
A Derivative-based, Colored-edged Parser Generator for Nested Words

BAS MARCELIS, University of Twente, The Netherlands

The language class of nested words lies between regular- and context-free

languages on the Chomsky hierarchy. It combines the expressiveness of hier-

archy from context-free languages with the robustness of regular languages.

An optimised parser generator for this language would be promising, as the

nesting of words can be seen in multiple popular programming languages,

such as HTML, JSON, and XML, proving the popularity of its applications.

This research combines a derivative-based parser with colored nested words

to provide a parser generator for well-matched VPGs that accepts ambi-

guity and returns all possible parse trees, while also having proper error

handling by accepting pending calls. The performance of a prototype based

on these findings is linear complexity for unambiguous grammars and linear

complexity for every possible parse tree for ambiguous grammars, which is

proven in both theory and practice.

Additional Key Words and Phrases: Nested words, Visibly Pushdown Au-

tomata, VPA, NWA, Parser generator, Derivative-based Parsing, Colored

Nested Words

1 INTRODUCTION

In 2004, Alur andMadhusudan proposed the language class of nested

words [2] which lies between regular- and context-free languages on

the Chomsky hierarchy [6]. Nested words describe regular grammars

with nesting as its only non-regular property. This intermediate

class combines the expressiveness of hierarchy from context-free

languages with the robustness of regular languages. An example of

a use case of nested words can be seen in HTML.

Example Grammar 1.

𝑆 =⇒< 𝑝 > 𝑆∗ < /𝑝 >

Example Grammar 1 defines a grammar rule which nests multiple

statements (𝑆) as a paragraph. In this case, < 𝑝 > and < /𝑝 > indi-

cate the start and end of the nesting of the paragraph, respectively.

Nesting of words does not limit itself to HTML, this dual linear-

hierarchical structure is present more often, including in executions

of structured programs, annotated linguistic data, XML, JSON, Mark-

down, and more [3]. These languages that contain balanced strings

of opening and closing symbols are formally called Dyck languages

[7].

Synonymous to nested word languages are Visibly Pushdown

Languages (VPLs), described by Visibly Pushdown Grammars (VPGs)

and modelled by Visibly Pushdown Automata (VPAs) [2]. VPAs have

the same complexity for decision problems as pushdown automata

for context-free grammars, while being more compact [3], which

makes them more applicable to nested word languages. Resultingly,

an optimised nested words parser generation can provide improved

efficiency and robustness to languages of its class compared to the

use of a CFG parser generator. Currently, there is only one publicly

TScIT 38, February 3, 2023, Enschede, The Netherlands

© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

available parser generator for nested words grammars named OWL

[9], which was found to fail to deliver its promised near-linear

performance [15]. Resultingly, while the use cases of nested words

parser generators seem promising, there are no optimised publicly

available parsers that support this.

This paper considers an optimised parser generator to be flexi-

ble and efficient. First of all, flexibility is considered as accepting

ambiguous grammars and inputs and returning a parse forest with

all possible derivations. This paper aims to achieve this using a

derivative-based approach, which will be discussed in Section 3.

Consequently, the first research question is the following:

RQ1: How can a derivative-based parser generator ex-

tract all possible derivations from well-matched VPGs?

Well-matched VPGs are in a normal form which is similar to the

Greibach normal form (GNF) [8] but specifically for VPGs. In this

form, opening and closing symbols of scopes have to be defined in

the same rule. This form will be further defined in Section 2.

To further increase flexibility, this paper aims to provide error

handling, since nested words languages are notoriously prone to

forgetting closing tags. Accordingly, the second research question

is the following:

RQ2: How can error handling be designed to repair

some common defects automatically?

Efficiency is considered as parsing with linear complexity for unam-

biguous grammars and linear complexity for every possible deriva-

tion for ambiguous grammars. Therefore, the third research question

is the following:

RQ3: What is the best possible performance of the

generated parser?

The framework provided in theory in this paper is also brought

into practice by a Java implementation [12], to further back its

efficacy. All definitions, algorithms, etc. discussed in the paper can

be found in practice in the implementation, which can be accessed

by following the link in the bibliography [12]. Additionally, the

implementation is used to determine practical performance, which

can be compared to its theoretical performance.

This paper is structured as follows. Section 2 discusses the for-

mal definition of nested words and their corresponding automata.

Additionally, its subsection describes the grammar form for nested

word grammars, as used in this paper. Then, Section 3 describes

the derivative-based framework used for nested words parsing. It

discusses parsing with derivates, the PDA framework (Subsection

3.1), the recognizing PDA (Subsection 3.2), parsing into a parse for-

est (Subsection 3.3), pruning the Parse Forest (Subsection 3.4), and,

finally, extracting all Parse Trees (Subsection 3.5). Then, Section 4

describes an intuitive approach to handling pending calls. Section

5 describes the performance of the provided frameworks, both in

theory and in practice. Then finally, Section 6 concludes and Section

7 discusses the limitations of the framework and potential future

work.

1



TScIT 38, February 3, 2023, Enschede, The Netherlands Bas Marcelis

2 DEFINITION OF NESTED WORDS

VPGs define nesting with a specific call and return symbol, which

can be used to control the stack of the VPA. Therefore, the alphabet

of a VPL is partitioned into three disjoint finite alphabets: Σ𝑐 is a

finite set of call symbols which open the nesting and can push the

stack, Σ𝑟 is a finite set of return symbols which close the nesting

and can pop the stack, and Σ𝑖𝑛𝑡 is a finite set of internal symbols

which do not correspond to any nesting or action on the stack [2].

The entire VPL alphabet is the union of these three disjoint sets.

Additionally, the stack is limited to a finite stack alphabet. These

are the alphabets used by the VPA, which is formally defined by

Alur et al. as the following.

Definition 2.1. AVisibly PushdownAutomaton (VPA) on finite

words over ⟨Σ𝑐 , Σ𝑟 , Σ𝑖𝑛𝑡 ⟩ is a tuple𝑀 = (𝑄,𝑄𝑖𝑛, Γ, 𝛿,𝑄𝐹 ) where 𝑄
is a finite set of states, 𝑄𝑖𝑛 ⊆ 𝑄 is a set of initial states, Γ is a finite

stack alphabet that contains a special bottom-of-stack symbol ⊥,
𝛿 ⊆ (𝑄 × Σ𝑐 ×𝑄 × (Γ\{⊥})) ∪ (𝑄 × Σ𝑟 ×𝑄 × Γ) ∪ (𝑄 × Σ𝑖𝑛𝑡 ×𝑄),
and 𝑄𝐹 ⊆ 𝑄 is a set of final states [2, p. 204].

Transitions in the VPAs are as follows.

• (𝑞, 𝑐, 𝑞′, 𝛾) ⊆ (𝑄 × Σ𝑐 ×𝑄 × (Γ\{⊥})) is a call transition, go-
ing from state 𝑞 to 𝑞′, consuming 𝑐 ∈ Σ𝑐 , pushing 𝛾 ∈ (Γ\{⊥
}) to the stack.

• (𝑞, 𝑐, 𝑞′, 𝛾) ⊆ (𝑄 × Σ𝑟 ×𝑄 × Γ) is a return transition, going

from state 𝑞 to 𝑞′, consuming 𝑐 ∈ Σ𝑟 , popping 𝛾 ∈ Γ to the

stack.

• (𝑞, 𝑐, 𝑞′) ⊆ (𝑄 × Σ𝑖𝑛𝑡 ×𝑄) is an internal transition, going

from state 𝑞 to 𝑞′, consuming 𝑐 ∈ Σ𝑐 , without a stack action,

as the symbol is an internal symbol.

Additionally, the accepting states𝑄𝐹 ⊆ 𝑄 in a VPA can be limited

to the stack being empty, but do not have to be. Some frameworks

require an empty stack to accept an input [10], while others omit

this requirement to accept unmatched calls [14]. The framework

provided in this paper requires an empty stack for acceptance be-

cause it handles pending calls in an alternative method, as will be

discussed in Section 4.

The main difference between nested words grammars and CFGs

is that in nested words grammars the stack is limited to a stack

vocabulary and only specified (call and return) symbols can control

the stack. Then, a created PDA can be much more succinct, as during

the construction it is known which symbols can cause stack actions

for every state in the PDA.

Finally, the class of VPLs, modelled by VPAs, is closed under

union, intersection, complementation, renaming, concatenation,

and reflexive-transitive closure [2].

2.1 Well-Matched Grammars

Grammar Specifications for VPLs can be either well-matched, where

the call and return symbol are required to be in the same rule, or

general, where pending rules are also accepted. The framework

provided in this paper requires well-matched grammars, to keep

it clear which symbols are internal, call, or return and which call

and return symbols are paired. Rules in well-matched VPGs can be

defined as a GNF-like form [8], where every nested words grammar

can be transformed to it. Therefore, well-matched VPGs with their

GNF-like form are defined as follows:

Definition 2.2. Awell-matchedVPG (𝑉 , Σ, 𝑃, 𝐿0) is awell-matched

VPG with respect to the partitioning Σ = Σ𝑖𝑛𝑡 ∪ Σ𝑐 ∪ Σ𝑟 , if every

production rule in 𝑃 is in one of the following forms [10, p. 151:3].

(1) 𝐿 =⇒ 𝜖 , where 𝜖 stands for the empty string

(2) 𝐿 =⇒ 𝑐𝐿1, where 𝑐 ∈ Σ𝑖𝑛𝑡 and 𝐿1 ∈ 𝑉
(3) 𝐿 =⇒ ⟨𝑎𝐿1𝑏⟩𝐿2, where ⟨𝑎 ∈ Σ𝑐 , 𝑏⟩ ∈ Σ𝑟 , 𝐿1 ∈ 𝑉 , and 𝐿2 ∈ 𝑉

This form of well-matched VPGs is used in the rest of the paper to

represent VPGs and is a required form for the construction of the

PDA and for parsing.

3 DERIVATIVE-BASED PARSING

Derivative parsing was introduced in 1964 by Brzozowski [4]. Lan-

guages are then seen as a set of all possible words, which get re-

peatedly "filtered" and "chopped" by a derivative function [13]. The

derivative function does this by considering a symbol and returning

all remaining possible words in the language after consuming that

symbol. The formal definition of the derivative functions is:

𝛿𝑐 (𝐿) = {𝑤 | 𝑐𝑤 ∈ 𝐿}

Where, for example:

𝛿𝑎{𝑎𝑎𝑎, 𝑎𝑏𝑐, 𝑏𝑏𝑏} = {𝑎𝑎, 𝑏𝑐}

To parse an input, this derivative function is repeated for every

character in the input. If the final language contains the empty

string, then the input word is recognized.

Brzozowski introduced derivatives for regular languages, but

recently Might et al. [13] extended this to CFGs and added laziness,

memoization and fixed points to improve efficiency. Due to the

power of the simplicity of this derivative framework, it handles

ambiguity, left-recursion, and right-recursion.

However, the framework in this paper, based on Jia et al. [10] is

not exactly the same as parsing with derivatives, but is derivative-

based. It accepts ambiguity, but, as it requires VPGs to be in the

form as described previously, it does not support left recursion.

This derivative-based framework creates a PDA where all states and

transitions are based on the derivation on all configurations.

Definition 3.1. A Configuration is (𝑆,𝑇 ), where 𝑆 is the cur-

rent state and 𝑇 is the current stack. A configuration represents a

language; it represents the input words that can reach that configu-

ration in the PDA.

The derivative function 𝛿𝑐 (𝑆,𝑇 ) takes the derivative of that con-
figuration for a character 𝑐 , resulting in the set of remaining config-

urations. Thus, this framework is derivative-based, in the sense that,

using this derivative function on configurations, a PDA can be con-

structed by repeatedly considering all newly derived configurations,

and creating corresponding states and transitions.

3.1 PDA Framework

The foundational PDA used in this paper is based on the PDA rec-

ognizer construction algorithm for well-matched VPGs from Jia et

al. [10]. Every state in this PDA contains a set of non-terminal pairs

(𝐿1, 𝐿2) ∈ 𝑉 ×𝑉 where 𝐿1 is the current context and 𝐿2 is the next

2



A Derivative-based, Colored-edged Parser Generator for Nested Words TScIT 38, February 3, 2023, Enschede, The Netherlands

non-terminal. The current context changes when a call symbol is

consumed and is changed back to the old context when it consumes

the corresponding return symbol. Therefore, only nesting rules can

change the current context.

Example Grammar 2. ([10, 151:5])

𝐿0 =⇒ 𝑐𝐿1

𝐿1 =⇒ ⟨𝑎𝐿2𝑏⟩𝐿3

Example Grammar 2 displays the example grammar of Jia et al.

[10, 151:5] to further illustrate the use case of non-terminal pairs.

The first state should start in state {(𝐿0, 𝐿0)} as the current context
and current rule are 𝐿0. Then, if 𝑐 is consumed, the first rule is

applied and the PDA transitions to state {(𝐿0, 𝐿1)}, as 𝐿1 becomes

the new next non-terminal. Next, upon encountering call symbol ⟨𝑎,
the PDA transitions to state {(𝐿1, 𝐿2)} using the second rule, as there
is a new context 𝐿1 (due to the nesting) and 𝐿2 becomes the new

next non-terminal. Then, in context 𝐿2, the PDA consumes input

until return symbol 𝑏⟩, where it goes to state {(𝐿0, 𝐿3)}, returning
to context 𝐿0 and having next non-terminal 𝐿3.

Also, note that states contain sets of non-terminal pairs, which

is to handle ambiguity. Normally, nondeterministic pushdown au-

tomata are more expressive than deterministic ones, therefore, non-

deterministic pushdown automata are also more expressive than

a deterministic VPA [3]. However, the previously mentioned VPA

handles non-determinism or ambiguity in a different manner; Ev-

ery state contains a set of non-terminal pairs and if there is non-

determinism or ambiguity, then there will be only one transition

with a destination state containing the set of all possible non-terminal

pair destinations. Therefore, the resulting PDA will always be de-

terministic while still handling ambiguity and non-determinism.

While this framework handles ambiguous words, it does not sup-

port ambiguous nesting. This means that rules cannot exist if they

contain a calling or returning symbol which is also a calling or

returning symbol in another rule. This does not take away from

the expressiveness of the context of the grammar, as different con-

texts inside or after a nesting can contain an 𝑂𝑅 on a deeper level

in the grammar, to cover all the contexts. It only takes away the

possibilities to use the same symbol in different nesting rules.

Example Grammar 3.

𝐿 =⇒ 𝑎𝐿0 | 𝑎𝐿1

Example Grammar 3 displays how ambiguity is handled. The start

state is {(𝐿, 𝐿)} and can continue to either (𝐿, 𝐿0) or (𝐿, 𝐿1) when
consuming 𝑎. Therefore, the PDA will contain a transition from

{(𝐿, 𝐿)}, consuming 𝑎, to destination state {(𝐿, 𝐿0), (𝐿, 𝐿1)}, which,
in this case, is the only transition.

3.2 Recognizing

The recognizer PDA is constructed by repeatedly considering all

possible outward call-, return-, and internal transitions from the

new states from the previous run, until the PDA converges when

there are no more new states.

The stack in the PDA contains pairs [𝑆, ⟨𝑎], where 𝑆 is a state and

⟨𝑎 ∈ Σ𝑐 . The derivative function 𝛿 is divided into 𝛿𝑐 for 𝑐 ∈ Σ𝑖𝑛𝑡 ,

𝛿⟨𝑎 for ⟨𝑎 ∈ Σ𝑐 , and 𝛿𝑏 ⟩ for 𝑏⟩ ∈ Σ𝑟 . They take the current state and

for 𝛿𝑏 ⟩ also the top of the stack, and they return the set of derived

states with a corresponding stack action.

The derivative functions are used to derive all possible next con-

figurations in the PDA, given a current state, a stack, and the pro-

duction rules. Therefore, they can be used in the construction of the

recognizer PDA, which is done by an algorithm that repeatedly con-

siders all newly possible states until there are no more new states,

indicating a converged PDA. During every loop, all derivations of

configurations for all new states are considered to create new states

and transitions.

This was only a brief overview of the derivative functions and

the PDA construction algorithm. Please read Jia et al. for further

details [10, p. 151:5 - 151:8].

3.3 Parsing

Because every transition is formed by considering a certain rule,

the recognizer PDA can be used to parse the input as well. In this

case, every transition keeps a list of all the possible rule applications

linked to the transitions. Then, after traversing the PDA, there is

a list of sets of rules where every set of rules corresponds to one

transition, where every rule is represented by a Parse Tree Edge.

Definition 3.2. A Parse Tree Edge (PTE) is a tuple representing

the use of a rule. Every transition in the recognizer PDA contains a

set of Parse Tree Edges, representing all possible rule application

for that transition

(1) (𝐿0, 𝑐, 𝐿1) where 𝑐 ∈ Σ𝑖𝑛𝑡 for rule 𝐿0 =⇒ 𝑐𝐿1
(2) (𝐿0, ⟨𝑎, 𝐿1) where ⟨𝑎 ∈ Σ𝑐 for rule 𝐿0 =⇒ ⟨𝑎𝐿1𝑏⟩𝐿2
(3) ((𝐿0, 𝐿1), 𝑏⟩, 𝐿2) where 𝑏⟩ ∈ Σ𝑟 for rule 𝐿0 =⇒ ⟨𝑎𝐿1𝑏⟩𝐿2

As the PTE describes a rule but also a transition of non-terminals, the

left-side of a PTE (𝐿0 for (1) and (2), and (𝐿0, 𝐿1) for (3)) is considered
the Origin Non-Terminal and the right-side PTE (𝐿1 for (1) and

(2), and 𝐿2 for (3)) is considered the Destination Non-Terminal

As seen in Definition 3.2, PTEs for internal- and call symbols

contain the previous non-terminal, the consumed symbol, and the

next non-terminal. However, PTEs for return symbols replace the

previous non-terminal for a tuple (𝐿0, 𝐿1) where 𝐿0 represents the
left-side non-terminal and 𝐿1 represents the previous context, both

corresponding to the rule 𝐿0 =⇒ ⟨𝑎𝐿1𝑏⟩𝐿2. This is done to distin-

guish returns from internal- and call for pruning and extracting,

which will be used in the following subsections on pruning and

extracting.

Then, after traversing the PDA, the PDA returns the Parse Forest.

Definition 3.3. The Parse Forest is a list of sets of PTEs with

length 𝑛 for an input word of length 𝑛, where every index 𝑖 in the

list contains a set of PTEs representing all possible rules to consume

the character at index 𝑖 in the input word.

3.4 Pruning

Because the created Parse Forest after the recognizer PDA contains

all possible rules for every symbol, there can be multiple PTEs in

the list of sets that are not included in any valid parse. Therefore,

the list requires pruning. Intuitively, a valid parse can be seen as a

valid sequence of PTEs, denoted as a valid trace.

3



TScIT 38, February 3, 2023, Enschede, The Netherlands Bas Marcelis

Definition 3.4. A Trace is a sequence of PTEs, which is a Valid

Trace if every PTE properly transitions into the next PTE until the

trace is finished and the symbols of all the PTEs in the trace form

the input word.

A stack is required to check a trace, to determine if every closed

scope was previously opened. Traces will be further discussed in

the subsection on Extraction. This notion of a valid trace is used to

prune the forest. Additionally, to check if PTE transitions are valid,

a nullability function is needed.

Definition 3.5. A non-terminal 𝐿 is said to be Nullable if there

exists a rule 𝐿 =⇒ 𝜖 . The nullability function 𝜃 returns whether a

given non-terminal is nullable.

This function is used in two cases: (1) The destination non-terminal

in the final PTE in a valid trace must nullable, since the trace must

end there. (2) When a scope is closed, PTEs do not properly link

(i.e., destination and following origin are not the same), as the trace

continues in the old contex. However, the destination non-terminal

of the last PTE before the return symbol must be nullable, as the

trace must properly end before return to the old context.

Algorithm 1 Pruning Algorithm

1: 𝑃𝐹 ← Parse Forest from the PDA

2: 𝑆 ← Stack of Non-Terminal Pairs

3: 𝑃𝐹 [𝑡𝑎𝑖𝑙] remove all 𝑃𝑇𝐸 where !𝜃 (𝑃𝑇𝐸)
4: for 𝑖 ← 𝑃𝐹 𝑙𝑒𝑛𝑔𝑡ℎ to 1 do

5: 𝑗 ← 𝑖 − 1
6: for 𝑃𝑇𝐸 𝑗 in 𝑃𝐹 [ 𝑗] do
7: (_, 𝑐 𝑗 , 𝐿𝑗 ) ← 𝑃𝑇𝐸 𝑗
8: if �(𝐿𝑖 , _, _) ∈ 𝑃𝐹 [𝑖], 𝐿𝑗 = 𝐿𝑖 and

�((𝐿𝑖0, 𝐿𝑖1), _, _) ∈ 𝑃𝐹 [𝑖], 𝜃 (𝐿𝑗 ) then
9: remove 𝑃𝑇𝐸 𝑗 from 𝑃𝐹 [ 𝑗]

10: else if 𝑐 𝑗 ∈ Σ𝑐 then
11: (𝐿0, 𝑐 𝑗 , 𝐿1) ← 𝑃𝑇𝐸 𝑗
12: if 𝑆𝑡𝑜𝑝 = (𝐿0, 𝐿1) then
13: pop 𝑆𝑡𝑜𝑝
14: else

15: remove 𝑃𝑇𝐸 𝑗 from 𝑃𝐹 [ 𝑗]
16: end if

17: else if 𝑐 𝑗 ∈ Σ𝑟 then
18: ((𝐿𝑗 , 𝐿𝑗2), 𝑐 𝑗 , _) ← 𝑃𝑇𝐸 𝑗
19: push (𝐿𝑖 , 𝐿𝑖2) to 𝑆
20: end if

21: end for

22: end for

Pruning is done by following traces in the parse forest backwards,

where PTEs get removed if they are invalid. This is done backwards

so that if a dead end is discovered, all PTEs in that invalid trace

can be deleted from the leaf to the root. Because this process is

backwards, stack actions are also reversed; A scope must before

closed before it is opened, where closing pushes the stack, and

closing pops the stack. Algorithm 1 displays the pseudocode of the

pruning algorithm. 𝑃𝐹 is the parse forest, which is a list of sets of

PTEs, created by the PDA traversal. Before discussing the algorithm,

note that PTEs can be assigned multiple times, as they need to be

casted to one of its types (see Definition 3.2).

First in the algorithm, in line 3, all PTEs in the tail of 𝑃𝐹 which

have a non-nullable non-terminal destination, are removed, as men-

tioned before. Then, lines 4 and 5 represent going backwards in

the parse forest, where 𝑖 is the index of the previously pruned set,

which goes backwards through the for-loop, and 𝑗 is the index of

the current set to be pruned, based on 𝑖 .

The first condition in line 8 checks whether there exists a PTE in

set 𝑖 which has an origin non-terminal that equals the destination

non-terminal of the currently checked PTE𝑗 , because if it does, it

indicates that PTE𝑗 transitions validly to PTE𝑖 for a call or internal

symbol. The second condition in line 8 checks whether PTE𝑗 ’s

destination non-terminal is nullable and whether there exists a PTE

in set 𝑖 which continues a parent scope. If such an edge exists, it

indicates that PTE𝑗 transitions validly to PTE𝑖 for a return symbol.

Summing up line 8, if in neither of these cases such a PTE exists,

then the edge is invalid and is removed in line 9.

Line 10 checks if the current PTE opens a scope, and line 11 checks

if the stack corresponds to this call. If there is a call symbol which

does not correspond to a previously closed scope, then the PTE is

invalid and is removed in line 15. If it does correspond to the stack

top, then the stack is popped in line 13. Line 17 checks if a scope

is closed, and line 19 pushes the stack if so. Note that lines 10 to

19 are only relevant if PTE𝑗 is valid, therefore they are included as

𝑒𝑙𝑠𝑒 𝑖 𝑓 ’s.

Also, note that nowhere in the algorithm it is checked whether

opening or closing symbols correspond to the nesting indicated by

𝑆𝑡𝑜𝑝 , this is because ambiguity in nesting rules is not allowed (as

mentioned in Subsection 3.1), therefore there can only exist one

PTE at every index in the parse forest containing a call or return

symbol. This is also the reason that the stack only contains pairs,

instead of sets of pairs, as only one pair can be pushed and popped

per every index in the parse forest.

3.5 Extraction

After the parse forest is pruned, only valid traces remain. The Ex-

traction phase then extracts all traces from the pruned parse forest,

which can be used to constructing the Parse Trees.

Algorithm 2 depicts a recursive algorithm to extract a valid trace,

based on a given start PTE. 𝑃𝐹 is the pruned Parse Forest obtained

from the pruning algorithm and 𝑆 is the stack of non-terminal pairs

to keep track of nesting rules. Then, in line 3, the recursive function

𝑇𝑅𝐴𝐶𝐸 starts, which returns a set of traces (which is a set of lists

of PTEs). Parameter 𝑃𝑇𝐸 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents at which PTE the trace

currently is and parameter 𝑖 indicates the index of the next set of

PTEs in 𝑃𝐹 .

Lines 4 to 6 check if the recursion is finished by checking if 𝑖 has

surpassed the last valid index of 𝑃𝐹 and, if so, returns a set with

only the current PTE. Lines 7 to 11 check if the current PTE opens

a scope, and pushes 𝑆 if so. Then, Line 12 instantiates the result set

as an empty set and line 13 loops over all 𝑃𝑇𝐸𝑖 in 𝑃𝐹 [𝑖] to check to

which next PTE 𝑃𝑇𝐸𝑖 properly links to the current PTA, which is

done in lines 14 to 33.

4



A Derivative-based, Colored-edged Parser Generator for Nested Words TScIT 38, February 3, 2023, Enschede, The Netherlands

Algorithm 2 Tracing Algorithm

1: 𝑃𝐹 ← Pruned Parse Forest

2: 𝑆 ← Stack of Non-Terminal Pairs

3: function trace(𝑃𝑇𝐸 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑖𝑛𝑡 𝑖)

4: if 𝑖 = 𝑃𝐹 𝑙𝑒𝑛𝑔𝑡ℎ then

5: return {𝑐𝑢𝑟𝑟𝑒𝑛𝑡}
6: end if

7: (_, 𝑐, 𝐿) ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

8: if 𝑐 ∈ Σ𝑐 then
9: (𝐿0, _, 𝐿1) ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

10: push (𝐿0, 𝐿1) to 𝑆
11: end if

12: 𝑟𝑒𝑠𝑢𝑙𝑡 ← {}
13: for 𝑃𝑇𝐸𝑖 in 𝑃𝐹 [𝑖] do
14: (_, 𝑐𝑖 , _) ← 𝑃𝑇𝐸𝑖
15: if 𝑐𝑖 ∈ Σ𝑖𝑛𝑡 or 𝑐𝑖 ∈ Σ𝑐 then
16: (𝐿𝑖 , 𝑐𝑖 , _) ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

17: if 𝐿 = 𝐿𝑖 then

18: for 𝑡𝑟𝑎𝑐𝑒 in 𝑇𝑅𝐴𝐶𝐸 (𝑃𝑇𝐸𝑖 , 𝑖 + 1) do
19: 𝑡𝑟𝑎𝑐𝑒 ← {𝑐𝑢𝑟𝑟𝑒𝑛𝑡} + 𝑡𝑟𝑎𝑐𝑒
20: 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑎𝑑𝑑 (𝑡𝑟𝑎𝑐𝑒)
21: end for

22: end if

23: else if 𝑐𝑖 ∈ Σ𝑟 then
24: ((𝐿𝑖1, 𝐿𝑖2), 𝑐𝑖 , _) ← 𝑃𝑇𝐸𝑖
25: if 𝜃 (𝐿) and 𝑆𝑡𝑜𝑝 = (𝐿𝑖1, 𝐿𝑖2) then
26: pop 𝑆

27: for 𝑡𝑟𝑎𝑐𝑒 in 𝑇𝑅𝐴𝐶𝐸 (𝑃𝑇𝐸𝑖 , 𝑖 + 1) do
28: 𝑡𝑟𝑎𝑐𝑒 ← {𝑐𝑢𝑟𝑟𝑒𝑛𝑡} + 𝑡𝑟𝑎𝑐𝑒
29: 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑎𝑑𝑑 (𝑡𝑟𝑎𝑐𝑒)
30: end for

31: end if

32: end if

33: end for

34: return 𝑟𝑒𝑠𝑢𝑙𝑡

35: end function

Lines 14 to 22 check if the 𝑃𝑇𝐸𝑖 has a call or internal symbol

and casts the 𝑃𝑇𝐸𝑖 properly in line 16 if it has. Line 17 checks if

the current PTE is properly linked with the next PTE 𝑃𝑇𝐸𝑖 . If it

is, then line 18 calls 𝑇𝑅𝐴𝐶𝐸 again with the next PTE 𝑃𝑇𝐸𝑖 and an

incremented counter 𝑖 + 1. The for-loop in lines 18 to 21 loops over

all resulting traces (as𝑇𝑅𝐴𝐶𝐸 returns all possible traces for the rest

of the trace), appends the current PTE in front of them, and adds

them to the result set. There can be multiple traces later on in the

parse forest, as the ambiguity can exist later in the sequence.

Lines 23 to 32 have a similar function as lines 14 to 22, but now

check if the 𝑃𝑇𝐸𝑖 has a return symbol, where line 24 properly casts

𝑃𝑇𝐸𝑖 if it does. Line 25 checks if the current PTE and 𝑃𝑇𝐸𝑖 are

properly linked, where the destination non-terminal of the current

PTE must be nullable and the next PTE 𝑃𝑇𝐸𝑖 must be the next

expected return based on the Stack. If it is properly linked, the stack

is popped and lines 27 to 30 use recursion to add the remainder of

the traces in exactly the same manner as lines 18 to 21, as discussed

previously.

Algorithm 3 Extraction Algorithm

1: 𝐴𝑙𝑙𝑇𝑟𝑎𝑐𝑒𝑠 ← {}
2: for 𝑃𝑇𝐸𝑠𝑡𝑎𝑟𝑡 in 𝑃𝐹 [0] do
3: 𝐴𝑙𝑙𝑇𝑟𝑎𝑐𝑒𝑠.𝑎𝑑𝑑 (𝑇𝑅𝐴𝐶𝐸 (𝑃𝑇𝐸𝑠𝑡𝑎𝑟𝑡 , 1))
4: end for

The tracing algorithm can extract specific traces based on where

they start, but does not directly extract all traces for a pruned parse

forest. Algorithm 3 does this by starting the trace for every PTE in

the first set of PTEs in the pruned parse forest. Then all starting

points are considered and all function calls of 𝑇𝑅𝐴𝐶𝐸 result in all

possible traces.

In this case, extracted traces symbolize parse trees. While they are

not directly parse trees, these traces contain all required information

to construct parse trees. The tracing and extracting algorithms can

easily be altered to support construction of parse trees during the

extraction, based on the chosen implementation of the representing

parse trees. The provided implementation [12] uses construction of

abstract syntax trees (ASTs) and returns a set of such ASTs.

4 PENDING CALLS

For languages such as Python or HTML, nesting is often not properly

closed. It is rare to see Python code where all indentations are

properly closed by lines containing only tabs. Additionally, HTML

code is very prone to forgetting closing tags. While unclosed tags

are legalised in HTML5, it demonstrates the necessity of proper

pending call handling for this languages of this class. Accepting

pending calls can address common errors while also improving

user convenience by omitting the requirement to properly close all

scopes. This paper introduces an approach to manage pending calls

based on the Colored Nested Words [1] by accepting pending calls

if they are indirectly closed by a return symbol of a higher order.

Example Grammar 4.

𝑆 =⇒ [𝐴]𝐸;

𝐴 =⇒ {𝐵}𝐸;

𝐵 =⇒ (𝐸)𝐸;

𝐸 =⇒ 𝜖 ;

Example Grammar 4 displays a nested word grammar with nest-

ings of different orders, where rules are in descending order of

nesting order. The well-matched input [{()}] is accepted by this

grammar. Additionally, if pending calls are accepted, [{(], [{(}]
and [{()] are recognized as well, as a higher-order return symbols

indirectly close lower-ordered scopes. This example grammar will

be used throughout this section.

The following subsections will discuss details on an intuitive

procedure to add transitions to the PDA corresponding to pending

call acceptance. This procedure is split up into (1) Determining

Colors and (2) Determining Colored Edges, which both materialize

strictly after the PDA construction since the PDA is required to

determine the colored edges.

5



TScIT 38, February 3, 2023, Enschede, The Netherlands Bas Marcelis

Fig. 1. Example Return Symbol Transition Sequence in a Simplified Automa-

ton

4.1 Determining Colors

For every call and return pair, a color must be determined that

corresponds to its place within the grammar-specified hierarchy.

For example, in HTML < 𝑜𝑙 >must be of a strictly higher order than

< 𝑙𝑖 >, as list items can only exist inside a list. To be more specific, a

list itemmust be of a lower order when it exists on a greater depth in

the grammar than the ordered list. Therefore, colors are represented

by integers and every call and return pair is colored with the integer

value of their corresponding depth in their grammar. Then, a call and

return pair is said to be a higher order if it has a lower depth than the

pair it is compared to. A recursive function with an incrementing

depth counter can be used to map every call and return pair with

their color/depth. In the case of Example Grammar 4, [...] has color
0, {...} has color 1, and (...) has color 2.

Definition 4.1. An opening and closing pair are labeled color 𝑖 , if

in the specified nested words grammar they are located at depth 𝑖 .

4.2 Determining Colored Edges

Transitions in the PDA corresponding to these pending calls are

called colored edges. They can be understood as shortcuts in the

automata by bypassing (multiple) closing transitions. Therefore,

colored edges can only exist if there are return symbol transition

sequences with a minimum length of 3, where the colored edges

are the shortcuts in between these transitions. Figure 1 depicts such

a sequence in a simplified automaton corresponding to Example

Grammar 4, where the regular (i.e. non-colored) edges are the dark

blue transitions which display a sequence of the return symbol

transitions for ), }, and ].

Definition 4.2. A Return Symbol Transition Sequence is a se-

quence of automata transitions (𝑂0, 𝑐0, 𝐷0), (𝑂1, 𝑐1, 𝐷1)...(𝑂𝑘 , 𝑐𝑘 , 𝐷𝑘 )
with origin state 𝑂𝑖 , transition symbol 𝑐𝑖 , and destination state 𝐷𝑖 ,

where 𝑘 ≥ 2, 𝑐𝑖 ∈ Σ𝑟 for 0 ≤ 𝑖 < 𝑘 , and 𝐷𝑖 = 𝑂𝑖+1 for 0 ≤ 𝑖 < 𝑘 − 1.

These Return Symbol Transition Sequences are traced in the PDA

to determine the colored edges. Note that multiple colored edges

have to be created, as some scopes can already be properly closed

before a higher-order closing symbol closes lower-colored scopes.

Alternatively, a higher-colored closing symbol can close the scope,

but this does not have to be the highest-ordered closing symbol

in the sequence. Figure 1 shows all colored edges for the Return

Symbol Transition Sequence corresponding to Example Grammar 4,

which shows that only the light-blue colored edge (𝑆0, ], 𝑆3) does
not suffice. This colored edge corresponds to the input [{(], but
the inputs [{(}] and [{()] are accepting as well, which require the

orange colored edge (𝑆0, }, 𝑆2) and the green colored edge (𝑆1, ], 𝑆3),
respectively. To conclude, for all states in the sequence, except the

last two, a colored edge must be created towards all forward states,

except for its direct successor (as this transition already exists),

which consumes the return symbol corresponding to the last skipped

transition.

Definition 4.3. The Colored Edges for a Return Symbol Transi-

tion Sequence (𝑂0, 𝑐0, 𝐷0), (𝑂1, 𝑐1, 𝐷1) ...(𝑂𝑘 , 𝑐𝑘 , 𝐷𝑘 ) is the set
{ (𝑂𝑖 , 𝑐 𝑗 , 𝐷 𝑗 ) | 0 ≤ 𝑖 < 𝑘 − 1, 𝑖 + 1 < 𝑗 < 𝑘 }.

With the current definitions of colored edges, pruning and trac-

ing would not recognize an input with pending calls as it fails to

identify that lower-ordered scopes are indirectly closed. To achieve

recognition by pruning and extracting, the colored edge contains a

list of sets PTEs. While a normal transition contains a set of PTEs,

representing all possible rules, a colored edge contains a list of sets

of PTEs, representing all possible rules for every bypassed return

symbol transition. This results in a parse forest just as if all scopes

were properly closed. Additionally, the PTEs in the colored edges

can be tagged so that they can be omitted in the resulting parse tree,

as they were not in the original input.

5 PERFORMANCE

5.1 Theoretical Performance

The theoretical performance can be intuitively reasoned to be lin-

ear for unambiguous grammars and linear for every parse tree for

ambiguous grammars. The PDA recognition must be linear for both

cases, as the PDA traversal must entail exactly 𝑛 transitions for a

well-matched word with length 𝑛. All words with pending calls also

have a well-matched input alternative where all calls are matched,

therefore, for all pending call words their well-matched alternative is

considered where there are𝑛 transitions. Thus, the production of the

arse forest by the PDA is done in linear time for both unambiguous

and ambiguous grammars.

The created parse forest is a list of sets of PTEs with length 𝑛 for

an input word with length 𝑛. For unambiguous grammars, every set

only contains one PTE, as there is only one possible rule application

for every character in the input word. For an ambiguous parse

forest,𝑚 denotes the number of elements in its largest set. Then,

the worst-case complexity of checking the final set is 𝑂 (𝑚), and
the worst-case complexity of comparing two sets is 𝑂 (𝑚2). This
results in a worst-case complexity of𝑂 ((𝑛 − 1)𝑚2 +𝑚) for pruning,
which approximates as 𝑂 (𝑛𝑚2) for large 𝑛. Therefore, pruning for
ambiguous grammars is linear to the input and quadratic to the

number of parse trees. Unambiguous grammars and inputs remain

linear, as𝑚 = 1 results in 𝑂 (𝑛).
Note that𝑚 does not equal the number of possible parse trees.

This is because there can exist multiple valid traces through a single

PTE, therefore the number of possible trees depends on how many

valid combinations of PTEs in every index of the parse forest there

are. Then, 𝑘 is the number of possible parse trees and the worst-case

complexity in the extraction is 𝑂 (𝑛𝑘). This is because there are 𝑘
valid traces with length 𝑛 all needing to be extracted. Because 𝑘 = 1

for unambiguous grammars and inputs, the complexity is, again,

linear 𝑂 (𝑛). Thus, in the extraction, the worst-case complexity is

6



A Derivative-based, Colored-edged Parser Generator for Nested Words TScIT 38, February 3, 2023, Enschede, The Netherlands

𝑂 (𝑛𝑚) for ambiguous grammars and remains𝑂 (𝑛) for unambiguous

grammars.

In the worst-case scenario, all the sets in a forest for an ambiguous

grammar and input have𝑚 items and there are𝑚𝑛
= 𝑘 parse trees.

Because of this, extracting has worse complexity than pruning, as

𝑚2
< 𝑚𝑛 for a large 𝑛 results in 𝑂 (𝑛𝑚2) < 𝑂 (𝑛𝑘). Therefore, am-

biguous grammars are bottle-necked by the worst-case complexity

𝑂 (𝑛𝑘) of extracting, which is linear for every parse tree. To con-

clude, unambiguous grammars and input remain linear at all times,

while ambiguous grammars and input have linear complexity for

every parse tree.

5.2 Practical Performance

This subsection illustrates the practical performance of the parsing

process for the implemented parser generator based on the frame-

work described in this paper [12] and compares it to the previously

stated theoretical performance. This subsection first discusses per-

formance for unambiguous grammars, where linearity is expected,

followed by performance for ambiguous grammars, where linearity

for every tree is expected.

5.2.1 Unambiguous Grammars. The test cases for unambiguous

grammars are the following:

Long Input A simple grammar with a long input string. This

is the null case other test cases can get compared to.

Deep Grammar [15] A grammar that chains multiple rules to

each other, where the corresponding input must follow this

long sequence of rules to terminate at the end. For this gram-

mar, length/depth corresponds to the number of sequencing

rules to reach termination.

Nested Grammar [15] A grammar that chains multiple nest-

ing rules, where the corresponding input must first open

many scopes and then close all of them before terminating.

For this grammar, depth corresponds to the level of the deep-

est nesting.

Combined Grammar A randomly generated grammar which

can have a chained rule or a nesting rule at any point in the

grammar, where there is a 50% chance for a regular chaining

rule, 25% for a new nesting, and 25% for closing the current

scope and continuing the parent scope. For this grammar,

length/depth corresponds to all the rules required to take for

termination.

This testing framework is partly inspired by the methodology of

Timmerman [15, 17] for testing the performance of OWL [9], where

these entries were cited accordingly.

Figure 2 portrays the average practical performance for the previ-

ously defined test cases. Every test case is repeated 50 times, except

Combined Grammar, which is repeated 10 times due to its long pro-

cessing time. Every grammar case is tested up to a length/depth of

5000. However, the tests can be extended to test even longer/deeper

cases, but this would require a very long processing time because

numerous parsers have to be generated. As can be seen in Figure

2, the performances of all test cases stick relatively close together.

At no point do any of the test cases exceed 100ms processing time.

Because processing time remains significantly low even for larger

0 1,000 2,000 3,000 4,000 5,000

0

100

200

300

400

500

Length/Depth

P
ro
ce
ss
in
g
T
im

e
(m

s)

Long Input

Deep Grammar

Deep Nesting

Combined Grammar

Fig. 2. Performance of Long Input and Long Grammar

lengths/depths for all cases, the performance or parsing unambigu-

ous grammars can be considered linear, which is in line with the

theoretical performance 𝑂 (𝑛).

5.2.2 Ambiguous Grammars. The test cases for ambiguous gram-

mars are the following:

Deep Ambiguity A grammar where every input symbol has

two possible rule applications. Therefore, for an input with

length 𝑛, the number of possible derivations becomes 2𝑛 . This

ambiguity is deep in the sense that is has few possible rule

applications at every symbol but a long input string.

Broad Ambiguity A grammar where every input symbol has

multiple possible rule applications. Therefore, for an input

with length 𝑛 and𝑚 possible rule applications at every step,

the number of possible derivations becomes 𝑚𝑛 . This am-

biguity is broad in the sense that is multiple possible rule

applications at every step but the input string is limited.

Figure 3 depicts the average performance for both of the defined

testing criteria. Both ambiguity tests are repeated 50 times. The

y-axis is defined in log-base 10, whereas the x-axis is in log-base 2.

Because both deep- and broad ambiguity have exponentially more

derivations for larger string input, the testing systems runs out

of memory quickly. Additionally, the number of derivations gets

exponentially larger before hitting this out-of-memory point. Due

to this combination, there are limited testing points for both testing

criteria.

For broad ambiguity𝑚 = 10, therefore, the number of derivations

becomes 10𝑛 , while the amount of derivations for deep ambiguity is

2𝑛 . Consequently, they are compared based on the number of possi-

ble derivations, not on the length of the input string. Additionally,

note that the lines start at 29 and 210, because the processing time

for cases with less possible derivations is 0 ms.

As can be seen in Figure 3, the processing time grows linear to the

number of possible derivations. Therefore, the practical performance

7



TScIT 38, February 3, 2023, Enschede, The Netherlands Bas Marcelis

28 210 212 214 216 218 220

100

101

102

103

104

Possible Derivations

P
ro
ce
ss
in
g
T
im

e
(m

s)

Deep Ambiguity

Broad Ambiguity

Fig. 3. Performance of Long- and Broad Ambiguity

is in line with the theoretical performance, which is linear time for

every parse tree 𝑂 (𝑛𝑘).

6 CONCLUSION

This paper presented a parser generator framework forwell-matched

visibly pushdown grammars, supported in both theory and prac-

tice. This section concludes the paper by reflecting on the research

questions established in the introduction.

RQ1: How can a derivative-based parser generator extract all possi-

ble derivations from well-matched VPGs? The derivate-based PDA

construction algorithm [10] provides ambiguity handling and al-

ways results in a parse forest containing all possible derivations.

A pruning algorithm is presented that iterates backwards through

the parse forest to remove invalid traces from leaf to root. Then,

the extraction algorithm extracts every valid trace, where during

or after the extraction these traces can be used to construct a data

structure to represent the parsing.

RQ2: How can error handling be designed to repair some common

defects automatically? An intuitive approach for handling pending

calls based on Colored Nested Words [1] increases the flexibility of

the framework, as it improves error handling and user convenience

by omitting the requirement to explicitly close all scopes.

RQ3:What is the best possible performance of the generated parser?

In both theory and practice, the whole parsing process has linear

complexity for unambiguous grammars and linear complexity for

every possible parse tree for ambiguous grammars.

The whole framework is tested as an implementation [12] to

prove its efficacy and performance. To conclude, the derivative-

based, colored-edged framework is both flexible and efficient, as it

accepts ambiguity and properly handles pending calls while having

competitive performance.

7 LIMITATIONS AND FUTURE WORK

While the presented framework accepts very ambiguous grammars

and input, it fails to process them if there are too many possi-

ble derivations. This is because every possible derivation brings

a unique abstract syntax tree, where for an enormous number of

possible derivations, this results in a heavy memory footprint. This

could be resolved by representing all extracted traces in a Shared

Packed Parse Forest (SPPF), where all possible derivations are rep-

resented in one tree structure and where equal leaves and subtrees

can be shared [16]. Because equal leaves and subtrees do not exist

in multiple ASTs and there is only one data structure, the memory

burden might be severely less. This requires implementing SPPFs

in the framework, where the SPPF construction must take place

during the extraction algorithm, as otherwise, the large number

of extracted traces would already flood the memory. Additionally,

the framework with SPPFs must be tested to conclude if it can han-

dle grammars and inputs with more possible derivations than the

current framework.

This frameworks handles ambiguity for the (nested) words, but

does not accept ambiguity in any of the call- or return symbols. The

framework can be extended to attempt to support this ambiguity,

where equal symbols for different nesting rules are tagged for iden-

tification and the PDA construction creates additional non terminal

pairs for ambiguous calls and returns. Pruning and extracting also

have to be altered, where they must push sets instead of instances,

as then there can be multiple possible pushes for one PTE. Addition-

ally, it can be experimented whether ambiguity for both regular-

and nesting rules can be handled, i.e. a symbol is element of both

the internal symbol alphabet, as well as the call- or return symbol

alphabet.

The presented framework currently requires the VPG to be pre-

sented in a specific GNF-like form. For the framework to be practi-

cally usable requires users to be able to represent input grammars

in the form of a metalanguage (such as BNF, EBNF, ABNF, or WSN),

which is automatically converted to the specific required form. Then,

at the end of the parsing process, this must be considered again to

return parse trees with respect only to their original rules.

In 2006, Kumar et al. determined the existence of unique mini-

mal modular VPAs and provided an active learning algorithm for

automata minimization [11]. P. Chervet and I. Walukiewicz further

studied minimizations of VPAs in 2007 [5]. Their insights can be

used to further minimize the generated parser by the presented

framework.

The derivate-based framework is already mathematically proven

by Jia et al [10], but the pruning and extracting algorithms and the

pending calls approach could use mathematical proof. The perfor-

mance of the presented framework seemed linear for every parse

tree in both theory and practice, but mathematical proof can further

decide if this is true for all cases.

REFERENCES
[1] Rajeev Alur and Dana Fisman. 2021. Colored nested words. Formal Methods in

System Design 58 (2021), 347ś374. Issue 3. https://doi.org/10.1007/s10703-021-
00384-2

[2] Rajeev Alur and P Madhusudan. 2004. Visibly Pushdown Languages. Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing - STOC ’04
(2004). https://doi.org/10.1145/1007352

8



A Derivative-based, Colored-edged Parser Generator for Nested Words TScIT 38, February 3, 2023, Enschede, The Netherlands

[3] Rajeev Alur and P. Madhusudan. 2009. Adding nesting structure to words. Journal
of the ACM (JACM) 56 (5 2009). Issue 3. https://doi.org/10.1145/1516512.1516518

[4] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. Journal of the
ACM (JACM) 11 (10 1964), 481ś494. Issue 4. https://doi.org/10.1145/321239.321249

[5] Patrick Chervet and Igor Walukiewicz. 2007. Minimizing variants of visibly
pushdown automata. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4708 LNCS (2007),
135ś146. https://doi.org/10.1007/978-3-540-74456-6_14/COVER

[6] Noam Chomsky. 1956. Three models for the description of language. IRE Trans-
actions on Information Theory 2 (1956), 113ś124. Issue 3. https://doi.org/10.1109/
TIT.1956.1056813

[7] Volker Diekert and Klaus-Jörn Lange. 2009. Variationen über Walther von Dyck
und Dyck-Sprachen. Vieweg+Teubner, Wiesbaden, 147ś154. https://doi.org/10.
1007/978-3-8348-9982-8_13

[8] Sheila A. Greibach. 1965. A New Normal-Form Theorem for Context-Free Phrase
Structure Grammars. J. ACM 12 (1 1965), 42ś52. Issue 1. https://doi.org/10.1145/
321250.321254

[9] Ian Henderson. 2017. Owl. https://github.com/ianh/owl.
[10] Xiaodong Jia and Ashish Kumar. 2021. A Derivative-Based Parser Generator

for Visibly Pushdown Grammars. Proc. ACM Program. Lang 5 (2021), 24. https:
//doi.org/10.1145/3485528

[11] Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. 2006. Minimization,
learning, and conformance testing of boolean programs. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 4137 LNCS (2006), 203ś217. https://doi.org/10.1007/11817949_
14/COVER

[12] Bas Marcelis. 2023. Derivative-based-Colored-edged-Parser-Generator-for-
Nested-Words. https://github.com/basmarcelis/Derivative-based-Colored-edged-
Parser-Generator-for-Nested-Words/tree/master.

[13] MatthewMight, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives:
A functional pearl. Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, ICFP (2011), 189ś195. https://doi.org/10.1145/2034773.
2034801

[14] Sebastian Muskalla. 2017. Visibly pushdown automata. https://www.tcs.cs.tu-
bs.de/documents/AutomataTheory_SS_2017/visiblypushdown.pdf

[15] Luc Timmerman. 2022. Performance Testing Owl, Parser Generator for Visibly
Pushdown Grammars. http://purl.utwente.nl/essays/91958

[16] Vadim Zaytsev. 2016. Cotransforming Grammars with Shared Packed Parse
Forests. Electronic Communications of the European Association of Software Science
and Technology (EC-EASST); Graph Computation Models Ð Selected Revised Papers
73 (April 2016). https://doi.org/10.14279/tuj.eceasst.73.1032

[17] Vadim Zaytsev. 2019. Event-based parsing. REBLS 2019 - Proceedings of the 6th
ACM SIGPLAN International Workshop on Reactive and Event-Based Languages
and Systems, co-located with SPLASH 2019 (10 2019), 31ś40. https://doi.org/10.
1145/3358503.3361275

9


	Abstract
	1 Introduction
	2 Definition of Nested Words
	2.1 Well-Matched Grammars

	3 Derivative-Based Parsing
	3.1 PDA Framework
	3.2 Recognizing
	3.3 Parsing
	3.4 Pruning
	3.5 Extraction

	4 Pending calls
	4.1 Determining Colors
	4.2 Determining Colored Edges

	5 Performance
	5.1 Theoretical Performance
	5.2 Practical Performance

	6 Conclusion
	7 Limitations and Future Work
	References

