
xBib : The language design and implementation of a transformation
language
PEPIJN VISSER, University of Twente, The Netherlands

BibTeX is one of the standards for managing lists of references for academic
papers. But due to different publishers generating their BibTeX files, there is
no universal standard and inconsistencies between similar items can emerge,
leading to confusion andmistakes. In this paper, we propose a transformation
language for BibTeX called xBib, that allows the user to create a bibliographic
list that looks more professional and uniform. Using this language we design
a tool that can be used to transform .bib files in a clear and simple manner.

Additional Key Words and Phrases: transformation, language design, bibtex

1 INTRODUCTION
When researchers are writing an academic paper, they will use many
different sources and reference them inside the paper. It is not un-
usual for a paper to have dozens of references in its bibliography list.
One of the universal standards for storing these references is called
BibTeX. When an author wants to reference a paper, they would get
the .bib data from a library source, and store it in their bibliographic
list. These sources are mainly from two types of article providers.

The first is from academic conferences. Examples of these are the
IEEE/ACM international conferences. These conferences publish a
so-called conference proceeding which is a collection of academic
papers, typically made by the researchers at the conference. Confer-
ences include lots of information in their .bib files like the number of
the conference in the series, the location and date of the conference,
and other, in most cases, useless information.

On the other hand, we have services that collect and search ar-
ticles and papers in a vast collection of libraries; think of services
like Google Scholar. Because these services do not belong to a spe-
cific conference or library, they often fall short of the specifics. Often
the generalisation of all the various libraries results in abbreviation
inconsistencies, where some libraries say ACM, others say Associa-
tion for Computing Machinery, and in some cases even include the
specific year and series.

Currently there is no good method of handling these bibliography
files, which can grow to quite large amounts of data. Researchers
tend to do some of these transformations manually and this can get
cumbersome and slow. In other cases the bibliography file will get
messy and can look unprofessional.

1.1 Problem Statement
We can categorise the problem into three categories: Information
overload, inconsistencies and duplicates.
TScIT 38, Februari, 2023, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1.1.1 Information overload. One of the problems with the various
ways in which BibTeX files are being put out, is that there is a varied
level of detail in the description of different papers. This can cause
issues as the reference list can quickly become overloaded with
information that can be seen as unimportant to the reader. This is
especially an issue when there is a maximum number of allowed
pages in a paper. A single line of unimportant data can grow to
become quite a lump of text if there are tens of references included.
An example of information overload can be seen in the published
articles of conferences like IEEE/ACM. These files often include
the exact date, time and location of the conference, which is of
unimportance to a normal reader of the article.

1.1.2 Inconsistencies. Another issue arises when big services like
Google Scholar and DBLP use web crawlers to get information about
the articles. Due to the massive amount of articles and authors, there
is a chance for inconsistencies to arise. Due to the nature of BibTeX,
mistakes in the capitalisation of article/book titles can arise. For
some titles, it is of great importance for the article’s clarity that the
capitalisation is correct. Some publishers convert all text in a .bib
file to lowercase, which can create errors.

Another inconsistency is in the way that BibTeX treats capitali-
sation. Example: "This is a TITLE" and {This is a TITLE} will both be
accepted, as BibTeX treats the characters “” and {} as the same. But
in some cases the capitalisation of this title will get lost, as BibTeX
will convert every character except for the first one into lowercase.
A way to fix this is to add another pair of curly brackets ({}) around
the case-sensitive words. Example: {This is a TITLE} might output:
This is a title or even This is a Title, whereas {This is a {TITLE}} will
only output: This is a TITLE.

1.1.3 Duplicates. A smaller issue with getting references from dif-
ferent sources or publishers is that there is a chance for duplicates
to emerge. These duplicates would be easy to spot if they had the
same format, but due to the problem described above, they could
look quite different to each other. This would form a problem and
an unnecessarily large bibliography list.

1.2 ResearchQuestions
To solve the problem described in 1.1 we will design the transfor-
mation language xBib and implement it using a support tool. The
following research questions follow from the problem statement:

• RQ1:What kind of transformations are needed in the domain
of BibTeX transformation to solve the inconsistent BibTeX
format?

• RQ2: How do we define a transformation language that can
grow and cover the domain of the problem, while being simple
to understand?

• RQ3: How do we design a parser and support tool to imple-
ment xBib into a working program?

1

TScIT 38, Februari, 2023, Enschede, The Netherlands Pepijn Visser

2 RELATED WORK
In this section we will go over some related work in language design
and transformation languages.

There are multiple reference management software that also have
some features that xBib needs. Mendeley [3] and Endnote [2] both
have smart solutions for the abbreviation of conferences and jour-
nals, among other things. These software both allow the user to
export their bibliography files, but this does mean that the user has
to download and use a big piece of software. The advantage of a
smaller language like xBib is that it does not need a large download,
and can be used as a small tool or plugin.

When designing a program, coding conventions are an important
topic to discuss, as they define the best practices to write a program.
In 2016, Goncharenko and Zaytsev [6] wrote a paper about a lan-
guage on top of CSS, that can express coding conventions. Here they
describe the process of language design for a language on top of CSS,
and an interpreter of this language that can automatically detect
violations in the coding conventions. There are many overlapping
aspects between CssCoCo (the language they proposed) and xBib,
as they both created a language on top of an existing language. Css-
CoCo is a language that detects violations, and warns the user about
them, whereas xBib has a more functional application. Allamanis et
al. [4] wrote a paper about NATURALIZE, which can study a code
base, and suggest improvements to the code. Prause and Jarke [8]
propose gamification as a way to promote coding conventions to
developers.

BibSLEIGH [11] is an ongoing project by Zaytsev that lies in the
same domain as xBib. In a general sense, xBib could be the successor
of BibSLEIGH. BibSLEIGH uses a JSON library to crosscheck and
store BibTeX files and has some basic functionality for the removal
of URLs and abbreviating or elongating some well-established jour-
nals. The main difference is that BibSLEIGH is not a transformation
language, but a big database with some data management tools.

Much research has been done on the process of defining a language.
Steele [9] wrote a paper that describes the importance of a growing
language. The advice that Steele gave has helped the process of
designing xBib tremendously. Other types of advice for language
design are the paper by Wijngaarden [10] about orthogonal de-
sign and the paper by Erwig and Walkingshaw [5] about semantics
first. Moody [7] wrote a paper discussing the design flaws and im-
provements to be made in visual notations in software engineering.
Zaytsev [12] wrote about a way to approach the design of a DSL and
how not to make mistakes that have crumbled other languages. The
paper proposes a DSL toolkit to be used whilst designing a language.

3 DOMAIN ANALYSIS
Before we can analyse the domain, we first have to learn the syntax
of BibTeX, as the terms will be prevalent in the analysis. The struc-
ture shown in 1 is part of the BiblaTeX cheat sheet [1] and shows
what some of the terms mean in the context of a BibTeX file.

Fig. 1. The structure of BibTeX

The problem raised in section 1.1 has to be broken down into trans-
formations that the user can call upon. To do that we have broken
down the problem into four main categories. These categories then
each have different transformations that as a whole, cover the entire
domain of the problem.

3.1 Formatting
The first category covers all of the problems that have to do with
formatting. The focus for this category is on how the output will
look, and make the whole bibliography list a uniform document.
These transformations will not change any information, they merely
alter the document’s look.

Table 1. Formatting transformations

Name Description Parameters
Indentation Choose what, and how

much, indentation is used
for every field

spaces / tabs

String symbol Choose what symbol is
used to define a string

curly brackets /
quotes

Last comma Select if the last row in
each entry should have a
comma, or not

-

Line wrap Set a threshold to enable
line wrap after a specified
length

-

3.2 Order
This category focuses on transformations that have to do with the
order and output of the program. This covers any problems that have
to do with specific entries but is not about altering any information.

Table 2. Order transformations

Name Description Parameters
Sort Sort the entries by key -
Filter The output will only show

the entries with the key
provided by the filter

List of keys

Smart filter The output will be filtered
to show only cited entries

The references
file

2

xBib : The language design and implementation of a transformation language TScIT 38, Februari, 2023, Enschede, The Netherlands

3.3 Content
The third category solves the problems that have to do with the
generic information of an entry. The transformationswill not change
the field data, but rather the general entry data.

Table 3. Content transformations

Name Description Parameters
Remove dupli-
cates

If enabled, remove any du-
plicate entries and combine
the information

-

Prefer uri Set the preferred type of
uri, and change the other
types to match it

doi / url

Change type Every entry of the given
type will change to the
other type

Pair of keys

Rename key The specified key will be re-
named.

Pair of keys

Blind The given entry will be
made completely anony-
mous

Key of entry

Validate Validates any entry if the
necessary fields are present

-

3.4 Field specifics
The last category solves the remaining issues, focused on the field
specifics. These transformations are not specific to any type of field
but are rather more generalised actions that can be called for any
field, and it is up to the user to use the correct ones. These actions
can be expanded on in the future and are by no means finished, but
some of these actions are;
Abbreviate, flip name/surname, declutter, remove.

4 LANGUAGE DESIGN
With the domain of the problem analysed we had a good idea of
what was necessary for the language syntax. We wanted to design
a language that was simple but also had room to grow and evolve.
If the language had no room to grow then that could lead to any
later implementations not fitting within the scope of the designed
language, and this was something we wanted to avoid. The language
should be as simple as possible as xBib is intended to be used by
researchers of any field, that could have no prior experience with
programming. Since the problems described are applicable to any
academic research, this was imperative.

Table 4. A simplified grammar of xBib

bib : input command* output
input : filename
command : ’go’ category item*

| ’field’ argument argument
category : (’format’ | ’order’ | ’content’)
output : filename
item : ’set’ argument*

| ’action’ argument*
| (’enable’ | ’disable’) argument

argument : ’(’ argument+ ’)’
| primitive

primitive : (integer | unquoted | quoted)

As the domain analysis showed, we can categorise the problem
into four categories: formatting, order, content and field actions.
This categorisation is something we wanted to feature in the lan-
guage syntax since this made it clear to the user what has to be
written at any location in the code. We can further categorise the
first three categories from the latter, as field actions are contextually
different from the rest. Since field actions are detached from any
big umbrella, they can differ extremely from each other, whereas
the other three categories all have functionality that fits under their
umbrella category. For example: The field actions abbreviate and
flip name/surname do not share a similar context, whereas the for-
matting transformations indentation and line wrap all have to do
with the formatting of the output.

The process of designing the xBib language was an iterative pro-
cess, where we analysed each iteration based on intuitiveness for
the user and simplicity for further expansion. There is much room
for creativity in the designing process of a language, and many
choices are neither good nor bad, but merely the decision that the
creator made. A simplified grammar of xBib can be seen in table 4,
as a result of the iterations.

For simplicity, we assumed that only one input and output file
were allowed as this made the implementation process much easier.
The xBib language accepts multiple commands, which can be either
a category or a field action. For any of the three categories, we can
fit all the possible transformations within three types: set, action
and enable or disable.
The set type corresponds to any transformation that changes a

variable, an example is given below:

go format (
set indentation to (tab , 1),
set string_identifier to quotes ,
set line_wrap to 25

);

Some of these variables will have a default value set and can be
overwritten, whereas others will only be called when there is a
value set by the user.

Action corresponds to a transformation that behaves like a func-
tion; There are one or multiple input variables and there is some

3

TScIT 38, Februari, 2023, Enschede, The Netherlands Pepijn Visser

expected result. Unlike the other types, this type does not have any
default values, and the action will only be performed when called
upon by the user. An example of the usage can be seen below:
go order(

action filter ('exampleKey ', 'exampleKey2 ')
);
go content(

action change_type ('book ', 'article '),
action rename_key ('tolkien -hobbit ', 'hobbit '),
action blind 'exampleKey '

);

The last type is a form of flag, where the user can either enable
or disable it. The type of function that the user flags differs for each
category, and so does the use case. A user can flag a setting, e.g. last
comma can be enabled to change the formatting. A flag can also
enable a function that has no variables, e.g. remove duplicates can be
enabled to allow duplicates to be removed automatically. Example:
go format (

enable last_comma
);
go order(

enable sort ,
enable smart_filter

);

Field actions have two arguments, the first is the fields for which
the actions will be called on, the second argument is the actions to
be taken. Since multiple fields can have the same actions called, and
multiple actions can be applied to the same field, we assumed that
both the first and second parameter can have multiple arguments
paired between brackets. This allows the user to have cleaner and
simpler code. The following example shows a paired and non paired
field action call:
field ('author ','editor ') (abbreviate , flip_name);
field 'title ' capitalise;

5 TOOL SUPPORT
With the domain analysed and the language syntax created, the next
step is to create a tool to support the language. This tool can then
be used by the end user to transform .bib files. The tool is written in
Java, using ANTRL4 to parse and execute the code. The simplified
version of the grammar shown in table 4 is extended and can be
used to parse a .xbib file which contains all the transformations.
The program will consist of two parts. First, it should parse the

.xbib file and store all the commands in a single class. Secondly, it
should pass these commands to a second parser that transforms the
bibliography file based on the aforementioned stored commands.
The grammar that describes xBib generates a listener, which is
used to take actions when specific nodes are reached in the parsing
process. We extended the base listener to store the data in a special
class that stores all the generated commands. After the listener has
completed and visited the entire parse tree, the class has stored all
the commands, which can be passed on to the second part of the
process.
public void exitMain(xbibParser.MainContext ctx) {

// Import file from the path given
String in = getFileContents(ctx.in.getText ());

// Parse the .bib file

CharStream chars = CharStreams.fromString(in);
Lexer lexer = new simpleBibTeXLexer(chars);
simpleBibTeXParser parser =
new simpleBibTeXParser(new CommonTokenStream(lexer));
ParseTree tree = parser.database ();

// Run the second parseTree
BibTeXListener listener = new BibTeXListener ();
listener.run(tree , commands);

// The parser is finished , get the results
String res = listener.getResult ();

Path out = getPath(ctx.out.getText ());

FileWriter fileWriter = null;
try {

fileWriter = new FileWriter(out.toString ());
} catch (IOException e) {

throw new RuntimeException(e);
}
// Write the output to a new .bib file
PrintWriter printWriter = new PrintWriter(fileWriter);
printWriter.print(res);
printWriter.close ();

}

The code above shows a snippet from the entire listener code, namely
the final node that the listener reaches, called exitMain. This is the fi-
nal step of the first part of the program. At this point in the program,
the listener has walked the entire tree, and we can assume that the
command class has been filled accordingly. The next step would
be to find the specified BibTeX file that was named as input in the
xBib file. A second simple grammar is used to parse the .bib file, and
this parser also has a listener class. The entire process of the second
part is conceptually similar to the first part, but instead of gather-
ing data during parsing, we alter the parsed data at specific locations.

The grammar to parse the BibTeX file is based on the structure
given by the BiblaTeX Cheat Sheet [1]. The domain analysis dis-
cussed in 3 shows what transformations have to be achieved. Each
transformation has a unique process to be implemented, and their
location in the listener process is different for each of them. The
following snippet of Java code shows the node exitStringValue.

public void exitStringValue(StringValueContext ctx) {
String s = ctx.String (). toString ();

// String identifier
Item i = getCommand(commands.getFormat(),

Item.Call.set , "string_identifier");
if (i != null) {

switch (i.getArguments (). toArray ()[0]. toString ()) {
case "quotes":

s = String.format("\"%s\"", s.substring(1,
s.length () -1));

break;
case "curly":

s = String.format("{%s}", s.substring(1,
s.length () -1));

break;
default:

addError(ctx , "The argument %s can only be
of type (quotes , curly)",
i.getArguments (). toArray ()[0]);

break;
}

}
result.append(s);

}

4

xBib : The language design and implementation of a transformation language TScIT 38, Februari, 2023, Enschede, The Netherlands

The code shows the implementation of the formatting transforma-
tion string identifier. The getCommand function gets the command
with the name string_identifier from the command class. If this object
exists, then the xBib file had a call made for the string identifier to
be changed, if not, then there was no mention of the string identifier,
and the transformation won’t happen. The code then finds the pro-
vided argument, which in this case has to be either quotes or curly,
and transforms the string accordingly. Every transformation has a
similar process as string identifier and is not worth explaining in this
paper. The code can be found at https://github.com/visperr/xbib.

6 CONCLUSION & DISCUSSION
We have analysed the domain of the problem that currently exists
with BibTeX bibliographies. To solve this solution we proposed
three research questions that lead to this end goal. We have made a
domain analysis, discussing the problems and what transformations
can solve them. Based on the analysis we were able to define a
language syntax for xBib that is simple and efficient and finally
implement the xBib language into a support tool. The support tool
can read an xBib file, grab a BibTeX file, transform it based on the
specified commands and output it to the desired file.

There are still aspects that can be researched further. The parser
used for parsing BibTeX files is a simple parser that has some flaws,
mainly that it is unable to parse strings of multiple lines. No research
has been done with respect to the speed of different parsing methods
or using a different language for the support tool. The support tool
can be seen as a prototype to implement xBib, and therefore these
flaws fall out of the scope of the research.
With most of the features implemented, the support tool has all

the functionality to solve the problems described in section 1.1. The
problem of information overload can be solved by allowing the
user to remove unnecessary fields. The problem of duplicates and
inconsistencies is solved by letting the user have control over the
look of the output, creating a unified document.

REFERENCES
[1] 2017. BiblaTeX cheat sheet. http://tug.ctan.org/info/biblatex-cheatsheet/biblatex-

cheatsheet.pdf [Online; accessed 21. Jan. 2023].
[2] 2022. EndNote | The best reference management tool. https://endnote.com

[Online; accessed 23. Nov. 2022].
[3] 2022. Mendeley - Reference Management Software. https://www.mendeley.com

[Online; accessed 23. Nov. 2022].
[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learning

natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 281–293.

[5] Martin Erwig and Eric Walkingshaw. 2012. Semantics first. In Proceedings of the
Fourth International Conference on Software Language Engineering, SLE, Vol. 11.
Springer, 243–262.

[6] Boryana Goncharenko and Vadim Zaytsev. 2016. Language design and imple-
mentation for the domain of coding conventions. In SLE 2016: Proceedings of
the 2016 ACM SIGPLAN International Conference on Software Language Engi-
neering. Association for Computing Machinery, New York, NY, USA, 90–104.
https://doi.org/10.1145/2997364.2997386

[7] Daniel L. Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering 35 (2009).

[8] Christian R Prause and Matthias Jarke. 2015. Gamification for enforcing coding
conventions. In Proceedings of the 2015 10th joint meeting on foundations of software
engineering. 649–660.

[9] Guy L Steele Jr. 1998. Growing a language. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[10] Adriaan van Wijngaarden. 1965. Orthogonal design and description of a formal
language. (Jan. 1965).

[11] Vadim Zaytsev. 2017. BibSLEIGH: Bibliography of Software (Language) Engineer-
ing in Generated Hypertext. In Post-proceedings of the Eighth Seminar in Series
on Advanced Techniques and Tools for Software Evolution (SATToSE 2015) (CEUR
Workshop Proceedings, Vol. 1820), Anya Helene Bagge, Tom Mens, and Haidar
Osman (Eds.). CEUR-WS.org, 54–64. http://ceur-ws.org/Vol-1820/paper-06.pdf

[12] Vadim Zaytsev. 2017. Language Design with Intent. In 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, 45–52. https://doi.org/10.1109/MODELS.2017.16

5

https://github.com/visperr/xbib
http://tug.ctan.org/info/biblatex-cheatsheet/biblatex-cheatsheet.pdf
http://tug.ctan.org/info/biblatex-cheatsheet/biblatex-cheatsheet.pdf
https://endnote.com
https://www.mendeley.com
https://doi.org/10.1145/2997364.2997386
http://ceur-ws.org/Vol-1820/paper-06.pdf
https://doi.org/10.1109/MODELS.2017.16

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions

	2 Related Work
	3 Domain analysis
	3.1 Formatting
	3.2 Order
	3.3 Content
	3.4 Field specifics

	4 Language Design
	5 Tool support
	6 Conclusion & Discussion
	References

