Losslessly Compressing Radio Spectrum Related Data for Archival

DAVID VOS, University of Twente, The Netherlands

Fig. 1. A visual representation of a part of the radio spectrum

This study looks into the lossless compression of radio spectrum related
data. This concerns data that is already lossy compressed. The goal of the
study is to find a compression algorithm that can perform sufficiently fast
and simultaneously be efficient, i.e. limit the amount of storage that the
compressed data will take up. This study is part of a larger research at the
University of Twente into the archival of radio spectrum data.

Bzip2, zpaq and zstd are explored in more detail in this study and are
applied and benchmarked on smaller chunks of data. Within the scope of
this study it can be concluded that bzip2 is most suitable for the compression
of data from this type. However, there is room for further research into this
area and a better algorithm could potentially be found.

Additional Key Words and Phrases: Radio spectrum, Lossless compression,
Compression algorithms, Radio archival, Realtime compression

1 INTRODUCTION

As part of broader research done at the University of Twente, an
approach to record and archive large amounts of received radio
spectrum is investigated. Due to the nature of this data, without
some compression, this data will take up vast amounts of storage
space. Currently, there is already a method under investigation to
apply lossy compression to the data, using insights from signal

theory. This already reduces the amount of data that is being stored.

After this lossy step, a lossless compression algorithm can further
lower the amount of storage that the data will take up. Currently,
bzip2 [15] — a general-purpose compression algorithm - is being
used. However, this might not be the best fit for this kind of data,
since it has a particular structure due to its nature.

The goal of this research is to compare the effectiveness of various
lossless data compression algorithms on the supplied data — which
has already undergone lossy compression. Besides this, research
has been done into the effectiveness of changing parameters and/or
tweaking parts of specific algorithms.

38" Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

© 2023 Faculty of Electrical Engineering, Mathematics and Computer Science
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

2 BACKGROUND AND GOALS

This research aims to find the most efficient lossless data compres-
sion algorithm for the specific kind of data collected by the archival
of radio spectral data. Since archiving this data is done continuously,
this algorithm needs to do this in real-time, otherwise, the data
coming in will infinitely pile up before the compressed data can
be written to storage. In short, the algorithm needs to follow these
requirements:
e Perform efficiently - i.e. reduce the file size — on the type of
data supplied.
o Perform fast enough to apply the compression in real-time
(latency is acceptable) on the hardware used.

These requirements, especially the speed requirement, will be
explained in more detail in section 4.

2.1 Data format

The data that will be used for this research will originate from a
short-wave radio receiver at the ETGD! at the University of Twente.
As an example, the receiver hardware is shown in Figure 2. This
receiver receives the entire short-wave radio. The exact nature of
how the data is lossy compressed is not relevant to this research,
but the section below will give a short insight.

To get some insight into what the data represents, http://websdr.
ewi.utwente.nl:8901/ can be used to view the radio spectrum and
to listen to specific frequencies, using different radio technologies
like A.M. or FM.. Figure 1 shows a visual representation of the

!Experimentele Telecommunicatie Groep Drienerlo (https://etgd.utwente.nl/)

Fig. 2. An advanced radio spectrum receiver setup

http://websdr.ewi.utwente.nl:8901/
http://websdr.ewi.utwente.nl:8901/
https://etgd.utwente.nl/

38t Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

spectrum, taken from this website. The horizontal axis represents
the frequency and the vertical axis represents time — with the latest
signal on the bottom, the colour represents the amplitude of the
signal, ranging from black (no signal at all), to blue/purple (some
signal), to white (high signal).

This data is recorded as a list of amplitudes for each "block" of
radio spectrum data. Each block represents the amplitude of the
radio signal over a width of 6.95 Hz over 0.126 seconds. For every
such block, two bytes are used. The reason for this is that each block
is in fact a complex number, so a real and an imaginary component
of the number is stored. The reasons for this are not relevant to
this research, only the fact that this is the way that the data is
represented is applicable. In short, there is a list of bytes for each
"line" of data — similar to a line of pixels in Figure 1. A file used for
our research will repeat a large number of such lines and such a file
needs to be losslessly encrypted.

It can already be noted that this data has large gaps with little
to no signal, this is also apparent in the lossy compressed data, in
between the chunks of small non-zero integers - i.e. the waves that
can be seen in Figure 1 - there are large amounts of bytes with value
zero. This will probably lend itself well to compression. Another
notable point about the data is that this pattern repeats similarly in
every line. After all, if there is a signal that is broadcast to a specific
frequency, a value will exist on that frequency each timeframe.

2.2 Research questions

The goals of the research outlined above lead to the following re-
search question:
What lossless data compression algorithm is most suitable and
efficient for compressing radio spectrum-related data in real time?
In order to answer this question, the following sub-questions are
set out:

(1) What potentially suitable lossless data compression algo-
rithms exist?

(2) How do these selected algorithms perform on our data?

(3) In what way can (one of) these algorithms be tweaked in
order to improve performance?

By answering these questions and therefore the main research
question, an algorithm can be selected as being the most suitable for
the set-out goal. It might be that the solution that is used currently
is already the fastest or that an alternative is only marginally faster.
In such a case it would not be beneficial to switch, since two types
of archived data will exist without a noticeable advantage. In the
case that another algorithm is significantly more efficient, it will be
recommended to switch to that.

3 RELATED WORK

The first step in finding related work for this research is of course
to narrow down the area that is related to this topic. At first, it
could be easy to start looking into the compression of radio waves.
However, this does not apply here. After all, the data that needs
to be compressed has already been through lossy compression and
is now just a series of bytes. Therefore, we start looking for work
related to general lossless compression.

David Vos

3.1 Lossless compression

In previous sections of this proposal, the terms lossy and lossless
compression have already been used. The difference between these
two methods is that lossy compression methods achieve better com-
pression by losing some information [12]. This is mainly used for
images, movies or sounds since humans cannot tell the difference if
the loss of information is small.

Lossless compression, on the other hand, involves no loss of
information, the original data can be recovered exactly from the
compressed data [13].

3.2 General literature

There exist some literature sources that cover a wide variety of dif-
ferent types of compression and can be used as a starting point for
finding related work. Examples are books by Salomon and Sayood.
Both books cover lossy and lossless compression and go into thor-
ough detail on different compression algorithms for a wide variety
of use cases. Not relevant to this research are the sections on lossy
compression and general compression of unrelated data like images
or audio. Such literature can mainly be useful when looking into
why certain algorithms perform better or worse on certain data (see
also section 8).

3.3 Compression algorithms

While various general literature is important in this research, in
order to find suitable candidate algorithms for the research, sources
outside scientific literature are also vital. This is because algorithms
or implementations of compression algorithms might have been
developed but not scientifically studied or published.

Most of these algorithms have extensive documentation that can
be consulted in order to learn about their features and underlying
technologies. For example, bzip2 — which is currently used in the
wider research — has a large and extensive manual where not only
the usage of the program is documented, but also the various pa-
rameters that can be customised as well as some insight into the
data structure [15].

4 METHODOLOGY

In order to find the most efficient algorithm for the use case of this
research, the methodology described in this section has been applied.
The steps described here are in line with the sub-research questions
described in subsection 2.2.

4.1 Selecting algorithms

The first step is to find a set of compression algorithms that might
be suitable for the purposes of this research. For this, the literature
described in section 3 has been consulted. Furthermore, a search
has been conducted on some non-academic platforms.

To start, a Google search was conducted using the following
keywords: lossless compression algorithms, bzip2 algorithm, data
compression, lossless compression, ppm family compression, lossless
file compression, fast lossless file compression. Some of these terms
have their origin in results from earlier search queries. For example,
after searching for lossless compression, the results lead to gzip[5],
where the PPM family of compression is mentioned.

Losslessly Compressing Radio Spectrum Related Data for Archival

Besides this, open-source compression projects often provide
links to similar projects. Furthermore, the Wikipedia pages of some
projects also link towards the family of compression that a certain
algorithm belongs to and to related projects.

4.2 Initial benchmarking

Measurements have been taken to find out how effective a particular
algorithm is on the data set for this research. This was done in a
few steps.

(1) Run all algorithms on some example data.
Some example files have been collected during various times
of the day and from various portions of the radio spectrum.
These files vary in their type of content because certain por-
tions of the spectrum get different kinds of activity and the
time of day also influences what is being broadcast. Therefore,
a wide variety of test files were provided. The full list can be
found in Appendix A.
Initially, file 54 was chosen because it contains a lot of variety,
i.e. there are large parts with almost no signals but also some
strong broadcasters.
A simple Python script has been written in order to record
the time taken and compressed file size produced by each
algorithm.

(2) Tweaking the algorithms.
In order to select the best-performing algorithm, the study
also looked at a way to tweak existing algorithms. This can be
done by changing the parameters given to the programs. The
variable parameters of the algorithms were inspected and the
benchmarks described in the previous subsection have been
run with various variations of these parameters.
The algorithms with tweaked algorithms were run on a larger
part of the test files.

4.3 Benchmarking smaller chunks

The first two steps described above use the command line imple-
mentation of the compression algorithms in order to compress full
files. In the context where the algorithm will be used, this is not the
case. After all, the data will come in from the radio receiver in real
time. Therefore small chunks of data will need to be compressed at
a time, rather than one large file. To benchmark such a situation, a
program was written in C++ that will look through a file in chunks
of a few lines® and call the algorithm to compress each chunk and
write it to a file. This was done using the libraries provided by the
compression algorithms.

5 RESULTS
5.1 Algorithms

The following list of algorithms was selected. This research will
not go into detail about the various underlying algorithms used by
these compression algorithms, but they are listed here to serve as a
comparison and reference.

e Gzip: A popular data compression program written for the
GNU project [5]. It makes use of the Lempel-Ziv coding

2a line as described in subsection 2.1, ergo a chunk will be a few kilobytes in size.

38t Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

(LZ77) algorithm and Huffman coding [8]. The combination
of L77 and Huffman used in Gzip is also known and specified
as DEFLATE [2].

e Bzip2: "A freely available, patent-free, high-quality data com-
pressor." [14]. This algorithm is also included by default in
many Linux distributions and was designed to use a similar
syntax to Gzip [14]. It is what the wider research currently
uses. It uses the Burrows-Wheeler block-sorting text com-
pression algorithm and Huffman coding [15].

o Zopfli: A compression algorithm written by Google that can
perform DEFLATE, or zlib compression. It achieves better
compression than the normal implementations of these algo-
rithms but at the cost of being slower [6].

e Zstandard: "A fast lossless compression algorithm, target-
ing real-time compression scenarios at zlib-level and better
compression ratios. It’s backed by a very fast entropy stage,
provided by Huff0 and FSE library. [3] It also offers a dic-
tionary mode where a dictionary can be trained on a large
amount of data from a dataset, after which small amount of
similar data can be compressed more effectively and faster
[3].

e zpaq: an incremental, journaling archiver. "For backups it
adds only files whose date has changed, and keeps both old
and new versions. You can roll back the archive date to restore
from old versions of the archive." [17]. This is not very useful
for our purposes, however, it also promises faster compression
times and better compression ratios [11].

e X7Z: a general-purpose data compression algorithm with a
high compression ratio, using the LZMA2 algorithm. "With
typical files, XZ Utils create 30 % smaller output than gzip
and 15 % smaller output than bzip2." [16]

o LZ4: an algorithm aiming to provide a balance between speed
and compression ratio [9]. It uses the LZ77 algorithm, but does
not combine it with an entropy coding stage, like in Huffman
in DEFLATE [10]. It can also use Zstandard dictionaries in
order to perform better on smaller amounts of data from a
larger dataset [9].

5.2 Initial benchmarks

5.2.1 Default settings. For the initial benchmarks, each algorithm
was run with its default settings on file 54, as explained in the
methodology. The results can be found in Figure 3. This figure
shows the time it took the algorithm to compress the file and the
storage size of the compressed file, relative to the original filesize.

The benchmarks were run with a maximum time of 600 seconds.
Both zopfli and xz did not finish within this time and therefore are
too slow for the purposes of this research, at least with the default
settings. This does however not mean that they will be excluded
from the next steps, with tweaked parameters they might perform
faster.

38t Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

80 -130
26.8
1069.07 &
63;08 - 25
60 || | -
120 &
7 50/ || . =
£ 16 187 L
o 15 o o
3 a0t - 1158
El e 2
E 300 a g
110 ©
20.02
20 (| | -
-5
10 (| | o 8.01
H 5.01
0 D 0
bzip2 gzip zstd Zpaq 1z4
Algorithm

’DD Compressed size ‘

Fig. 3. Initial benchmark results

5.2.2 Command line parameters. In order to further benchmark
the algorithms on the provided data, the parameters for each al-
gorithm were inspected. The parameters that are useful for this
research (mainly the parameters controlling the compression rate)
were selected. They can be found in Table 1.

Table 1. Command line parameters of the algorithms

Time (seconds)

Name Options Description
bzip2 -s —small reduce memory usage but also speed
-1to-9 sets block size, does not really affect speed
gzip -1to-9 -1 is fasted but least compression, -9 is slowest
but most compression, default = 6
zopfli —i# # is the amount of iterations, more gives higher
compression but is slower, default is 15
zstd -1to-19 compression level, faster to better, default = 3
—ultra enable compression levels up to 22, requires
more memory
-D DICT use DICT as dictionary (might be interesting for
small amounts of data)
—train ## create a dictionary from a set of training files
zpaq -m0 to -m5 compression level, faster to better, default = 1
Xz -0 to -9 compression level, faster to better, default = 6
-e try to improve compression ratio by using more
CPU time
1z4 -1to -9 compression level, faster to better, default = 1

David Vos

A range of options for these parameters have been chosen and
they have been run on a random selection of the files. The selection
of commands that were run can be found in Appendix B. The most
interesting and useful results are shown in Figure 4.

Some remarks about the algorithms left out from the figure:

o LZ4 has been excluded since it did not produce comparably
high compression rates to bzip2, even at its highest settings.

o Zopfli has been excluded since it failed to finish in under 600
seconds.

e XZ has not been included. Even though the data from Appen-
dix C would make you believe that it is very efficient, it only
managed to finish in time for a few of the files and was too
slow for the rest.

e Zstd on compression level 22 (ultra) performed even more
efficiently (most notably so in the best cases, and therefore
also on average) and also slower, but has been left out from
this graph to keep the graph easy to read.

N.B. the scales on this graph are different than in Figure 3 in order
to fit these results better. After all, the algorithms shown here are
set to higher levels than their defaults and therefore finish in more
time and produce lower compressed sizes.

403.24
400 |- =
351.7 354.36
350 |- — B =
300 |- — — =
250 |- | — =
7.92 8.02 h
3.63 5.39 :
150 - - i I 4.81
100 |- o o I
50 S(ﬁl | 40,61 || Sﬁ)S || |
0 i
bzip2 gzip 9 zpaq 3 zpaq 5 zstd 12 zstd 19
Algorithm

Fig. 4. Average results of benchmarks with tweaked parameters

’DD Compressed size ‘

It can be seen that in this scenario, only bzip2 and zpaq are close
in terms of time. Figure 4 only shows the average time and ratio.
From looking at Appendix C it can also be seen that zpaq outper-
forms bzip2 in some cases. Hence, they have been chosen to further
inspect for the next part of the research. Furthermore, since pro-
cessing such small amounts of data at a time might lead to worse

14

12

Compressed size (%)

Losslessly Compressing Radio Spectrum Related Data for Archival

38t Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

Table 2. Chunk sized benchmarks per file

0 2 12 15 18 20 22 27 28 30 40 44 46 47 52 56 59 61
bzip2 6.40% | 1954% 3.58% 6.69% 381% 518% 478% 1125% 334% 3.09% 925% 1143% | 23.23% 19.63% 3.16% 443% 673% 538%
zstd w/ dict 670% 3.90% 7.24% 3.96% 539% 5337 1145% 3.46% 3.34% 9.46% 1245% 24.80% 3.66% 4.69% 694% 556%
zstd w/o dict 6.69% 3.90% 7.24% 3.95% 539% 5327 1145% 345% 3.34% 947% 1245% & 24.82% 3.65% 469% 6.94% 555%
zpaq 7.23% | 1942% 4337 743% 457% 604% [L0A1%0 1140% 431% 407% 956% 1165% | 2254% 1921% | 002% | 524% 7.64% 631%

Table 3. Chunk sized benchmarks, average e When benchmarking on smaller amounts of data — similarly
algorithm average size average time to how the data will be processed in the wider research —
- these improvements over bzip2 do not seem to be present
bzip2 6.984% 74.6
s anymore.
zstd with dictionary 7.395% 377.6 . .
B - This can be explained by two factors:
zstd without dictionary 7.395% 392.3 . . .
(1) The algorithms apply compression techniques that are
zpaq 7.028% 227.7

compression ratios, zstd has also been chosen as a candidate because
of its dictionary option, as outlined in subsection 5.1.

5.3 Smaller chunks of data

To benchmark how the algorithms perform on smaller chunks of
data, a C++ program has been written. As described in subsection 4.3,
the program uses the libraries of the algorithms on chunks of spec-
trum data. Table 2 shows the results for each algorithm and file.
A colour scale was applied to indicate compression ratio. Table 3
shows each algorithm’s average compression size and time. It should
be noted that this average excludes files 2 and 47 in order to create
a fair comparison with zstd since it failed to compress these files in
under 600 seconds.
The following parameters were used for these benchmarks:

o bzip2: its default settings, since it does not expose any settings
regarding compression level.

e zpaq: compression level 3, from the results of the previous
benchmarks it is clear that increasing this level does not
contribute significantly to the efficiency but mainly increases
time.

e zstd: compression level 19, from the previous benchmarks
this level shows to provide very efficient results, albeit slower
than bzip2 and zpaq. Higher levels are also possible, but for
the sake of research speed, level 19 was settled on.

It was run both with and without a dictionary. This dictionary
was trained on the first 131072 bytes of each file (the default
behaviour of zstd training).

N.B. zstd and zpaq used some multithreading by default in the
first results (subsection 5.2). In the C++ implementation of this
benchmark, this was not the case. Therefore, the results in Figure 3
and Figure 4 are not directly comparable to those in Table 3.

6 DISCUSSION

There are a few things that can be noted about the results of this
research.

o After the benchmarks on individual files, zpaq and zstd seemed
to be good candidates for the goals of this research. They per-
formed slower but with smaller compressed files.

more efficient when larger amounts of data are being com-
pressed. They might for example be able to compress a set
of data better in the context of more similar data.

(2) The algorithms use multithreading techniques when bench-
marking on complete files, but not when implementing
their libraries to work on smaller amounts of data. This
is true for both zstd and zpaq and can be seen when in-
specting the processes that these programs spawn (4 and
10 respectively). For the conclusions of this research, we
care about single-threaded performance. In the context of
the wider research the compression already gets performed
in parallel so this is not something that needs to be bench-
marked in this research. Besides, for a fair comparison
between the algorithms, they should be benchmarked in
the same context, i.e. single-threaded.

e Point 1 can potentially be solved by the dictionary mode that

zstd provides. This dictionary is trained on a set of data and
can then be applied when training so that the algorithm can
use more of this context. This is explained in more detail in
the zstd documentation [4].

In Table 2, it can be seen that files 2 and 47 are compressed
worse than most others by bzip2 and zpaq, and zstd is not
able to finish compressing it in under 600 seconds. These files
are larger than most others (2.2GiB and 1.7GiB relatively) and
are both in the 480-1650 kHz range. In Europe, the medium
wave broadcasting range (on which licensed commercial sta-
tions can broadcast) is from 526.5-1606.5 kHz [1]. This would
explain the large amounts of data in this range and could also
explain this being harder to compress.

Table 2 also shows that file 46 was significantly harder to
compress. This file cointains the range from 1-300 kHz. This
is what is known as longwave radio [7]. On this range there is
alot of signal activity like radionavigation as well as longwave
broadcasts [1]. This probably explains why this file is harder
to compress; there exists a lot of data here, as opposed to
other ranges which had a lot of empty space.

o Then, there are files 22 and 52, on which zpaq performs ex-

traordinarily well. These files are both from the 12000-12905
kHz range. An explanation as to why zpaq performs so well
on these files has not been found and can be left as future
work.

38t Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

7 CONCLUSION

With the discussed items in section 6 in mind, we can form a con-
clusion about the results of this research.
Linked to the research questions set out we can say the following:

(1) There exist numerous compression algorithms that are poten-
tially suitable for the compression of radio spectrum-related
data.

(2) After benchmarking these algorithms on our dataset, the

most suitable candidates proved to be bzip2, zpaq and zstd.

After testing these algorithms on smaller amounts of data -

somewhat similar to their application in the wider research

project — bzip2 proved to be both the fastest and most efficient
on this kind of data, overall. In some cases, zpaq performed
better. More research can be done into this.

Most algorithms have some way of tweaking their compres-

sion level. Zstd also has a way to train the algorithm to behave

more efficiently on a specific dataset.

—
SY)
=

Taking this into account, this paper arrives at the following con-
clusion: bzip2 is the most suitable and efficient algorithm for com-
pressing the type of data used in this study. Zstd and zpaq can come
close to the rate compression of bzip2 but do not succeed to be better
and also do so in significantly more time — when looking at the
average results. Having said that, there is significant room for future
work which might arrive at the conclusion that another algorithm,
with the correct configuration, is more suitable.

8 FUTURE WORK

There are some things that are unexplored yet in this research.

Firstly, only bzip2, zpaq and zstd were benchmarked on small
chunks of data. Further research could implement and benchmark
more algorithms in this way. This study has limited itself to doing
so for only these three most promising algorithms due to time
constraints. Additionaly, xz has shown to be able to produce very
high compression ratios, albeit in a significantly large amount of
time. Maybe this algorithm can be applied in such a way that it
performs quicker on this set of data. Or maybe the larger time is a
tradeoff that might prove to be worth it. In any case, it has not been
sufficiently researched in this study to form any final conclusions
about it.

Likewise, the size of the chunks could also play a role in the
performance of the algorithm. This was made a variable in this
study but has not been explored thoroughly.

Moreover, the training mode of zstd was not explored deeply.
The zstd documentation promises much more drastic results than
were evident in this study [4]. It might be that by selecting the
training data more carefully, the performance of the algorithm will
be improved. In this research only a relatively small amount of
training data was used, as per the default settings of zstd. However,
the program also provides a way to split files into more training
samples. This might prove useful in order to gather better results.

Furthermore, research can be done into pre-processing the data
in some way. One suggestion might be to transpose each chunk
of data so that signals on the same frequency follow each other —
instead of signals from the same timeframe. This might improve

David Vos

efficiency since this might produce a pattern that an algorithm can
process more efficiently.

More research could also been done into why certain algorithms
perform well on certain files. For example, zpaq performed very
well on some specific files. An explanation might be found for this
that can lead into more insights regarding the efficient processing
of this data.

Lastly, a custom version of an algorithm could be created by
modifying its source code and writing it such that it is designed
to work very efficiently on this specific type of date. An algorithm
could even be written from scratch.

REFERENCES

[1] Electronic Communications Committee et al. 2013. The European table of fre-
quency allocations and applications in the frequency range 8.3 kHz to 3000 GHz
(ECA table). In Proceedings of European Conference of Postal and Telecommu-
nications Administrations; Electronic Communications Committee: Copenhagen,
Denmark.

[2] L.Peter Deutsch. 1996. DEFLATE Compressed Data Format Specification version
1.3. RFC 1951. https://doi.org/10.17487/RFC1951

[3] Facebook. 2022. zstd - README. https://github.com/facebook/zstd

[4] Facebook. 2022. zstd - The case for Small Data compression. https://github.com/
facebook/zstd#the- case-for-small-data-compression

[5] Free Software Foundation, Inc. 2022. GNU Gzip. https://www.gnu.org/software/
8z1p

[6] Google. 2016. Zopfli - README. https://github.com/google/zopfli

[7] RF. Graf. 1999. Modern Dictionary of Electronics. Elsevier Science, 23. https:
//books.google.nl/books?id=AYEKAQAAQBA]

[8] Free Software Foundation, Inc Jean-loup Gailly. 2022. GNU Gzip. https://www.
gnu.org/software/gzip/manual/gzip. html

[9] 1z4.2020. 1z4 - README. https://github.com/1z4/1z4

[10] 1z4. 2022. LZ4 Block Format Description. https://github.com/1z4/1z4/blob/dev/
doc/lz4_Block_format.md

[11] Matt Mahoney. 2016. ZPAQ - Incremental Journaling Backup Utility and Archiver.
http://mattmahoney.net/dc/zpaq.html

[12] David Salomon. 2004. Data Compression: the complete reference. Springer Science
& Business Media, London, England, UK.

[13] Khalid Sayood. 2017. Introduction to data compression. Morgan Kaufmann.

[14] Julian Seward. 2019. bzip2 and libbzip2. https://sourceware.org/bzip2/index.html

[15] Julian Seward. 2019. bzip2 and libbzip2, version 1.0.8. https://sourceware.org/
bzip2/manual/manual.html

[16] Tukaani Developers. 2023. XZ Utils. https://tukaani.org/xz

[17] zpaq. 2016. zpaq - README. https://github.com/zpaq/zpaq

9 APPENDICES

A TEST DATA
| Time | Bands (kHz) | Filesize
0 | 00:15 3900-4805 1.7GiB
1 | 00:45 1-300 | 586.7MiB
2 | 01:00 480-1650 2.2GiB
3 | 01:30 10200-11105 1.7GiB
4 | 01:45 4800-5705 1.7GiB
5| 02:15 11100-12005 1.7GiB
6 | 02:30 5700-6605 1.7GiB
7 | 03:00 12000-12905 1.7GiB
8 | 03:15 6600-7505 1.7GiB
9 | 03:45 16600-17505 1.7GiB
10 | 04:00 7500-8405 1.7GiB
11 | 04:30 17500-18100 1.1GiB
12 | 04:45 8400-9305 1.7GiB
13 | 05:15 3000-3905 1.7GiB
14 | 05:30 9300-10205 1.7GiB

https://doi.org/10.17487/RFC1951
https://github.com/facebook/zstd
https://github.com/facebook/zstd#the-case-for-small-data-compression
https://github.com/facebook/zstd#the-case-for-small-data-compression
https://www.gnu.org/software/gzip
https://www.gnu.org/software/gzip
https://github.com/google/zopfli
https://books.google.nl/books?id=AYEKAQAAQBAJ
https://books.google.nl/books?id=AYEKAQAAQBAJ
https://www.gnu.org/software/gzip/manual/gzip.html
https://www.gnu.org/software/gzip/manual/gzip.html
https://github.com/lz4/lz4
https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md
http://mattmahoney.net/dc/zpaq.html
https://sourceware.org/bzip2/index.html
https://sourceware.org/bzip2/manual/manual.html
https://sourceware.org/bzip2/manual/manual.html
https://tukaani.org/xz
https://github.com/zpaq/zpaq

Losslessly Compressing Radio Spectrum Related Data for Archival 38" Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands

15 | 06:00 3900-4805 1.7GiB B COMMAND LINE OPTIONS
16 | 06:30 1-300 | 586.7MiB Algorithm | Command
17 | 06:45 480-1650 2.2GiB bzip bzip2 -k -v $file

18 | 07:15 | 10200-11105 1.7GiB gzip gzip -6 -v < $file > $ﬁle.gz

19 | 07:30 4800-5705 1.7GiB gzip -7 -v < $file > $ﬁ]e.gz

20 | 08:00 | 11100-12005 1.7GiB gzip -8 -v < $file > $file.gz

21 | 08:15 5700-6605 1.7GiB gzip -9 -v < $file > $ﬁle.gz

22 | 08:45 | 12000-12905 1.7GiB zopfli /builds/zopfli/zopfli -v -i5 $file
23 | 09:00 6600-7505 1.7GiB /builds/zopfli/zopfli -v -i15 $file
24 | 09:30 | 16600-17505 1.7GiB zstd /builds/zstd/zstd -3 $file

25 | 09:45 7500-8405 1.7GiB /builds/zstd/zstd -8 $file

26 | 10:15 | 17500-18100 1.1GiB /builds/zstd/zstd -12 $file

27 | 10:30 8400-9305 1.7GiB /builds/zstd/zstd -19 $file

28 | 11:00 3000-3905 1.7GiB /builds/zstd/zstd —ultra -22 $file

29 | 11:15 | 9300-10205 L7GiB zpaq /builds/zpaq/zpaq a $file.zpaq $file -m1

30 | 11:45 3900-4805 1.7GiB /builds/zpag/zpaq a $file.zpaq $file -m3

31 | 12:15 1-300 | 586.7MiB /builds/zpaq/zpaq a $file.zpaq $file -m5
32 | 12:30 480-1650 2.2GiB Xz /builds/xz-5.2.9/bin/xz.sh -k -v -0 $file
33 | 13:00 | 10200-11105 1.7GiB /builds/xz-5.2.9/bin/xz.sh -k -v -3 $file
34 | 13:15 4800-5705 1.7GiB /builds/xz-5.2.9/bin/xz.sh -k -v -6 $file
35 | 13:45 | 11100-12005 1.7GiB xz (extreme) | /builds/xz-5.2.9/bin/xz.sh -k -v -3 -e $file
36 | 14:00 5700-6605 1.7GiB /builds/xz-5.2.9/bin/xz.sh -k -v -6 -e $file
37 | 14:30 | 12000-12905 1.7GiB 1z4 /builds/1z4/1z4 -1 $file

38 | 14:45 6600-7505 1.7GiB /builds/1z4/1z4 -4 $file

39 | 15:15 | 16600-17505 1.7GiB /builds/1z4/1z4 -7 $file

40 | 15:30 7500-8405 1.7GiB /builds/1z4/1z4 -9 $file

41 | 16:00 | 17500-18100 1.1GiB

42 | 16:15 8400-9305 1.7GiB

43 | 16:45 3000-3905 1.7GiB

44 | 17:00 9300-10205 1.7GiB

45 | 17:30 3900-4805 1.7GiB

46 | 18:00 1-300 | 586.7MiB

47 | 18:15 480-1650 2.2GiB

48 | 18:45 | 10200-11105 1.7GiB

49 | 19:00 4800-5705 1.7GiB

50 | 19:30 | 11100-12005 1.7GiB

51 | 19:45 5700-6605 1.7GiB

52 | 20:15 | 12000-12905 1.7GiB

53 | 20:30 6600-7505 1.7GiB

54 | 20:45 6600-7505 1.7GiB

55 | 21:00 | 16600-17505 1.7GiB

56 | 21:15 7500-8405 1.7GiB

57 | 21:45 | 17500-18100 1.1GiB

58 | 22:00 8400-9305 1.7GiB

59 | 22:30 3000-3905 1.7GiB

60 | 22:45 9300-10205 1.7GiB

61 | 23:15 3900-4805 1.7GiB

62 | 23:45 1-300 | 586.7MiB

38" Twente Student Conference on IT, February 03, 2023, Enschede, The Netherlands David Vos

C BENCHMARK RESULTS OF VARIOUS COMMAND LINE PARAMETERS

algorithm size (average) time (average) size (min) time (for min ratio) size (max) time (for max ratio)
bzip
g7ip 6
gzip 7
gzip 8
gzip 9
1z4 1
lz4 4
lz4 7
z4 9
¥z 0

XZ 3

¥Z 3 extreme
XZ 6

XZ 6 extreme
zpaq 1

zpaq 3

zpaq 5

zstd 12

zstd 19

zstd 22 (ultra)
zstd 3

zsid 8

Note that XZ seems to have very efficient results, but it did not manage to finish compressing all files in time. Because of this, its average
consists only of the files that were easier to compress.

	Abstract
	1 Introduction
	2 Background and goals
	2.1 Data format
	2.2 Research questions

	3 Related work
	3.1 Lossless compression
	3.2 General literature
	3.3 Compression algorithms

	4 Methodology
	4.1 Selecting algorithms
	4.2 Initial benchmarking
	4.3 Benchmarking smaller chunks

	5 Results
	5.1 Algorithms
	5.2 Initial benchmarks
	5.3 Smaller chunks of data

	6 Discussion
	7 Conclusion
	8 Future Work
	References
	9 Appendices
	A Test data
	B Command line options
	C Benchmark results of various command line parameters

