
Fine-Tuning Transformer Models for Commit Message
Generation and Autocompletion

Martin Miksik
m.miksik@student.utwente.nl

University of Twente

Enschede, The Netherlands

ABSTRACT
Commit messages provide insight into the developer’s intentions
and motivations — a fundamental source of information in the
exceptionally collaborative discipline of software development. To
assist the process of commit message writing, we �ne-tune two
transformer models for commit message generation and integrate
them into popular code editors.

We 1) collect and publish a dataset of commit message and patch
pairs for 6 di�erent programming languages, 2) �ne-tune two gen-
erative language models for commit message autocompletion and
generation tasks, and 3) provide integration for these models with
popular code editors (IntelliJ, VSCode). Lastly, we show that on
the test dataset, our �ne-tuned models perform 2x and 10x times
better than the base models for the completion and generation tasks,
respectively.

KEYWORDS
commit messages, source version control, documentation, Code-
BERTa, CodeT5, transfer learning, git

1 INTRODUCTION
Software maintenance accounts for the majority of the software
system lifecycle and the bulk of the software developer job consists
of reading and understanding code [15, 22]. Thus, good documen-
tation is crucial for software maintenance and longevity[2, 16].
This paper focuses on code documentation in the form of commit
messages.

In a version control system (VCS) a commit represents an isolated
change to the code base [3]. They are composed of code (or other)
artefact and textual logs describingwhat changed andwhy—commit
message [3, 23]. It should facilitate the review process and help the
other contributors to understand the impact of the changes [23].
For example see �gure 1.

Tian et al. states that in long-lived projects commit messages might
be the only existing or reliable source of documentation [23]. Buse
1� deno/commit/1416713cb3af8a952b1ae9952091706e2540341c

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior speci�c permission and/or a fee.

Figure 1: Example of commit message from DenoJS reposi-
tory. The headline is in bold and provides an answer to the
what question, while the body gives the answer to why 1

and Weimer stipulate that writing good commit messages is, how-
ever, a time-consuming process and in their research one-third of
analyzed commit messages included inaccurate information [3].

The problem is especially pressing in open source software where
developers are geographically dispersed and come from a variety
of cultures and educational backgrounds, possibly further diversi-
fying the quality and consistency of commit messages [2, 23]. Ko
et al. found that even in colocated teams the design rationale (a.k.a
why) is the most discussed topic [14]. Furthermore, geographically
distributed teams also face the challenge of relying primarily on
written communication [2].

Many tools were developed to aid the developers with the process
of writing code. Namely, code completion and code generation have
experienced leap advancement with the advent of machine learn-
ing algorithms. For instance, GitHub Copilot—a publicly available
version of the Codex model [5]—is a novel tool that is capable of
translating documentation strings into code and vice versa.

Yet, tooling to assist commit message writing is missing. While
there exists previous research on this topic done by Cortes-Coy
et al., Huang et al., Liu et al., we aim to push the status quo by
ful�lling the following goals:

• Goal 1: Support multiple programming languages,

• Goal 2: Leverage pre-trained transformer-based models, to
circumvent the necessity for large training datasets,

• Goal 3: Developing convenient integration with modern code
editors (e.g. VSCode, IntelliJ), in order to enable simpler adop-
tion and frictionless developer experience.

We aim to achieve these goals by answering the following research
questions(RQ):

https://github.com/denoland/deno/commit/1416713cb3af8a952b1ae9952091706e2540341c

TScIT 37, July 8, 2022, Enschede, The Netherlands Martin Miksik

• RQ 1: How does the accuracy of CodeBERTa compare to the
accuracy of �ne-tuned CodeBERTa on the autocompletion task?

• RQ 2: How does �ne-tuned CodeT5 compare to base CodeT5
on commit message generation task?

2 RELATEDWORK
We identi�ed two diverging approaches to tackle the commit mes-
sage generation and autocompletion: (1) History and (2) Learning
based.

The history-based generation involves comparing the current
changes in a code repository to previous commits. The system
identi�es the previous commits that are most similar to the current
changes and then suggests the commit messages of those previous
commits as a starting point for the new commit message. Examples
of this work are ChangeDoc[9] and ChangeScribe [17].

This approach has several limitations: the suggested commit mes-
sages do not include any information speci�c to the current changes
(e.g. �le name), and the resulting quality depends on the commit
message consistency and commits history size. On the other hand,
the bene�t of this approach is that it is programming language
agnostic, and thus, can be used in any software stack.

The learning-based approach in theory overcomes the limitations of
the history-based generation, although it faces the problem of being
limited to the selection of programming languages the model was
trained on. Past work in this area includes PtrGNCMsg—a custom
recurrent-neural-network [18] which pushed the stat-of-the-art in
2019 by allowing for out-of-vocabulary words to be part of the
commit message, CoRec—long short-term memory architecture
that attempts to remove the bias towards high-frequency words
[25] and CommitBERT—transformer encoder-decoder model, where
instead of a custom encoder, CodeBERTa is used [13].

PtrGNCMsg and CoRec models support only input in Java. Com-
mitBERTa currently supports Python and Javascript2. Furthermore,
the models, except for CommitBERT, are not publicly available.

Only ChangeScribe [17] provides integration with some IDE
(Eclipse). CommitBERT o�ers command-line integration [13].

Lastly, all previously listed approaches focus on commit message
generation exclusively and do not provide autocompletion for a
partially written message.

3 SELECTION OF COMMIT MESSAGE STYLE
Chacon and Straub in their book, which is now part of the o�cial
Git documentation, recommend that the commit message starts
with a single line of 50 characters or less describing the changes,
followed by one blank line and a detailed explanation. Furthermore,
the subject line should be written in an imperative form (i.e.: "Fix
nullptr exception" and not "Fixes nullptr exception" or "Fixed nullptr
exception") [4].

2https://github.com/graykode/commit-autosuggestions/
blob/2bc18fdbdcc38d3e5b77fc3471fcd860b3057e89/README.md

Jiang and McMillan commit analysis of 1 000 most stared Java
repositories (about 2 million commits) showed that nearly 47% of
them start with an imperative verb3 [12].

Some repositories, however, use an alternative format such as Con-
ventional Commit [1]. In this style, the imperative verb is proceeded
by commit type (e.g. �x, chore, feat) and the scope of the changes
in brackets. Figure 2 shows a real word example of such a commit.

Figure 2: Example of the Conventional Commit message for-
mat4

For our research, we decided to follow the o�cial commit mes-
sage style, because it represents the most basic and, thus, the most
universal form of the subject line. Additionally, tools to help users
write conventional commit pre�xes and scope already exist5.

4 DATASET PREPARATION
Models we use during �netuning were pre-trained on CodeSearch-
Net Challange Dataset [10], which includes code snippets in 6 pro-
gramming languages—Python, Java, Javascript, Ruby, Go, PHP. We,
therefore, limited our dataset to these 6 programming languages as
well.

Repositories are selected based on their high number of stars, which
can be thought of as similar to likes on Facebook. For instance,
repositories such as � facebook/react or � nicolargo/glances are
scraped. Furthermore, a few repositories are cherry-picked based
on the commit quality and/or count. We published the �nal dataset
and several checkpoints on mamiksik/processed-commit-di�s.
The description also includes the full list of scraped repositories.

4.1 Collecting Raw Data
The data are collected using GitHub Rest API (version 2022/11/28),
which is subject to a limit of 5 000 requests per hour. In order to
facilitate the scraping process e�ciently, it is divided into three
phases. PhaseA involves a bulk collection of commit messages, with
approximately 100 messages being obtained per request. In phase
B, commit messages that do not meet the requirements outlined
in section 3 are eliminated. Supplementary �lters are added to
increase the dataset quality; that includes removing housekeeping,
bot-generated commits or non-speci�c commits messages. Lastly,
in phase C, commit di�s are gathered.

Phase B is detailed in �gure 3. Subject length is calculated after
striping conventional commit pre�x and references to GitHub issues
(e.g. #10242). Commit messages composed of 2 words are also
removed since they are not speci�c enough (e.g. Fix main.py).

3The analysis was done using Stanford CoreNLP library, thus, the true proportion
might di�er.
4� freeCodeCamp/commit/d57da28c4fd8b3223daf17ae7737fe726ed45c18
5For example � lppedd/idea-conventional-commit

https://github.com/graykode/commit-autosuggestions/blob/2bc18fdbdcc38d3e5b77fc3471fcd860b3057e89/README.md
https://github.com/graykode/commit-autosuggestions/blob/2bc18fdbdcc38d3e5b77fc3471fcd860b3057e89/README.md
https://github.com/facebook/react
https://github.com/nicolargo/glances
https://huggingface.co/datasets/mamiksik/processed-commit-diffs
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://github.com/freeCodeCamp/freeCodeCamp/commit/d57da28c4fd8b3223daf17ae7737fe726ed45c18
https://github.com/lppedd/idea-conventional-commit

Fine-Tuning Transformer Models for Commit Message Generation and Autocompletion TScIT 37, July 8, 2022, Enschede, The Netherlands

Detecting a verb-object combination is done using part-of-speech
tagging, however, it is a non-trivial task, that is impractical to im-
plement using rule-based algorithms. Therefore, we tested two
popular natural language processing libraries SpaCy and Stanza.
In our testing, both SpaCy and Stanza failed to always accurately
identify verb-object combinations in commit messages6. On that ac-
count, to avoid rejecting valid commit messages, we employed both
SpaCy and Stanza, accepting the commit if either tool identi�ed a
verb-object combination.

OR
Commit
Message Chore (merge, bump,

rollback) filter

Bot filter

Subject length
filter (>50)

Subject word count
filter (��2 words)

Stanza VO Filter

SpaCy VO Filter

Commits
to Scrape

AND

Figure 3: Commit message �ltering pipeline based on re-
quirments set in 3. Rule-based �lters are yellow. ML �lters
are blue

4.2 Dataset cleanup
Neither scraped repository is strictly monolingual (e.g. it contains
con�g �les), these �les could confuse the model during training.
Thus, commits containing unsupported �le types are excluded.

For each �le, the change identi�ers are replaced by special tokens
[�⇡⇡] and [⇡⇢!], respectively. Unmodi�ed lines are pre�xed with
[�⇡⇢] token. The �le path is appended to the top of the patch and
pre�xed with a special token [%�)�]7. If the �le was newly added,
removed or renamed, the path is pre�xed with the corresponding
change identi�er token. The chunk identi�er is removed. Lastly, all
patches are concatenated into a single string (See the right part of
the �gure 4).

Processing of the commit message subjects consists of several tasks
aimed at removing project-speci�c information such as issue id,
conventional commit pre�xes or capitalization (See the left part of
the �gure 4).

The �nal dataset is split into train (80 %), validation (10 %) and test
(10 %) subsets.

4.3 Dataset overview
We collected commit messages for 693 195 commits, of which 77 840
passed through the �ltering pipeline (Table 1). Examples of accepted
and rejected messages can be found in the table 2.

135 988 commits are identi�ed as being related to maintaining the
project, such as version bump, rollback or merge commits. Another
5 189 are classi�ed as bot-generated.

The subject line of 235 518 commits is longer than 50 characters,
and 235 518 commit messages are composed of 2 or fewer words.

6It is likely that neither of the training datasets for SpaCy and Stanza included commit
messages
7Including the �le path leaks the programing language information to the model since
it includes the �le extension.

This variable is not used

anywhere since the last commit.

<ide><path>src/main.py
greting()
<add>greeting()
<ide><path>src/utils.py
def greting():
<add>def greeting():
<ide> print(f"Hello World")

Chore: fix typo in utils (#1812).

Extract subject line

To lower case

Strip conventional
commit prefix

Strip issues id

Append file pathTrim trailing
whitespaces and
punctuations

main.py

@@ -1,5 +1,5 @@
- def greting():
+ def greeting():
 print(f"Hello World")

Tokenise change
identifiers

Merge Files

fix typo in greeting function

Remove chunk
identifier

Figure 4: Data preprocessing pipeline

Table 1: Number of fetched commit di�s per language in
ascending order

Java Go PHP Ruby Python Javascript Total

3 045 5 943 11 264 13 981 17 065 26 542 77 840

The interquartile range in �gure 5 shows that half of the commit
messages are between 29 and 55 characters long.

The most used verbs are charted in �gure 6. VO-Filter rejected
362 202 commits. Spacy VO-Filter and Stanza VO-Filter disagreed
in 186 272 cases.

5 ARCHITECTURE SELECTION
Transformer [24], �rst introduced in 2017, has become the dominant
natural language processing architecture in recent years [28]. They
provide 3 key innovations for NLP tasks over Recurrent Neural
Networks (RNN) previously used for NLP [24].

Figure 5: Boxplot of a commit message length in characters.
The interquartile range is 26 characters.

https://spacy.io
https://stanfordnlp.github.io/stanza/

TScIT 37, July 8, 2022, Enschede, The Netherlands Martin Miksik

Table 2: Examples of accepted and rejected commit messages

Rejected Message Note

No Add test �xture for �nancial sample —
Update ci con�g for new type checking �ow VO-Filters (Stanza=True, SpaCy=False)

Yes
types: work around backburner runtime paths shenanigans VO-Filters (Stanza=False, SpaCy=False)
Correct FEATURES.md Word count 2
Bump version for beta release of v3 House keeping task

Figure 6: Top 15 verbs used for commit subject (case insensi-
tive)

(1) Contextual Embeddings: Transformers can internally generate
word (token) embeddings based on the context of the entire text
(thousand and more words). While a model with bi-directional RNN
technically has the same ability, it su�ers from vanishing gradients.
Thus in practice is unable to condition words’ embedding on the
next/previous sentence, let alone a di�erent paragraph. Older tech-
niques using classical ML pre-trained directly on word embeddings
like Word2Vec, Glove or FastText use no context [24].

(2) Attention Mechanism: The attention (and self-attention) provides
the network with the relationship information among words. That
enables the network to focus on the most relevant information in
the input text (which is context dependent)[24].

(3) Reduction in sequentiality: The model architecture eliminates re-
current steps required in RNN, which greatly increases the possibil-
ity to parallelize (and thus accelerate) both learning and inference.8
[24].

The originally proposed architecture consists of Encoder and De-
coder. Encoders contain self-attention layers, they are bi-directional
(for each token they can attend both past and consecutive tokens)
[24]. Their output consists of a vector sequence of the same length
as input [26]. These vectors carry the contextual information about
each input word (i.e. each vector encodes both the information
about the input token and surrounding tokens) [19].

8Recurrent layer requires$ (=) sequential steps, whereas self-attention layer requires
$ (1) sequential steps [24]

Decoders are auto-regressive; which means that generated tokens
are fed back to the model to generate the next token. For that reason,
decoders can only attend preceding tokens (See �gure 7) [24]. The
decoder also incorporates a cross-attention layer, thus, the decoder
can condition its output based on the output of the encoder [26].

The combination of encoder and decoder allows the model to de-
velop a separate representation of input and output tokens [26].
Hence, Encoder-Decoder architecture is suitable for tasks like ma-
chine translation or summarization. An example of encoder-decoder
architecture is T5 (Text-To-Text Transfer Transformer) [21]. Thus,
we chose the encoder-decoder model, for the goal of commit mes-
sage generation, called CodeT5 [27].

On the other hand, models like BERT are encoder-only. Since en-
coders are bi-directional, this architecture is suitable for tasks re-
quiring a good contextual understanding of the input; such as gram-
mar checking, sentiment analysis or corrupt token replacement [7].
Hence, for the task autocompletion, we chose the encoder-only
model CodeBERTa [8].

I am an ���

I
am

an
��

�

En
co

de
r

Encoder-Decoder

Input Autoregress-
ive output

De
co

de
r

I am an ���

I
am

an
��

�

Input

Encoder Only

En
co

de
r

Figure 7: Depiction of which tokens can be attended in
encoder-only and encoder-decoder architecture

6 THE AUTOCOMPLETION MODEL
CodeBERTA is a pre-trained model published by Microsoft [8]. It
follows the RoBERTa architecture [19], which is an optimization of
encoder-only BERT transformer [7]. CodeBERTa model is identical
to the RoBERTabase. It has 12 hidden layers and 12 attention heads.
The size of hidden layers is 768 and the attention head size is 64
[19]. CodeBERTa consists of 125M parameters [8].

Fine-Tuning Transformer Models for Commit Message Generation and Autocompletion TScIT 37, July 8, 2022, Enschede, The Netherlands

The two pre-train objectives were Masked Language Modeling
(MLM) and Replaced Token Detection (RTD) [8]. In MLM, percent-
age9 of tokens in input is substituted by special ["�(] token,
and the model must predict appropriate token for ["�(]. In RTD,
random tokens are swapped for di�erent tokens and the model
must detect which tokens were swapped [8].

CodeBERTA was pre-trained on the dataset from CodeSearchNet
Challenge [10]. Both standalone code snippets and natural language
(NL) - programming language (PL) pairs were used for pretraining,
and the programing language of the input was not explicitly leaked
to the model [8].

CodeBERTa uses WordPiece text encoding rather than Byte pair
encoding used in RoBERTa [8, 19].

6.1 Input/Output representation
Our input consists of a commit message (NL) and a patch (PL)
pair. It has the following shape [⇠!(],31,32,3=, [(⇢%], ["(⌧],
<1,<2,<: , ?1, ?2, ?; , [⇢$(] where where 31..= is tokenized patch,
<1..: is tokenized commit message and ?1..; is padding. Lastly, = +
: + ; = 512. In a case = + : > 512 then ; = 0 and the patch is
truncated so that = + : = 512. At least one in<1..: tokens must be
["�(].
The output of the model is a dictionary with predicted tokens as
keys and model con�dence as associated values.

6.2 Finetuning
We follow the MLM and RTD objectives that CodeBERTa has origi-
nally trained on [8], however, rather than masking (or replacing)
tokens in both parts of the input sequence, only the tokens cor-
responding to the commit message are masked/replaced. On that
account, during the training, the model should focus exclusively on
learning the autocompletion of commit messages. During the pre-
training of CodeBERTa, 15% of tokens are masked [8]. We increased
the masking ratio to 50 % since commit messages are comparably
short. For training, the masked sequence is passed as input to the
model, whereas the original sequence is passed as a label (See �gure
8).

Input

<ide><path> src/main.py

<ide>def main():

 name = �John�

<ide> print(�Hello World!�)

<msg>Remove <mask> variable <mask> main

Label

<ide><path> src/main.py

<ide>def main():

 name = �John�

<ide> print(�Hello World!�)

<msg>Remove unused variable in main

Figure 8: Example of CodeBERTa training input and label

Live demo is located at mamiksik/commit-message-autocomplete
9In RoBERTa tokens are dynamically masked every epoch, while in BERT model
masking happens once before the training starts [7, 19].

7 THE COMMIT MESSAGE GENERATION
MODEL

CodeT5 is an encoder-decoder model based on the T5 architecture
from Salesforce Research [21, 27]. CodetT5 introduces a few new PL-
speci�c pre-training objectives that aim to improve its performance
on code generation and summarization. Several checkpoints of
the CodeT5 model were released. We use the CodeT5base multi sum,
which is a version of CodeT5base �ne-tuned on code summarization
task on the CodeSearchNet Challenge [10].

The model has 220 million parameters and is composed of 12 layers.
Each layer has a hidden state size of 768. The model also uses
multi-head attention, with 12 heads.

7.1 Input/Output representation
For CodeT5, the input is the commit patch (PL) and the label is
the commit message (NL). The patch and message are limited to
1 024 and 128 tokens, respectively. Both are padded or truncated to
their maximal length. The model should be neither rewarded nor
punished for predicting padding tokens. Thus, they are replaced by
�100, which excludes it from the loss calculation.

The output is the top 5 predictions found using beam-search with
7 beams and conditioned by a minimal length of 4 tokens and a
maximal length of 128 tokens.

7.2 Finetuning
The objective for �netuning the CodeT5 model is summarization10.
The training process utilizes Pytorch Lighting and the AdamW
optimizer. A learning rate of 54 � 5 is employed, with 1 000 warm-
up steps. The training batch size and accumulate gradient steps
are both set to 16. The training loop runs on 2 Nvidia A40 GPUs,
which results in an e�ective batch size of 512. An early stopping
mechanism is implemented, where if the evaluation learning rate
ceases to decrease for three consecutive epochs, the process will
terminate. No �xed minimum or a maximum number of epochs is
speci�ed.

Furthermore, we monitor the learning progress using the smoothed
BLEU-4 [20] score. BLEU-4 is commonly used to evaluate machine
translations [5, 8, 27]. BLEU-4 algorithm counts the number of
matching n-grams (from 1 to 4). The score is bounded: 0 B2>A4 1
where 0 means no matching n-grams and 1 represents a perfect
match.

The de�nition of BLEU-4 is as follows

⌫!⇢* -4 = ⌫% ⇤ exp(
4’

==1

1
4
log?=)

, where ⌫% stands for brevity penalty; punishes translations that
are too short compared to the label, ?= stands for modi�ed un-
igram precision; �xes the issues of word repetition for unigram
precisions11

10This goal could be also interpreted as a translation problem. From the language of
code to the language of commit messages
11For example, source sequence "the cat" translated as "the the" would achieve 2/2
precision, while it only achieves 1/2 modi�ed unigram precision. [20]

https://huggingface.co/spaces/mamiksik/commit-message-autocomplete
https://huggingface.co/Salesforce/codet5-base-multi-sum

TScIT 37, July 8, 2022, Enschede, The Netherlands Martin Miksik

Live demo is located at mamiksik/commit-message-generator.
A few examples of generated messages can also be found in the
appendix.

8 INTEGRATED DEVELOPMENT
ENVIRONMENT INTEGRATION

We develop an integration for the JetBrains Platform (e.g. PyCharm,
IntelliJ, PHPStorm) and for Visual Studio Code (VSCode). The plu-
gin seamlessly integrates with the built-in commit interface. For
instance, predictions are only generated based on changes selected
in the user interface rather than the direct output of the ‘$ git di�‘
command.

The predictions are presented to the user in the integrated auto-
complete dialogue, which can be activated by pressing ‘Ctrl+Space‘
on Linux and Windows or ‘Cmd+Space‘ on a Mac. New predictions
are also generated every time the typed message ends with an
empty space. The plugin for JetBrains Platform is available in the
Jebrains Marketplace under the name Parrot - AI Commit Message
Autocomplete or at �mamiksik/parrot-intellij, and the VSCode
plugin is available at �mamiksik/parrot-vscode

The plugin is complemented by a Hypertext Transfer Protocol
(HTTP) server that can be run locally (in Python venv or Docker
Container), which takes care of providing the predictions. The
client-server architecture mitigates resource waste, as a single
server can service multiple running code editor instances. It is
located at �mamiksik/parrot-server.

9 EVALUATION
In this section, the empirical results of our model’s e�ectiveness
are presented. Each model is tested using quantitative means. The
Commit Message Generation model is also evaluated qualitatively.

9.1 Auto-completion Model
The accuracy metric is used to quantitatively evaluate the autocom-
pletion (i.e. the masked token replacement task). Accuracy provides
a clear insight into the percentage of masked tokens that the model
can accurately recover from the given context. The �ne-tunedmodel
is compared to the CodeBERTabase and to RoBERTabase models.

Table 3: Accuracy (in %) on the test dataset for the autocom-
pletion model (- is weighted average)

Model - Java Go PHP JS Ruby Python

RoBERTa 37.4 32.1 39.7 30.6 36.0 38.7 41.3
CodeBERT 34.8 34.3 33.5 30.6 33.2 35.7 37.0

Parrot 64.7 67.4 63.3 64.9 64.3 64.6 64.6

The results in table 3 show that the overall performance of our
model after �ne-tuning for the mask token replacement task is
almost double the baseline. Furthermore, the performance is equiv-
alent across all supported programming languages.

The model evaluated in table 3 can be found at CodeBERTa-
commit-message-autocomplete revision #cf7f2e5.

9.2 Commit Message Generation Model
In quantitative testing, the �ne-tuned model was compared to the
CodeT5base multi sum model12. The BLEU-4 metric is computed on
the whole test dataset as well as, for each programing language
separately. The combined score shows that the �ne-tuned model
outperforms the base model by over 10 % (Table 4). The �ne-tuned
model performs best for input in Go and worst in input in PHP.
This is a surprising result considering that the number of examples
for PHP was almost double (see table 1). It would suggest that the
scraped commit messages for PHP are of worse quality, since the
original model performs better on PHP summarization than on Go
summarization [27].

The model evaluated in table 4 can be found at T5-commit-
message-generation revision #fb08d01.

For qualitative testing, 10 examples are randomly sampled from the
test data subset and commit messages are generated for them. We
asked 2 experienced developers (+3 years of experience) to evaluate
the generated messages based on the patch and compare them
to the original commit message (ground truth) as well. Next, the
developers are asked to write a short summary of their impressions.

Tester 1:

The tool seems to be very good at identifying what parts of
code the commit touches, even if the �x has something to do
with responsivity, performance, or other abstract concepts.
It does sometimes blunder the exact nature of the change,
however, labelling general �xes as "�xing typos" or getting
confused about whether something was added or removed.
The commit messages generated follow conventions and
seem appropriate for usage in real-world scenarios.

Tester 2:

The generated commit messages are well-structured and
follow the standard message conventions. While not all
messages captured the changes accurately, they could work
as a good starting point. On the other hand, the generated
messages for simple code changes could be used without
any modi�cation.

Table 4: Results of BLEU-4 metric (in %) on the test dataset.
We implemented the T5 training loop in Huggigface trainer
(hf) and Pytorch Lighting (pl) (- is weighted average)

Model - Java Go PHP JS Ruby Python

CodeT5 0.32 0.29 0.41 0.34 0.27 0.29 0.51
Parrothf 8.88 2.31 8.26 3.57 8.79 8.62 10.13
Parrotpl 11.54 4.75 14.68 3.99 12.64 10.08 13.05

12We contacted the authors of PtrGNCMsg with an inquiry about the model and
received no answer. Authors of CoRec responded, however, they have deleted their
model, thus they were unable to provide it for testing.

https://huggingface.co/spaces/mamiksik/commit-message-generator
https://plugins.jetbrains.com/plugin/20738-parrot--ai-commit-message-autocomplete
https://github.com/mamiksik/parrot-intellij
https://github.com/mamiksik/parrot-vscode
https://github.com/mamiksik/parrot-server
https://huggingface.co/mamiksik/CodeBERTa-commit-message-autocomplete
https://huggingface.co/mamiksik/CodeBERTa-commit-message-autocomplete
https://huggingface.co/mamiksik/T5-commit-message-generation
https://huggingface.co/mamiksik/T5-commit-message-generation

Fine-Tuning Transformer Models for Commit Message Generation and Autocompletion TScIT 37, July 8, 2022, Enschede, The Netherlands

(a) IntelliJ, Commit message autocompletion by the message genera-
tion model

(b) VSCode, Commit message prediction by the message generation
model

Figure 9: Integration with VSCode and IntelliJ

Table 5: Inference latency. Sampled 1 000 times on M1 Pro
(CPU) and Nvidia GPUs (Titan X, A40).

Model Size M1 Pro Titan X A40

Autocompletion ± 500 MB 333ms 32ms 15ms
Generation ± 890 MB 1.56s 311ms 331ms

10 FUTUREWORK
We found the latency of commit message generation to be the
biggest challenge during our research (see table 5). On that account,
future research could focus on optimizing the model for faster in-
ference. One method to do that is quantization13; which is a process
of replacing the �oating point weights with integer arithmetics.
This results in both smaller model sizes and faster inference [11].
Another optimization could involve exporting the model for ONNX
Runtime14, which is able to better utilize platform-speci�c ML ac-
celerators (Such as CoreML on macOS or DirectML on Windows).

Furthermore, we suggest developing a model for commit accuracy
classi�cation, which could be integrated into IDE in a form of a
tra�c light. That would signal to the developer that their commit
message accurately captures staged changes.

11 CONCLUSION
In this paper, we present two �ne-tuned transformer models for
commit message completion and generation. The autocompletion
model is based on the encoder-only model CodeBERTa, while the
message generation model is based on the encoder-decoder CodeT5
model. For �ne-tuning, we collect (and publish) a dataset of about
77K samples of commit message and patch pairs in 6 di�erent
programming languages. The �netuned models achieve 2x and
10x better performance compared to the base models respectively.
Lastly, we develop an extension for both the IntelliJ platform and

13Using tools such as Huggingface Optimum or Intel Neural Compressor
14https://onnxruntime.ai

Visual Studio Code, that integrates our models into the native git
user interface in the given code editors.

On that account, we ful�lled the three goals we set in the beginning.
That is: (1) Support multiple programming languages, (2) Leverage
pre-trained transformer-based models, to circumvent the necessity
for large training datasets, (3) Developing convenient integration
with modern code editors (e.g. VSCode, IntelliJ), in order to enable
simpler adoption and frictionless developer experience.

REFERENCES
[1] [n. d.]. Conventional Commits. https://www.conventionalcommits.org/en/v1.0.

0/
[2] Rana Alkadhi, Manuel Nonnenmacher, Emitza Guzman, and Bernd Bruegge.

2018. How do developers discuss rationale? 25th IEEE International Conference
on Software Analysis, Evolution and Reengineering, SANER 2018 - Proceedings
2018-March (4 2018), 357–367. https://doi.org/10.1109/SANER.2018.8330223

[3] Raymond P L Buse and Westley Weimer. 2010. Automatically Documenting
Program Changes. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering. 33–42. https://doi.org/10.1145/1858996.1859005

[4] Scott Chacon and Ben Straub. [n. d.]. Git - Contributing to a Project.
https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-
Project#_commit_guidelines

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Bal-
aji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N Carr, Jan
Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained on Code. (2021). https:
//www.github.com/openai/human-eval.

[6] Luis Fernando Cortes-Coy, Mario Linares-Vasquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On automatically generating commit messages via sum-
marization of source code changes. In Proceedings - 2014 14th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation, SCAM
2014. Institute of Electrical and Electronics Engineers Inc., 275–284. https:
//doi.org/10.1109/SCAM.2014.14

[7] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies - Proceedings of
the Conference 1 (10 2018), 4171–4186. https://doi.org/10.48550/arxiv.1810.04805

https://huggingface.co/docs/optimum/index
https://github.com/intel/neural-compressor
https://onnxruntime.ai
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1145/1858996.1859005
https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#_commit_guidelines
https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#_commit_guidelines
https://www.github.com/openai/human-eval.
https://www.github.com/openai/human-eval.
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.48550/arxiv.1810.04805

TScIT 37, July 8, 2022, Enschede, The Netherlands Martin Miksik

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. Findings of the
Association for Computational Linguistics Findings of ACL: EMNLP 2020 (2020),
1536–1547. https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139

[9] Yuan Huang, Nan Jia, Hao-Jie Zhou, Xiang-Ping Chen, Ieee Zi-Bin Zheng, Senior
Member, and Ming-Dong Tang. 2020. Learning human-written commit messages
to document code changes. JOURNAL OF COMPUTER SCIENCE AND TECHNOL-
OGY 35, 6 (2020), 1258–1277. https://doi.org/10.1007/s11390-020-0496-0

[10] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Github Miltiadis, and Allama-
nis Marc Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State
of Semantic Code Search. arXiv preprint arXiv:1909.09436 (9 2019). https:
//doi.org/10.48550/arxiv.1909.09436

[11] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2017. Quantization and
Training of Neural Networks for E�cient Integer-Arithmetic-Only Inference.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (12 2017), 2704–2713. https://doi.org/10.48550/arxiv.1712.
05877

[12] Siyuan Jiang and Collin McMillan. 2017. Towards Automatic Generation of
Short Summaries of Commits. In IEEE International Conference on Program
Comprehension. IEEE Computer Society, Buenos Aires, Argentina, 320–323.
https://doi.org/10.48550/arxiv.1703.09603

[13] Tae Hwan Jung. 2021. CommitBERT: Commit Message Generation Using Pre-
Trained Programming Language Model. NLP4Prog 2021 - 1st Workshop on Natural
Language Processing for Programming, Proceedings of theWorkshop (5 2021), 26–33.
https://doi.org/10.48550/arxiv.2105.14242

[14] Andrew J. Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in
collocated software development teams. In Proceedings - International Conference
on Software Engineering. IEEE Computer Society, USA, 344–353. https://doi.org/
10.1109/ICSE.2007.45

[15] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on Software Engineering
32, 12 (12 2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[16] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How Software
Engineers Use Documentation: The State of the Practice. IEEE Software 20, 6 (11
2003), 35–39. https://doi.org/10.1109/MS.2003.1241364

[17] Mario Linares-Vasquez, Luis Fernando Cortes-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. ChangeScribe: A Tool for Automatically Generating Commit
Messages. Proceedings - International Conference on Software Engineering 2 (8
2015), 709–712. https://doi.org/10.1109/ICSE.2015.229

[18] Qin Liu, Zihe Liu, Hongming Zhu, Hongfei Fan, Bowen Du, and Yu Qian. 2019.
Generating commit messages from di�s using pointer-generator network. IEEE
International Working Conference on Mining Software Repositories 2019-May (5
2019), 299–309. https://doi.org/10.1109/MSR.2019.00056

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov, and Paul G Allen. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint
arXiv:1907.11692 (7 2019). https://doi.org/10.48550/arxiv.1907.11692

[20] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics - ACL ’02 (2002),
311–318. https://doi.org/10.3115/1073083.1073135

[21] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the Limits
of Transfer Learning with a Uni�ed Text-to-Text Transformer. Journal of Machine
Learning Research 21 (10 2019), 1–67. https://doi.org/10.48550/arxiv.1910.10683

[22] Zephyrin Soh, Foutse Khomh, Yann Gael Gueheneuc, and Giuliano Antoniol. 2013.
Towards understanding how developers spend their e�ort during maintenance
activities. In Proceedings - Working Conference on Reverse Engineering, WCRE.
Koblenz, Germany, 152–161. https://doi.org/10.1109/WCRE.2013.6671290

[23] Yingchen Tian, Yuxia Zhang, Klaas Jan Stol, Lin Jiang, and Hui Liu. 2022. What
Makes a Good Commit Message? Proceedings - International Conference on Soft-
ware Engineering 2022-May (2022), 2389–2401. https://doi.org/10.1145/3510003.
3510205

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in Neural Information Processing Systems 2017-December (6
2017), 5999–6009. https://doi.org/10.48550/arxiv.1706.03762

[25] Haoye Wang, David Lo, John Grundy, Xin Xia, Qiang He, and Xinyu Wang.
2021. Context-Aware Retrieval-based Deep Commit Message Generation. ACM
Reference Format (2021). https://doi.org/10.1145/nnnnnnn.nnnnnnn

[26] Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung
Won Chung, Iz Beltagy, Julien Launay, Colin Ra�el, and Hugging Face. 2022.
What Language Model Architecture and Pretraining Objective Work Best for
Zero-Shot Generalization? The BigScience Architecture & Scaling Group. https:
//github.com/bigscience-workshop/architecture-objective.

[27] Yue Wang, Weishi Wang, Sha�q Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identi�er-aware Uni�ed Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021. Association for Computa-
tional Linguistics (ACL), 8696–8708. https://doi.org/10.48550/arxiv.2109.00859

[28] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clément Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics (ACL), Online, 38–45. https://doi.org/10.18653/V1/2020.EMNLP-
DEMOS.6

A EXAMPLES OF GENERATED COMMIT
MESSAGES

func (container *Container) Attach(stdin io.ReadCloser,
õ! stdinCloser io.Closer, s

} else {
_, err = io.Copy(cStdin, stdin)
}

+ if err == io.ErrClosedPipe {
+ err = nil
+ }

if err != nil {
utils.Errorf(�attach: stdin: %s�, err)

}
- // Discard error, expecting pipe error
- errors <- nil
+ errors <- err

}()
}

}

Ground Truth Ignore errclosedpipe for stdin in con-
tainer.attach

ChatGPT Handling io.ErrClosedPipe when copying
stdin and sending error value to errors chan-
nel

Parrot Ignore errclosedpipe when attaching stdin

Figure 10: Example 1 (Adapted from test dataset)

- a/.github/workflows/pylint.yml
+ b/.github/workflows/codestyle_checks.yml

- name: Analysing the code with pylint
run: |
pylint --rcfile=.pylintrc webapp core

+ - name: Analysing the code with flake8
+ run: |
+ flake8

Ground Truth Add �ake8 as GitHub action
ChatGPT Renamework�ow �le and add �ake8 checks

for code style consistency
Parrot Add �ake8 to codestyle_checks.yml

Figure 11: Example 2 for unsuported language (YAML)
(adapted from a personal private repository)

https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.1007/s11390-020-0496-0
https://doi.org/10.48550/arxiv.1909.09436
https://doi.org/10.48550/arxiv.1909.09436
https://doi.org/10.48550/arxiv.1712.05877
https://doi.org/10.48550/arxiv.1712.05877
https://doi.org/10.48550/arxiv.1703.09603
https://doi.org/10.48550/arxiv.2105.14242
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/ICSE.2015.229
https://doi.org/10.1109/MSR.2019.00056
https://doi.org/10.48550/arxiv.1907.11692
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arxiv.1910.10683
https://doi.org/10.1109/WCRE.2013.6671290
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.48550/arxiv.1706.03762
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/bigscience-workshop/architecture-objective.
https://github.com/bigscience-workshop/architecture-objective.
https://doi.org/10.48550/arxiv.2109.00859
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6

Fine-Tuning Transformer Models for Commit Message Generation and Autocompletion TScIT 37, July 8, 2022, Enschede, The Netherlands

- return JsonLDUtils.jsonLdGetStringList(
- this.getJsonObject(), Keywords.CONTEXT).stream().map(
- JsonLDUtils::stringToUri).collect(Collectors.toList());
+ List<String> contextStrings =
+ JsonLDUtils.jsonLdGetStringList(this.getJsonObject(),
+ Keywords.CONTEXT);
+ return contextStrings == null ? null : contextStrings
+ .stream().map(JsonLDUtils::stringToUri)
+ .collect(Collectors.toList());

Ground Truth �x: Fix potential null pointer exception.
ChatGPT Fix null pointer exception in context string

list processing
Parrot Handle null in JsonLDU-

tils.jsonLdGetStringList

Figure 12: Example 3 Source: decentralized-identity/jsonld-
common-java

+ import io
import logging
import os
import re
def open_maybe_zipped(fileloc, mode=�r�):

���
_, archive, filename =

õ! ZIP_REGEX.search(fileloc).groups()
if archive and zipfile.is_zipfile(archive):

- return zipfile.ZipFile(archive, mode=mode)
- .open(filename)
+ return io.TextIOWrapper(zipfile.ZipFile
+ (archive, mode=mode).open(filename))

else:
return open(fileloc, mode=mode)

Ground Truth �x reading from zip package to default to
text

ChatGPT Replace zip�le.open with io.TextIOWrapper
for handling zipped �les

Parrot Fix error when reading from zip package

Figure 13: Example 4 (adapted from the test dataset)

public function sharedGet($path) {
$contents = ��;

- $handle = fopen($path, �r�);
+ $handle = fopen($path, �rb�);

if ($handle) {
try {
if (flock($handle, LOCK_SH)) {

- while (! feof($handle)) {
- $contents .= fread($handle, 1048576);
- }
+ clearstatcache(true, $path);
+
+ $contents = fread($handle, $this->size($path) ?: 1);
+
+ flock($handle, LOCK_UN);

}
} finally {
fclose($handle);

Ground Truth �x unix socket
ChatGPT Changed �le open mode for $path from ’r’

to ’rb’ for binary safe reading and added
clearstatcache() and �ock() for �le locking
and unlocking

Parrot �x unix socket issue

Figure 14: Example 5 (adapted from the test dataset)

https://github.com/decentralized-identity/jsonld-common-java/commit/4e447e2de03b926822985bd6196103fe852a7e52?diff=unified
https://github.com/decentralized-identity/jsonld-common-java/commit/4e447e2de03b926822985bd6196103fe852a7e52?diff=unified

	Abstract
	1 Introduction
	2 Related Work
	3 Selection of commit message style
	4 Dataset Preparation
	4.1 Collecting Raw Data
	4.2 Dataset cleanup
	4.3 Dataset overview

	5 Architecture Selection
	6 The Autocompletion Model
	6.1 Input/Output representation
	6.2 Finetuning

	7 The Commit Message Generation Model
	7.1 Input/Output representation
	7.2 Finetuning

	8 Integrated Development Environment Integration
	9 Evaluation
	9.1 Auto-completion Model
	9.2 Commit Message Generation Model

	10 Future Work
	11 Conclusion
	References
	A Examples of generated commit messages

