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Preface

In front of you lies the thesis titled “Atmospheric sound propagation modeling with the Harmonoise
model applied to wind turbine noise.” This thesis is written to fulfill the requirements of graduating the
master Mechanical Engineering at the University of Twente.

This work explores the field of atmospheric acoustics, which is a branch in the field of acoustics that
describes the transport of sound through the atmosphere. The fundamentals of atmospheric acoustics
will be presented, with a focus on applying them to wind turbine noise.

My first spark of interest in acoustics was lit in the course on aeroacoustics, where the fundamentals of
sound generation in aircraft were taught. After that, I chose to do my internship at Apollo to study the
noise that car tires make. For me, this made me realize the impact of noise on people in the current
world. Therefore, it was a no-brainer for me to apply for this master’s assignment about wind turbine
noise.

The process has been fun for me. I did not know much about atmospheric acoustics and learned a great
deal. It was interesting to me how fluid a master’s assignment can be. First, my focus was on studying
and improving the Harmonoise model, but quickly the assignment shifted to applying the model to wind
turbine noise. Overall, I am happy with the end result and was very content with all the guidance and
nice discussions that I encountered.

First of all, I would like to thank my supervisor, Andrea Bresciani. Throughout the process of researching
and writing this thesis, I felt free to explore all of my interests while knowing that I could always rely
on his guidance to steer me in the right direction.

Secondly, I would like to thank Marijn Sanders and Leandro de Santana. Both of them are my supervisors
from the University of Twente. Leandro de Santana helped me with the first half of my thesis and helped
me explore some interesting acoustic concepts. Marijn Sanders helped me in the final and very important
stage of my thesis, where I had to complete my work.

Finally, I would like to thank all my family and friends who had to listen to fun facts about acoustics
for more than half a year. If I got stuck in a part of the process, I could always count on mental support
and a different perspective.

I would also like to thank you, the reader. I wish you happy reading!

Lennart Bouma

Enschede, January 2023
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Summary

The wind power industry is rapidly growing worldwide, thereby reducing our reliance on fossil fuels.
However, as the number of wind turbines increases, so too does noise pollution. This causes annoyance
and even health problems for residents living near a wind turbine or wind farm. Accurate wind turbine
noise prediction methods are needed to minimize the amount of noise pollution by carefully considering
the placement of wind turbines in the environment. However, wind turbine noise prediction is a complex
task. This is mainly because of the noise propagation through the atmosphere and terrain, which is a
time-dependent process with multiple mechanisms that can influence noise levels. Although physically
accurate numerical models exist, they often require unfeasibly large computational times. To overcome
this problem, analytical models with lower computational time but also lower accuracy are often used.
One of these models is the Harmonoise model.

In this work, the Harmonoise model is evaluated for its use in predicting wind turbine noise propagation.
The evaluation focuses on the influence of wind shear and temperature profiles in the atmospheric
boundary layer on wind turbine noise propagation. The wind shear and temperature profiles influence
the local sound speed, which leads to bending, i.e. refraction of the sound waves. Most analytical noise
prediction models cannot accurately incorporate this effect.

Results from the Harmonoise model are compared to results generated by a numerical model for several
benchmark cases. The numerical model solves the parabolic equation and is widely used in atmospheric
acoustics. The Harmonoise model is then coupled with a semi-analytical wind turbine noise prediction
model to simulate realistic noise levels around a single wind turbine under different atmospheric condi-
tions. Noise maps around a wind turbine are then generated. These noise maps provide a representation
of the noise pollution around a wind turbine for a certain set of conditions.

It was found that the Harmonoise model can accurately predict noise propagation if the sound speed
in the atmosphere varies linearly with height. However, the Harmonoise results are less accurate if a
logarithmic sound speed profile is present. The overall noise levels around a wind turbine were found
to be negligibly influenced by the simulated atmospheric conditions for propagation distances up to a
distance of 1500 meters from the turbine. However, the spectral noise levels were found to be strongly
affected.

Additionally, a method is proposed to include horizontal sonic gradients with the Harmonoise model. It
was found that improved accuracy for such cases is possible but the test cases were limited. Therefore,
additional research on this concept is required.
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Nomenclature

Roman Symbols

f [ 1s ] Frequency in Hz
c [ms ] Speed of sound
r [m] Distance between source and receiver
hs [m] Source height
hr [m] Receiver height
u [ms ] Acoustic velocity vector
u [ms ] Horizontal component of wind velocity
t [s] Time
i [-] Imaginary number
k [ radm ] Wavenumber
p [ N

m2 ] Acoustic pressure
I [ Wm2 ] Acoustic intensity
W [W] Sound power
Lw [dB] Sound power level
Lp [dB] Sound pressure level per frequency/octave band
n [−] Normal vector
R [ J

Kkg ] Gas constant

T [K] Temperature
A [ 1s ] linear part or attenuation
B [ms ] logarithmic part

Greek Symbols

ρ [ kgm3 ] Air density
ω [ rads ] Angular frequency
λ [m] Wave length
α [dBm ] Atmospheric absorption coefficient
θ [Rad or degrees] Elevation angle
γ [−] specific heat ratio
ϕ [Rad or degrees] Azimuth angle

Acronyms

SPL [-] Overall sound pressure level
2D [-] Two Dimensional
3D [-] Three Dimensional
PE [-] Parabolic equation
GFPE [-] Green functions parabolic equation
lin [-] linear
log [-] logarithmic
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Subscripts

c [-] complex number
k [-] segment number
valley [-] valley shaped terrain
flat [-] flat terrain
0 [-] value at ground level
eff [-] effective
av [-] average over a sufficiently long period of time
c,m [-] center frequency number m



Chapter 1

Introduction

Atmospheric acoustics is a branch of acoustics that studies sound propagation through the atmosphere.
This is useful for a wide variety of applications, such as highway traffic noise, airplane noise, and wind
farm noise. The attention given to wind farm noise propagation has particularly increased during the
last few years as more and more wind farms are being built. In the Netherlands, for example, 8000
MW of wind turbine power is currently installed, with 70 percent of that capacity installed on land [3].
Because of this, 55 000 homes are within a one-kilometer radius of a wind turbine, and with the future
plans of the government to generate 70% of the electricity from wind and solar power, this number is
likely to rise even more [4].

Living within a one-kilometer radius of a wind turbine increases the exposure to noise emitted by wind
turbines [5]. The noise of wind turbines is a controversial topic. A reason for this is that many people
believe that wind turbine-related noise is a non-issue and that people complain just to stop a wind farm
from being built in their neighborhood [1]. Another argument is that wind farm noise is less common
than road traffic noise and the general sound levels are drastically lower [6]. Still, some people experience
annoyance from wind turbine noise [7]. The cause of this could be that the “swooshing” sound of a wind
turbine is more annoying than other environmental noise sources [8]. Some studies show a strong link
between wind turbine noise and symptoms such as dizziness, sleep disruption, and even an increase in
cardiovascular disease [1, 9, 10, 11]. The cause of symptoms like this is hard to prove, and because of
this, studies generally produce mixed results [6]. However, it is inevitable that residents living nearby
wind turbines will be exposed to noise, and, for this reason, it is important to predict the noise levels
before the construction of the wind farm.

Wind turbine noise has to be properly regulated to reduce harmful side effects for nearby residents. The
World Health Organization (WHO) states that indoor sound should not exceed 30 dB(A) in a resident’s
bedroom for good sleep quality [12]. Current noise regulations in the Netherlands are Lden = 47 dB
and Lnight = 41 dB, which are the averaged noise levels over day-evening-night and only night outside
a resident’s house, respectively (the noise levels are averaged over a period of a year). The idea is
that these numbers correspond to the numbers recommended by the WHO for inside because a noise
reduction from outside to inside is expected (more information about the reduction of noise levels inside
can be found in [1]). Although, at the time of this writing, there is a lot of criticism in the Netherlands
about these rules [7]. To meet a noise guideline and still be able to install wind turbines to meet energy
needs, it is important to have reliable ways to simulate wind turbine noise. However, the atmosphere as
a sound propagation medium is complex and dependent on time. Sound levels are influenced by a wide
variety of factors, such as the type of ground, temperature, humidity, wind, etc. Accurate atmospheric
sound propagation models that can account for all these effects have been developed in the past 30
years [13]. Unfortunately, most models require large computation times, especially for long propagation
distances and high sources (like wind turbines). This makes them impractical in a lot of cases related
to wind turbine noise [14]. Therefore, the main type of propagation model used nowadays for wind
farm noise is analytical. Analytical models have low computational times but they are not always able
to include important propagation effects. In other words, analytical models reduce computation time
by introducing simplifying assumptions but lose accuracy in the process. Because of this, it is always
necessary to assess whether the accuracy of these models is still adequate for a given situation.
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Figure 1.1: Possible scenario that will be simulated in this work.

There are numerous analytical models available, ranging from simple to very complex [15, 16, 17]. A
model that is frequently used in the case of wind turbine noise is the ISO9613-2 model [18]. However,
this models’ accuracy (±3 dB) is only validated up to a 1000 meter downwind in the absence of large
wind gradients for a source height up to 30 meter [1]. A more recently developed analytical model is the
Harmonoise model [19]. This model is more complex than the ISO9613-2 model and attempts to include
several additional propagation effects.

One of the propagation effects that the ISO9613-2 model cannot accurately include is the bending
(refraction) of sound waves. This happens because of variations in the speed of sound in the atmosphere
(see section 3.1.4). These variations are caused by temperature and wind profiles in the Earth’s boundary
layer. At the Earth’s surface, air molecules are slowed down by friction forces, which leads to a dependence
of wind velocity on height. Local wind speeds can also be influenced by their surroundings. Temperature
is also a function of height; most of the time, temperature decreases with height, but in some cases,
temperature can increase with height (in chapter 6 more information is given). Because of the variation
in sound speed, the sound wave is refracted, influencing the sound levels at a location.

This work focuses on the impact of sound speed gradients caused by temperature gradients and wind
shear on sound propagation. A primary research goal is to evaluate the ability of the Harmonoise model to
accurately predict these effects. The obtained conclusions are applied to the calculation of wind turbine
noise. Additionally, a method is proposed to enable the Harmonoise model to include variations in
horizontal sound speed, as it currently only considers sound speed as a function of height. Finally, a semi-
analytical source model and the Harmonoise model will be used to simulate the noise of an existing wind
turbine under various atmospheric conditions. This simulation illustrates how meteorological conditions
can affect wind turbine noise propagation and provides an example of the expected sound levels around
a wind turbine under simplified, but sometimes realistic, conditions. Figure 1.1 shows a scenario where
a wind turbine is located near a small body of shallow water and a person is on the other side of the
water. This picture serves as an analogy for the situation being considered: in this work, a fully reflecting
ground in an open area is assumed, and water is a good reflecting surface. This situation is investigated
at various times of day and night, as well as with and without strong winds.

The present work is divided into an introduction, six chapters, and closes with a discussion, conclusion,
and recommendation. Chapter 2 provides an introduction to basic acoustic concepts necessary for the
study of atmospheric acoustics. Chapter 3 introduces the various factors that influence sound propagation
in the atmosphere. Chapter 4 describes the Harmonoise model. In chapter 5 the described model is
implemented and validated to assess its suitability for use in wind turbine noise simulation. In chapter 6,
the model presented in chapters 4 and 5 is combined with a source model to simulate a wind turbine. And
at the end, in chapter 7 a method to include horizontal gradients in the Harmonoise model is proposed.



Chapter 2

Basic acoustics

This chapter is a brief introductory chapter about the basics of atmospheric acoustics. First, a definition
of sound will be given, and afterward, several concepts that quantify the properties of sound will be
introduced. In this chapter, these concepts will be used to calculate the amount of sound generated by
a point source in free space. The wind turbine is modeled as a point source, and the analysis of a point
source in free space can be seen as this work’s starting point.

2.1 What is sound?

Sound is the result of local pressure fluctuations in the air that can, for example, be produced by vibrating
objects. A source of local pressure fluctuations is referred to as a sound source. These changes in local
pressure move away from the sound source and are perceived as sound. The pressure fluctuations are
a small variation of pressure relative to the average atmospheric pressure and are referred to as sound
pressure. A visualization of this explanation is shown in figure 2.1. The figure shows the locations of
low and high pressures for a sound source and the corresponding graph.

Since the sound pressure oscillates from negative to positive in a certain amount of time, sound is best
described in the form of a wave. The time it takes for the wave to complete one oscillation from a positive
to a negative pressure difference and back is defined as the period, and the number of oscillations per
second is the frequency. The frequency of a sound wave depicts the tone of the sound. A sound wave is
termed a pure tone if it consists of only one frequency; however, sound usually consists of a wide range
of frequencies. The amplitude of the sound wave is a quantity for the “loudness” and is described by the
sound pressure level. More about the spectrum of frequencies and the sound pressure level is explained
later in this chapter. First, a mathematical description of a wave is given.

Figure 2.1: The black straight lines represent areas of high pressure, while the red lines represent areas of low
pressure. The high pressure line is equal to the atmospheric pressure (patm) plus the sound pressure (p). The
low pressure line is equal to the atmospheric pressure (patm) minus the sound pressure (p).

17



18

2.2 The wave equation

An idealization of many types of wave motion is mathematically described by the wave equation [20]

∇2ϕ− 1

c2
ϕtt = 0 (2.1)

where c is the speed of sound [m/s], ϕ can be the sound pressure [Pa] and ϕtt is the second derivative
with respect to time.

This equation is the starting point for most acoustic problems. Usually, some approximations can be
made that simplify solving this equation.

A useful assumption can be that the wave is time-harmonic. Time-harmonic means that the wave repeats
itself after a certain amount of time (an oscillation period). By assuming that the wave is time harmonic
we can write [20]

ϕ = Φ(x, y, z)e−iωt, (2.2)

where ω is the radial frequency [ rads ] and Φ can be the (complex) pressure.

Substituting equation 2.2 in the wave equation leads to the wave equation in the frequency domain

∇2Φ+ k2Φ = 0, (2.3)

where k is the wave number defined as k = ω
c .

Equation 2.3 is known as the Helmholtz equation. The advantage of the Helmholtz equation is that it
is not dependent on time. This often makes the analysis of an acoustical problem much easier. A result
of the transformation to the frequency domain is that the acoustic variables can now become complex
numbers. An example of this is given in section 2.6, where the Helmholtz equation is used to describe a
point source, while also addressing complex variables.

2.3 Speed of sound

Sound waves travel with finite speed. This speed depends on the type of medium and the temperature.
By considering the fluctuations of sound as an adiabatic process, one can find the following relation for
the speed of sound [13]

c =
√
γRT , (2.4)

where γ is the ratio of specific heats [-], R is a constant [J/(kg K)] and T is the temperature [K].

For dry air we have: γ = 1.4 and R = 298 J/(kg K). In that case equation 2.4 can be written as

c = c0
√
T/T0 (2.5)

with T0 = 273 K and c0 = 331 m/s (different combinations of values are also possible).

The sound speed discussed so far is known as the adiabatic sound speed. This is the speed at which a
sound wave travels through a non-moving atmosphere. However, when wind is present, the atmosphere
is in motion. Calculating the speed of sound in a moving atmosphere is more complex; a method to do
this is the effective sound speed approximation [13].

2.3.1 Effective sound speed approximation

To bypass the complicated effects of a moving atmosphere, an approximation can be made that is called
the effective sound speed approximation. This approximation simply adds the adiabatic sound speed
and the wind velocity at a certain location to get the speed of sound at this location

ceff = c+ u, (2.6)

where c is the adiabatic sound speed [m/s] and u is the horizontal component of the wind velocity [m/s]
in the direction of sound propagation.
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Figure 2.2: Gain of the dBA filter for 20-20000 Hz.

The idea behind this approximation is that when sound travels in a downwind direction (u > 0) the
effective sound speed is faster relative to a stationary observer, and when it travels in an upwind direction
(u < 0) the sound effectively travels slower due to the movement of the air. This approximation holds
true only if sound travels at low elevation angles, where the elevation angle is the angle between the
propagation direction of the sound wave and the (horizontal) x-axis. To ensure validity one should keep
|hs−hr| << d, where hs is the source height, hr is the receiver height and d is the horizontal propagation
distance [13]. For more information about the validity of the effective sound speed approximation see
[21].

2.4 Sound pressure level

The sound pressure level describes how loud a sound wave is by considering the sound pressure. The
average pressure of a harmonic sound wave over a full oscillation is zero (see figure 2.1). However, the
average pressure squared over a full oscillation is not zero. Therefore the overall sound pressure level is
defined as

SPL = 10 log10

(
p2
)
av

p2ref
, (2.7)

with pref = 2 · 10−5 Pa as the reference sound pressure and (p2)av as the time average of the sound
pressure squared over one oscillation period. The reference sound pressure value is near the absolute
threshold for a human listener at a frequency of 1000 Hz [22]. Note that the sound pressure level is
commonly represented on a logarithmic scale. A logarithmic scale is more convenient to use because a
human ear can pick up a large range of sound pressure values. The unit for the logarithmic scale is dB.

Since the human ear is not as sensitive to every frequency, a commonly used unit is dBA. This unit
corrects for the sensitivity of the human ear and is a better representation of the actual sound perceived.
A result in dB can be transformed to dBA by adding the gain for the corresponding frequency. Visually
the dBA filter is shown in figure 2.2. The figure shows that the human ear is most sensitive for frequencies
between 1-5 kHz.

2.5 Sound velocity, -intensity, -power and -power level

In this section, four acoustic concepts will be introduced: sound velocity, sound intensity, sound power,
and sound power level. These concepts are used often throughout the report and are also used to calculate
the SPL around a point source.
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2.5.1 Sound velocity

Sound velocity refers to the velocity of particles that comes along with the pressure wave. Air particles
start to oscillate back and forth, and the corresponding velocity behaves like a wave. Note that since the
air particles move back and forth, the net mass transport is zero in a sound wave. The sound velocity in
combination with the pressure can give information about the energy of a wave.

2.5.2 Sound intensity

When a sound wave travels, energy is transported in the travel direction. The energy per unit area is
defined as the sound intensity

I = pu, (2.8)

where p is the sound pressure [Pa] and u is the sound velocity [m/s]. The intensity is a function of time
(t) and the time average (tav) of the intensity is defined as

Iav =
1

tav

ˆ tav

0

pudt, (2.9)

where tav depends on the type of waveform considered. For a periodic wave, this can be the time of a
period, but for more irregular waves tav should be larger.

2.5.3 Sound power

From the intensity we can define the sound power as

Wav =

¨
Sc

Iav · ndSa, (2.10)

where Sa is an arbitrary surface and n is the normal vector on that surface. The sound power can be a
measurement of source strength. In that case, the source needs to be within the surface Sa. The value of
Wav does not depend on the choice of surface as long as the source is inside it. If no sources are present
within the surface Sa, the flux will be zero everywhere and Wav will be zero.

2.5.4 Sound power level

The source power level is defined as

LW = 10 log10
Wav

Wref
(2.11)

with reference sound power Wref = 1 · 10−12W . The relation between the reference sound power and
the reference pressure (equation 2.7) satisfies the relation

p2ref ≈ ρcWref , (2.12)

where ρ is the density [kg/m3].

2.6 Point sources

A point source is a sound source that sends an outgoing sound wave of equal amplitude in every direction.
The solution of the pressure field induced by a point source can be obtained by assuming that the field
has spherical symmetry. In that case, equation 2.3 becomes [13]

1

r

∂2

∂r2
(rpc) + k2pc = 0 (2.13)

here pc represents the complex pressure. The actual pressure can be retrieved by taking the real part of
the the complex pressure, p = Re[pc].

The solution of equation 2.13 is

pc = S
exp(ikr)

r
, (2.14)

where S is a constant and r is the radial distance from the observer to the source location. This result
shows that the amplitude of the pressure wave is equal to S/r and thus decays with 1/r.
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2.6.1 Sound velocity of a point source

In this part, the sound velocity will be derived. Afterwards, the sound velocity and the sound pressure
can be used to obtain the sound intensity of a point source.

The following equation serves as a starting point for our analysis. It is derived with the mass and
momentum conservation equations. This is done under the assumption that the atmosphere is motionless,
homogeneous, and that pressure changes are small in comparison to the overall atmospheric pressure [13]

ρ
∂u

∂t
= −∇p. (2.15)

This equation is one of the linear acoustic equations and can also be used in deriving the wave equation.

It is assumed that the source is time harmonic, meaning that u depends only on time through the factor
e−iωt. Therefore the sound pressure and sound velocity are written as

p = Re
(
pce

−iωt
)

(2.16)

and
u = Re

(
uce

−iωt
)
. (2.17)

Inserting equation 2.16 and 2.17 into equation 2.15 results in

Re[−iωvc +∇p]e−iωt = 0. (2.18)

Thus, the part between brackets should be 0 for all values of t. For this case, the gradient of the pressure
depends only on r, which leads to the sound velocity in radial direction

vc =
1

iωρ

∂pc
∂r

. (2.19)

The complex pressure was defined by equation 2.14 and is inserted into equation 2.19. This results into

vc =

(
1 +

i

kr

)
pc
ρc
. (2.20)

2.6.2 Sound intensity for harmonic point source

The sound intensity of a harmonic point source can be found in a similar way. Equation 2.16 and 2.17 are
substituted in the definition for sound intensity (equation 2.8). The time average of the sound intensity
can then be found as

Iav = Re

(
1

2
p∗cvc

)
, (2.21)

where p∗c is the complex conjugate of the sound pressure.

2.6.3 Sound pressure level for a harmonic point source

The relations for sound pressure and sound velocity of a harmonic point source were already found and
stated below for convenience

pc = S
exp(ikr)

r
, (2.14)

vc =

(
1 +

i

kr

)
pc
ρc
. (2.20)

At large distance from the source we can assume that kr >> 1, resulting in

vc ≈ pc/ρc. (2.22)

Inserting equation 2.14 and 2.22 in equation 2.21 results in the following sound intensity at large distances
from the source

Iav =
1

2

|pc|2

ρc
. (2.23)
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To go from the complex pressure to the average pressure we consider the definition for average pressure:

(p2)av =
1

tavg

ˆ tav

0

p2dt. (2.24)

The pressure (p) can be obtained by Re[pc], which results in p = S
r cos(wt). The integration time is one

period which is equal to 2π/ω, resulting in

(p2)av =
ω

2π

ˆ 2π/ω

0

S2

r2
cos2 ωtdt. =

S

2r
=

|pc|2

2
(2.25)

Therefore, the average sound intensity can also be written as

Iav =

(
p2
)
av

ρc
. (2.26)

The source power is found by inserting equation 2.26 into equation 2.10. The arbitrary surface Sa is in
this case chosen as a sphere with radius r centered in the origin. Since the average sound intensity at
every point of the sphere is equal, the sound intensity can be taken out of the integral. The resulting
equation is

Wav =
(p2)av
ρc

ˆ
1dSa = 4πr2

(p2)av
ρc

(2.27)

Rewriting equation 2.27 to obtain the average pressure squared gives(
p2
)
av

= ρc
Wav

4πr2
. (2.28)

Finally, equation 2.28 is inserted in the definition of sound pressure level (equation 2.7) and with the
relation between reference pressure and reference power (equation 2.12) we obtain

SPL(r) = LW − 10 log10 4πr
2. (2.29)

This equation describes the sound pressure level induced by a harmonic point source with strength LW

at a radial distance r from the source.

2.7 Non harmonic sources & Octave bands

In the previous section, the sound pressure level was derived for a harmonic point source. The analysis
of a non-harmonic source can be done by decomposing the pressure signal. For the sound pressure level
Lp this results in [13]

Lp (fn) = 10 log10

(
p2n
)
av

p2ref
, (2.30)

where Lp(fn) is the sound pressure level for a specific frequency, fn is a set of frequencies where n
depicts the number in the set and pn the corresponding sound pressures. The overall SPL is defined by
the logarithmic summation of all frequencies

SPL = 10 log10
∑

10Lp(fn)/10. (2.31)

The value of fn − fn−1 can, for example, be a small spacing step of 1 Hz. Instead of using this narrow
band spectrum in practice, one often uses an octave band- or 1/3 octave band spectrum. The narrow
band spectrum is divided into bands with a upper, lower and center frequency. The sound pressure level
of each frequency within one band is logarithmically summed to represent the center frequency of that
band

Lp (fc,m) = 10 log10

′∑
n

10Lp(fn)/10, (2.32)



CHAPTER 2. BASIC ACOUSTICS 23

Table 2.1: Preferred 1/3 octave band center frequencies.

[Hz] 12.5 25 50 100 200 400 800 1600 3150 6300
fc,m 16 31.5 63 125 250 500 1000 2000 4000 8000

20 40 80 160 315 630 1250 2500 5000 10000

here the prime indicates the summation over the whole frequency band and fc,m is the center frequency
for band m.

To calculate the center frequencies one can use the approximate relation of [13]

fc,m ≈ fc,302
−10+m/3 (2.33)

where m is a positive integer and fc,30 = 1000 Hz. For octave bands m runs with a multiple of 3
(m = 3, 6, ...), while for 1/3 octave bands m = 1, 2, 3... The upper and lower limits of an octave band are
calculated by 21/2fc,m and 2−1/2fc,m respectively. For 1/3 octave bands the upper and lower limits can
be calculated by 21/6fc,m and 2−1/6fc,m. The center frequencies obtained by the approximated relation
are not round numbers. Therefore, one often uses the preferred center frequencies. The preferred center
frequencies for 1/3 octave bands are given in table 2.1.

2.7.1 Sound pressure level for a non harmonic point source

Considering the previous sections, the equation to calculate the sound pressure level for a non-harmonic
point source is presented. By decomposing the pressure signal equation 2.29 becomes

Lp(f, r) = LW (f)− 10 log10 4πr
2, (2.34)

where the frequency depends on the considered frequency spectrum.

2.8 Free field pressure

The value of the sound pressure level in free space is also known as the free field pressure. In the previous
sections, we worked out how to find the free field pressure for a point source. From equation 2.7 we have

Lp, free = 10 log10

(
1
2 |pfree |

2
/p2ref

)
and Lp = 10 log10

(
1
2 |pc|

2
/p2ref

)
. These relations give

Lp = Lp, free +∆L (2.35)

where
∆L = 10 log10

(
|pc|2 / |pfree |2

)
(2.36)

The quantity ∆L is called the relative sound pressure level. In the case of an octave band, ∆L(f) is a
function with the corresponding relative sound pressure levels. However, ∆L should not be considered
an octave band spectrum since the value does not depend on the bandwidth. When converting ∆L to a
certain spectrum one should use logarithmic octave band averaging

∆L(fc) = 10 log10

(
1

N

′∑
10∆L(f)/10

)
. (2.37)

In the next chapter, additional effects that contribute to the sound pressure level will be described. These
effects are referred to as attenuation mechanisms, but keep in mind that they represent the relative sound
pressure level.
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Chapter 3

Atmospheric sound propagation

The sound pressure level depends not only on the sound source but also on the surroundings, the distance,
and the meteorological conditions. The sound pressure level can be obtained by adding these combined
influences to the sound source

Lp = Lw +Aatt, (3.1)

where Lp is the sound pressure level, Lw the sound power level induced by a source, and Aatt the influence
of the surroundings, the distance, and the meteorological conditions.

In this section, we first analyze this Aatt term and then introduce methods to calculate the sound pressure
level at a location.

3.1 Attenuation mechanics

Six effects that influence the sound level will be explored, which are referred to as attenuation mechanisms.
These attenuation mechanisms are: geometrical spreading, atmospheric absorption, reflection, refraction,
diffraction and turbulence.

Most of these attenuation effects cause a reduction in sound level. Nevertheless, in next sections it will
become evident that an increase in sound level is also possible.

3.1.1 Geometrical spreading

Consider a point source and a receiver separated by distance r in free space. The sound level perceived
at the receiver decreases with distance due to the spreading of the sound power over a larger surface, see
Figure 3.1.

Figure 3.1: Spherical spreading from a point source in free space. The circular lines represent outgoing acoustical
waves.
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This is called geometrical spreading. In the case of a point source in free space, the spreading of sound
power results in a reduction of sound intensity with r2, which is often referred to as the “inverse square
law” [13]. In section 2.7.1 the sound pressure level for a non-harmonic point source in free space was
found as

Lp(f) = LW (f)− 10 log10 4πr
2 (2.34)

where LP (f) and LW (f) are the sound pressure level and the sound power level respectively. LP (f)
and LW (f) are both dependent on frequency and 10 log10 4πr

2 is the attenuation term due to spherical
spreading. This term implies that there is a 6 dB reduction in sound pressure level for every doubling of
the distance with respect to the source [1, 13].

3.1.2 Atmospheric absorption

Another attenuation mechanism is atmospheric absorption, which occurs due to the interaction of a
sound wave with air molecules. In this process, a wave loses energy to the air as it travels. The loss of
energy is caused by two mechanisms [13]:

• Thermal conduction and viscosity of air.

• Relaxation losses of oxygen and nitrogen molecules in the air.

The first one is referred to as the “classical attenuation” and is caused by momentum transfer and heat
flow as a result of velocity and temperature gradients. As the frequency rises, the gradients rise along
with it, increasing air absorption. The second mechanism is the relaxation losses, which occur due to
the compression and expansion of air. In these phases, molecules get excited and relaxed again. During
this process, some energy is converted to heat, and thus some sound energy dissipates. Water plays an
important role as a catalyst in these reactions. For this reason, atmospheric absorption is also dependent
on the humidity of the air. The amount of atmospheric absorption is also dependent on the distance and
can be described by the term αr. Including atmospheric absorption, the sound pressure level for a point
source in free space becomes

Lp = LW − 10 log10 4πr
2 − αr, (3.2)

where r is the propagation distance and α is a humidity and frequency dependent parameter.

For α there are empirical models available that give a realistic indication of its value. One of these
models is the standard ANSI/ASA S1.26 (2014) [1]. The atmospheric absorption can be calculated per
frequency and then added to the result of a narrow band spectrum. Appendix A demonstrates how to
compute atmospheric absorption, in accordance with ANSI/ASA S1.26(2014). Figure 3.2 shows the effect
of atmospheric absorption on the sound pressure level for a temperature of 293 Kelvin and a relative
humidity of 25, 50, and 75%.

The figure clearly indicates that the atmospheric absorption effect is most pronounced at higher frequen-
cies. This is also one of the main reasons why low tones are more frequently heard from a distance than
high tones in the case of noise pollution. Relative humidity plays a less important role because its effect
only becomes pronounced at higher frequencies, where the reduction in sound is already considerable.

3.1.3 Reflection

Surfaces can reflect sound waves, and because of this, multiple sound waves may reach the receiver
position due to reflection. This phenomenon is depicted in figure 3.3 by placing a point source over a
reflective surface.

The concept of “ray,” which denotes the direction in which a sound wave propagates, is introduced in the
graphic for clearer understanding of the phenomenon (a more formal definition is provided in Appendix
D). The sound pressure of the two sound rays can be summed to determine the sound at the receiver
location. If the phase of the two rays is identical, constructive interference takes place, increasing sound
pressure by 6 dB. Destructive interference occurs when the two incoming rays are in phase opposition,
resulting in zero sound pressure at the receiver location.

The phase of a sound ray is mainly influenced by three things:

1. The wavenumber
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Figure 3.2: Effect of atmospheric absorption on the sound pressure level with respect to frequency for an ambient
atmospheric temperature of 293 Kelvin.

Figure 3.3: Point source over a reflecting surface, where the dotted circular line depicts the reflective part of a
wave.
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Figure 3.4: Image source method, the path length of the reflected ray path is rs + rr. In the figure is θ the
elevation angle.

2. The propagation distance; distance travelled by the ray

3. The type of reflective surface

The frequency and speed of sound are used to calculate the wave number, which is defined as k = 2πf
c .

It is also called the spatial frequency and describes the number of waves per meter. To calculate the
(normalized) phase, one can multiply k with the propagation distance. Only the relative phase difference
is important when summing up the contributions of two rays. This can be obtained by

∆ϕrel = k · (r1 − r2), (3.3)

where ∆ϕrel is the relative phase difference, r1 is the distance of the propagation path of ray 1 and r2
the distance of the propagation path of ray 2.

The phase of a sound wave can also shift upon reflection. When a sound wave impacts the surface,
part of the wave is reflected and part is transmitted into the surface. The reflected wave has a smaller
amplitude than the incoming wave, and the phase of the wave can shift. The decrease in amplitude and
shift in phase are dependent on the type of surface and elevation angle at the reflection interface. When
the elevation angle is small (close parallel), this effect actually becomes very complex due to the spherical
nature of the wave. See references [1, 23] for more information. For the sake of simplicity, it is assumed
that all reflecting surfaces in this study are acoustically “hard”. An acoustically hard reflection surface
means that upon reflection no phase shift and no reduction in amplitude occurs, which is characterized
by an infinitely large impedance.

A method to calculate the attenuation that occurs due to the reflection is to place an image source below
the actual source, see figure 3.4. In the figure, the direct propagation path from the image source to
the receiver is the same as the reflected path from the source to the receiver. Consider a case where
we assume an acoustically hard surface, a constant speed of sound of 340 m/s and put hs = 15 m,
hr = 12 m, and d = 50 m. The reflection attenuation can now be found and is illustrated in figure 3.5.
Details of the calculation can be found in Appendix B.

First of all, it is important to note that the results are in the 1/3 octave band spectrum and in the
narrow band spectrum. There are many large minima in the narrow band spectrum. With a continuous
spectrum, these minima would be −∞. Because it is a narrow band spectrum rather than a continuous
spectrum, not all minima have the same value. At higher frequencies, the wavelength is shorter, and
therefore the minima are closer together. The 1/3 octave band result is the logarithmic average of the
narrow band result. At low frequencies of the 1/3 octave band result is the interference pattern clearly
visible, but at high frequency the attenuation tends to go to 3 dB. This value is to be expected as
the phases between rays in a high frequency band become more random, and a random (incoherent)
addition of sound waves results in a 3 dB increase in sound [24]. In figure 3.4, there is a maximum
ground attenuation of 6 dB. The reason for this is that the maximum number of reflections that can



CHAPTER 3. ATMOSPHERIC SOUND PROPAGATION 29

10
2

10
3

10
4

-20

-15

-10

-5

0

5

10

Figure 3.5: Reflection attenuation for different frequencies. The results are presented as the averaged 1/3 octave
center frequencies.

reach the receiver in this case is one. As we will see in the following section, it is also possible that more
reflections arrive, in which case the ground attenuation can exceed 6 dB.

3.1.4 Refraction

The next attenuation mechanism is refraction. Refraction is the bending of sound waves caused by the
presence of a varying sound speed. Sound waves bend towards lower sound speed regions and thus do
not always travel in straight lines. The amount of refraction is defined by Snell’s law of refraction [13]

cos θ1
c1

=
cos θ2
c2

, (3.4)

where θ1 is the elevation angle of the ray entering the medium, c1 the sound speed of the current medium,
θ2 is the elevation angle of the ray leaving the medium and c2 is the sound speed of the medium that the
ray enters, see figure 3.6. For a continuous medium, like the speed of sound in the atmosphere, Snell’s
law states that the ratio of the elevation angle and the speed of sound are constant along a sound ray

cos θ

c
= constant along a sound ray. (3.5)

By integration of this condition, the path of a ray can be found [25].

Refraction affects a ray’s phase and the number of rays that arrive at a given point. It can therefore have
a significant impact on the sound field. Only for short propagation distances can refraction be neglected,
because then the refraction is still minimal [13]. Refraction is a complicated subject since the atmosphere
can be a non-constant medium with varying levels of refraction at various regions. Computation methods
that can include refraction are described in section 3.2. Appendix C discusses the variation of sound
speed in the atmosphere. In this section, we will limit ourselves to solely examining the refraction-related
effects induced by a vertical linear wind speed profile.

The speed of sound induced by the wind can be approximated as ceff (z) = c+ u(z) (see section 2.3.1),
where u is the wind speed in the direction of the sound speed at height z. This means that the speed
of sound will be greater when a sound wave moves along with the wind and smaller when it moves
against the wind. The effect of a linear wind speed profile on a point source above a ground surface is
depicted in Figure 3.7. When sound waves travel against the wind, the speed of sound will be smallest
where the wind velocity is largest. In other words, the speed of sound decreases with height in this
case. Hence, sound waves traveling against the wind refract upward. When a sound wave travels along
with the wind, this effect is reversed. Which means the sound speed will increase with height, causing
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Figure 3.6: Refraction in the case of a discontinuous medium. Below the interface, the speed of sound is equal
to c1 and above the interface to c2.

Figure 3.7: Several rays visualized from a source for a linear sound speed gradient. In the figure three receivers
are shown that are affected by the refraction. The speed of sound profile is c0 + u. The corresponding sound
speed profiles are shown for upwind propagation and for downwind propagation.
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Figure 3.8: Ray visualization of sound diffracting around a barrier.

downward refraction of the waves. In figure 3.7, the sound speed profile as experienced by the sound
waves is illustrated for upwind and downwind propagation.

To illustrate the effect on the sound level induced by refraction, first consider receiver 1 in Figure 3.7.
Here, not a single ray will arrive at the receiver, and therefore the expected sound pressure is zero.
The zone that no ray can reach is referred to as the “shadow zone.” In reality, the sound pressure in
the shadow zone is very low, but not zero, due to the effects of turbulence and diffraction, which are
discussed further in this section. Receiver 2 is reached by two rays: the direct ray and the reflected ray.
Thus, depending on the phase between the rays, the sound level is either increased or decreased. At
receiver 3 multiple rays arrive, indicating that the sound level is relatively large at this point (multiple
reflected rays mean that the ground attenuation can exceed 6 dB). The number of rays that can arrive
at the receiver increases as one moves further downwind from the source. Thus, refraction can cause
multiple rays to arrive at a receiver downwind, while in case of no refraction only two rays would have
arrived.

3.1.5 Diffraction

Diffraction occurs when a wave encounters a barrier. When this happens, some of the wave is reflected,
while the other part bends around the barrier. How the wave bends around the object depends on the
frequency of the wave and the object itself. When a person stands around a corner and speaks, we are
able to hear the person but are unable to see the person. This can be explained by the fact that the
wavelength of light is much smaller than the wavelength of audible sound, and therefore sound is able to
diffract around the corner but light is not. For wind turbine applications, diffraction becomes important
when large objects form a barrier between the source and the receiver, as is the case in figure 3.8.

In this report, sound propagation is determined for wind turbines. Wind turbines are high sources. Thus,
the line of sight between a wind turbine and a receiver is only influenced by relatively large obstacles.
If no such obstacles are present, diffraction does not have a lot of influence. Therefore, diffraction is
disregarded in further analysis but can be described by most sound propagation methods (see section
3.2).

3.1.6 Turbulence

The final attenuation mechanism is turbulence. The sound profile in figure 3.8 was assumed to be a
smooth profile that does not change with time. In reality, on the scale of seconds or minutes, the velocity
and temperature of the atmosphere can randomly fluctuate. This fluctuation is known as turbulence
and causes random local fluctuations in sound speed [13]. Section 3.1.4 showed that a variation in
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Figure 3.9: Illustration of small scale refraction due to turbulence.

sound speed leads to bending of the sound wave. In case of turbulence small scale refractions occur.
Figure 3.9 illustrates these small scale refractions. The effect of this is that a ray path will randomly
fluctuate, resulting in random fluctuations in amplitude and phase. In the case of a downward refracting
atmosphere (at the right side of the source in figure 3.9) two or more rays arrive at a receiver location.
All of those rays will be affected by random fluctuations in amplitude and phase. Therefore, the location
of local minima; the location where deconstructive interference takes place, shifts at a certain interval.
When this is averaged over time, the result is that the depth of the peaks of the interference minima is
reduced.

In the case of an upward refracting atmosphere, an additional phenomenon is present. Near the source,
where still several rays arrive, a reduction of local minima will happen. However, no rays arrive further
away from the source, in the shadow zone. Without turbulence, the sound levels in the shadow zone
would be zero, but due to the small refractions, sound can penetrate the shadow zone.

In this report, most attention is given to the downward-refracting atmosphere and not much to the
shadow zone. Thus, the simplification is made to disregard turbulence. Therefore, one needs to keep in
mind that, in reality, the peaks of the local minima will be reduced.

3.2 Models to calculate the sound propagation

Several types of models are available for the calculation of the sound pressure field in the atmosphere.
The three main types that have been applied to wind turbine noise are identified and briefly described
here: ray tracing, parabolic equation method, and engineering methods.

3.2.1 Ray tracing

The first model is called ray tracing. Ray tracing uses the idea of “tracing” all the relevant different
ray paths and summing the contributions of all rays at certain locations to estimate the sound pressure
level [13, 25, 26]. Ray tracing is used for a wide variety of applications, such as room acoustics, ocean
acoustics, and atmospheric acoustics. What makes ray tracing so appealing is that it is very intuitive.
All ray paths in a domain can be visualized to quickly get a sense of the propagation of sound in a
situation. To illustrate this, consider a source placed above a reflecting surface at a height of 2 meters.
The effective sound speed profile in the example is assumed to be in the form of

ceff(z) = c0 +B log

(
z

z0
+ 1

)
(3.6)
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Figure 3.10: Ray tracing in an atmosphere with sound speed profile ceff(z) = 340 + log
(

z
0.1

+ 1
)
. In the figure,

100 rays are illustrated with shooting angles between 0 and 5 °, where the angle is the angle between the ray and
the horizontal.

with c0 = 340 m/s, B = 1 m/s and z0 = 0.1 m. Figure 3.10 shows the computed ray paths for this case.
More information about this computation can be found in Appendix D.1. In the figure, one can directly
see how the sound energy propagates through the atmosphere. At locations with a high ray density,
relatively large sound levels are present, and at locations with a low ray density, the sound levels are
relatively low. Also, multiple reflections are occurring, resulting in more than two rays arriving at some
locations. This case is a good illustration of a possible scenario of downwind sound propagation.

Figure 3.10 gives a good first grasp of what is happening in downwind sound propagation. However,
calculating the actual sound pressure turns out to be more complex. A reason for this is the occurrence
of caustics. Caustics are curves where the normal distance between two rays, with small differences in
elevation angle, vanishes (see figure 3.10) . In ray tracing, the normal distance between two rays is a
measure of the concentration of rays, which is used to calculate the sound pressure level. The result
is that the estimated sound pressure level will be infinite at caustics [25]. This is not physical, as the
actual sound pressure is large near caustics but not infinite. Furthermore, when a ray passes through
a caustic, a phase shift happens. If this phase shift is not taken into account, errors may arise also
arbitrarily far from the caustics. Dealing with caustics is possible, but the complexity is a drawback of
this methodology [13].

In comparison to the parabolic equation method (discussed in the next part), the accuracy of ray tracing
can be somewhat low. This is because ray tracing is essentially a high-frequency approximation of the
wave equation (see e.g. [25]). A rule of thumb is that the considered wavelength should be much smaller
than any physical scale in the problem. However, it remains difficult to predict whether ray tracing
will produce sufficiently accurate results. Ray tracing is now most commonly used when environmental
uncertainty imposes the largest constraint on the accuracy achievable.

3.2.2 Parabolic equation method

The second type of sound propagation model is based on solving the parabolic equations (PE). Parabolic
equations arise from small- or large-angle approximations of the wave equation [13]. These differential
equations are then solved with common numerical techniques. A large advantage of the PE method is that
it can be used for non-homogeneous ground surfaces and large sonic gradients [13]. One limitation of the
PE method is that it is applicable for small elevation angles only. This is due to approximations made in
the derivation of the parabolic equation and the use of the effective sound speed approximation. Another
limitation of the PE method is the computational cost: the grid points increase rapidly with increasing
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frequency, and for a lot of 3D problems the computational power required is too high. An approach
that is often used in atmospheric acoustics is to use the Green’s function parabolic Equation(GFPE)
method to solve the PE [27]. This increases the computational efficiency in comparison with other PE
methods by enabling the possibility for coarser grids in the propagation direction [28]. A more detailed
explanation of PE methods and the GFPE method is provided in Appendix E.

3.2.3 Engineering models

The computing time of ray tracing and parabolic equation solvers is a significant limitation for some
practical applications. In these cases, engineering models can be used instead. These models are ray
based but do not use an iterative scheme to trace all ray paths; instead, ray paths are approximated
analytically. The rays are used in several analytical models to roughly represent the sound pressure due
to the propagation effects. This approach reduces the computational time significantly [1]. A drawback
of engineering models is that the assumptions used to derive them might not be valid in some conditions.
This will result in a lower accuracy of the results when compared to standard ray tracing or PE methods.

The general approach of engineering models is to calculate the sound pressure level by summation of
individual attenuation effects to the sound power level, which was defined in the introduction of this
chapter as

Lp = LW +Aatt, (3.1)

where
Aatt = Adiv +Aatm +Agr +Arefr +Adif +Atur, (3.7)

is the sum of all the attenuation mechanisms described above: geometrical spreading, atmospheric ab-
sorption, ground reflections, refraction, diffraction, and turbulence, respectively.

All these effects are approximated and linearly added to the sound power level to obtain the sound
pressure level at a location. A problem with this approach is that most effects are interrelated, and
treating them individually leads to an increase in error [1]. Only the more complex models attempt to
account for this by combining some propagation effects. Furthermore, engineering methods calculate the
sound pressure level in the octave- or 1/3 octave band spectrum. This is because at single frequencies,
constructive or destructive interference will cause interference peaks. A small error at the frequency at
which this occurs is expected, and by averaging out the results over a band, the final results give a better
approximation of reality.

The next chapter explains the Harmonoise model in detail, which is a state-of-the-art engineering model.
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The Harmonoise model

The Harmonoise project aimed to improve noise mapping in the European Union. At the end, it produced
two types of models: a reference model that uses a combination of numerical techniques to evaluate
outdoor sound [29] and an engineering model [19]. From this point on, the Harmonoise engineering
model will be referred to as the Harmonoise model. For low sources (< 5 m) and relatively short
propagation distances (< 300 m), the Harmonoise model has been proven to be accurate (±3 dB) for
environments with several diffraction edges and varying ground properties[19, 30].

This chapter only describes the Harmonoise model for the effects of geometrical spreading, atmospheric
absorption, reflections, and refraction. The effect of refraction is combined with the other attenuation
mechanisms. Therefore, equation 3.7 becomes

Aatt = Adiv +Aatm +Agr. (4.1)

The Harmonoise model calculates the sound levels in 1/3 octave bands and thus equation 3.1 becomes

Lp(fn) = LW (fn) +Aatt(fn), (4.2)

where fn are the center frequencies of the 1/3 octave band.

In this chapter, the calculation procedure of the Harmonoise model for attenuation effects in equation 4.1
is described first, followed by a discussion of the limitations. The described model is then implemented in
Matlab code. This code’s output is compared to reference solutions. The emphasis of these comparisons
is on ground attenuation in conjunction with refraction to determine the Harmonoise model’s ability
to accurately capture the influence of various atmospheric conditions (and hence different sound speed
profiles).

4.1 Geometrical spreading & Atmospheric absorption

The geometrical spreading term, Adiv, was defined as −10 log10 4πr
2 by equation 2.34. The distance

between source and receiver r can be found by

r =
√
d2 + (hs − hr)2, (4.3)

where d is the horizontal distance between source and receiver, hs the source height and hr the receiver
height.

Atmospheric absorption is implemented as described in section 3.1.2. It is a function of distance, fre-
quency, humidity and temperature. This implementation is meant for single frequencies, with as conse-
quence that in the case of 1/3 octave bands, the error increases. Therefore, a correction is made to the
atmospheric absorption [1]

Aatm = A0 (1.0053255− 0.00122622A0)
1.6
, (4.4)

where A0 is equal to αr and can be calculated as described in Appendix A.
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Figure 4.1: A source and receiver placed above a randomly generated ground profile.

4.2 Ground reflections

In this section and section 4.3, the method used by the Harmonoise model to calculate the attenuation
caused by ground reflections will be explained. The model is constructed in the vertical xz-plane and
includes both a source and a receiver. The overall process consists of three steps:

• Segmentation of the actual ground profile.

• Calculation of the contribution of each individual segment.

• Combining the contributions of each segment to obtain the overall attenuation.

As an illustrative example, consider a source and receiver placed above a randomly generated ground
profile. The height of the source with respect to the ground profile is hs, and the height of the receiver
is hr. This configuration is shown in figure 4.1.

To calculate the ground attenuation in this situation, first the ground has to be segmented, which is
discussed in the next section.

4.2.1 Ground segments

A ground profile is described by N straight line segments. The coordinates of the end points of these
segments are labeled as Pi with i = 0, 1, .., N . The x, z coordinates of a point Pi are (xi, zi). Individual
ground segments are labeled with k = 1, 2..., N , where the first segment is P0 −P1. The locations of the
source and receiver are (x0, y0+hs) and (xN , yN +hr) respectively. The terrain that has to be segmented
is an input parameter in the Harmonoise model. To do the segmentation as efficiently as possible, parts
of the terrain that have large changes in slope need additional segments, while relatively constant parts
of the terrain can be modeled with only a few segments. A method for efficient segmentation is described
below [1].

Consider the example terrain displayed in figure 4.1. Draw a line from the start point to the end point of
the terrain (see figure 4.2). The next step is to find the ground point that is farthest away from this line,
which is labeled as L1. Point L1 in combination with the begin and end points represents the terrain
approximated by two segments. Following that, two lines can be drawn: one from the start point to
point L1 and another from point L1 to the end point. Repeat the process of finding the ground point
furthest from those two new lines to find point L2. Note that the distance from a point to a line in 3D
space can be calculated as [31]

d =
|(x2 − x1)× (x1 − x0)|

|x2 − x1|
, (4.5)

where × is the cross product, x0 containts the coordinates of the point in 3D space, x1 the beginning
of the line and x2 the end of the line. To use this formula in 2D space one can simply put the third
component of the vectors as 0.

Following this procedure for 10 segments, the considered ground profile of figure 4.1 will be segmented
as figure 4.3.
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Figure 4.2: Segmentation of the ground profile in case of two straight line segments.

Figure 4.3: Segmentation of the ground profile in case of 10 straight line segments.
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Figure 4.4: Local coordinate system of a ground segment.

The number of segments can be increased until certain conditions are met, such as the shortest segment
length and the greatest distance between the segmented profile and the actual profile [19]. The obtained
segmentation is the situation which is solved by the Harmonoise model, using the concave model. The
concave model is explained in the next section.

4.3 Concave model

The Harmonoise model calculates the ground attenuation by summing up the contributions of each
segment. The ground effect’s attenuation, where the ground attenuation is defined as the actual pressure
divided by the free field pressure (see section 2.7.1), is conceptually predicted by the model as

∆L = 20 log

∣∣∣∣ p

pfree

∣∣∣∣ = N∑
i=0

∆LG,k (4.6)

where p is the acoustical pressure, pfree the acoustical pressure in the free field and ∆LG,k is the ground
attenuation per segment.

Each ground segment uses a local d, h coordinate system as illustrated in figure 4.4, where the ground
segment has its own local source height (hs) and receiver height (hr).

Depending on hs and hr, three types of ground segments can be distinguished:

• concave segments, with hs > 0 and hr > 0

• convex segments, with hs < 0 or hr < 0

• hull segments, with hs = 0 and hr = 0

The concave model is used if the ground consists only of concave segments. For the cases that will be
considered in this report, only concave segments can be used. This is because the considered cases are
all flat ground profiles, resulting in only concave segments except for upwind propagation close to the
shadow zone. Therefore, only the concave model is considered.
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4.3.1 Flat and deep-valley ground attenuation

The concave model is based on a two ray approximation [30]

∆LG = 10 log
(
|1 + CQD|2 +

(
1− C2

)
|QD|2

)
(4.7)

where C is the coherence factor that accounts for the coherence between the direct and reflected wave
fields, as will be explained in section 4.3.4. The geometrical weighting factor D takes into account the
strength of the image source with respect to the free field. In case of a flat ground this is defined by

D =
pfree (S

′, R)

pfree(S,R)
and pfree(S,R) =

1

r(S,R)
eikr(S,R) (4.8)

where S the position of the source, R the position of the receiver, S′ the position of the image source,
and r(S,R) the length of the ray path from S to R. The spherical reflection coefficient Q takes into
account phase shifts and amplitude changes of the reflected ray due to the reflection. In the case of a
hard ground, Q is equal to 1.

Because of the surface properties of the ground, the parameters C, Q, and D can change for different
ground segments. To overcome this problem, the two ray approximation model is applied to all ground
segments separately. The total ground effect is calculated by means of a Fresnel weighting method of
the contributions of each ground segment [19]

∆Lk = 10 log10

(
|1 + CkQkDk|2 +

(
1− C2

k

)
|QkDk|2

)
∆LG,flat =

N∑
k=1

wk∆Lk,
(4.9)

where the summation is over each ground segment and wk is the Fresnel weighting factor of each ground
segment. The Fresnel weighting method will be elaborated in more detail in section 4.3.2.

This model can be extended to also incorporate non-flat ground by making Dk dependent on different
ground segments. For this, the quantities of D are calculated relative to an infinite supporting plane of
each segment, meaning that the image source is calculated with respect to (an extension of) the segment
that is considered.

However, over deep valleys, this model might become unstable. This can be solved by separating the
coherent and incoherent parts of the reflected field [32]

∆LG,valley = 10 log10

∣∣∣∣∣1 +
N∑

k=1

wkCkDkQk

∣∣∣∣∣
2

+

N∑
k=1

wk

(
1− C2

k

)
|DkQk|2

)
.

(4.10)

Finally, the ground attenuation can be found as a weighted average combination of the flat formulation
and the deep-valley formulation

∆LGc = FG∆LG, flat + (1− FG)∆LG,valley, (4.11)

where LGc is the ground attenuation for the concave model, LG,flat the attenuation by the formulation
for flat terrain and LG,valley the attenuation by the valley shaped terrain.

The parameter FG was derived from the fact that whether the flat or valley model should be used depends
on the frequency. Therefore, the parameter FG was found in [17] by comparison with numerical results.
A correction was made in [30] to better represent the results in the case of a refracting atmosphere. In
the end, FG is defined as

FG = 1− e−1/x2
g , (4.12)

with
xg =

wt√
1 + (f/fc)

2

wt =
∑

wk

(4.13)
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where fc is the transition frequency described in section 4.3.3. The summation to obtain parameter wt

is over all the ground segments.

4.3.2 Fresnel weights

The Fresnel weights are used to determine the contribution to the attenuation of each individual ground
segment. This is necessary because the reflection of a sound wave does not only involve the ground at the
specular point of reflection, but is also affected by the ground on either side of that point. The specular
reflection point is the point of reflection between a source and receiver as found by considering the path
of the reflected ray (see figure 4.4). The formulation is based on a Fresnel zone. The general idea of the
use of a Fresnel zone was presented in [33]. They discovered that the excess attenuation is constant up
to a certain distance from the source when looking at a two-impedance boundary problem for a single
frequency and ignoring oscillations due to refraction. After that, a transition zone was identified until
the results became constant again. This transition zone happens in a well-defined region around the
specular reflection point. Consider the paths from the source to the receiver that involve a reflection
somewhere on the boundary. The path is the shortest if this location on the boundary is the specular
reflection point. Moving further away from this point increases the path’s length. Hothersall and Harriot
[33] defined the region where the transition of excess attenuation occurs as the point where the path
length is greater by a value of λ/3 compared to the path length via the specular reflection point, this
region is known as the Fresnel zone. The Fresnel zone is an ellipse for a 2D reflective surface area (see
figure 4.5). This method was further developed in the NORD2000 project[17].

The implementation in the Harmonoise model of the Fresnel zone for a reflected ray path satisfies

r (S′, P ) + r(P,R) = r (S′, R) + λ/nF , (4.14)

where λ is the wavelength, P the location of the specular reflection point and nF is the Fresnel parameter.
Thus, instead of using the value λ/3 as explained previously, the actual distance of the Fresnel zone is
set as a parameter for further fine-tuning. Initially, nF was set to 8. However, to yield more accurate
results at higher frequencies, the modified Fresnel weights are calculated afterwards, which makes the
parameter nF frequency dependent. The Fresnel weights can be calculated through

wF,k = Fw (ξ2)− Fw (ξ1) , (4.15)

with

Fw(ξ) =


0 for ξ ≤ −1

1− 1
π

(
cos−1(ξ)− x

√
1− ξ2

)
for − 1 < ξ < 1

1 for ξ ≥ 1

. (4.16)

The variables ξ1 and ξ2 are computed as

ξm =
dm − dF

a
; m = 1, 2 (4.17)

where d1 is the horizontal distance between the beginning of the ground segment and the source, d2 is
the horizontal distance between the source and end of the ground segment, dF is the horizontal position
along the x-axis of the center of the ellipse, and the size of the Fresnel ellipse along the x-axis is dF ± a.
The parameters are also indicated in figure 4.5. The parameters are dependent on the source and receiver
configurations and can be found as

dF =
d

2

(
1 +

h′2s − h′2r
D2 − d2

)
. (4.18)

where h′s and h′r are the source and receiver heights with respect to (an extension of) a ground segment.
The value of a can be found as

a =
1

2

√
D4 + (D2

S −D2
R)

2 − 2D2 (D2
S +D2

R)

D2 − d2
, (4.19)

where

D =
λ

nF
+

√
(h′S + h′R)

2
+ d2

D2
S = d2F + h′2S

D2
R = (d− dF )

2
+ h′2R.

(4.20)



CHAPTER 4. THE HARMONOISE MODEL 41

Figure 4.5: This figure shows the Fresnel ellipse with the parameters that are used in the formulation. Figure
taken from [1].

These Fresnel weights yield accurate results at low frequencies but are less accurate at higher frequencies.
To solve this the tuning parameter nF is made frequency dependent and is calculated as [19]

nF = 32
[
1− exp

(
f2c /f

2
)]
. (4.21)

The modified Fresnel weights can still be calculated by equation 4.15 but now with modified arguments

wk = Fw (ξ′2)− Fw (ξ′1) , (4.22)

with

ξ′m =
ξm − ξC
1− ξmξC

, (m = 1, 2) (4.23)

ξC =
dC − dF

a
, (4.24)

dC = α(f)dF + (1− α(f))dSP (4.25)

dSP = dSR
hS

hS + hR
(4.26)

α(f) =

[
1 +

(
f

fc

)2
]−1

. (4.27)

4.3.3 Transition frequency

The transition frequency is the frequency used for the transition between the low- and high-frequency
models. It is also used to determine the transition between the flat and deep-valley models. It was found
in [17] that the transition frequency between the low- and high-frequency models could be determined
by the phase shifts from reflections of the softest ground surface between the source and receiver. The
bounds of the transition region were identified as the lowest frequency for which the phase shift is π

2 and
π for the lower and upper bound, respectively. The transition frequency is estimated as

fc =
√
fminfmax, (4.28)



42

where fmin and fmax are the frequencies for which the following relationship holds:

φmax (fmin) =
1

2
π,

φmax (fmax) = π,
(4.29)

The phase difference φ between the direct and reflected ray is defined as

φk(f) = arg (Qk) + k [r (S′
k, R)− r(S,R)] , (4.30)

where arg(Qk) is the phase shift upon reflection, k is the wavenumber, r(S′
k, R) the distance between

the image source in the reference frame of segment k (see figure 4.4) and the receiver, and r(S,R) is the
distance between the real source and receiver.

The “max” subscript in equation 4.29 stands for the largest phase shift difference of all ground segments
k. The values of fmin and fmax are found from equation 4.29 and 4.30 by linear interpolation between
the 1/3 octave band center frequencies

fmax = fn−1 + (fn − fn−1)
π − φ (fn−1)

φ (fn)− φ (fn−1)
. (4.31)

where fn is the center frequency just above π. The same can be done for fmin but with π replaced by
π/2. If n = 1, fmin is set as fn.

4.3.4 Coherence factor

The coherence factor takes into account the fluctuations in phase difference between rays. When rays
have a constant phase difference with changing distance, they can be regarded as coherent. When the
phase difference changes, the rays are incoherent with each other. Coherent addition of waves means that
the phase is taken into account within the addition, and thus constructive and destructive interference
will take place. Incoherent addition simply means summing up the squared amplitudes of a wave,
disregarding the phase [24]. The Harmonoise model considers coherence in terms of the coherence factor;
if the coherence factor is 1, the rays are summed up as perfectly coherent. If the coherence factor is 0,
the phase is summed using incoherent addition. The Harmonoise model only considers the coherence
between the direct ray and the reflections, not the coherence between several reflections.

The coherence factor C is calculated as [30]

C = exp

(
−1

2
σ2
φ

)
(4.32)

where σφ is the standard deviation of the phase difference fluctuation. This standard deviation consists
of the standard deviation of the uncertainty of the distance between source and receiver(σd), the standard
deviation of the uncertainty of the source and receiver height(σhs

and σhr
) and the standard deviation of

the uncertainty of the 1/3 octave band averaging (σf ). The total standard deviation can be calculated
by

σ2
ϕ = ϕ2

[(
σf
f

)2

+
(σd
d

)2
+

(
σhs

hs

)2

+

(
σhr

hR

)2
]

(4.33)

where

ϕ = k∆d =
2πf

c0

2hShr
d

. (4.34)

The term that accounts for the 1/3 octave frequency band averaging is calculated by

σf
f

=
1

3

∆f

f
=

1

3

(
2B/2 − 2−B/2

)
(4.35)

where B = 1/3 for 1/3 octave band averaging. The remaining terms σd, σhs
and σhr

account for the
uncertainty in distance between source and receiver, uncertainty in source height, and uncertainty in
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receiver height, respectively. In absence of better information the following values for the standard
deviations can be used [1, 19]

σd
d

= 0

σhs

hs
= min(1,

hs
10

)

σhr

hr
= min(1,

hr
10

).

(4.36)

The simulations in section 5.1 and chapter 6 use the standard deviations of equation 4.35 and 4.36.

4.4 Refraction

The Harmonoise model explained thus far is only considering a non-refracting atmosphere. Harmonoise
incorporates refraction by applying a conformal mapping that transforms ray paths into approximately
straight lines. The new problem can then be solved with the models introduced in the previous sections.
This method is referred to as the “curved ground analogy.” To transform the ray paths into straight
lines, the assumption is made of a linear sound speed profile, resulting in all ray paths being described
by a circular arc. The radius of this arc is described by [1]

R =
c

g cos θ
, (4.37)

where c is the speed of sound, g is the gradient of the sound speed, and θ is the elevation angle as denoted
in figure 4.6.

In reality, the sound speed profile is not linear. To approximate the ray paths as well as possible, the
sound speed profile is linearized, taking into account the maximum ray height.

This section will first introduce the concept of the curved ground analogy, then explain the conformal
mapping of the Harmonoise model, and finally address the linearization done by Harmonoise. Additional
information about conformal mappings can be found in Appendix F.

4.4.1 Curved ground analogy

In acoustics, it can be difficult to correctly reconstruct propagation conditions in laboratories. For
example, it is hard to mimic sonic gradients without the use of wind tunnels. A possible method to
simulate the correct propagation conditions without the construction of a sonic gradient is by curving
the ground in the same manner as the rays originally would. The curvature of the ground can be chosen as
the same curvature a ray would have in the case of a constant vertical sonic gradient. For an engineering
model such as the Harmonoise model, it is difficult to incorporate refraction analytically. The use of the
curved ground analogy is a convenient method to include refraction but still use the analytical models
that are based on straight ray paths.

As shown in equation 4.37, the ray radius is dependent on the elevation angle. For near horizontal
propagation, the ray radii are very similar. One ray has to be chosen as the ground curvature. In the
Harmonoise model, the direct ray between source and receiver is chosen for this. Figure 4.6 illustrates
the curved ground analogy for a downward-refracting atmosphere.

The new situation correctly simulates the ground effect if:

• angles at the reflection interface are preserved.

• phase differences between rays are preserved.

The angles are preserved in the case of a conformal mapping, but the lengths and thus the phase difference
is not. Almgren [34] conducted a theoretical and numerical study with the sound-ray approximation. He
showed that the phase difference is not preserved but remains close to the original phase difference in
situations important for outdoor sound prediction, e.g., small elevation angles. In other words, the ray
path lengths change in such a way that the difference in path length between the rays remains relatively
close to the original problem. Consider the equation for phase shift

ϕ = k∆r, (4.38)
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Figure 4.6: a) Sound rays between source and receiver in case of a downward-refracting atmosphere. b) Curved
ground analogy that represents situation a. The curvature of the ground is chosen as the limiting ray.

where ∆r is the difference in path lengths between rays. This implies that a similar difference in path
length results in a similar phase difference. The curved ground analogy is what the Harmonoise model
uses to simulate refraction.

4.4.2 Conformal mapping in the Harmonoise model

Refraction is taken into account by a conformal mapping, using the curved ground analogy. It is assumed
that the speed of sound can be described by a constant gradient, resulting in

c(z) = c0

(
1 +

z

R

)
, (4.39)

where z is the height above the ground and c0 is the speed of sound at z = 0.

Consider the following conformal mapping [30]

ζ = u+ iv =
iRw

w + 2iR
, (4.40)

with w = x+ iz and R being the radius of the circle of the ray path. This transformation maps circular
ray paths through the origin, w(0, 0), to straight lines. The effects of this transformation can be seen by
applying the transformation of equation 4.40 on the original wave equation [30]

∂2p

∂x2
+
∂2p

∂z2
− 1

c(z)2
∂2p

∂t2
= q(t)δ(x)δ(z), (4.41)

which transforms into
∂2p

∂u2
+
∂2p

∂v2
− 1

c(u, v)2
∂2p

∂t2
= q(t)δ(u)δ(v), (4.42)

with

c(u, v) = c0

(
1 +

u2 + v2

4R2

)
(4.43)

Equation 4.43 is a radial function of space, thus rays are straight lines. For short propagation distances,

the speed of sound can be considered constant, c(u, v) = c0. At a certain distance, the term u2+v2

4R2 can

not be neglected anymore. A condition for the validity of this approximation is d
R < 0.2 from the work

in [30].

The conformal mapping used in the Harmonoise model is slightly different but based on the same
principle:

w = x+ iz → w′ = x′ + iz′ (4.44)

w′ =
C (w − w0)

C + (w − w0)
(4.45)
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Figure 4.7: Conformal mapping in the case of a downward refracting atmosphere. The conformal mapping of
equation 4.44 is used.

with,

w0 =
x0 + xN

2
+ i

z0 + hs + zN + hr
2

, (4.46)

C = iC0 (4.47)

C0 = 2

(
hs + hr

2
+R

)
, (4.48)

where x0 is the x coordinate of the ground segment below the source, xN is the x coordinate of the
ground segment below the receiver, z0 is the z coordinate of the ground below the source and zN is the
z coordinate of the ground below the receiver. This mapping transforms ray paths through the origin
w = w0 − C to straight paths. Other circular ray paths are mapped to circles, but they are very large
circles such that they approximate straight ray paths.

To illustrate the mapping of equation 4.44, consider two rays between a source and receiver in the case of
a downward refracting atmosphere with a flat ground, as shown at the left of figure 4.7. This situation is
mapped to the one on the right, where the rays are approximately straight. The rays are not completely
straight because they do not go through the origin and are therefore mapped to a large circle.

4.4.3 Linearization

Only linear sound speed profiles can be used in the Harmonoise model to guarantee that rays follow
circular pathways, allowing analytical approximations. However, linear-logarithmic profiles are a better
fit for reality. In order to address this, Harmonoise linearizes lin-log profiles in a way that produces
results that are as similar as possible to the ones obtained with the lin-log function. This is predicated
on the requirement that a ray path passes through the source, receiver, and the sound ray’s highest point
[19].

A lin-log profile is used to approximate realistic wind profiles

c(z) = c0 +Az +B log

(
1 +

z

z0

)
, (4.49)

where A [1/s] is the linear part parameter, B [m/s] is the logarithmic part parameter, and z0 [m] is the
roughness length. A methodology to calculate these parameters using the Monin–Obukhov similarity
theory is described in Appendix C. Harmonoise divides the contributions of the linear and logarithmic
part by calculating the radius of the ray from the linear part and the logarithmic part separately.
Afterwards, these radii are combined as follows [35]

1

R
=

1

RA
+

1

RB
, (4.50)

where RB is the radius because of the logarithmic part and RA the radius of the linear part. The linear
part can be found as

1

RA
=
A

c0
. (4.51)

The logarithmic part RB is determined by the conditions that a ray needs to go through the source,
receiver, and highest point of the ray. The highest point of a ray can be estimated by [1, 13]

hmax = d

√
B

2πc0
, (4.52)



46

where d is the horizontal distance between source and receiver. This ray path is replaced with a circular
ray path with radius R and z = −RB as position of the center of the circle below ground level, which is
set at z = 0. The height for this circular ray path can be obtained by

hmax = R−RB . (4.53)

The horizontal distance can be found as

d = 2
√
R2 −R2

B . (4.54)

Substituting equation 4.53 and 4.54 in equation 4.52 results in

R

RB
= γ =

1 + 4K2

1− 4K2
, (4.55)

with K =
√

B
2πc0

. The value K is only dependent on the parameter of the logarithmic part B. The

equivalent linear part can now be identified as

c(z) ≈ c0

(
1 +

z

RB

)
. (4.56)

Finally the equivalent linear part of the lin-log profile is approximated as

c(z) ≈ c0

(
1 +

z

R

)
. (4.57)

In the derivation above, d is taken as the distance between the intersections of the ray path with the
ground. For low sources, this is close to the distance between source and receiver, but for higher sources,
this approximation is not valid anymore. Therefore, this linearization of the logarithmic part is only
valid for low sources. Hansen et al. [1] and de Roo et al. [35] generalized the derivation to also include
the possibility of high sources and found the logarithmic part as

1

RB
=

√
B2 −AC −B

C
, (4.58)

where A = 1 + tg2 θ − γ2, B = hM
(
1 + tg2 θ

)
and C = h2M

(
1 + tg2θ

)
+ (r/2)2. With tg θ = hr−hs

dSR

hM = hs+hr

2 d =
√
d2SR + (hS − hR)

2
γ =

(
1 + 4K2

)
/
(
1− 4K2

)
and K =

√
b/ (2πc0). Figure 4.8

shows the meaning of the parameters θ and hM . The actual distance between the source and receiver is
represented by r, while the horizontal distance is represented by dSR.

Figure 4.9 illustrates the linearization of a random sound speed profile in the case of a low source and in
the case of a high source. The exact values used for this example can be found in the caption. It clearly
shows that for a high source, the gradient of the equivalent linear profile is taken from a higher altitude,
and for a low source, the relevant region is the gradient at a lower altitude. Note that the actual value
of the speed of sound is not important, but the gradient is used for the conformal mapping.

4.5 Assumptions used in the Harmonoise model

Because analytical models are used, the Harmonoise model has a very low computation time. It is only
possible to avoid iterations and a large computational cost by making assumptions about many significant
propagation effects. Therefore, using Harmonoise in a particular situation requires careful evaluation of
a number of fundamental hypotheses. These hypotheses are recalled here below:

• The conformal mapping assumes constant sound speed which is only a valid approximation if the
condition d/R < 0.2 is met. To illustrate this constraint suppose that a problem with a linearized
sonic gradient of 0.05 1/s has to be solved, which is a large but realistic gradient. By using equation
4.51 this gradient corresponds to a ray path radius of 7800 m. Using the condition of d/R < 0.2
indicates that the maximum propagation distance where the results can be regarded accurate is
1560 m, a lower sonic gradient would increase this number.
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Figure 4.8: Geometry used for linearization of a logarithmic sound profile for high source and receiver. Note that
the distance between source and receiver is significantly different than the distance between the intersections of
the ray with the ground.

Figure 4.9: Visualization of the linearization of a lin-log effective sound speed profile with parameters A =
0.0191 1/s , B = 1.1260 m/s, c0 = 340 m/s. The heights of the source and receiver are 80 and 1.5 meter in case
of a high source. In case of the low source the height of the source and receiver are both 1.5 meter.
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• The Harmonoise model does not account for multiple ray reflections. The model should not be
applied in circumstances where the receiver receives multiple ground reflections.

• Only 1/3 octave band analysis is supported by the Harmonoise model. Coarser bands like standard
octave bands are also viable [1]. The accuracy of bands smaller than 1/3 octave should be evaluated
first, as it may be insufficient.

• The Harmonoise model is only valid for point sources. However, this limitation could be overcome
as explained in [1].

• Actual sonic profiles are approximated by lin-log profiles. Furthermore, lin-log profiles are linearized
to ensure that ray paths are circular arcs.

• It is assumed that the sonic gradient is only a function of height so that no horizontal gradient is
present. In chapter 7 a method is proposed to overcome this problem.

The implications of these limitations will be explored in the next chapters.



Chapter 5

Matlab implementation and
validation

The Harmonoise model as described in chapter 4 was implemented as Matlab code. This implementation
will be validated in the next section and, after that, its validity for wind turbine sound propagation cases
is discussed.

The Harmonoise model calculation scheme is visualized in terms of the roadmap shown in figure 5.1.
The roadmap consists of three branches: one for the geometrical spreading, one for the atmospheric
absorption, and one for the ground attenuation.

The input parameters for the Harmonoise model are summarized in table 5.1.

Figure 5.1: Calculation scheme of the Harmonoise model.

49
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Table 5.1: Input parameters of the Harmonoise model.

Input parameters Description
hs Source height [m]
hr Receiver Height [m]

(x, z)
Coordinates of ground profile.
The source is placed above x0 and the receiver above xN .

N Amount of straight segments used for segmentation of the ground
A Linear part of sound speed profile [1/s]
B Logarithmic part of sound speed profile [m/s]
z0 Roughness length [m]
T0 Ambient atmospheric temperature [K]
hrel Relative humidity [%]

Figure 5.2: Geometry for validation of the Harmonoise code. The blue line depicts the effective speed of the
sound profile that varies only with height.

5.1 Validation

To confidently use the implemented Harmonoise model, the code should be validated. The effect of
geometrical spreading was easily defined as correct by comparing the result with other free field pressures.
The validation of the attenuation by atmospheric absorption was done by comparing absorption values
with available values presented in [36]. The ground attenuation will be validated in the subsequent
section for several cases. This is accomplished using a combination of analytical results, more accurate
results obtained by solving parabolic equations, and another Harmonoise code.

Cases with a flat, acoustically hard ground surface in the presence of different sound speed profiles are
used to validate the Harmonoise code. Figure 5.2 shows the geometry used for all the validation cases.
In the next sections, this geometry will be used with different values of hs, hr, d, A and B. In all cases
z0 = 0.1 m, c0 = 340 m/s and N = d/5.

There are four steps involved in the validation of ground attenuation. The first step involves a comparison
between the ground attenuation of the Matlab code and the output of the Harmonoise code implemented
by the Centre Scientifique et Technique du Bâtiment (CSTB). The results should be the same in this
case.

Following that, reference results are generated using the GFPE solver ATMOS of the CSTB (details
can be found in Appendix E). These reference results will be used to validate the Harmonoise model for
different cases where analytical results are not obtainable. To get an indication of the accuracy of the
reference results and to select appropriate parameters for the GFPE solver, results from the GFPE solver
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Figure 5.3: Ground attenuation of case A1 calculated with the implemented Matlab Harmonoise code and with
the CSTB in-house code. The results are presented in the 1/3 octave band spectrum.

are first computed for simple cases where an analytical solution is possible with several computational
grid sizes. These results are then compared with the corresponding analytical solution to determine the
appropriate computational grid size.

Then, the attenuation in the case of a low source and low receiver is considered. This instance is compared
with the reference results generated by the GFPE solver. Next, the same is done for a high source and
a low receiver.

After all four validation steps, the Harmonoise model’s potential application to noise simulations of wind
turbines is examined.

5.1.1 Validation of Matlab implementation

The MATLAB implementation of the Harmonoise model is validated against the CSTB implementation
of the Harmonoise model. A model for diffraction edges is not implemented in the Matlab version; thus,
a case has to be chosen that does not have any diffraction edges. This is the case for the setup shown in
figure 5.2. The following parameters for two cases were chosen:

Case A1: A = 0, B = 0, hs = 0.75 m, hr = 5 m, d = 75 m with a flat acoustically hard ground profile

Case A2: A = 0.2, B = 0, hs = 0.75 m, hr = 5 m, d = 75 m with a flat acoustically hard ground profile

The attenuation due to the ground reflection for the two cases are presented in figure 5.3 and 5.4
respectively. It can clearly be seen that the results almost perfectly overlap for both cases. The actual
differences are displayed in figure 5.5 for case A1 and in figure 5.6 for case A2. The differences in case A1

are very small and can be due to rounding errors. However, the differences for case A2 are a bit larger,
especially near the minimum for 1200 Hz. This difference can be explained by small differences between
the CSTB code and the Harmonoise model as presented in the original papers. However, the differences
can still be considered negligible, and therefore the implementation of the Matlab version is regarded as
good.

5.1.2 Evaluating the accuracy of ATMOS

The parabolic equation solver ATMOS (see Appendix E) is used to obtain accurate reference solutions.
Computations of ATMOS with several grid spacings are compared in two different cases to determine if
the chosen computational space is appropriate. The two cases are both for a non-refracting atmosphere
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Figure 5.4: Ground attenuation of case A2 calculated with the implemented Matlab Harmonoise code and with
the CSTB in-house code. The results are presented in the 1/3 octave band spectrum.
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Figure 5.5: The difference for case A1 between the Harmonoise code implemented in Matlab and the in-house
Harmonoise code of the CSTB.
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Figure 5.6: The difference for case A2 between the Harmonoise code implemented in Matlab and the in-house
Harmonoise code of the CSTB.

and a fully reflecting ground, since the ground attenuation can be analytically determined in that case.
The parameters of the cases are:

Case B1: A = 0, B = 0, hs = 0.75 m, hr = 5 m, d = 75 m with a flat acoustically hard ground profile

Case B2: A = 0, B = 0, hs = 80 m, hr = 1.5 m, d = 1200 m with a flat acoustically hard ground profile

The first case determines the error for short propagation distances with a low source, and the second
case for a high source and a long propagation distance. The analytical solution is obtained as described
in Appendix B. In the calculations, 10 frequencies are used per 1/3 octave band for averaging. Since
computational times would be too large otherwise, the two cases are calculated up to 1000 Hz.

Figure 5.7 and 5.8 show the ground attenuation for the two cases respectively. All results are very close
to the analytical solution. The error, calculated as the difference between the analytical solution and
ATMOS’ solution, is presented in figure 5.9 and 5.10. The coarsest grid, dx = λ/1, dz = λ/20, has a
relatively large error at higher frequencies for both cases. The other two grids perform similarly. The
maximum error for the first case is about 0.07 dB and for the second case 0.6 dB. This error is only that
large in local minima, and therefore the results can be considered accurate enough. Because the grid
size dx = λ/3, dz = λ/60 and the grid size dx = λ/6, dz = λ/120 produce similar results, the coarsest
grid between the two is chosen. Thus, the grid size that is chosen for the generation of reference results
is dx = λ/3, dz = λ/60.

5.1.3 Validation for low sources

In the next part, the Harmonoise model implemented in Matlab will be compared to a reference solution
generated by the GFPE solver ATMOS in case of a low source and a short propagation distance. ATMOS
is a more accurate method than the Harmonoise model. Thus, the comparison between the Harmonoise
model and ATMOS gives an indication of the accuracy of the Harmonoise model. Three types of sound
speed profiles are considered: a linear profile, a logarithmic profile, and a linear-logarithmic (lin-log)
profile. The parameters of the cases are:

Case C1: A = 0.2, B = 0, hs = 0.75 m, hr = 5 m, d = 75 m with a flat acoustically hard ground profile

Case C2: A = 0, B = 1, hs = 0.75 m, hr = 5 m, d = 75 m with a flat acoustically hard ground profile

Case C3: A = 0.1, B = 0.5, hs = 0.75 m, hr = 5 m, d = 75 m with a flat acoustically hard ground profile

The results for case C1, the case with the linear sound speed profile, are presented in figure 5.11. The
figure shows the ground attenuation by the two different models. The overall agreement is good. The
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Figure 5.7: Results of ATMOS (a GFPE solver) for different grid spacings compared to an anlytical solutions for
case B1.
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Figure 5.8: Results of ATMOS (a GFPE solver) for different grid spacings compared to an anlytical solutions for
case B2.
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Figure 5.9: The difference between the analytical solution and ATMOS with different grid spacings for case B1.
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Figure 5.10: The difference between the analytical solution and ATMOS with different grid spacings for case B2.
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Figure 5.11: Ground attenuation of case C1 calculated with ATMOS (a GFPE solver) and the Harmonoise model.
This case illustrates the difference between ATMOS and Harmonoise. The results are presented in the 1/3 octave
band spectrum.
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Figure 5.12: The difference between the ground attenuation obtained with ATMOS and the Harmonoise model
for case C1.
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Figure 5.13: Ground attenuation of case C2 calculated with ATMOS (a GFPE solver) and the Harmonoise model.
This case is a reference to illustrate the difference between ATMOS and Harmonoise. The results are presented
in the 1/3 octave band spectrum.

actual accuracy is better represented by the difference between the reference solution and the Harmonoise
model, this is shown in figure 5.12. As seen before is the error the largest around the frequency of the
local minimum, 1200 Hz. The overall error is well below 3 dB. Therefore, the results of the Harmonoise
model for this case can be considered accurate. Note that the computational time of the Harmonoise
model is drastically lower. The computation of both solutions was done on the same computer. The
computation time of the Harmonoise solution was < 1 second, while the computation time of ATMOS
was around 20 minutes. In case of larger propagation distances this difference is even larger.

Case C2 looks at a strictly logarithmic profile. It is recalled that the Harmonoise model linearizes the
logarithmic profile (see section 4.4.3). Figure 5.13 shows the result of case C2. Two reference results are
included in the figure: ‘GPFE log’ is the actual parabolic equation solution for the chosen parameters and
‘GFPE lin’ is the parabolic equation solution for the sound profile as linearized by the Harmonoise model.
The Harmonoise model is quite far off from the logarithmic reference solution. The actual values in dB
over the whole frequency range look similar, indicating that the overall sound pressure level might still
be accurate. However, it seems that the frequencies where the destructive and constructive interference
occurs are shifted. The linear profile gives a correct result for the center frequencies, suggesting that the
linearized profile is not able to correctly approximate the logarithimic profile in this case.

The final case considered is the lin-log case C3. Figure 5.14 shows the results for this case. By comparing
the results with figure 5.13 it can be seen that the frequency shift is reduced. This makes sense because
the logarithmic parameter B is reduced from 1 to 0.5 in this case. The minima of the GFPE solution at
1000 Hz seems low in comparison with the minima around 1200 Hz calculated by the Harmonoise model.
However, since the results are in 1/3 octave bands, this can be explained by the fact that part of the low
values is shifted into the next band by the calculation with the Harmonoise model.

It can be concluded that for cases where the source and receiver are low and the propagation distance is
relatively short in the presence of a partly logarithmic sound speed profile, the linearized profile does not
accurately capture the ground attenuation. However, the more linear the profile is in these circumstances,
the better the accuracy.

5.1.4 Verification for high sources

In this part high sources (which could be, for example, wind turbines) and longer propagation distances
are considered. To determine the accuracy for a higher source and longer propagation distance one has
to keep in mind the limitations of the Harmonoise model (see section 4.5):



58

10
2

10
3

10
4

-15

-10

-5

0

5

10

Figure 5.14: Ground attenuation of case C3 calculated with ATMOS (a GFPE solver) and the Harmonoise model.
This case illustrates the difference between ATMOS and Harmonoise. The results are presented in the 1/3 octave
band spectrum.

Table 5.2: Limitations for the considered cases for verification of high sources

Ahar [1/s] R [m] d/R Multiple reflections from [m]
Case D1 0.03 1.1 · 104 0.10 3815
Case D2 0.0117 2.9 · 104 0.04 5395
Case D3 0.03 1.1 · 104 0.10 3125

• multiple reflections should not occur

• the distance between source and receiver divided by the radius of a ray path should not exceed 0.2,
d/R < 0.2

Again three type of sound profiles are chosen: a linear profile, a logarithmic profile and a lin-log profile.
The parameters of the considered cases are:

Case D1: A = 0.03, B = 0, hs = 80 m, hr = 1.5 m, d = 1200 m with a flat acoustically hard ground
profile

Case D2: A = 0, B = 1, hs = 80 m, hr = 1.5 m, d = 1200 m with a flat acoustically hard ground profile

Case D3: A = 0.03, B = 0.2, hs = 80 m, hr = 1.5 m, d = 1200 m with a flat acoustically hard ground
profile

Tabel 5.2 shows the corresponding limitations of the Harmonoise model for these cases. In the table
multiple reflections are calculated by tracing the ray paths as described in Appendix D and R as c0/Ahar

(see section 4) where Ahar is the gradient of the linearized profile. Thus, all the cases are well within
the constraints of the model.

Figure 5.15 shows the ground attenuation for case D1 calculated with the Harmonoise model and with
the GFPE solver ATMOS. The results agree very well. The difference between the Harmonoise model
and the GFPE solver, the error, is illustrated in Figure 5.16. The error is close to the error of the low
source result. Thus, for this case the Harmonoise model is valid.

Next case D2, with a strictly logarithmic profile, is considered. The results of the Harmonoise model
are shown in figure 5.17 along with the reference results for the actual logarithmic case solved with the
GFPE solver and the sound profile as linearized by Harmonoise. Initially one might expect the results
to be slightly better as the results of case D2 for the low source because the gradient of the logarithmic
profile at higher altitudes is more constant (see for example figure 6.4) and since the source is higher
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Figure 5.15: The ground attenuation of case D1 for several 1/3 octave band frequencies computed by the Har-
monoise model and ATMOS.
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Figure 5.16: The difference between ATMOS and the Harmonoise model of case D1.
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Figure 5.17: The ground attenuation of case D2 for several 1/3 octave band frequencies computed by the Har-
monoise model and ATMOS.

positioned, the rays travel more through this relatively constant region. However, the contrary is true;
probably because of the larger distance, the error is amplified. Similarly to case D2 of the low source,
the frequency is shifted but in this case also the actual value of the ground attenuation is over predicted
by the Harmonoise model.

Finally, case D3 with a lin-log profile is simulated. Figure 5.18 shows the results. In comparison with case
D2, the logarithmic part for this case is relatively small. Note that it is so small that the Harmonoise
model linearizes the profile as if it were strictly linear (see table 5.2). Possibly because of the small
logarithmic part, the results of the Harmonoise model in comparison with the reference solution agree
better than they did for case D2. Still, a frequency shift of approximately 100 Hz occurs, indicating that
the small logarithmic part does influence the result.

For high sources with long propagation distances, the linear case is still accurate. However, the sound
speed gradients had to be scaled down to comply with the constraints of the Harmonoise model. In the
case of logarithmic profiles, errors can be considerable and therefore only situations with sound profiles
dominated by linear behavior will give reliable results.

5.2 The Harmonoise model for wind turbine noise

In the previous sections, several cases with the Harmonoise model were compared with reference results.
It was found that the accuracy of the ground attenuation was strongly dependent on the case. The overall
conclusion was that relatively linear sound speed profiles are captured correctly, but logarithmic sound
speed profiles increase the error significantly. The other attenuation mechanisms considered, geometrical
spreading and atmospheric absorption, are accurate in all cases. All the cases verified were in downwind
directions, indicating a downward refracting atmosphere.

To estimate the capability of the Harmonoise model to predict the propagation of sound emitted by wind
turbines, the following questions need to be considered:

• Are multiple reflections important for wind turbine sound?

• Is the range limitation of the Harmonoise model induced by the conformal mapping a problem?

• Can the lin-log profile describe a realistic atmosphere, and is the error of linearizing this profile
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Figure 5.18: The ground attenuation of case D3 for several 1/3 octave band frequencies computed by the Har-
monoise model and ATMOS.

acceptable?

• What is the importance and prediction for upwind conditions?

• Can a wind turbine be modeled as a point source?

Multiple reflections can significantly increase sound pressure levels in certain situations. For example,
Hansen et al.[1] has shown that in the case of multiple ground reflections, the reduction in dB per
doubling of distance from the source can decrease to 3 dB, compared to the normal reduction of 6 dB due
to geometrical spreading. The distance at which multiple reflections occur depends on the source height,
receiver height, and sound speed gradients. A wind turbine, being a high source, will typically have
the point of multiple reflections occurring at a relatively far distance from the turbine (the distance for
several cases was presented in table 5.2). At this point, other attenuation effects have already significantly
decreased the sound pressure level, making multiple reflections less relevant. Additionally, sound waves
lose some of their energy upon reflection, further reducing the impact of multiple reflections. However,
low frequency sounds, which are not greatly affected by atmospheric absorption and are better reflected
than higher frequencies, can travel long distances under certain circumstances. These low frequency
sounds do not always show up in a dBA spectrum but are produced by wind turbines. Therefore, one
has to keep in mind that for predicting noise of very low frequencies, the range of the Harmonoise model
might be less than desired.

The range limitation due to conformal mapping was defined as d/R < 0.2. This limitation depends on
atmospheric gradients. In the following chapter, it will be shown that the gradients of cases D1 and
D3 in table 5.2 are reasonable gradients for wind turbine propagation. This means that the maximum
distance will be approximately 2200 m, and even beyond this distance, the results may still be accurate
enough. At this point, the sound pressure levels for frequencies between 50-10000 Hz have already
decreased significantly. Therefore, similar to the case of multiple reflections, the range may only become
a limitation for very low frequencies.

The Harmonoise model takes as input a lin-log sound speed profile. If a real atmosphere can not be
described by such a profile, errors will occur. In Appendix C a methodology to approximate a real
atmosphere is presented. There, it is shown that a lin-log profile can describe such an atmosphere very
well. On the contrary, the linearization that the Harmonoise model does with the lin-log profile results
in quite a large error for sound speed profiles with a logarithmic behavior. Unfortunately, the speed of
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sound in the atmosphere is best described by a logarithmic profile (see Appendix C). In the next chapter,
the Harmonoise model will be used anyway to draw conclusions about the expected behavior of wind
turbine sound. However, one has to keep in mind that the expected error of the ground attenuation is
similar or even worse, as presented in figure 5.17 and 5.18.

In the verification cases, only a downwind propagation direction was considered. Generally, the upwind
propagation cases are less relevant due to the fact that sound refracts upwards and that the perceived
sound levels are the same or lower compared to downwind propagation. Nevertheless, limitations imposed
by upwind propagations have to be accounted for. This is done in the next chapter.

Finally, the Harmonoise model as presented here is based on point-to-point propagation. So, the question
that could be raised is whether a wind turbine can be modeled as a point source. In [37] it was determined
that a wind turbine can be modeled as a point source if the following condition is met:√

d2 + h2 > BL

√
5 (5.1)

where d is the horizontal distance, h is the rotor height and BL is the length of the wind turbine
blade. This implies that even near the root, a wind turbine can be considered a point source. However,
additional studies indicate that the point source approximation somewhat flattens interference dips. This
effect is clearly visible at 500 m, but becomes less pronounced as one moves further away. Also, with
the point source approximation, it is not possible to correctly predict the amplitude modulation [38, 39].
The latter is not an issue for this work because only the averaged sound levels over one wind turbine
rotation will be considered.



Chapter 6

Wind turbine simulation

In this section, the Harmonoise model is used to perform simulations to estimate the sound pressure level
around a single wind turbine. To perform the simulation, two things still need to be considered. The
first is that the actual power and directivity of the source are unknown. To perform realistic simulations,
realistic source data is necessary. The sound emitted by a wind turbine depends heavily on several
factors, like the type of turbine and atmospheric conditions. The generation of reliable source data is
done with a semi-analytic Amiet method, which is discussed in section 6.1.

Secondly, a realistic atmosphere needs to be considered. The atmosphere depends on several factors,
such as topology, time of day, and weather conditions. A possible way to approximate the atmosphere
is via similarity theory. This is discussed in Appendix C.

Figure 6.1 shows the calculation procedure for the sound pressure levels around a single wind turbine.
The input parameters are dependent on the case that is simulated. Section 6.2 presents the general
case that will be simulated. In section 6.3 the results of the source simulation are presented. Finally, in
section 6.4 the sound pressure levels around a wind turbine are calculated with the Harmonoise model
and the source model.

6.1 Source simulation

Amiet’s theory for leading- and trailing-edge broadband noise has been used to model the noise from
wind turbines [40, 41]. Amiet’s theory for trailing-edge noise is an analytical method that relates the
fluctuations in wall pressure close to the trailing edge of a flat plate to the power spectral density (PSD)
of the sound pressure radiated in the far-field. In a similar way, the leading-edge noise theory links the
power spectral density (PSD) of the up-wash velocity fluctuations of the flow near the leading edge to
the PSD of the pressure in the far field. Most of the time, Amiet’s theory has been used to predict
the noise radiated from fixed airfoils in a uniform flow. However, it can also be used to simulate the
noise emitted by rotating machines by dividing the blades into segments to account for different relative
speeds and flow conditions at different radial positions. This method is called “strip theory,”[42] and it
has been used for fans [43, 44, 45, 46, 47], helicopters [42, 48], and wind turbines [49, 50, 51, 52, 53].

As was said above, the trailing-edge noise theory is based on the wall pressure fluctuation spectrum. In
this work, semi-empirical models from Goody [54] and Rozenberg [55] are used for positive and negative
pressure gradients, respectively. XFOIL is used to calculate the parameters of the boundary layer [56].

The von Kármán spectrum is used to model the inflow velocity spectrum for the leading-edge noise
theory. Monin-Obukhov similarity theory is used to figure out the integral length scale and the amount
of turbulence (see Appendix C.2 for more information about Monin-Obukhov theory).

The used code is developed by [57] where more details are available.

In the far field of the wind turbine, the sound pressure levels in 1/3 octave bands are calculated on a
sphere with an arbitrarily large radius. The spectrum is then scaled on a sphere with a radius of 1 m,
centered at the hub. Christophe et al. [58] have recently used the same method.

63
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Figure 6.1: Calculation procedure of calculating the sound pressure level around a wind turbine with a source
model and the Harmonoise model.

Figure 6.2: Representation of the general 2D case that is used to simulate wind turbine noise of a single turbine.

6.2 Test case

The case of a wind turbine present in an area with a flat, acoustically hard surface will be simulated for
2D and 3D cases. The main focus of the simulations is on how the meteorological conditions affect the
sound pressure level and to get a general idea of possible sound levels around wind turbines.

The general 2D case is visually represented by figure 6.2. The figure shows a wind turbine as a sound
source with two receivers downwind. The results of receiver 1 will be compared to on-site measurements
of a real wind turbine. Receiver 2 will be used to give detailed information about the sound pressure
levels in the 1/3 octave band spectrum and how much each propagation effect is responsible for them. In
the figure, two coordinate systems are present. Sources and receivers will always be described in cartesian
coordinates, but post-processing of source data is more convenient in polar coordinates. Therefore, a
polar coordinate system (spherical for 3D) is placed with as center the location of the point source (in
cartesian coordinates (0, hhub)).

The 3D case is the same situation as the 2D case, but now the xy-plane around the turbine is considered.
Figure 6.3 shows the 3D case. The receivers and conditions that are simulated will be presented in
section 6.4.2.
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Figure 6.3: Representation of the 3D case, where the sound levels will be calculated somewhere in the xy-plane
for a given receiver height.

Table 6.1: Parameters used in the source model to generate source data.

Parameter Description Value
Atm Atmospheric stability stable/neutral/unstable
hhub Hub height 80 m
z0 Roughness length 0.1 m
Ts Surface temperature 20 ℃
H Surface heat flux -25/0/200 W/m2

U0 wind speed at hub height 8 m/s

6.3 Source simulation results

Using the source model, the sound pressure levels on a sphere with a radius of 1 meter are calculated.
As a source, the SWT 2.3-93 turbine is considered (2.3 MW and 93 m rotor diameter). The three blades
of the turbine are divided into 8 segments with a constant aspect ratio of 3. Each segment uses the
NACA 63-418 airfoil, and the chord varies linearly from 3.5 m at the root to 0.8 m at the tip of the
turbine blade. The angle of attack in the XFOIL simulations is 4 degrees. Table 6.1 shows the operating
conditions of the turbine. For the generation of source data, three different atmospheric conditions are
used: stable, neutral, and unstable. These atmospheres’ corresponding heat fluxes are -25,0 and 200
W/m2, respectively. Figure 6.4 shows the corresponding temperature profiles, wind velocity profiles,
and effective sound speed profiles for downwind propagation. The corresponding parameters for the
Harmonoise model are shown in table 6.2, these values result in the effective sound speed profile for
downwind propagation by using the equation shown in figure 6.2 . Note that the effective sound speed is
dependent on the propagation direction, which is accounted for within the Harmonoise code. The source
model with the three different atmospheres resulted in three sets of source data. Below, the results of
a stable atmosphere are presented and discussed. The stable atmosphere is chosen because, in such an
atmosphere, the sound speed gradients are the largest. The results of the stable atmosphere will be
compared to the other atmospheres afterward.

The results are generated by using a grid in spherical coordinates, where θ equals the elevation angle,
ϕ represents the azimuth angle, and r is the radial distance to the source. The source model averages
over 1 blade rotation. So, the results are axisymmetric, which means that the pattern of radiation in the
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Figure 6.4: Temperature, velocity and effective sound speed profiles for a stable, unstable and neutral atmosphere.
Generated with U = 8 m/s at 80 m, z0 = 0.1 m, Ts = 290 K and Obukhovs lengths of 145,-86 and infinity
respectively (see appendix C.2 for the definition of the Obukov length).

Table 6.2: The Harmonoise model’s input values for lin-log sound speed profiles in a stable, unstable, and neutral
atmosphere.

A [1/s] B [m/s] c0 [m/s]
stable 0.0191 1.1260 340.37
unstable -0.0090 0.8355 342.32
neutral -0.0059 1.1971 341.15

horizontal direction is the same as the pattern of radiation in the vertical direction. The 2D radiation
pattern visualized by a polar plot is shown in figure 6.5. In this figure, the plane of rotation of the wind
turbine is perpendicular to the wind direction. Note that, in the plane of rotation, a relatively low sound
intensity is emitted.

The 3D results are represented by a sphere. To show the dependency of frequency, the sphere representing
a low frequency, fc = 63 Hz, is shown in figure 6.6 and a sphere representing a mid-frequency, fc = 1 kHz,
is shown in figure 6.7. The figures show that the sound power level is approximately 15 dBA higher at
1 kHz in comparison with the sound power level at 63 Hz. It is important to note here that the scale
is in dBA and not in dB. A-weighting at 63 Hz is about -30 dB (see figure 2.2), thus the actual sound
pressure of the low frequencies is quite high in comparison with 1 kHz. Figure 6.8 represents the overall
sound pressure level.

For all frequencies, a blue circle of low sound power levels is present on the sphere. This region is parallel
with the plane of rotation and is common for wind turbine sound [59]. The highest sound levels are
found at the poles, which are located perpendicular to the plane of rotation. However, the sound levels
for a large region around the poles are all relatively close.

Source data for the different atmospheric conditions is compared at a receiver 1200 m downwind with
a height of 1.5 m. The data on the sound sphere as presented in figures 6.6, 6.7 and 6.8 depends on
the location of the sphere. Therefore, the appropriate value of the source data needs to be used for the
considered point. The data point that is chosen for this is the one that corresponds with the direct ray
between the source and the receiver. The angle of the emitted ray by the source that directly reaches
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Figure 6.5: Polar plot of the SPL for the parameters in table 6.2, representing the horizontal and vertical
directivity.

Figure 6.6: Directional source of 63 Hz represented by a sphere with a radius of 1 meter.

Figure 6.7: Directional source of 1 kHz represented by a sphere with a radius of 1 meter.
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Figure 6.8: Directional source of the overall sound pressure level represented by a sphere with a radius of 1 meter.
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Figure 6.9: Sound power level of points source used to calculated values at 1200 m downwind from the SWT
2.3-93 wind turbine for different atmospheric conditions. The location on the 1 meter radius sphere is described
by θ = −0.0077 and ϕ = 0

the receiver can be found by geometry as

θs = −θSR + sin−1

(
d

2R cos(θSR)

)
(6.1)

where θSR is the angle between the source and receiver defined as θSR = tan−1((hs − hr)/d). The
propagation direction is downwind, indicating that ϕ = 0. Thus, the value used of the sound sphere
is the value at the location (θ, ϕ) which is for this case (−0.0077, 0). Figure 6.9 shows that the largest
deviations in sound power level are present in the lower frequency range. These deviations are 1-2 dB.
At higher frequencies, the differences are small. Therefore, the results presented above for a stable
atmosphere are a good representation of the other atmospheric conditions.
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Figure 6.10: Comparison of the Harmonoise model with the source model, free field results of the source model
+ 6 dBA and on-site measurements for the SWT 2.3-93 wind turbine are presented.

6.4 Results

6.4.1 2D case

The 2D case, as shown in figure 6.2, represents two receivers. Receiver 1, located 100 meters downwind of
the turbine, will be used to give an estimation of the accuracy of the source results. The sound pressure
level at receiver 1 is computed for a neutral atmosphere. Figure 6.10 shows the results compared to
on-site measurements of the SWT 2.3-93 turbine and free field results +6 dBA. The reason for the
addition of 6 dBA is because the measurements are done with a hard measurement board, meaning that
the receiver is placed at ground level to ensure that the direct and the reflected ray are in phase with
each other; hence, 6 dBA is expected above the free field sound pressure level. Since the propagation
distance is very short, refraction does not play a noticeable role. The results are in fact close to the free
field results for low frequencies. At higher frequencies, where atmospheric absorption becomes relevant,
the two results differ. The overall agreement with the experimental results is reasonable, the source
model captures the general trend of the emitted sound levels, although deviations up to 6 dBA occur.
Deviations like this are expected since there are often a lot of uncertainties in the simulation parameters
(on top of the numerical errors) [1].

Receiver 2, located 1200 meters downwind of the turbine with a height of 1.5 meters, is used to give a
detailed analysis of the 1/3 octave band spectrum at that point. Figure 6.11 shows the sound pressure
level at receiver 2 and also includes results of the Harmonoise model and the source model to illustrate
the influence of different effects. The figure demonstrates that the main influences on the sound pressure
level are the source term and the spherical divergence. At higher frequencies, the atmospheric absorption
becomes considerable. For certain frequencies, the sound pressure level increases due to the ground effect,
and at other frequencies, because of destructive interference, the sound pressure level decreases. This is
the same effect as observed in section 4. The actual sound pressure levels at receiver 2 are below 20 dBA
for almost all frequencies, which is less than background noise.

6.4.2 3D Case

Next, the case of figure 6.3 is considered. The general approach is to make a grid of receivers and use the
source data for each receiver with the Harmonoise model to obtain the sound pressure levels. Afterward,
the results are interpolated to obtain a smooth sound map around the turbine.

The simulation grid must be defined by first determining its boundaries. The horizontal component
of wind velocity can be calculated using u cos(ϕ), where ϕ is the azimuth angle. The simulations are
performed in a stable atmosphere, and the fitted lin-log profile in this type of atmosphere consists of a
linear part (A = 0.0191 1/s), a logarithmic part (B = 1.1260 m/s), and a constant (c0 = 340.37 m/s).
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Figure 6.11: Sound pressure level of receiver 2. All the attenuation effects and the source power level are shown
as well. The actual sound pressure level is calculated with Lp = Lw +Adiv +Agr +Aatm.

Figure 6.12: Ray tracing for a linear sound speed profile with a gradient of -0.0337; 100 rays leave the source at
angles ranging from -pi/9 to 0 radians. The start of the shadow zone can be identified around 1500 meter.

This corresponds to a linearized(Ahar) gradient of 0.0337 1/s according to the Harmonoise model. The
value of Ahar varies between -0.0337 and 0.0337 1/s when the azimuth angle is taken into account. The
maximum distance that can be considered due to conformal mapping (d/R < 0.2) at an azimuth angle
of 0 or π is 2000 meters. Multiple reflections downwind of the turbine may also occur at a later distance
(see table 5.2). However, at some point upwind of the turbine, the shadow zone is present. Since the
Matlab version of the Harmonoise model does not include the effect of diffraction, the results near and
within the shadow zone may not be simulated accurately. To estimate the location of the shadow zone,
the method of ray tracing described in Appendix D.1 can be used (refer to figure 6.12). The figure shows
that the shadow zone starts at around 1500 meters for a low receiver. Therefore, the simulation distance
upwind should be less than 1500 meters at an azimuth angle of 0 or π.

The simulation grid is in polar coordinates, with ϕ spaced 61 times from −π to π. The radial distance
from the point source, r, is spaced in 100-meter increments from 100 to 2200 meters. Post-processing is
done in cartesian coordinates and with the limitation of 1500 m in mind, a rectangular snapshot is taken
from the computational grid. The resulting grid for the 3D simulation is shown in figure 6.13, where the
red square is the area, in cartesian coordinates, used for post-processing. All the black dots on the grid
correspond to receivers, and the blue dot in the middle represents the point source.
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Figure 6.13: Simulation grid for the sound pressure level around a wind turbine. All black dots can be considered
receivers with a height of 1.5 meter above the ground plane. The red square indicates the area that is used for
post-processing of the results.

The grid is used in the case of a stable atmosphere with the source data for the SWT-93 wind turbine.
The temperature, wind, and effective sound speed profiles for a stable atmosphere are shown in figure
6.4.

Figure 6.14 shows the results for a low center frequency of 63 Hz. In this case, the results for upwind and
downwind conditions are fairly symmetric. The frequency is low. Therefore, the difference between the
direct and reflected rays’ paths is small compared to the wavelength. Thus, the rays are almost in phase
for every distance. Because of this, no interference patterns can be seen. The actual sound pressure level
at 63 Hz is quite low as well, around 20 dBA near the root of the wind turbine.

The results of a larger center frequency, 1000 Hz, are shown in figure 6.15. In this figure, the interference
patterns are clearly visible. The overall dBA is considerably larger than the 63 Hz case as well. Note
that the green area around x = −1500 m is the edge of the shadow zone. Therefore, the results over
there can not be considered accurate.

The overall sound pressure level is shown in figure 6.16. Again, the results are symmetric, meaning that
the overall sound pressure levels upwind and downwind are approximately similar. However, as seen in
figure 6.15 the 1/3 octave band spectrum at every location will be unique. The fact that the overall
sound pressure levels are similar can be explained by the fact that at every location in the region, two
rays arrive. Thus, if all the frequencies are summed up logarithmically, the overall sound pressure level is
equal for the same radial distance from the source. Since the 1/3 octave band results vary, the perceived
sound can be slightly different for different locations at the same radial distance from the source. The
actual values of the overall sound pressure levels are mainly considerable nearby the wind turbine. Most
sounds below 30 dBA (r > 500m) will be overruled by background noise or other noise sources.

In the next part, different types of atmospheres will be considered for various azimuth angles. Again,
the profiles for stable, neutral, and unstable atmospheres are shown in figure 6.4.

Figure 6.17 displays the sound pressure level at 1000 Hz for five different azimuth angles (0, π/4, π/2, 3π/4
and π). At small distances, where the rays are almost perfectly in phase, the difference is small. However,
deviations begin to appear at a distance of approximately 400 meters. Only the azimuth angle of 1

2π
shows minimal deviations. This is because, in this case, the term u cos(ϕ) is zero, meaning that the
horizontal component of the wind velocity is zero. The minor differences are caused by the temperature
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Figure 6.14: Sound pressure level around a wind turbine for the center frequency of 63 Hz in case of a stable
atmosphere.

Figure 6.15: Sound pressure level around a wind turbine for the center frequency of 1000 Hz in case of a stable
atmosphere.
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Figure 6.16: Overall sound pressure level around a wind turbine in case of a stable atmosphere.

profile and differences in the source data.

Figure 6.18 displays the overall sound pressure level for five different azimuth angles for a stable, a
unstable and a neutral atmosphere. The results for the different atmospheres nearly completely overlap.
From this, it can be concluded that the atmospheric conditions do not have a significant influence on
the overall sound pressure level around a wind turbine for distances up to approximately 1500 meters.
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Figure 6.17: Sound pressure level against distance for different azimuth angles for the center frequency of 1000
Hz.
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Figure 6.18: The overall sound pressure level plotted against radial distance from the wind turbine for different
azimuth angles.
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Chapter 7

Analyzing horizontal gradients with
the Harmonoise model

The Harmonoise model is only applicable in a layered atmosphere, where the speed of sound is described
as a lin-log function with respect to height (see section 4). This lin-log function is linearized to describe
ray paths as circular arcs. The radius of the ray paths is used to perform a conformal mapping, which
maps the circular ray paths to straight ray paths and curves the ground with them. However, in some
cases, the speed of sound might also be dependent on propagation direction; thus, in those cases, the
speed of sound is a function of height and distance instead of height only. The current Harmonoise model
is not able to include horizontal speed gradients, and one can only make use of ray tracing methods or
PE methods.

This chapter proposes a method that can enable the Harmonoise model to incorporate horizontal sonic
gradients. The method is tested on 3 cases with a sound speed profile in the form of

ceff (x, z) = c0 + a(x)z. (7.1)

Thus, the sound speed profile is now a function of x and z.

7.1 Relevance of horizontal sonic gradients

A situation where horizontal sonic gradients may become important is when there is a variation in
topology along the propagation distance. For example, consider a wind turbine placed close to a lake.
The sound waves emitted by this turbine will first travel over the relatively flat water surface of the lake,
and afterward, the sound waves will travel over land. This land can be a grain field, urban area, etc.,
which are all characterized by different surface roughness. Suppose the land is a grain field. A grain
field has a surface roughness of about 0.4 m, whereas calm water has a roughness of about 0.0002 m [1].
With Monin-Obukhov theory, the corresponding effective sound speeds are calculated in the case of a
stable atmosphere and a wind speed of 8 m/s at hub height. The different ground surfaces could also
have an impact on the heat flux, but this is neglected here. The results are shown in figure 7.1. The two
corresponding sound speed profiles in the figure are clearly different, and thus horizontal sonic gradients
exist in this example. Other horizontal sonic gradients can occur as a result of obstacles that influence
the wind profile and thus the effective sound speed profile.

7.2 Proposed method

The Harmonoise model uses conformal mapping to map ray paths to straight lines while curving the
ground. This method is known as the curved ground analogy (see section 4.4.1). In other words, the
method uses the curvature of a ray to curve the ground. It was found in chapter 4 that in the case of a
vertical linear sonic profile, the rays are circular arcs with radius

R =
c

g cos θ
. (4.37)
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Figure 7.1: Effective sound speed profile with U0 = 8 m/s over a grain field (z0 = 0.4 m) and still water
(z0 = 0.0002 m).

This equation shows that the radius is dependent on the elevation angle, meaning that rays, leaving
at a different angle from the source, have a different curvature and thus a different ray path. This is
a problem since only one ray path can be used to curve the ground. However, for nearly horizontal
propagation, the radii of the rays are only slightly different, and thus good results can be obtained. The
conformal mapping used by the Harmonoise model uses the curvature of the ray with an elevation angle
of 0 degrees from the source.

The question arises if this method can also be used in the case of a more complex sonic gradient.
At the end of reference [34], it was suggested that non-constant gradients might be described by a
variable curvature, thus varying the amount of curvature at different locations of the ground profile. To
demonstrate this idea, consider a source placed in an xz plane at (0, 5 m). The sound profile up to 37.5
m is described by ceff = c0 + 0.05z meaning that there is a sonic gradient of 0.05 1/s. After 37.5 m,
the sonic gradient is increased to 0.2 1/s, indicating that the sound profile changes to ceff = c0 + 0.2z.
The ray path with elevation angle zero is computed, in this case, by “gluing” together two circular ray
paths. Figure 7.2 shows this case. The ray path for constant sound speed gradient (red dotted line) is
also shown in the figure, with the gradient being 0.2 1/s everywhere. The curvature of these ray paths
can be used for the curved ground analogy. Figure 7.3 shows the corresponding curved ground for the
ray paths of figure 7.2 in the case that the initial ground is flat. For this case, the receiver is placed at
(75 m,hr).

For this example, the source-receiver configuration is not taken into account. Ideally, the direct ray
between the source and receiver is used as the curvature for the ground instead of the ray path with
an elevation angle of zero from the source. However, in the case of a complex sound speed profile, it
is not possible to compute the direct ray path analytically. If hs + hr ≪ d, the propagation is nearly
horizontal and the curvature of the ray path computed with a zero-degrees elevation angle will be close
to the curvature of the direct ray path. Therefore, this is a limitation of this approach.

7.3 Implementation

The method described in the previous part is implemented in the Matlab code. This is done by using
a variable radius of curvature in the conformal mapping. The result of this is that a different mapping
is used for every ground point, which takes into account the different curvature of the ray along the
propagation direction.

A problem with this method arises from the fact that in the conformal mapping of the Harmonoise
model, a correction is made to account for the source and receiver heights. This could be done because,
for only a linear vertical sonic gradient, the direct ray path can be approximated analytically. If the same
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Figure 7.2: A ray path with a sound speed discontinuity at the interface (x = 37.5 m). The ray path for a
constant gradient of 0.2 in the whole domain is shown by the red dotted line for comparison.
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Figure 7.3: A flat ground curved with the curvature of the rays represented in figure 7.2.
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approach is used in the case of variable curvature, a smooth ground profile is not guaranteed. Therefore,
the conformal mapping is modified in such a way that the source and receiver heights are not taken into
account. In future work, the source and receiver heights could be introduced again in a different fashion
to possibly obtain slightly more accurate results. The new conformal mapping becomes

w = x+ iz → w′ = x′ + iz′ (7.2)

w′ =
C(x) (w − w0)

C(x) + (w − w0)
(7.3)

with,

w0 =
x0 + xN

2
+ i

z0 + zN
2

, (7.4)

C(x) = iC0(x) (7.5)

C0(x) = 2R(x). (7.6)

This mapping is expected to work for flat and non-flat ground. The difference between the new conformal
mapping and the one presented in section 4 is that the source and receiver heights are neglected (hs =
hr = 0) and that the radius of curvature R(x) is now a function of the x-coordinate. In this work, the
proposed mapping is tested in three cases. In the future, an error analysis study could be done on this
implementation by computing the phase differences between ray paths and the angle of incidence of a
ray path before and after the transformation.

7.4 Results

The variable conformal mapping is applied to three cases. In all cases, hs = 0.75 m, hr = 5 m, z0 = 0.1 m,
c0 = 340 m/s and d = 75 m. The parameters for the sound speed profile in all cases are:

Case E1: A = 0.05 1/s for x = 0 to 37.5 m and A = 0.2 1/s for x = 37.5 to 75 m.

Case E2: A = 0.2 1/s for x = 0 to 37.5 m and A = 0.05 1/s for x = 37.5 to 75 m.

Case E3: A(x) =
0.2
75 x, i.e. a linear variation from A(0) = 0 to A(75) = 0.2 1/s.

The results of these cases will be compared to two reference solutions. The first one is generated by
ATMOS and will be referred to as GFPE. The second is calculated with the Harmonoise model using
the average vertical sonic gradient. For example, in case E1, the vertical sonic gradient is 0.05 for the
first half and 0.2 for the second half, the reference case will thus be computed for a constant vertical
sonic gradient of 0.125. This reference solution will be referred to as REFB.

Figure 7.4 shows the results of case E1. The result is in close agreement with the GFPE solution. The
average sonic gradient solution REFB also corresponds well with the GFPE solution. Figure 2 depicts
the differences between the GFPE and Harmonoise solutions, as well as between the REFB and GFPE
solutions. The difference between the Harmonoise solution with variable sound speed gradient and the
GFPE solution does not exceed 1 dB, while the difference of REFB is 2.5 dB at some points. However,
the low-frequency results are slightly better approximated by REFB.

In case E2, the vertical sonic gradients for the first and second halves of the propagation path are
switched. Figure 7.6 shows the results. Again, both solutions agree well with the GFPE solution. The
difference between both solutions and the GFPE solution is displayed in figure 7.7. The Harmonoise
solution with the variable conformal mapping agrees overall slightly better than REFB. In contrast with
case E1, the low frequencies are now better described by the new Harmonoise solution, but the improved
accuracy compared to REFB around 1200 Hz is reduced.

The final case is a linearly varying horizontal gradient instead of a sudden change at an interface. Figure
7.8 shows the results. In this case, the average sonic gradient is 0.1 1/s instead of 0.125 1/s. The solutions
for the average sonic gradient and the horizontal sonic gradient are again in good agreement with the
solution of the GFPE. The error for case E3 is displayed in figure 7.9. At low frequencies, both solutions
are very close to the solution of the GFPE. However, for this case, REFB has an error of almost 4 dB at
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Figure 7.4: Ground attenuation for case E1 computed with the GFPE solver ATMOS and the Harmonoise model
using a variable conformal mapping. As a reference result the average vertical sonic gradient solution (REFB)
computed by the Harmonoise model is included.
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Figure 7.5: The difference of the Harmonoise model with a variable conformal mapping and the GFPE solution
for case E1. Also the difference between the GFPE solution and the average vertical sonic gradient solution is
shown.
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Figure 7.6: Ground attenuation for case E2 computed with the GFPE solver ATMOS and the Harmonoise model
using a variable conformal mapping. As a reference result the average vertical sonic gradient solution (REFB)
computed by the Harmonoise model is included.
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Figure 7.7: The difference of the Harmonoise model with a variable conformal mapping and the GFPE solution
for case E2. Also the difference between the GFPE solution and the average vertical sonic gradient solution is
shown.
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Figure 7.8: Ground attenuation for case E3 computed with the GFPE solver ATMOS and the Harmonoise model
using a variable conformal mapping. As a reference result, the average vertical sonic gradient solution (REFB)
computed by the Harmonoise model is included.
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Figure 7.9: The difference of the Harmonoise model with a variable conformal mapping and the GFPE solution
for case E3. Also the difference between the GFPE solution and the average vertical sonic gradient solution is
shown.



84

approximately 1600 Hz, while the solution obtained with the variable conformal mapping remains well
within 2 dB of the parabolic equation solution at all frequencies.

From these three cases, it can be concluded that in an atmosphere with a horizontal dependency on
sound speed, ground attenuation can be accurately predicted by using a variable conformal mapping.
It was also clear that a good prediction of the ground attenuation can be made by using the average
vertical sonic gradient with a constant conformal mapping. However, in all cases considered, the variable
conformal mapping produced slightly more accurate results than the constant conformal mapping with
the averaged sonic gradient.

The cases considered are very similar to case C1 of section 5.1.3. The only difference is that there is
now a horizontal sonic gradient. Therefore, it is interesting to compare the accuracy of that case with
the accuracy of the cases with a horizontal gradient. Case C1 has a maximum error of 0.8 dB, while
the largest error for the three cases in this section is approximately 1.6 dB. This shows that the overall
error increases with respect to just a vertical sonic gradient. This is likely due to the fact that in the
presence of horizontal gradients, the ray path is more dependent on elevation angle, and thus the system
as a whole can be approximated less accurately by considering the curvature of one single ray.

This section showed the potential of using a variable ground curvature for the improvement of several
cases and might also be of use to improve the prediction of vertical logarithmic sound speed profiles. The
method should be validated further by applying it to a wider variety of scenarios, like non-flat ground,
different distances, and different source and receiver height configurations.



Discussion & Conclusion

The Harmonoise model’s ability to account for a moving atmosphere with temperature gradients is
researched in this study. It is a potential improvement over the commonly used engineering model for
wind turbine noise, the ISO9613-2 [18], which cannot predict the effect of a moving atmosphere with a
temperature profile. It was found that the Harmonoise model can accurately describe these effects in
cases of linearly dominant wind and temperature profiles. However, in the case of logarithmic profiles, the
accuracy of the Harmonoise model was found to be limited. After that, the Harmonoise model was used in
combination with a semi-analytical Amiet source model to study the sound propagation of a wind turbine
in different conditions of atmospheric stability. This method enabled the generation of sound maps with
low computational cost while capturing potential deviations due to different atmospheric stabilities. The
influence of different atmospheric stabilities on the overall sound pressure level was found to be negligible,
but the spectral noise content was affected. Finally, a method to include horizontal sonic gradients with
the Harmonoise model was presented. This method demonstrates the possibility of improving results by
modifying the ground profile. In the future, such an approach could possibly be used to improve the
accuracy of vertical gradients. The results from chapters 5 and 6 are discussed below. The discussion of
chapter 7 can be found at the end of that chapter.

The observation that the Harmonoise model cannot correctly predict logarithmic sound speed profiles
was also a conclusion of [19], but, in that study, only low sources were considered. To evaluate the
origin of the error, we have to look at the expected behavior of refraction due to logarithmic profiles. A
logarithmic sound speed profile is characterized by large gradients at low altitudes and small gradients at
high altitudes. Therefore, the ray paths will experience more refraction while traveling through the lower
parts of the atmosphere. Because of this, the ray path does not follow the path of a circular arc anymore,
which the Harmonoise model assumes. This causes a different path length, which explains the frequency
shift between the Harmonoise results and the reference results that were seen in section 5.1. One can
argue that the ray path traveling through a logarithmic sound speed profile is better described by a
circular path than a straight path, indicating that it is an improvement compared to the assumption
of no refraction. Also, since linear profiles are predicted with high accuracy (±0.6 dB) the accuracy
improves if the profile becomes more linearly dominated.

The overall sound pressure level around a wind turbine was shown to have the source’s directivity
pattern, with limited influence from atmospheric stability and propagation direction, up to 1500 meters.
A few other studies looked into the effect of atmospheric stability on the overall sound pressure level.
Two of them [60, 61] took on-site measurements near a wind turbine operating in a relatively flat area.
They measured sound pressure levels while also monitoring wind shear. The conclusion of both studies
was that atmospheric stability has no significant influence on overall sound pressure levels. A plausible
reason for this is that a wind turbine is a high source, and the effects of the atmospheric stability only
become relevant at further distances from the turbine, where the sound levels are already very low.
An interesting finding of this work that deviated from previous literature was the fact that the sound
propagation direction does not influence the overall sound pressure level. The presented overall sound
pressure level sound map in section 6.4 shows almost perfect symmetry around the rotation plane of
the wind turbine. This indicates that sound levels for upwind and downwind propagation are expected
to be similar. Most models only consider the downward propagation direction because, generally, those
are the conditions with the highest sound levels due to downward refraction. The fact that the overall
sound pressure levels in this work are fairly similar between upwind and downwind conditions is due to
the fact that the upwind conditions are not yet in the shadow region, indicating that both a direct ray
and a reflected ray arrive. Not many studies have been performed on the effect of wind direction on the
sound propagation in the case of wind turbine noise. One study did experimental measurements around
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a wind turbine and found that sound levels upwind are 6-7 dBA lower than sound levels downwind at
1000 meters away from the turbine and 3-4 dBA at 500 meters [62]. In the study, they established that
the emitted sound levels by the source in upwind and downwind directions were similar, thus the result
can only be explained by propagation effects. This finding contradicts the results found in this work.
One reason for this could be that the study conducted experimental measurements on a real-world site
where topology can play a role. A small valley between the source and receiver was mentioned in the
study, which could explain the difference. Another reason could be due to the limited accuracy of the
Harmonoise model, although attenuation levels independent of wind direction close to the source can
also be seen in figure 4.20 of [13].

The overall sound pressure level was not found to be influenced by atmospheric conditions, but the 1/3
octave band spectrum was found to be influenced by them. For a center frequency of 1000 Hz in a stable
atmosphere, clear interference patterns were found that varied with the propagation direction. For a
lower frequency of 63 Hz, this interference pattern is not observed, and the directivity pattern is again
similar to the source. By comparing the noise spectrum for 5 different azimuth angles from downwind to
upwind for 1000 Hz in a stable, unstable, and neutral atmosphere, it was found that the sound pressure
levels can vary up to 15 dB at certain locations, while the overall sound pressure level only varies up to 3
dB. With the Harmonoise model’s error in evaluating logarithmic profiles in mind, the actual value per
frequency band is expected to shift. However, the distinct character of the noise spectrum as a result of
atmospheric conditions persists.

A limitation of this work is the possible oversimplification of situations. The presence of barriers, different
ground surfaces, and turbulence could have an effect on the effects caused by refraction. Also, due to
uncertainty in the source model, uncertainty in the Harmonoise model, and the simplifications that were
mentioned above, actual sound levels around a wind turbine could vary a lot in realistic situations.
Comparing predicted sound levels to extensive on-site measurements is the best way to see if they are
reasonable. However, in general, the atmospheric conditions around a wind turbine are very uncertain.
Thus, it is hard to reproduce sound levels from experimental measurements.

To summarize, the following conclusions were found

• Overall sound pressure levels around a wind turbine are not much affected by atmospheric stability.

• The 1/3 octave sound pressure level is affected by atmospheric stability and wind direction.

• The Harmonoise model cannot accurately capture logarithmic profiles but can accurately capture
linear profiles.

• Noise maps could be generated using aeracoustic coupling of the Harmonoise method and a semi
analtyical Amiet method with low computational cost.

• More complex sonic gradients can potentially be approximated by using a variable conformal map-
ping.



Recommendations

This research found that atmospheric stability does not influence the overall sound pressure level but
does affect the spectral noise content. Future research could examine the effect of the spectral noise
content on the perceived sound levels by residents in the case of wind turbine noise. It could very well be
the case that the stability of the atmosphere influences the level of annoyance experienced by residents.

The emphasis of this research was on sound speed gradients in the atmosphere. However, the method
used for the wind turbine simulation could be applied in different circumstances. The next step could
be to apply this method to different situations, e.g., a more complex ground surface.

Finally, the Harmonoise model was validated for several conditions. An improvement to the Harmonoise
model could be made in terms of accuracy in the case of logarithmic sound speed profiles. Future research
could try to make corrections to the modified ground profile, similar to what was done in chapter 7.
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Appendix A

Atmospheric absorption

In accordance with ANSI/ASA S1.26(2014), the atmospheric absorption attenuation parameter α, which
represent the attenuation per meter in dB, can be calculated using [1]

α = 8.686f2{

[
1.84× 10−11

(
p̄a
pr

)−1(
T

Tr

)1/2
]

+

(
T

Tr

)−5/2

×
[
0.01275e−2239.1/T

(
fro

f2ro + f2

)
+0.1068e−3352/T

(
frN

f2rN + f2

)]}
(dB/m),

(A.1)

where T is the ambient atmospheric temperature in Kelvin, Tref is the reference temperature, pa the
ambient atmospheric pressure, pr the reference pressure,

fro =

(
pa
pr

)[
24 +

((
4.04× 104h

)
(0.02 + h)

0.391 + h

)]
(A.2)

and

frN =

(
T

Tr

)−1/2(
pa
pr

){
9 + 280he−4.170[(T/Tr)

−1/3−1]
}

(A.3)

where h is the molar concentration of water vapor which may be calculated from the relative humidity,
hrel by

h = hrel

(
psat
pr

)(
pa
pr

)−1

(A.4)

with
psat
pr

= 10V (A.5)

and

V = −6.8346

(
273.16

T

)1.261

+ 4.6151. (A.6)
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Appendix B

Analytical solution in a
homogeneous atmosphere above a
fully reflecting plane

Let us consider a source above a fully reflecting plane in a homogeneous atmosphere (no refraction). In
that case, exactly two rays reach the receiver: the direct ray and one reflected ray. With the imaginary
source method, the path length of the reflected ray can be calculated by placing a source mirrored by
the plane beneath the actual source (see figure B.1).

The pressure at the receiver is now given by the combination of the direct wave and the reflected wave
[13]

pc = S
exp (ikr1)

r1
+QS

exp (ikr2)

r2
, (B.1)

where r1 is the direct ray’s path length and r2 is the reflected ray’s path length, which is rs + rr in the
figure. The two terms in equation B.1 represent the direct ray and the reflected ray, respectively. In the
case of a fully reflective ground, Q is set to 1.

The ground attenuation is the relative sound pressure level which was defined as

∆L = 10 log10

(
|pc|2 / |pfree |2

)
(2.36)

where pc is defined by equation B.1 and pfree = S exp(ikr1)
r1

.

The 1/3 octave band spectrum can be calculated by

∆L(fc) = 10 log10

(
1

N

′∑
10∆L(f)/10

)
. (2.37)

where the number of frequencies per band should be reasonably large.
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Figure B.1: Image source method used to calculate the ground attenuation for a non-refracting atmosphere.



Appendix C

Sound speed profiles in the
atmosphere

The speed of sound is a function of temperature and wind. Temperature and wind profiles can vary
significantly over time in the earth’s atmosphere. Usually, one can identify three types of atmospheric
conditions: stable, unstable, and neutral. These conditions, in combination with the actual magnitude of
the wind speed at a certain height, the temperature at ground level, and the “roughness” of the ground,
can be used to predict the wind and temperature profiles. In this section, a formulation is introduced to
predict the wind and temperature profiles for different atmospheric stabilities. From these profiles, the
effective sound speed can be obtained.

The lower part of the earth’s atmosphere is directly influenced by its surface and is called the atmospheric
boundary layer. These surface effects include friction forces caused by moving air and heat transfer from
the ground to the atmosphere. Earth’s atmospheric boundary layer can be divided into two different
regions: the surface, or the Prandtl layer, and the Ekman layer. Above these layers exists the free
atmosphere, which can be thought of as a layer that is not influenced by the ground. The surface layer
is valid up to approximately 100 meters, which is the region of relevance in this report. Although the
Ekman layer can be irregular and hard to predict, the surface layer is quite predictable. The latter is
done by the Monin-Obukhov similarity theory, as described at the end of this section.

C.1 Surface layer

The wind profile is a vector with three components, the direction at which this vector points is called the
wind direction. The wind direction is usually a function of height, but in the surface layer this variation
is small. Therefore, the vertical component of the wind profile is approximated as zero. This report only
looks at 2D propagation. The coordinate system is chosen in such a way that the wind direction will
consist of a horizontal vector with only one component. Although the vertical component of the wind is
small, the variation in wind velocity with respect to height is not small. Friction slows air at the earth’s
surface to approximately 0 m/s. As a result, wind velocity increases with height. One parameter that
influences the wind velocity variation with height is the surface roughness parameter, z0. This parameter
varies from 0.002 to 2 meters depending on the type of surface, where 0.002 m is a very flat surface like
still water and 2 m is a very rough surface like a landscape with tall buildings.

Two important parameters of the temperature profile are the decrease of pressure with height and heat
exchange between the air and the ground. The pressure decreases with height, which causes a decrease in
temperature. The temperature drop due to the drop in pressure can be approximated with the adiabatic
gas approximation [13]

α0 ≡ dT

dz
= −γ − 1

γ

ρT

p̄
g, (C.1)

where z is the height [m], T the temperature [K], γ the adiabatic index [−],ρ the air density [ kgm3 ], g
gravitational accelaration [ms2 ] and p̄ is the atmospheric pressure [Pa]. Filling in some standard quantities

for air ρ = 1.2 kg
m3 , p̄ = 105 Pa, T = 300 K, g = 9.81 m

s2 , γ = 1.4 leads to α0 ≈ −0.01 meaning that every
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100 meters the temperature drops with approximately 1 degree. Humidity can cause deviations from
this value, but the changes are small enough to be neglected.

We define the potential temperature as [13]

θ ≈ T − α0z. (C.2)

This equation describes the temperature with respect to height caused by the pressure decrease.

Another factor that influences the temperature is the heat exchange between the air and the ground.
During the day, the surface of the earth heats up because of solar radiation, and during the night, the
ground gets cooled. This leads to a decrease in potential temperature with height during the day and an
increase with height during the night. The latter can lead to a temperature inversion, where the actual
temperature increases with height. This effect is heavily influenced by cloud cover, wind speed, and
time. The heat exchange between the ground and the air is determined by various transport processes.
One of these transport processes is caused by buoyance and gravity. Warmer air expands and thus rises
in the atmosphere, causing it to transport heat to higher altitudes. The upward movement of air is
accompanied by the downward movement of cooler air in the atmosphere. This causes the air to go
in circles, which can be seen as turbulent eddies. Another transport process is caused by atmospheric
turbulence. In that case, the air is mixed by wind velocity fluctuations.

To distinguish the various cases of heat exchange between the ground and air, the atmosphere can
be classified as unstable, stable, or neutral. During the day, when the ground is heated and heat is
transferred from the ground to the air, the atmosphere is considered unstable. When the heat transfer is
close to zero, the atmosphere is classified as neutral. And during the night, when heat is transferred from
the air to the ground, the atmosphere is considered stable. Thus, in an unstable atmosphere, there is a
positive heat flux. In a neutral atmosphere, there is almost no heat flux. And in a stable atmosphere,
there is a negative heat flux.

C.2 Similarity theory

From empirical relations of dimensionless quantities, relations for the wind and temperature profiles are
derived. These relations are called similarity relations and are a good approximation for the surface
layer.

The equations for the wind and potential temperature profiles are [13]

ū(z) =
u∗
κ

[
ln

z

z0
− ψw

]
θ̄(z) = θ0 +

θ∗
κ

[
ln

z

z0
− ψt

] (C.3)

with

θ∗ =
−(w′θ′)s

u∗
(C.4)

where w′θ′ represents the vertical heat flux with the eddies evaluated near the ground surface. u∗ is
the friction velocity, θ∗ the temperature and κ = 0.41 the von Karman constant. The dimensionless
quantities ψw and ψt are functions of height and Obukov length L which will be defined by equation C.8

ψw = 2 ln 1+x
2 + ln 1+x2

2 − 2 arctanx+ π
2 for L−1 < 0

ψw = −5z/L for L−1 > 0
(C.5)

ψt = 2 ln 1+x2

2 for L−1 < 0
ψt = −5z/L for L−1 > 0

(C.6)

with x = (1− 16z/L)1/4.

These relations are called the Businger-Dyer relations. Later some corrections were made that slightly
improved the approximation of the stable atmosphere [13]

ψw = ψt = −5z/L for z/L ≤ 0.5
ψw = ψt = −7 ln(z/L)− 4.25

z/L + 0.5
(z/L)2 − 0.852 for z/L > 0.5.

(C.7)
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For a neutral atmosphere ψt and ψw are zero.

The Obukhov length is defined by:

L = − θ̄u3∗

κg(w′θ′)s
. (C.8)

The Obukov length can be regarded as a measure of stability. For L < 0 the atmosphere is considered
unstable, for 0 > L > 500 the atmosphere is stable where close to 0 is highly stable and close to 500
almost neutral, and when L > 500 the atmosphere is neutral [63].

To generate the profiles, the roughness length, stability criterion, heat flux or Obukhov length, the
temperature of the surface, and wind velocity at a certain height need to be prescribed. A first approx-
imation of u∗ can then be determined by assuming neutral conditions at first and calculating it with
the prescribed wind velocity using the formula C.3. Then iterate several times until u∗ remains stable.
Afterwards, θ∗ can be determined with equation C.4 and equation C.8 [64].

Figure C.1 shows the wind velocity, temperature, and effective sound speed profile for an unstable, stable,
and neutral case. It can be seen that in the stable case, the temperature rises for the first few meters,
this is called temperature inversion. The effective sound speed profile in the stable case has the greatest
gradients, implying the largest refraction. The effective sound speed profile in the unstable case has both
positive and negative gradients, indicating upward and downward refraction.
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Figure C.1: Temperature, velocity and effective sound speed profiles for a stable, an unstable and neutral at-
mosphere. Generated with U = 8 m/s at 80 meter, z0 = 0.1, Ts = 290K and Obukhovs lengths of 145,-86 and
infinity respectively

The Harmonoise model takes as input a lin-log sound speed profile. Therefore, a calculated sound speed
profile by similarity theory is fitted into a lin-log profile. The fitting is performed with the Matlab
curve-fitting toolbox. The toolbox uses a combination of non-linear regression algorithms and can be
used to fit data in a log-lin formula [65]. The fit is rather good, with only a tiny deviation from the
actual curve. Figure C.2 shows the fitted lin-log profile on a sound speed profile that is generated with
similarity theory for a stable case.
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Figure C.2: Effective sound speed profile in case of a stable atmosphere fitted for the equation ceff = c0 +Az +
B log(1 + z
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Appendix D

Ray paths

Let us consider a sound source that produces a pressure wave with an arbitrary wavefront. The wavefront
is a line in space where the amplitude and phase of the pressure are equal. For a plane wave, this is
along a plane in space, but it could also be, for example, a curved front in the case of a spherical wave.
If this wavefront exists in a fluid at rest, its propagation direction is n, which is the vector perpendicular
to the front. The velocity of the wavefront is c. Now let us consider that the fluid gets a velocity v,
because of this the propagation direction of the wavefront is not necessarily n anymore for a stationary
observer. We define xP (t) as a point that moves along with the wavefront (see figure D.1), this can only
be the case if the velocity of the point is a combination of the speed of the wavefront and the speed of
the fluid [23]:

dxP

dt
= v (xP , t) + n (xP , t) c (xP , t) = vray. (D.1)

The path that the point xP (t) makes is called a ray path. For inhomogeneous media n changes along
the ray path, thus the sound wave refracts (see section 3.1.4). A way to compute ray paths in case of a
layered atmosphere is discussed below.

D.1 Tracing ray paths in a layered atmosphere

The atmosphere is called a layered atmosphere if the sonic gradient can be regarded as a function of
height only [13]. It can be shown that for a linear sound speed gradient, all ray paths in the layered
atmosphere are circular arcs. This can be done by connecting two arbitrary points in space with an arc,
assuming linear sound speed gradients, and forcing the arc to be a ray by satisfying Snell’s law (see [66]
). The radius of the ray is defined by [1, 66]

R(q) =
−c(q)

g(q) cos θ(q)
(D.2)

where R(q) is the radius of the circular ray path, c(q) is the speed of sound in layer number q, g(q) is the
gradient of layer number q and θ(q) is the angle with which the ray enters the layer. The speed of sound
profile in the atmosphere can be approximated by piece-wise linear gradients. Under that assumption,
rays travel through a layer as a circular arc described by equation D.2. The ray path can be traced by
determining the paths in all layers of the atmosphere.

Figure D.2 shows the ray path for a single layer. The gradient of this layer can be calculated by

g(q) =
c(q + 1)− c(q)

dz
, (D.3)

where c(q+1) is the speed of sound in layer number q+1 and dz is the vertical step length. From figure
D.2 one can obtain the following relation for dx and dz [67]

dx(q) = R(q) [sin(θ(q + 1))− sin(θ(q))] (D.4)
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Figure D.1: Two wavefronts occuring at different times. The variable xp(t) is a point that moves along with the
wavefront. The path of the function xp(t) is called a ray path.

dz(q) = R(q) [cos(θ(q))− cos(θ(q + 1))] . (D.5)

Equation D.5 can be used to obtain the relation for the exiting angle of the ray after a step dz

θ(q + 1) = acos(cos(θ(q))− dz(q)

R(q)
). (D.6)

After this, the dx and the R(q) can be determined for the next layer, and thus with equations D.2, D.4
and D.6 the ray path can be found by iteration. The only thing that still needs to be considered is that
a ray has a turning point. The turning point is found when θ becomes zero. After the turning point,
the ray travels in the opposite vertical direction. This can be accounted for by flipping the sign of the
vertical step.

Figure D.2: Ray path through a single layer of the atmosphere under the assumption of piece-wise linear approx-
imation of the sound speed profile.



Appendix E

Parabolic equation method

The parabolic equation method (PE) computes the sound field by solving a parabolic equation. This
appendix starts by showing how a parabolic equation can be derived from the wave equation and what a
parabolic equation is. After that, several numerical methods for solving parabolic equations are discussed.
Finally, the parabolic equation solver ATMOS, which uses one of these numerical methods, is described.
The description focuses on practical use rather than detailed mathematics.

E.1 Derivation of the narrow angle parabolic equation

By the use of the axisymmtric approximation the 3D Helmholtz equation reduces to [13]

∂2qc
∂r2

+
∂2qc
∂z2

+ k2effqc = 0, (E.1)

where the quantity qc is related to the complex pressure via qc = pc
√
r and keff = w/ceff .

The solution of equation E.2 is written in the form of

q(r, z) = ψ(r, z) exp (ikar) , (E.2)

where ka is the wave number at the ground surface. As r increases, the factor exp(ikar) oscillates rapidly,
resembling a plane wave moving in the positive r direction. However, the function ψ(r, z) changes slowly
as r increases.

Substituting equation E.2 into equation E.1 gives [13]

∂2ψ

∂r2
+ 2ika

∂ψ

∂r
+
∂2ψ

∂z2
+
(
k2eff − k2a

)
ψ = 0 (E.3)

The variable ψ usually varies slowly with r, thus we neglect the second derivative obtaining

2ika
∂ψ

∂r
+
∂2ψ

∂z2
+
(
k2eff − k2a

)
ψ = 0, (E.4)

where ψ is a function depending on r and z. This equation is only valid for elevation angles up to
approximately 10°[13]. By using a slightly different derivation, a parabolic equation that is valid for
larger elevation angles can also be derived. Very large elevation angles still remain a limitation.

E.2 What is a parabolic equation?

Differential equations can be a challenge to solve, and the way to solve them is dependent on the type
of differential equation. Consider the most general form of a partial differential equation [68]

L(u) = aij
∂2u

∂xi∂xj
+ bi

∂u

∂xi
+ cu = r (x1, x2, · · · , xn) (E.5)
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It turns out that the character of the PDE is determined by its highest derivative such that the coefficient
aij is the one that should be looked at. The character is determined by the eigenvalues of the coefficient
matrix aij . With these eigenvalues three categories of PDE’s can be distinguished:

• Elliptic: λi ̸= 0∀i, and all λi ’s have the same sign.

• Hyperbolic: λi ̸= 0∀i, and the sign of one eigenvalue differs from the others.

• Parabolic: One zero eigenvalue, all other λi ̸= 0 and the same sign.

In order to characterize this PDE we look at the highest derivative. For equation E.4 this result in
coefficient matrix:

A =

(
1 0
0 0

)
(E.6)

It is trivial to see that for this matrix the eigenvalues are 0 and 1, implicating that it is a parabolic
equation.

E.3 General approach of the parabolic equation method

In the previous part, it was shown that the Helmholtz equation can be transformed into a parabolic
equation. Thus, solving this parabolic equation is an approximation of the wave equation in the frequency
domain. The computation of a whole frequency spectrum requires the computation of every single
frequency in the spectrum. An assumption that is often used is the axisymmetric approximation (this
was also done in Appendix E.1). By using the axisymmetric approximation, variations that correspond
with a variation in azimuth angle are neglected.

The parabolic equation is solved in a rectangular grid, in the vertical rz plane. The horizontal spacing
is dr and the vertical spacing is dz. The grid has a finite height, to eliminate reflection from the top
of the grid, an absorbing layer is placed at the top of the grid as a boundary condition. The boundary
condition for the ground is a complex impedance depending on the type of ground surface. The source
is described by a starting function of complex pressure. This starting function is extrapolated over the
whole grid in the positive r direction.

Two widely used methods for the extrapolation are the Crank-Nicolson Parabolic Equation (CNPE)
method and the Green function Parabolic Equation (GFPE) method. The CNPE method is slightly
more accurate in situations with large elevation angles and large sound speed gradients, but the GFPE
method can use a coarser grid and is therefore faster [13].

E.3.1 Advantages and limitations of the parabolic equation method

The PE method can obtain accurate results for a non-layered atmosphere with a non-homogeneous
ground surface. Also, the effect of turbulence can be included in the PE method. This makes the
method widely applicable to a large variety of situations.

Three limitations can be identified by looking at Appendix E.1. First of all, the parabolic equation is
not valid for large elevation angles. Also in the derivation of the parabolic equation, the effective sound
speed approximation is used for the description of a moving medium (see the keff term in equation E.1).
This imposes a constraint on the elevation angle as well (see section 2.3.1). Finally, consider equation E.2
again. With this equation, the solution is written only in terms of a forward-traveling wave, neglecting
potential back scattering. Back scattering can often be neglected, but when a barrier is present near the
source, the energy reflected back should be taken into account.

The use of the PE method usually requires a large computational cost. All frequencies in the spectrum
have to be computed, and the computational cost increases with increasing frequency and problem size.
In the case of wind turbine noise, this can computational cost can be considerable, which makes use for
3D situations not feasible.

E.4 Green functions parabolic equation(GFPE)

The GFPE method is often used for atmospheric sound propagation, because of a decrease in compu-
tational time with respect to the CNPE method. Gilbert and Di [28] developed the formulation of the
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Green’s functions parabolic equation for a step in the r direction as

ψ(r + dr) =e

(
idr(δk)2

2k0

)(
F−1

[(
ψ̃ (r, k′) +R (k′) ψ̃ (r,−k′)

)
e

(
idr

(√
k2
0−k′2−k0

))]
+2iβψ̃(r, β)eidr

(√
k20 − β2 − k0

)
e−iβz

) (E.7)

where k is a wavenumber dependent on range and height, and ψ is the pressure with the cylindri-
cal spreading removed. β = k0

Zg
is the surface wave pole, Zg is the normalized ground impedance,

R(k) is the plane-wave reflection coefficient, and ψ̃ is the spatial Fourier transform of ψ. The in-
verse Fourier transform is indicated by F−1. The three terms in equation E.7, represent the direct

wave(ψ̃ (r, k′) e

(
j dr

(√
k2
0−k′2−k0

))
, the specular reflected wave(R (k′) ψ̃ (r,−k′)

)
e

(
idr

(√
k2
0−k′2−k0

))
) and

the surface wave (2iβψ̃(r, β)eidr
(√

k20 − β2 − k0

)
e−iβz).

E.5 ATMOS

ATMOS is an in-house code of the CTSB which uses the GFPE method to compute the sound field. The
method is developed to also incorporate back scattering problems and had been verified with numerous
examples [69]. In this report ATMOS is used as a reference tool to verify the results of Harmonoise.

E.5.1 Parameters

To do accurate computations with the GFPE method, appropriate parameter selection is important.
Important parameters are the extrapolation steps dz and dr but also the maximum range rmax, the
attenuation layer height Zattn and the attenuation layer thickness A. The relationship among these
parameters is not well understood [70]. For example, in the case of a constant sound speed, dr could be
large. However, making dr large requires shifting the other parameters as well. The dz has to be small
to correctly capture the vertical oscillation in the pressure field due to interference from the direct and
reflected paths. Also, the surface wave can oscillate quickly.

Salomons [13] proposes as a rule of thumb to use about 10 samples per wavelength in the dz direction
but the dr direction could be up to 0.02 samples per wavelength (note that this implies that a finer grid
is necessary with higher frequency). However, this is not a guarantee of success for all cases.
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Appendix F

Conformal mapping

A conformal map is a function that locally preserves angles but not necessarily lengths. Conformal maps
can be used to solve problems where the geometry is inconvenient by mapping the geometry into a more
convenient one. In the case of the Harmonoise model, it is used to transform the problem of refracting
rays into a more convenient problem with only straight rays.

To explain conformal mapping, consider two curves γ1(t) and γ2(t) that intersect at point z0. The angle
between the curves at point z0 can be found by computing the tangent vector of the curves at point z0,
which are defined as γ′1(t0) and γ

′
2(t0). These curves are mapped by the following function

w = f(z) (F.1)

where f(z) is a mapping function that, for example, converts the point z0 to the point w0. Figure F.1
depicts this case.

In the figure, the two tangent vectors are scaled and rotated by the same amount. The rotation and
scale factor can be local, meaning that at another point, they might be different. The angle between
the two transformed tangent vectors is the same as the angle between the tangent vectors before the
transformation. Conservation of angles is a key property in conformal mapping.

A mapping function consists of (a combination) of four different transformations:

• translation: F(z) = z + b

• rotation: F (z) = eiaz

• magnification: F (z) = 2z

• inversion: F(z) = 1/z

Important properties of inversion are the following [2]:

• Any line not through the origin is mapped to a circle through the origin

Figure F.1: Illustration of the conformal mapping of two curves. Figure taken from [2]
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• Any line through the origin is mapped to a line through the origin

• Any circle not through the origin is mapped to a circle not through the origin

• Any circle through the origin is mapped to a line not through the origin

Thus, inversion maps lines and circles to lines and circles. This property is important and can be used
to map circular ray paths into straight lines.

A well-known type of conformal mapping is called fractional linear transformations, which are also known
as Mobius transforms. These transforms have functions in the form of

T (z) =
az + b

cz + d
, (F.2)

where a, b, c, d are complex constants and ad− bc ̸= 0. The functions map the complex plane onto itself,
meaning that the input is a complex number and a complex number is returned. The value of a, b, c, and
d determines the behavior of the mapping and should be chosen to fit the desired properties.
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