12]. But to the best of our knowledge, such research has

1



TScIT 38, February 3, 2023, Enschede, The Netherlands Chris Admiraal

not been done yet with the latest Python 3 grammar. As this might
not be a trivial task and solving this problem is not the focus of
this research, we will opt for a different approach to calculate the
modernity signature.

1.1 ResearchQuestion
From the above-mentioned problems, the following research ques-
tion can be derived:

To what extent can we use static analysis methods to reliably detect
the modernity of a Python project?

With the following sub question:
RQ1 How canwe define amodernity signature of a Python project?

2 RELATED WORK
How modern a Python project is, may also be related to the occur-
rence of pythonic idioms. Many of such idioms are also features,
introduced in a specific Python version. Research already has been
done on which and how much a particular idiom is popular in a
certain time period [5]. The idiom-detector in this research makes
use of the built-in ast module.

In many other works that do some static analysis on the Python
language, we see the use of this module to do analysis on the con-
structed AST. For example: Peng et al. used it to investigate certain
language features in Python projects from different application do-
mains [14] and Chen et al. traversed it for smell detection [3]. Such
research also exists outside the Python domain, for example in Java
[13].

3 METHODOLOGY
Just like van den Brink et al., we define modernity as a scale of
measuring the age of a project. The modernity signature takes the
form of an n-tuple with n being the number of minor Python 2 &
3 versions. Currently there are 20 such versions available (2.0 - 2.7
and 3.0 - 3.11). Every element in this tuple is going to represent the
number of features that are used in the given project, which are
introduced by this Python version. To compare different releases of
the same project, we normalize this tuple by dividing all its elements
by the total sum of this tuple.

To calculate this modernity signature, we will build a tool called
Pyternity. To generate the modernity signature for any given
project, we need to know how many features per Python version
there are in a project. To the best of our knowledge, there currently
only exists one up-to-date tool that achieves this: Vermin [10]. This
tool claims to be able detect the minimum Python version (major
and minor) needed to run any given Python code. It is also able
to tell us why it requires a certain version: it will return a list of
features that violate the given version that are used in the given code
sample. It achieves this by traversing the built AST and detecting if
predefined rules for features match.
So, to know how many features per Python version there are

in a project, we first download the project from PyPI and only ex-
tract all Python files. Secondly, we (concurrently) iterate over all
these files and call Vermin to return all features (with the Python
version it was introduced in) present in these files. However, some

features are introduced in two different Python versions (for exam-
ple collections.Counter was introduced in both Python 2.7 and
3.1), we count both. The results of all these files are first mapped
to the Python version it was introduced in, then mapped to the
feature’s name with the number of times it occurs in the whole
project. This mapping is also saved to file. By summing up all (non-
unique) features per Python version and dividing it by the total
number of features detected in this project, we now have generated
the modernity signature.

4 EXPERIMENT
The exact Python implementation, all raw data and graphs can be
found on https://github.com/cpAdm/Pyternity. In the README.md
file one can find more information on which commands to run, to
reproduce the experiment.

4.1 Environment
All experiments and tests listed in this research are run with Python
3.11.0 on a Windows 10 (21H2) machine with 16GB of RAM and
an 8-threaded Intel® Core™ i7-7700HQ processor. However, when
running the program on projects introduced later then Python 3.11.0,
one should use the latest Python and Vermin version to detect new
features.

4.2 Data
The experiment is run on the 50 most downloaded PyPI projects
(as of 01-01-2023), gathered from Top PyPI Packages [20]. To save
resources, only for all minor versions of these projects the signature
is calculated. All this data is retrieved from PyPI’s JSON API [6].

Not all (versions of) these projects are applicable for this research.
Projects that do not contain Python files are not considered. This
can for example be the case if a project is (mainly) written in C,
or when only its build distribution is available and not its source
distribution.

4.3 Results
We run Pyternity on the aforementioned environment and data,
which takes about 2 hours to process all 146.362 Python files (1.585
MiB) in the 1.570 releases. We can detect a lot of different errors. To
begin with, there are a lot of edge cases the tool does not handle
correctly. For example, there are 1.051 Python files where Vermin is
in conflict; it is not able to tell which minimum Python version is
required. It detects Python2-only features and Python3-only features
in the same file. But this is off course not possible (assuming the
given source code is valid).

Secondly, some Python files threw errors during Vermin’s feature
detection. A RecursionError occurred for versions 0.2 - 2.0 of idna.
And a TypeError occurred for pandas 1.5.0.

4.4 Discussion
All the signatures of the 50 projects have been combined into one
graph, see Figure 3. Figure 2 shows six projects that have been
handpicked to discuss generic trends and exceptions in these trends.
In all these graphs a red line has been plotted, which shows the

minor Python releases through time. Do note the drop after 2.7,

2

https://github.com/cpAdm/Pyternity


Calculating the Modernity of Popular Python Projects TScIT 38, February 3, 2023, Enschede, The Netherlands

(a) Attrs (b) Boto3

(c) google-api-core (d) NumPy

(e) pandas (f) Requests

Fig. 2. Modernity signatures of different popular Python projects

3



TScIT 38, February 3, 2023, Enschede, The Netherlands Chris Admiraal

Fig. 3. All modernity signatures of the 50 projects combined

since Python 3.0 and 3.1 released before Python 2.7. It should not
be possible for any data to be shown to right of this line, as one
cannot use features of a Python version that has not been released
yet in that point in time. That is, the release date of the minimum
Python version required to run this project’s release, should not
exceed the release date of this project’s release. However, we do
see some data for Python 3.2 - 3.4 before its release. The incorrect
peak at 3.3 is caused by urllib3 and requests (Figure 2f). Vermin
detects a TimeoutError (Python 3.3 feature). But when looking in
the source code of these projects, it turns out the developers defined
a TimeoutError class themselves. This is also the case for a couple
of other wrongly identified features. This is a limitation of (almost)
only using the AST for analysis.
In general we see that a lot of Python 2 features are still used

nowadays, although its trend differs wildly per minor version and
per project. After 2017, we do see an increasing use of Python
3.5 features. Besides the introduction of the typing module and
Additional Unpacking Generalizations, the most common feature
detected for this Python version are the coroutines async and await.
This is for example clearly visible for google-api-core in Figure 2c.
This observation is also supported by its changelog which mentions
this AsyncIO integration [8].

The peak at 3.6 in Figure 2b for Boto3 it is the sudden introduction
of f-strings to the codebase. This is also the case for attrs (Figure 2a),
with the addition of also using variable annotations, even quite
quickly after Python 3.5 was released.
Another interesting finding is that some projects decide to use

features in their code that have not been released. This is for exam-
ple the case for typing_extensions and setuptools. However, when
looking at the code, we do find an if-clause surrounding the used
feature, see Listing 1.

Out of the 2.938.792 detected features, the most common feature
is the with statement (Python 2.5), detected 528.769 times in total.

if hasattr(typing, 'Required'):
Required = typing.Required
NotRequired = typing.NotRequired

elif sys.version_info[:2] >= (3, 9):
...

Listing 1. Part of source code of src/typing_extensions.py in typing_exten-
sions 4.4.0

Second is the function decorator (Python 2.4, 353.749 times) and
third byte strings (Python 2.6, 224.301 times).

5 THREATS TO VALIDITY
The biggest threat in this research is the use of Vermin to calculate
the modernity signatures. To determine how accurate this tool is, we
will test which and howmany features it is able to correctly detect. In
the first subsection we describe howwe achieve this content validity.
In the second subsection we describe how we ensure population
validity such that we can generalize our findings.

5.1 Validation of Vermin
To validate if Vermin actually detects all new features for each
Python release, we should write a test case for each such a new
feature. To obtain all these new features, one could look through
all Python’s changelogs. But not everything that has been added in
a new Python version, is (explicitly) listed here. For example, the
function io.text_encoding was added in Python 3.10, but only its
PEP 597 was listed in the changelog. However, the addition of this
new function is listed on the documentation page of the io module
with "New in version 3.10.". Similarly, the addition of new parameters
is denoted with "Changed in version X.Y.". So, to obtain new features,
we will iterate through all the library’s documentation and look
for this text. Since this is a very time-consuming task (Python 3
documentation has thousand occurrences of such text), we automate
this process.
To find these new features, we first parse Python’s source docu-

mentation using Sphinx (Python’s documentation generator) into
machine readable doctrees. Each doctree represents a documentation
page. Then by adding our own Sphinx extension, we traverse the
built doctree and look for all versionadded and versionchanged nodes
in this tree. For each of these nodes, we then may generate a test
case. So, test cases are generated if a new module, function, class,
method, parameter, constant, attribute or exception has been added.
Doing this for the latest Python 2 (2.7.18) and Python 3 (3.11.0)

documentation, we generate 2.403 test cases within 30 seconds after
the doctrees have been built. The results of this test can be seen in
Figure 4 and Table 1. After manually removing all invalid test cases,
169 tests fail. We have reported these test failures to Vermin [1].

In terms of percentage the most fail for the oldest and newest
Python versions. There are less test cases generated then the 3.556
features Vermin can detect. Due to several reasons test cases aremiss-
ing or invalid. The biggest oversight by generating test cases this
way, is that there is no test coverage for Python 3.0 (see drop/spike
at Python 3.0 in Figure 4) because the Python 3 documentation does
not mention major version changes in its library documentation.

4



Calculating the Modernity of Popular Python Projects TScIT 38, February 3, 2023, Enschede, The Netherlands

Fig. 4. Detected features by Vermin versus verification

Also, it is not trivial to determine if a specific versionchanged
node is describing a new parameter or for example a behavioural
change, since there is no consistency in its explanation. This is
also not enforced by the devguide of Python [7]. Furthermore, the
Python documentation itself contains mistakes. For example, in the
_wingreg module (Python 2.7.18), "New in version 2.7." is wrongly
indented for the functions CreateKeyEx and DeleteKeyEx. So, there
will be no test cases generated for these functions. The Python
documentation also does not cover all its code base, this overview
can be generated by building the Python documentation with target
coverage.

The automatically generated test cases are limited to library fea-
tures and do not generate test cases for syntax features. Vermin does
detect syntax features like 78 built-in typing annotations. This also
explains the especially low test coverage for Python 3.9 as can been
seen in Figure 4, since these features are introduced in this Python
version. To see which (other) syntax features Vermin detects, some
manual test cases have been written (by going through "What’s
New in Python" for all versions). Vermin indeed only detects the
syntax features listed in its README.rst. For example, type hinting
generics in standard collections (PEP 585) are not detected.

5.2 Population validity
The experiment is run on the 50 most popular PyPI projects and only
6 projects are discussed. We make our results more representative
by also picking projects that are started later in time but are still of
significance for the Python community. As stated before, the full
data set and all graphs can be found on the aforementioned GitHub
repository. In addition, Pyternity has an extensive command line
interface such that one also run the tool on any given (popular) PyPI
project.

6 CONCLUSION AND FUTURE WORK
We have built the tool Pyternity for calculating the modernity sig-
nature for a Python project. It uses Vermin under the hood to detect
version specific features. We use this information to construct the

n-tuple signature, normalized by the total number of features de-
tected in the project. Some trends have been detected by calculating
this signature for popular Python projects. More research could be
done to dive deeper into these trends to see which specific features
cause this trend, data generated by this research could be used for
that.

Furthermore, there is room for improvement for Vermin and the
verification of it. We have already given cases in which it was not
able to detect certain syntax/library features. A novel idea would
be to look at the Python source code to generate these verification
test cases instead of the error prone documentation. However, some
Python modules are written in C, making it less trivial to generate
test cases. But stub files in contrary, used for type hinting, are
also present for such modules and even contain version specific
information. These files for the Python standard library can be
found in the official Python typeshed repository [18].

REFERENCES
[1] Chris Admiraal. 2023. Library features that are not (correctly) detected · Issue #144 ·

netromdk/vermin. https://github.com/netromdk/vermin/issues/144
[2] Brandt Bucher, Daniel FMoisset, Tobias Kohn, Ivan Levkivskyi, Guido van Rossum,

and Talin. 2020. PEP 622 – Structural Pattern Matching. Python Software Founda-
tion. https://peps.python.org/pep-0622/

[3] Zhifei Chen, Lin Chen, Wanwangying Ma, and Baowen Xu. 2016. Detecting
Code Smells in Python Programs. In 2016 International Conference on Software
Analysis, Testing and Evolution (SATE). IEEE, Kunming, China, 18–23. https:
//doi.org/10.1109/SATE.2016.10

[4] dours. 2021. Do you have plans to support python 3.10 (for example, assignment ex-
pressions)? · Issue #2462 · antlr/grammars-v4. https://github.com/antlr/grammars-
v4/issues/2462

[5] Aamir Farooq and Vadim Zaytsev. 2021. There is More than One Way to Zen
Your Python. In Proceedings of the 14th ACM SIGPLAN International Conference
on Software Language Engineering (Chicago, IL, USA) (SLE 2021). Association
for Computing Machinery, New York, NY, USA, 68–82. https://doi.org/10.1145/
3486608.3486909

[6] Python Software Foundation. 2023. PyPI JSONAPI. https://warehouse.pypa.io/api-
reference/json.html

[7] Python Software Foundation. 2023. Python Developer’s Guide: reStructuredText
Markup. https://devguide.python.org/documentation/markup/#paragraph-level-
markup

[8] Google. 2023. Changelog — google-api-core documentation. https://googleapis.
dev/python/google-api-core/latest/changelog.html#id118

[9] Tobias Kohn and Guido van Rossum. 2020. PEP 635 – Structural Pattern Matching:
Motivation and Rationale. Python Software Foundation. https://peps.python.org/
pep-0635

[10] Morten Kristensen. 2018. Vermin. https://pypi.org/project/vermin/
[11] Ralf Lämmel and Vadim Zaytsev. 2009. An Introduction to Grammar Conver-

gence. In Integrated Formal Methods, Michael Leuschel and HeikeWehrheim (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 246–260.

[12] Brian A. Malloy and James F. Power. 2017. Quantifying the Transition from Python
2 to 3: An Empirical Study of Python Applications. In 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
Toronto, ON, Canada, 314–323. https://doi.org/10.1109/ESEM.2017.45

[13] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2011. Java Generics
Adoption: How New Features Are Introduced, Championed, or Ignored. In Pro-
ceedings of the 8th Working Conference on Mining Software Repositories (Waikiki,
Honolulu, HI, USA) (MSR ’11). Association for Computing Machinery, New York,
NY, USA, 3–12. https://doi.org/10.1145/1985441.1985446

[14] Yun Peng, Yu Zhang, and Mingzhe Hu. 2021. An Empirical Study for Common
Language Features Used in Python Projects. In 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, Honolulu, HI,
USA, 24–35. https://doi.org/10.1109/SANER50967.2021.00012

[15] Python. 2008. What’s New In Python 3.0. Python Software Foundation. https:
//www.python.org/download/releases/3.0/whatsnew

[16] Python. 2022. ast — Abstract Syntax Trees. Python Software Foundation. https:
//docs.python.org/3/library/ast.html

[17] Batuhan Taskaya. 2020. Soft Keywords and How to Implement Them · Issue #138 ·
davidhalter/parso. https://github.com/davidhalter/parso/issues/138

[18] The Python Typing Team. 2023. typeshed. https://github.com/python/typeshed/
tree/main/stdlib

5

https://github.com/netromdk/vermin/issues/144
https://peps.python.org/pep-0622/
https://doi.org/10.1109/SATE.2016.10
https://doi.org/10.1109/SATE.2016.10
https://github.com/antlr/grammars-v4/issues/2462
https://github.com/antlr/grammars-v4/issues/2462
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.1145/3486608.3486909
https://warehouse.pypa.io/api-reference/json.html
https://warehouse.pypa.io/api-reference/json.html
https://devguide.python.org/documentation/markup/#paragraph-level-markup
https://devguide.python.org/documentation/markup/#paragraph-level-markup
https://googleapis.dev/python/google-api-core/latest/changelog.html#id118
https://googleapis.dev/python/google-api-core/latest/changelog.html#id118
https://peps.python.org/pep-0635
https://peps.python.org/pep-0635
https://pypi.org/project/vermin/
https://doi.org/10.1109/ESEM.2017.45
https://doi.org/10.1145/1985441.1985446
https://doi.org/10.1109/SANER50967.2021.00012
https://www.python.org/download/releases/3.0/whatsnew
https://www.python.org/download/releases/3.0/whatsnew
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://github.com/davidhalter/parso/issues/138
https://github.com/python/typeshed/tree/main/stdlib
https://github.com/python/typeshed/tree/main/stdlib


TScIT 38, February 3, 2023, Enschede, The Netherlands Chris Admiraal

Table 1. Verification failures per version

Python version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
% of tests failed 46.03 20.83 9.38 6.21 3.88 6.54 3.27 0.94

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11
0.00 1.82 1.88 2.93 0.64 6.85 14.74 5.03 3.51 7.95 7.92 21.82

[19] Wouter van den Brink, Marcus Gerhold, and Vadim Zaytsev. 2022. Deriving
Modernity Signatures for PHP Systems with Static Analysis. In 2022 IEEE 22nd In-
ternational Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, Limassol, Cyprus, 181–185. https://doi.org/10.1109/SCAM55253.2022.00027

[20] Hugo van Kemenade, Richard Si, and Zsolt Dollenstein. 2023. hugovk/top-pypi-
packages: Release 2023.01. https://doi.org/10.5281/zenodo.7497599

[21] Guido van Rossum, Pablo Galindo, and Lysandros Nikolaou. 2020. PEP 617 – New
PEG parser for CPython. Python Software Foundation. https://peps.python.org/
pep-0617

[22] Nicole Vavrová and Vadim Zaytsev. 2017. Does Python Smell Like Java? The Art,
Science and Engineering of Programming (‹Programming›) 1 (April 2017), 11–1–
11–29. Issue 2. https://doi.org/10.22152/programming-journal.org/2017/1/11

[23] Vadim Zaytsev. 2013. Guided Grammar Convergence. In Poster proceedings of
the Sixth International Conference on Software Language Engineering (SLE 2013).
Springer International Publishing, Indianapolis, IN, USA, 117–136.

6

https://doi.org/10.1109/SCAM55253.2022.00027
https://doi.org/10.5281/zenodo.7497599
https://peps.python.org/pep-0617
https://peps.python.org/pep-0617
https://doi.org/10.22152/programming-journal.org/2017/1/11

	Abstract
	1 Introduction
	1.1 Research Question

	2 Related work
	3 Methodology
	4 Experiment
	4.1 Environment
	4.2 Data
	4.3 Results
	4.4 Discussion

	5 Threats to Validity
	5.1 Validation of Vermin
	5.2 Population validity

	6 Conclusion and Future Work
	References

