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Abstract

This thesis examines the implications of incorporating compliant links in two critical areas
of legged robot control: state estimation and momentum-based control. To this end, we
consider a planar quadruped with a compliant spine. In the first part, we investigate
the influence of the compliant spine on state estimation, an essential component of a
model-based controller. We find that the unmodelled compliant spine degrades the state
estimation. Fortunately, the state estimator can be improved by including the compliant
link without the need for additional sensors. We demonstrate that the state estimator is
more accurate in estimating the flexible coordinate and the center of mass position when
it considers two or more flexible modes.

In the second part, we combine this state estimator with a momentum-based control. This
controller is designed to prevent the robot from falling when it lifts the legs to move around.
We show that neglecting the compliant spine has a detrimental effect on the controller,
eventually causing the robot to fall. This behaviour can be avoided when the momentum-
based controller considers one flexible mode. However, the controller is not robust when
more flexible modes are added or when large parameter variations are induced. This
highlights the importance of including the compliant spine in the controller, but also the
need for further development to ensure robustness.
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Chapter 1

Introduction

1.1 Research Goal

Staff shortages will continue to increase in the coming years, causing significant issues as early as
2030 [1]. Not only will the economy grow, but the fertility rate will also diminish due to the ageing
population [2], making it essential to ensure that people reach their full potential. Automation
can help maximize potential, as the same job can then require fewer workers. The second
and third industrial revolutions have demonstrated that when more work is done by machines,
the efficiency of the process improves, the number of workers decreases, and the quality of life
increases [3].

For a robot to conduct more tasks, it needs to be almost as versatile as a human. The current
infrastructure is designed for humans, with stairs, ladders, and uneven ground. This is especially
true in places where people do manual labour, such as construction and road works. For a robot
to assist in these locations, it would have to be able to traverse the same terrain. Wieber et al.
suggest that a legged robot is the most versatile for navigating irregular terrain, as each leg can
move independently. This independence of the legs, however, presents unique control challenges
for legged robots. One such challenge is the redundancy of the actuators of a legged robot,
similar to the abundance of control options available for human motion. This leads to an infinite
number of possibilities for controlling the robot [4]. Additionally, a legged robot can only move
when a leg disconnects from the ground, resulting in varying numbers of contact points during
a walking cycle.

Currently, most legged robots use purely rigid links, as much of the analysis in legged robots
is done for rigid systems. Flexible links, however, can benefit the performance and cost of the
robot. Flexible links can use less material or cheaper materials, directly reducing costs. A lighter
robot also requires less motor force, allowing either cheaper motors or faster robot speeds. Link
flexibility also results in a lower impact force (compared to joint flexibility) which makes the
robot safer in cases of human-robot interaction [5]. Finally, compliant links can improve the
performance, for example, animals such as cheetahs have a flexible spine to increase running
efficiency and speed. A similar design could be used in legged robots to move faster and more
energy efficient[6].

This thesis focuses on the latter use-case, where a quadruped has a compliant spine. The problem
is simplified by applying the theory to a planar version of a quadruped where only the spine is
a flexible link, as shown in Fig. 1.1. Moreover, this planar robot knows the position of one
point on the flexible spine as well as the global ground reaction forces. Such a position sensor
would normally require the integration of different sensors such as Inertial Measurement Units
(IMUs) and cameras [7], while the global ground reaction forces would require a coordinate
transformation [8]. The system, however, will not have additional sensors or actuators to control
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Figure 1.1: The models used in the different papers, both, represent a planar quadruped with a flexible
spine.

the flexible modes.

The challenge of controlling this quadruped with a compliant spine is split into two parts. First,
the (flexible) states of the robot must be estimated with only the sensors, as shown in Fig. 1.1.
These states should then be used in the control of the robot. For legged robots, momentum-
based control has been successfully applied to control the balance of rigid legged bipeds and
quadrupeds [9–13]. Thus, the second challenge is to apply this momentum-based control to the
simplified quadruped, and the research objective can be split into two parts, each with three
research questions:

1. Develop a state observer for a quadruped with a flexible spine.
(a) What are current advances in state estimation of (compliant) legged robots?
(b) How does a compliant spine influence the quality of the state estimation?
(c) How should a state estimator be modified to include a compliant spine for a planar

quadruped?
2. Develop a momentum-based control framework for a planar quadruped with a compliant

spine.
(a) What is momentum-based control, and why is it relevant?
(b) What modifications should be done to a momentum-based controller to apply it to a

planar quadruped with a compliant spine?
(c) How robust is the momentum-based controller when applied to a planar quadruped

with a compliant spine?

1.2 Structure of Thesis

This thesis is divided into three parts, the research questions will be answered in the two papers
found in Part II. But, before the papers there are more two chapters in this part. Chapter 2 will
present existing literature relevant to the papers. This chapter answers the first subquestion for
each of the research questions. In addition, Chapter 2 defends the modelling method used by the
papers in this thesis. Chapter 3 present the preliminaries required to understand both papers.
Even though the papers should be understandable without this knowledge, this chapter clarifies
the work in the papers. The final part presents the combined conclusions from Chapter 2 and
the papers in Part II, as well as propose future work.

1.3 Statement of Use of Artificial Intelligence

A large language model, ChatGPT (version January 2023) [14], was utilized for providing sug-
gestions in restructuring text and for performing grammar and spelling checks. The output was
thoroughly reviewed to ensure the author’s accountability for the content in this thesis.
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Chapter 2

Literature Review

This chapter presents a literature review of three different subjects. The first section discusses
State Estimation and is related to the subquestion: What are current advances in state estimation
of (compliant) legged robots?. The second section goes into the control of legged robots and how
this relates to the momentum-based control used in the papers, addressing the subquestion:
What is momentum-based control, and why is it relevant?. The final section is not related to
research questions, instead focusing on different formulations for flexible multibody systems.

2.1 State Estimation

States are an essential part of model-based control, as it allows us to predict the motion of a
robot. However, these states often cannot be measured directly. For many mechanical systems,
the state vector is a combination of the velocity and position of a body, while most sensors
only measure positions, such as visual detection, strain gauges, or rotary encoders. Numerical
differentiation can be used to compute the velocity from the position, but this generally results
in an amplified noise or time delay [15].

State estimation is the field of combining the information from different sensors and possibly a
dynamic model to generate the best possible estimation of the state vector. Proposed in 1997
by Julier, the Extended Kalman filter is still the most widely used optimal state estimator [16].
However, there are other options such as the Unscented Kalman Filter [17], the Particle Filters
[18], and the H∞ Extended Kalman Filter [19]. Each of these extensions demonstrate improved
robustness to modelling errors and better estimation of non-linear dynamics. This is only a small
selection of improved filters, as shown in various review articles [20][21].

Therefore, this section does not aim to provide an exhaustive overview of all possible state
estimators. Instead, the focus is on the application of state estimators to different systems,
firstly flexible multibody manipulators and secondly legged robotic systems. This comparison
aims to show how these two application fields overlap.

2.1.1 State Estimation of Flexible Manipulators

The first step in state estimation is to determine whether the state is observable, i.e. whether all
the states influence the measurements. Balas executed the required observability check in 1978
and concluded that one measurement on a flexible beam is sufficient to measure all the flexible
modes [22] when the multiplicity is 1, i.e. there are no eigenmodes with the same eigenfrequency1.

1This is not always the case, for example, a robot which is not attached to the fixed world has six rigid body
modes with an eigenfrequency of zero. Such robot a robot always requires at least six sensors to measure these
rigid body modes[8]
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Hughes and Skelton extended this theory by introducing the notion that the sensor should not
be in a nullspace of a mode [23]. This happens, for example, when a rotary encoder tries to
measure an axial mode shape. It is important to note that eigenfrequencies that are multiples
are harder to observe with one sensor [24].

Despite the fact that a flexible beam structure should be observable, many researchers use mul-
tiple sensors to improve the observation. For example, Li et al. observed the flexible state
based only on rotary encoders [25, 26]. However, current research is more focused on applying
additional sensors such as strain gauges [27–29], vision [30–32], inertial sensors [33, 34], or end-
effector location [35, 36]. Most of these researchers apply a Kalman filter, such as the simple
Kalman Filter [25, 31, 33, 36], the Extended Kalman Filter [28, 35] or the Unscented Kalman
Filter [30, 32, 34]. A few have designed their own observers based on the Kalman Filter to in-
clude flexible uncertainty [27], or have designed custom observers to estimate partial differential
equations [26, 29].

2.1.2 State Estimation of Legged Robots

Where flexible manipulators, as described in the previous section, are observable due to their
connection to the real world, this is not the case for legged robots. Classic sensors for a robot
include rotary encoders on all the joints and an Inertial Measurement Unit (IMU) on the body
of the robot; however, using only these sensors, the exact location of the body and the yaw angle
are unobservable [8].

One solution for this is to use kinematic state observation. Here, the leg kinematics and ground
reaction forces can be used to estimate the base location, as described extensively in a review arti-
cle by Masuya and Ayusawa [37]. Alternatively, simultaneous localization and mapping (SLAM)
algorithms can detect the position of a body based on non-kinematics sensors such as cameras,
thermals, or LiDaR [7, 38]. The combination of kinematics state-observation with non-kinematic
sensors has shown promising results and has been applied successfully with the momentum-based
framework by Koolen et al. [11, 39].

Compliant elements have also been used in the state estimation for legged robots. Koolen et
al. note that both link and joint compliance can degrade the quality of the centre of mass
estimation[11]. To address this, they propose including a torsion spring in the ankle of the
model, with the stiffness following from an optimization problem. Other research has focused
on state estimation when the robot has an elastic transmission [40–42]. Vigne et al. simplify
all internal flexibilities as punctual flexibilities [43], again modelling these flexibilities as torsion
springs.

To the best of the author’s knowledge, there are no examples of link compliance in any legged
robot state estimation. Examples of state estimation of compliant links do exist for either
manipulators or satellites [44]; however, for legged robots, link compliance is rarely considered.
When it is, the link compliance is usually simplified to a torsional spring.

2.2 Control of (Compliant) Legged Robots

The control of legged robots is a heavily studied field, and thus it is not feasible to examine the
entire field in depth. A search of Scopus using the query ‘Control AND (“Legged Robot” OR
biped OR quadruped)’ yields over 12 000 articles. This section will provide an overview of the
different areas of control, and then focus on the momentum-based controller, which is the focus
of the second paper.

The control of legged robots can be divided into three distinct sections: motion generation,
trajectory regularization, and actuator control. Motion generation involves deciding when, where,
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and how to make a step, as well as the corresponding movement of the center of mass. Trajectory
regularization ensures that steps can be taken in the presence of external disturbances. Finally,
actuator control (also known as low-level control) ensures that the actuators deliver the required
torque.

There are two general approaches to motion generation: full-body motion generation and simpli-
fied model gait generation. Early simplified models focused on slow gait generation and included
the Linear Inverted Pendulum Model (LIPM) [45], Inverted Pendulum Model (IPM) [46], and
Linear Pendulum Model (LPM) [47]. Later research focused on dynamic gait, resulting in the
Spring Loaded Inverted Pendulum (SLIP) model [48], which models the legs as a set of springs.
Alternatively, offline gait trajectories can be generated using a non-linear optimizer on the full-
body model [49–51] or by estimating human gait [52]. There is also research into trajectory
generation through a neural network, where the learned trajectory can then be used online [53].

The most common method to regularize a trajectory is using a Proportial Derivative controller
on the desired joint angles or state feedback [54]. However, this does not utilize the knowledge
of the dynamic model. Hwangbo et al. use a neural network to learn the actuator and robot
dynamics to generate one policy which performs both regularization and trajectory planning [53].
Alternatively, Whole Body Control (WBC) [55] uses task prioritization to regularize motions.
When one of these whole body control tasks includes the momentum, it is generally called
momentum-based control (MBC). Central pattern generators (CPGs) also use a method similar
to the human body to control the torques in a legged robot [56], combining control sequences
with reflex loops to generate robust gaits. CPG has also been successfull in control of a compliant
spine [57].

Humans control their (angular) momentum when walking; and Abdallah and Goswami were the
first to apply this concept to the control of legged robots. This momentum-based control has since
been shown to be successful in balancing a robot, both in simulation [58]-[62] and on real robots
[9]-[12]. It is also possible to control robots with wheeled legs [63] based on the momentum. The
downside of these implementations of momentum-based controllers is the separation between
motion generation and the momentum-based controller. This separation can cause the planned
motion to become infeasible when there are large disturbances [64].

2.3 Modelling of Flexible Multibody Systems

Flexible multi-body systems have been extensively studied, and there are various ways to model
them [65]. This section focuses on three strategies for modelling flexible bodies: the Floating
Frame of Reference Formulation (FFRF), the Absolute Nodal Coordinate Formulation (ACNF)
[66], and the Pseudo-Rigid Body (PRB) model [67]. Fig. 2.1 illustrates these three formulations.
Nodal model methods, which split the beam into multiple elements, are not discussed in this
review, as they are computationally expensive for control problems [68].

The PRB model transforms a flexible beam into multiple rigid beams connected by torsion
springs [67]. An algorithm optimizes the orientation and length of the different beams, as well
as the stiffness of the torsion springs, such that the PRB model behaves similarly to a simulated
flexible beam. This model consists of four rigid beam elements and three torsion springs [69],
which gives the optimizer 10 parameters to optimize. Compared to a rigid beam element, this
model offers 3 additional degrees of freedom, and accurately follows the deflection of the tip of
large finite element models [70].

However, current research into the PRB model focuses primarily on (quasi-)static tip deflection
of a beam fixed to a wall [70–73]. In addition, the force and moments used in the optimization are
always located at the tip of the beams, making it unclear how this model formulation performs
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Nodal Method ACNF

FFRF PRB Model

Figure 2.1: The four different flexible multibody formulations discussed in the literature review. The
Nodal method is not explained due to the large number of degrees of freedom (3 per node).

in dynamic cases or when the beam is not fixed to a base. Furthermore, in spatial beams, the
parameter optimization can become complex due to an increase in parameters [74].

The ANCF uses the slopes of the beam at all the joints as coordinates [75]. The rigid body
and flexible body motions are coupled in this information through shape functions. These shape
functions form the basis of the mass and stiffness of the element. In this formulation, the
stiffness energy is defined by a nonlinear combination of the coordinates, which allows for large
deformation in the element.

Recent review articles show that ACNF is still a highly researched field [76, 77]. Recent advances
focus on the challenges of multi-body simulation with external forces and (imperfect) actuators
[77]. However, one disadvantage of the ACNF is that rigid and flexible motions are connected,
which means that rigid elements require more nodes than minimal, making a rigid-flexible model
less efficient.

Finally, the FFRF is an extension of rigid body dynamics. The rigid body motion and flexible
motion are decoupled using flexible mode shapes, which can be determined from an experiment
[78] or finite element simulations. Since only a limited number of flexible modes are considered,
the compliant element can be complex and the simulation with the complex structure only needs
to be done once to find the Eigenvalues and Eigenmodes.

The largest disadvantage of the FFRF is that it can only use linear elements, which are not valid
for large deformations. To solve this problem, beams can be divided into multiple elements to
make the results similar to the non-linear ACNF [79, 80]. Furthermore, the constraint equations
to connect the different elements are a non-linear combination of the coordinates. Ellenbroek
and Schilder solve this problem by defining super elements to represent an element only in its
interface points [81].

Based on the comparison of these three formulations, FFRF is best suited for the application
in this thesis. The largest strength of FRFF is that it allows a modal reduction, which greatly
improves the algorithm when the spine has a complicated shape and mass distribution. After an
accurate but time-consuming finite element method simulates the flexibility of a spine, the fast
FFRF only uses the relevant mode shapes. Besides the modal reduction, the FFRF is the most
similar to rigid body dynamics, which simplifies the comparison of the flexible simulation results
to rigid simulations in the literature.
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Chapter 3

Preliminaries

The information in this section complements the information given in the papers in Part II.
Naturally, there will be some overlap in information to allow the papers to be published sep-
arately. Where the papers focus on what was done, these section focus on why it was done.
This hopefully makes the papers clear, even for engineers who do not work in the field of flexible
multibody dynamics and balance control.

3.1 Modelling in the floating frame formulation

The main issue addressed in this thesis is the addition of a compliant link. This section explains
the modelling of such flexible links in the floating frame of reference method.

3.1.1 Beams in the floating frame

O X

Y

Pc

P
0

P

rP

P

P

θ

Figure 3.1: One beam in the floating frame representation. The dots represent the nodes in the nodal
dynamics, the dashed gray body is the undeformed body. The green lines represent the rigid body motions
in the global frame, while the black lines are local definition. The blue line gives the global position and
orientation of a point P on the deformed body.

This explanation starts with the floating frame formulation for one beam. This element is defined
in Fig. 3.1 where the dynamics of this beam is split into nodal dynamics and frame dynamics.
The nodal dynamics requires solving the displacements of all the nodes, u based on, for example,
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a linear finite element model given as

MFEM üf +KFEMuf = QFEM (3.1)

where MFEM and KFEM are, often sparse, mass and stiffness matrices. The contents of these
matrices depend on the number of nodes, node locations, beam shape, beam type and the material
properties. The simulations in this thesis use a 1D beam with a local consistent mass matrix
and an Euler-Bernoulli beam element, as shown in Fig. 3.2.

u1

u2

v2

θ2

θ1
v1

L

Figure 3.2: One beam element with its mass and stiffness matrix. Here ρ is the density, A is the area,
L is the length of one element, E is the young’s modulus, and Iy is the second moment of area. Since
the beam is rectangular, this equals Iy = bh3

12 , where b is the width and h is the height of the beam.

The full beam in Fig. 3.2 has 9 · 3 = 27 degrees of freedom. A modal reduction reduces the
number of coordinates by only considering specific mode shapes. There are multiple options for
modal reduction. This thesis does the modal reduction based on the eigenmodes of the system,
which are shown in Fig. 3.3. The eigenmodes with the lowest eigenfrequency will store most of
the energy and therefore influence the system the most. The global position and orientation of
the nodes, as given in, Fig. 3.1 will then be given by

rP = c+ R(φ) (u) = c+ R(φ) (u0
P + uf

P ) = c+ R(φ) (u0 +Φfqf ) (3.2)

θP = φ+Φf
θ,Pq

f (3.3)

where R(φ) is a rotation matrix and Φf is the matrix with the used mode shapes and qf are
scalars for the different mode shapes. Furthermore, (.)P are the rows related to the point P ,
similarly (.)θ,P are the rows related to the angle of the beam at point P .

The step from the modal coordinates and the frame coordinates follows from the mode shapes.
Ignoring the insignificant quadratic velocity terms1. In this case,

üf =
[
Φr Φf

]


c̈

φ̈

q̈f


, uf =

[
0 Φf

]


c

φ

qf


 (3.4)

where Φr are the rigid body modes, which are the displacements of the nodes when the center of
mass changes. Since, flexible coordinates are relative to center of mass frame, these rigid modes
are 0 for the positions. Filling this into Eq. (3.1) and premultiplying with the transpose of the
modes

[
ΦT
r

ΦT
f

]
MFEM

[
Φr Φf

]


c̈

φ̈

q̈f


+

[
ΦT
r

ΦT
f

]
KFEM

[
0 Φf

]


c

φ

qf


 =

[
ΦT
r

ΦT
f

]
QFEM (3.5)

1These terms become apparent only when working with high angular velocities or when bending becomes very
large.
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Figure 3.3: Mode shapes of the spine used by paper 1 and paper 2. The top figure gives the first
two mode shapes, which are also included in the simulation in paper 1. The dotted mode shapes in the
bottom figure are residual mode shapes; they are not used in the controller or observer model. It also
gives the natural frequencies ωn for the different modes.

calculating this gives

Mfr



c̈

φ̈

q̈f


+Kfr



c

φ

qf


 =

[
MR 0

0 Mf

]

c̈

φ̈

q̈f


+

[
0 0

0 Kf

]

c

φ

qf


 (3.6)

where MR = diag(m,m, I) where m is the total mass and I is the moment of inertia. Mf is
a diagonal matrix with the flexible inertias, Kf are the flexible stiffnesses. These matrices are
often scaled such that Mf is identity and Kf is a diagonal matrix with the ω2

n. Appendix A.1
explains how damping can be added to this system.

So, the frame dynamics depend on the position of the frame, orientation of the frame and the
flexible mode scalers

Mfrq̈fr +Kfrqfr = Mfr



c̈

φ̈

q̈f


+Kfr



c

φ

qf


 = Qfr (3.7)

where Q are the generalized force on the body, these are derived from the Jacobian of the
(angular) velocities of point P as

ṙP = ċ+ Ṙ(φ)(u0
P +Φf

Pq
f ) + R(φ)Φf

P q̇
f =

[
I R(φ)(u0

P +Φf
Pq

f )× R(φ)Φf
P

]


ċ

φ̇

q̇f


 (3.8)

θ̇P = φ̇+Φf
P,θ q̇

f =
[
0 1 Φf

P,θ

]


ċ

φ̇

q̇f


 (3.9)

Where, r× ≡
[
−py
px

]
, which follows from Ṙ(x) = R(x)

[
0 −1
1 0

]
ẋ. Based on Eq. (3.8) and
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Eq. (3.9) the Jacobian and its derivative for a point P equal

[
ṙP

θ̇P

]
=

[
I R(φ)(u0

P +Φf
Pq

f )× R(φ)Φf
P

0 1 Φf
P,θ

]

ċ

φ̇

q̇f


 ≡ JP q̇fr, (3.10)

[
r̈P

θ̈P

]
= JP q̈fr +

[
0 −R(φ)(u0

P +Φf
Pq

f )φ̇+ 2R(φ)(Φf
P q̇

f )× 0

0 0 0

]

ċ

φ̇

q̇f


 ≡ JP q̈fr + J̇P q̇fr.

(3.11)

Through the conservation of power, the relation between a global force on a node P called QP,FE

and the generalized force in Eq. (3.7) equals Qfr = JT
PQP,FE .

3.1.2 Combining floating frame elements

o

a

X

Y

b
ca

cb

a
b

a
0

b
0

Figure 3.4: Two rigid beams with a revolute joint.

The connection of different beam elements is performed through the nonlinear holonomic con-
straints. These holonomic constraints can always be represented as

fa(qa)− f b(qb) = 0 (3.12)

where fa(qa) and f b(qb) are a nonlinear function based on the coordinates of a body a and
body b, respectively. One of these bodies can also be the world if a body is connected to the
world. The most common connection between bodies is a revolute joint, as shown in Fig. 3.4.
Alternatively, constraints can be used to split one beam up allowing also nonlinear flexibility, as
shown in Appendix A.2. For a revolute joint between two rigid beams, the constraint equations
are then given by

ca + R(φa)u
0
a −

(
cb + R(φb)u

0
b

)
= ca + R(φa)

[
La
2

0

]
−
(
cb + R(φb)

[
−Lb
2

0

])
=

[
ca,x − cb,x + cos (φa)

La
2 + cos (φb)

Lb
2

ca,y − cb,y − sin (φb)
La
2 − sin (φb)

Lb
2

]
= 0.

(3.13)

For a flexible beam, u0
a should be replaced by ua, which is a combination of the original position

and a flexible component to get

ca + R(φa)

([
La
2

0

]
+Φf

aq
f
a

)
−
(
cb + R(φb)

([
−Lb
2

0

]
+Φf

b q
f
b

))
= 0, (3.14)
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where Φf
a are the rows of the mode shape matrix corresponding to the node with the revolution

joint for the body a. The holonomic constraint matrix, C, combines the constraints of all joints
such that

C(q) = 0. (3.15)

Also the derivative of this matrix must be 0, these can be computed using the chain rule since C
is a function of q,

Ċ = [C]qq̇ = 0, (3.16)

where [.]q denotes the Jacobian with respect to q. Taking the derivative again gives

C̈ = [C]qq̈ + [C]qqq̇q̇ = [C]qq̈ + [[C]qq̇]q q̇ = 0, (3.17)

where [C]qq is the Hessian of C. We prevent the computation of the Hessian since q̇ is not a
function of q so [C]qqq̇ = [[C]qq̇]q.
The dynamics of all the bodies combined is a combination of the separate equations of motions
given in Eq. (3.7)

Mq̈ +Kq = Q (3.18)

where q =
[
qTfr,a, qTfr,b, . . . , q

T
fr,Nb

]T
. The mass and stiffness matrices are block diagonal ma-

trices given by, for example, M = blkdiag (Mfr,a,Mfr,b, . . . ,Mfr,Nb). The generalized force, Q
are split into actuation forces Qa and constraint forces Qc.

The constraint forces can be removed from the equations of motions using the d’Alembert prin-
ciple. The kinematic admissible displacement field follows from the holonomic constraint matrix,

C = 0→ δC = 0→ [C]qδq = 0, (3.19)

where δ(.) is the variation of a variable. This constraint on the kinematic admissible displacement
field results in Lagrange multipliers such that the equation of motion becomes

Mq̈ +Kq − ([C]q)T λ = Qa (3.20)

This system is not solvable since both q̈ and λ are unknown. Therefore, the system is augmented
using the constraints. Using Eq. (3.17) the system of equations becomes,

[
M ([C]q)T

[C]q 0

][
q̈

λ

]
=

[
Qa −Kq

− [[C]qq̇]q q̇

]
. (3.21)

which is called the Constrained Equations of Motion in Augmented Form.

3.1.3 Actuation in the Floating Frame Formulation

The quadruped experiences four distinct types of external forces: actuator forces, disturbance
forces, ground reaction forces, and the force of gravity, as shown in Fig. 3.5. Using these forces,
the actuation force equals

Qa = ST
τ τ + JT

extW ext + JT
ρ ρ+Qg, (3.22)

where this chapter explains how to get the Sτ , Jext, Jρ, and Qg. The designer determines
the external wrench, W ext, the controller defines the torques, τ , and the contact model in
Appendix B determines the ground reaction forces, ρ.

Since Jext and Jρ are simply Jacobians, they can be calculated using Equation (1) (Jacobian).
These forces only result in a generalized force Qa on the body they act upon. Therefore, these
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ρρ
QextQg

τ

ττ

τ

Figure 3.5: All applied forces on a quadruped, ρ are the ground reaction forces, τ are the motor torques,
Qg is the force due to gravity and Qext is an external force

Jacobians only have non-zero values for the coordinates associated with the actuated body, and
are zero for all other coordinates. For ground reaction forces, the Jacobian for each foot location
should be stacked. For external forces, the Jacobian depends on the direction and type of force,
and should correspond to the velocity in the same direction as the force. This can also be an
angular velocity in when the external force is a moment.

The actuator matrix is similar to the Jacobians. However, due to Newton’s third law, each torque
results in an equal and opposite torque in the other direction. So for a torque between two rigid
bodies a and b in Fig. 3.4

Sτ =
[
−Jθ,a 0

]
+
[
0 Jθ,b

]
=
[
0 0 −1 0 0 1

]
(3.23)

where Jθ,a and Jθ,b are the Jacobians corresponding to the angular velocity of the beam at the
revolution joint for body a and b, respectively. For a flexible beam, these Jacobians equals the
last row in Eq. (3.10).

Finally, the gravity only acts on the rigid body motion of the bodies. This gives

Qg =
Nb∑

i=1

−g STy,imi, (3.24)

where g is the gravitation constant, mi is the mass of the body i, and Nb is the number of bodies.
Sy,i is a selection matrix for the rigid body motion in the y-direction of the body i. For body b
in Fig. 3.4 this becomes

Sy,b =
[
0 0 0 0 1 0

]
. (3.25)

So for the rigid body elements in Fig. 3.4

Qg =
[
0 −mag 0 0 −mbg 0

]T
, (3.26)

where ma and mb are the mass of body a and b.

3.1.4 Validation of the Floating Frame Formulation

The validity of the flexible beam is proven in Appendix A.2 where the beam is split into multiple
beams to see the convergence. Two more principles can prove if the simulation is correct, con-
versation of momentum and conservation of energy. The conservation of energy will be checked
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based on a flexible 2 link pendulum, while the conservation of momentum is checked on the
complete quadruped.

The total energy in the system can be split into three different categories: kinetic energy, Ek,
potential elastic energy, Ue and potential gravitational energy, Ug. The actuators and the internal
damping change the amount of energy in the system such that

Ek + Ue + Ug −
∫

Pτdt+

∫
PDdt = const, (3.27)

where Pτ = τTSq̇, and PD = q̇TDq̇. The energies can be computed as

Ek =
1

2
q̇TMq̇, Ue =

1

2
qTKq, and Ug = −QT

g (q − q0), (3.28)

where q0 are the initial coordinates. Plotting these values in Fig. 3.6 shows that the deviation in
the energy depends greatly on the integration time step and the used integrator. For the same
time step, the symplectic Euler integration scheme [82] decreases the error from 0.84 J to 0.02 J
compared to the Forward Euler scheme.
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Figure 3.6: Checking the energy balance for a 2 link pendulum with two compliant links. The left
figure splits up the different energies for a time step of 40 µs. The right figure shows the change in the
energy for different integration time steps when the Symplectic Euler Scheme is used. Furthermore, one
simulation is run with the standard Forward Euler scheme.

The conservation of momentum follows from Newton’s second law

ḣG = WG, (3.29)

where hG = [lG, kT
G]

T is the centroidal momentum, where lG is the total angular momentum
relative to the center of mass and kG is the total linear momentum. The centroidal Wrench,
WG = [τG, F T

g ]
T , is composed of all the external torque around the center of mass, τG and the

external forces, FG.

The centroidal momentum is computed using the centroidal momentum matrix, AG,

ḣG = AGq̈ + ȦGq̇. (3.30)

Both papers in Part II discuss how to get AG and ȦG. This derivation will not be repeated
here. For the centroidal wrench, there are 3 external wrenches acting on the center of mass: the
ground reaction forces, W ρ, the gravity, W g, and the external disturbance force W ext. Note
that the actuators do not result in a wrench on the center of mass.

By definition, the gravity does not result in a torque. The ground reaction forces and disturbance
force do result in a torque, since these forces do not act on the center of mass. The torque on
the center of mass, τG equals 


0

0

τG


 = (pF − cR)× F , (3.31)
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where pF is the position the force F acts, cR is the center of mass position of the robot, and ×
is the cross product. The total external force for these wrenches is the sum of forces.

The conservation of momentum is checked for the quadruped in Paper 2 in Fig. 3.7. Similar to
the energy, there is an error in the angular momentum, which decreases linearly with a smaller
time step. This indicates that the physics in the simulation is correct, and the error is due to
the truncation in the integration.
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Figure 3.7: Checking the momentum balance for the simulated quadruped in Paper 2. The left figure
splits up the different momentum for a time step of 0.1 ms, the same as used in the simulation. The
right figure shows the change in the energy for different integration time steps when the Symplectic Euler
Scheme is used.

3.2 Null spaces

3.2.1 Null space for underactuated systems

All legged robots are underactuated, meaning there are fewer actuators than degrees of freedom.
This means that not all accelerations are possible. Including compliant link elements in the robot
further increases the degrees of freedom without adding more actuators. This limited number of
actuators cannot achieve all combinations of generalized forces. The momentum-based controller
finds the optimal accelerations based on a (hierarchical) quadratic problem. Therefore, the first
step in the (hierarchical) quadratic problem must ensure that these optimal accelerations are
possible.

x1

m1

k1 k2

m2 m3

F1 F2

x2

x3

Figure 3.8: Underactuated linear mass-spring system. The masses all equal 1 kg and the springs both
are 10N/m

This section explains the steps based on a simplified example shown in Fig. 3.1 for which the
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equations of motions are
Mẍ+Kx = STF T , (3.32)

where

x =



x1

x2

x3


 , F T =

[
F1

F2

]
, M =



1 0 0

0 1 0

0 0 1


 , K =



−10 10 0

10 −20 10

0 10 −10


 , S =



1 0

0 1

0 1


 . (3.33)

This system is clearly underactuated with three degrees of freedom and only two actuators.
When x = 0, the acceleration of x2 and x3 must be the same since they both have the same
force.

The singular value deposition splits the matrix ST such that ST = UΣVT . For the ST in the
simplified problem the values of these matrices are

U =




0 1 0

−
√
2
2 0 −

√
2
2

−
√
2
2 0

√
2
2


 , Σ =




√
2 0

0 1

0 0


 , V =

[
0 1

−1 0

]
. (3.34)

for a matrix with more rows than columns, e.g. ST of an underactuated problem, the matrices
can be split into a non-zero part and an zero part

ST =
[
UC UN

] [ΣC

0

]
VT , (3.35)

where UC is the called the Orthonormal Basis of the Column Space and UN is called the
Orthonormal Basis of the Left-Null Space2. Since all the vectors in U are independent, premul-
tiplying ST with UT

N always equals 0. UT
N is denoted as Z̃ in the paper.

Applying this theory to Eq. (3.32) results in a constraint on the accelerations:

UT
NM¨̄x+UT

NKx = UT
NSTF T = 0 (3.36)

where ¨̄x are the desired accelerations following, for example, from an quadratic program. If this
holds, then the forces can be recovered by inverting the relevant columns of the singular value
decompositions to give

F = V (ΣC)
−1UT

C (M¨̄x+Kx) (3.37)

which follows from the general inverse of a singular value problem
(
UΣVT

)−1
= V (Σ)−1UT (3.38)

3.2.2 Null space for Hierarchical Control

In hierarchical control, the optimization is split into different hierarchies. The lower priorities
should optimize the problem without losing the optimality of lower priorities. Going back to the
simplified example in Fig. 3.1. If the first priority is related to the rigid body acceleration of the
complete system, the Jacobian for this problem equals,

a1R =
[
1 1 1

]


ẍ11
ẍ12
ẍ13


 = J1ẍ1 (3.39)

2In Matlab this can be found using null(AT ) for a matrix A
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where aR,1 is the rigid body motion of the complete system after solving the first priority, ẍ is
the acceleration of the different bodies. When this has been optimized to some value, the lower
optimization step is not allowed to change this motion so

a2R = a2R → a2R − a1R = 0→ J1ẍ2 − J1ẍ
1 = 0→ J1

(
ẍ2 − ẍ1

)
= 0 (3.40)

The trivial solution would be to let
(
ẍ2 − ẍ1

)
= 0. The other solution would be to only solve v

for which J1v = 0. The vectors for which this is the case are spanned by the null space of J1.
The vectors that span the null space are called the Orthonormal Basis of the Null Space3 and
are denoted by Z1. Then v = Z1u2, u2 ∈ R2, since J is a column vector with 3 values, the null
space is spanned using two scalar vectors. Next, since

J1v = 0→
(
ẍ2 − ẍ1

)
= v → ẍ2 = ẍ1 + ZJu

2, (3.41)

it is possible to solve an optimization problem for u2 instead of ẍ2. This ensures that the solution
of the second hierarchy will stay to keep the optimality of the rigid body motion.

There is however also a limitation due to Eq. (3.36) which limits the possible rigid body accel-
eration based on the forces. The value of the acceleration, based on Eq. (3.36) equals

UT
NMẍ0 = −UT

NKx→ ẍ0 = −M−1UT
NUT

NKx, (3.42)

using the fact that for all the vectors in the singular value deposition UUT = I where I is the
identity matrix. Similar to Eq. (3.40) the acceleration after the first optimization, must hold this
constraint

UT
NMẍ0 = UT

NMẍ1 = −UT
NKx→ UT

NMẍ1 −UT
NMẍ0 = 0→ UT

NM
(
ẍ1 − ẍ0

)
= 0. (3.43)

So instead of optimizing over ẍ, the value u1 is optimized where

a1R = J1ẍ1 = J1
(
ẍ0 + Z0u1

)
= J1Z0u1 + J1ẍ0 (3.44)

where Z0 is the Orthonormal Basis of the Null Space of UT
NM. In this case, J1ẍ0 is a bias on

the optimization problem. Note that for the second priority, we have to solve in the null space
of the null space of the constraints so:

ẍ2 = ẍ0 + Z0
(
u1 + Z1u2

)
= ẍ0 + Z0u1 + Z0Z1u2 = ẍ1 + Z0Z1u2 (3.45)

where Z1 is the Orthonormal Basis of the Null Space of J1Z0. This combination of null spaces
Z0Z1 is denoted using Z̃1.

This can be generalized for any priority p, where the acceleration at priority p has to equal

ẍp = ẍp−1 + Z̃p−1up. (3.46)

Here ẍp−1 is the solution of the higher priority, up are the scalars which can be optimized, and
Z̃p−1 is the mapping into the null-space of all the higher priorities so

Z̃p−1 =

p−1∏

i=0

Zi ≡ Z̃p−2Zp−1. (3.47)

with a goal of an optimizer is then to find up to minimize

∥Jpẍp − ap∥ =
∥∥∥Jp

(
ẍp−1 + Z̃p−1up

)
− ap

∥∥∥ =
∥∥∥JpZ̃p−1up + Jpẍp−1 − ap

∥∥∥ (3.48)

where ap is some target which should be a linear combination of x. This linear combination is
given by Jp.

3In this case it is the ‘regular null-space’
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State Observation of Compliant Link Floating
Base Robots

Sander W.S. Oosterveld, BSc and dr. ir. Arvid Q.L. Keemink

Abstract—This paper presents an approach using the
Extended Kalman Filter (EKF) to estimate the states of a
robot that is free to move and has a compliant link, while
it only has rotary encoders on the joints. The dynamics
of the robot are split into the movement of the body’s
center of mass and the flexible modes, both of which
are estimated using the EKF. This information is used
to calculate parameters that are crucial for balancing the
robot, such as the centroidal momentum and full-body
center of mass location. To demonstrate the significance
of considering flexibility, the algorithm is applied to a
planar quadruped with a compliant spine. The results
indicate an improvement when it assumes a flexible
spine, as opposed to an estimation that assumes only
rigid links.

Index Terms—Extended Kalman Filter, Flexible
Multibody systems, Floating base robots,

I. INTRODUCTION

Robotic automation has led to one of the largest
industrial revolutions in the past 20 years, with robots
performing manual tasks instead of humans. However,
currently, the majority of benefits from robotic automa-
tion are limited to factories or controlled environments.
For a broader application of robots, they must be
versatile, safe, and cost-effective. In additional, a robot
should have a floating base, which allows it to move
around [1.1].

One way to achieve these requirements is by in-
corporating compliant links. Compliance assists robots
in grasping objects with a soft touch, making them
more versatile [1.2]. Furthermore, research has shown
that compliance improves safety in human-robot inter-
actions, as link-compliance results in a lower impact
force compared to joint compliance [1.3]. Additionally,
compliant links can make robots cheaper and lighter
than rigid robots, as they require less stiff or less
material.

However, compliant links also present control chal-
lenges. The flexible links increase the number of
degrees of freedom (DOFs) of the system, complicat-
ing both simulation and introducing hidden variables.
Sensors can be added to the system to measure the
additional DOFs, but this can be expensive [1.4].
An alternative solution is to use state estimation to
estimate the flexible state.

In addition to flexible DOFs, a robot also requires
an estimation of the whole body center of mass,
body orientation, body velocities, and end effector
positions. When, the robot moves using legs, control
methods also depends on the centroidal momentum
[1.5]. Typical sensors in robots (e.g., encoders) and
accelerometers cannot directly measure these parame-
ters.

State estimation allows a controller to estimate these
parameters by combining measurement data and sys-
tem dynamics. State estimation is a well-studied field
that has been applied to various sectors such as robots,
and navigation [1.6]. However, it has rarely been used
to estimate the states of compliant link floating base
robots. Therefore, the goal of this paper is to show, that
state estimation can be applied to planar quadruped.

A. Related work

The state estimation of quadruped and bipeds is
a well-studied field [1.7]- [1.9]. In all these appli-
cations, the information of one or multiple inertial
measurements units (IMUs) is combined with the joint
angles and the feet location to estimate the states of
the robot. All these papers focus on the challenges of
spatial estimation, such as yaw-angle drift. The effect
of flexile links is not discussed.

Even though the flexible states of a compliant beam
are observable with only one sensor [1.10], they are
susceptible to modelling errors. This makes estimation
of the flexible modes using one sensor challenging
[1.11]. Therefore, estimations of flexible multi body
systems is often done using additional measurements
such as strain gauges [1.12], vision [1.13] [1.14],
inertial sensors [1.15], or end-effector location [1.16].
These sensors improve the observation of the flexible
links.

In a cost-effective quadruped, it is not desirable to
include additional sensors for the flexible spine. This
paper therefore investigates if it is possible to estimate
the state of a quadruped with a flexible spine without
additional sensors. The focus is on the estimation of
parameter essential to control legged robots, such as
center of mass position and centroidal momentum. The
problem is simplified by assuming the location of the
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spine is exactly known, and the ground reaction forces
can be measured.

B. Contributions

The main contributions of this paper are giving a
coherent integration of the following methods:

1) Present a quick method of computing the cen-
troidal momentum and center of mass position
based on the floating frame of reference mod-
elling method

2) Apply state estimation to a robot with one flex-
ible link and show an improved performance
compared to state estimation with rigid links
regarding momentum and center of mass esti-
mation

3) Use modal expansion for the flexible link and
show that taking modes with a lower eigenfre-
quency is sufficient in estimating the flexibility.

C. Outline of the Paper

The goal of this paper is to show how a state estima-
tor can estimate the states for a floating base flexible
robot. Section II explains the modelling method for
both the simulation model and the estimation model.
Section III defines the used state estimation method.
The final simulation parameters are described in Sec-
tion IV. This section also includes the location of
the sensors, the observers parameters and the chosen
performance metrics. Section V presents these perfor-
mance metrics as results and Section VI discusses the
results. The final section presents the conclusions of
this paper.

II. MODEL OF FLOATING BASE FLEXIBLE LINK

ROBOTS

In the modeling of flexible multibody systems, there
are three commonly utilized approaches [1.17]. The
first method is the finite element method, which divides
the system into multiple elements, with the coordinate
vector containing all the nodes of these elements.
While this approach yields accurate results, it is often
accompanied by long simulation times, making it im-
practical for real-time simulations of dynamic systems.
In contrast, the second method, Absolute Nodal Coor-
dinate Formulation (ANCF), utilizes only the position
and slope of the nodes between the bodies, allowing
for non-linear flexibility and the ability to handle
large deformations while maintaining computational
efficiency [1.18]. The third and applied method is
the Floating Frame of Reference Formulation (FFRF),
which separates the dynamics into rigid body motion
and local flexible deformation, with the flexible defor-
mation being based on linear mode shapes. However,

this approach is limited in its ability to model large
deformations.

O

B

X

Y

Fig. 1. The coordinates of flexible body B. Here, x(.)a,b means the
position vector in frame x from a to b. φ is the rotation regarding
the origin. N is the number of nodes in the link, where the first
node is number 1 and the final node is numbered N . The dashed
light-gray line shows the undeformed body. The dots are the nodes
in the body

Fig. 1 shows the coordinates for an FFRF body.
The rigid body coordinates of body B, qrB , are a
combination of the absolute position 0p0,B and the
orientation of the body φ. The location of a point,
N on the link, is given by a combination of a constant
vector Bu0

B,N and a local flexible deformation Buf
B,N .

For clarity, a local body coordinate is denoted using a
bar, e.g. Bu0

B,N becomes u0
N . Also, the O in global

coordinates will be omitted so 0p0,B ≡ pB

The flexible coordinates define the amount of defor-
mation of one body compared to the center of mass po-
sition. The relation between the flexible coordinate and
the deformation is called the mode shape. This mode
shape is free to choose, one method are the free-free
modes. These modes are based on the eigenfrequencies
of the linear elastic model given by

Mü
f
+Kuf = Q, (1.1)

where uf are the local node displacements (position
and rotation), M and K are the full mass and stiffness
matrix of one beam, and Q are the nodal forces. The
free-free modes are the vectors, ϕω, which satisfy

Mϕωi
= ω2

iKϕωi
, (1.2)

where ωi is the eigenfrequency corresponding to mode
shape ϕω. One property of free-free modes is that these
modes do not change the location of the center of mass.

The strength of the floating frame of reference
formulation is that it then only uses the bending modes
with the lowest eigenfrequency. These modes contain
the largest energy in the system and have the most
effect. Using more or all mode shapes makes the
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simulation more accurate, but it also slows down the
computation. The mode shape matrix, Φi, contains
both the rigid body modes and the desired number of
flexible modes such that

uf
J =

[
ϕω1

. . . ϕωNm

]
qf,1J

...
qf,Nm

J

 = Φf
J qJ , (1.3)

where qJ are the coordinates corresponding to body
J , and Nm is the number of flexible modes. This
allows a modal expansion which reduces the number of
coordinates based on the number of considered flexible
modes to give the body mass and stiffness matrix as

MJ q̈J +KJqJ = ΦT
JQ, (1.4)

where

MJ = ΦT
JMΦJ , and KJ = ΦT

JKΦJ , (1.5)

where
ΦJ =

[
Φr

J Φf
J .
]

(1.6)

Here Φr
J are the rigid body modes, which is a constant

matrix that defines the velocity of all the nodes based
on the velocity of the rigid body.

o

A

X

Y

B

1

Fig. 2. Schematic of a rotational joint between bodies A and B.

The next step is combining the different bodies using
the holonomic constraint matrix. Each connection of a
body results in one or multiple holonomic constraints
in the form:

fA(qA)− fB(qB) = 0, (1.7)

where qA, qB are the coordinates of body A and
B, respectively, and fA, fB map these coordinates
to the constraint space. In a planar revolution joint,
the absolute position of the joint should be the same
when expressed from both body frames. In Fig. 2, the
constraint equation is given by:

pA + 0RAuN −
(
pB + 0RBu1

)
= 0. (1.8)

Here 0RA is the rotation matrix from body A to the
origin depending on the orientation of body A, and
uN = AuA,N = Au

0
A,N + Au

f

A,N
where

Au
f

A,N = Φf

N
qfA. (1.9)

Here Φf

N
are the rows of the mode shape correspond-

ing to the node N . Since Au
0
A,N is constant, this part

of the constraint depends solely on the coordinates of
body A. A similar derivation can be done for body B.
The holonomic constraint matrix, C(q), combines all
the constraints of all the bodies on top of each other
such that

C(q) = 0. (1.10)

The equation of motion for the floating frame of
reference formulation is given by

Mq̈ +Kq = Q, (1.11)

where q is the combination of all the body coordinates
and flexible coordinates

q =
[
(qA)

T (qB)
T . . . (qNB)

T
]T

, (1.12)

where, for example,

qA =

[(
0p0,A

)T
ϕA

(
qfA

)T]T
. (1.13)

Both M and K are composed of the body
mass and stiffness matrices, for example M =
diag(M1,M2, . . . ,MNb). Q are all the generalized
forces acting on the bodies. These forces contain both
forces due to the constraints forces between bodies, Qc

and the applied forces, Qa due to gravity, actuators,
and ground reaction forces. q is a stack of all the body
DOFs.

The d’Alemberts principle of virtual work can re-
move the constraint forces. A small variation of q must
correspond to a small variation in the constraint forces,
which must be 0 as

δC = [C]qδq = 0. (1.14)

Here δ(.) is a small variation of a variable and [(.)]q
is the partial derivative with respect to q. Since this
must hold, 1.11 changes to

Mq̈ + [C]Tq λ = Qa −Kq̈, (1.15)

where λ are the lagrange multipliers, which ensure
1.14 holds. The constraint matrix also constraints q̈
since

C̈ = 0 → [C]q q̈ + [[C]qq̇]q q̇ = 0. (1.16)

Combining Eq. (1.15) and Eq. (1.16) gives the con-
strained equations of motion in augmented form[

M ]C]Tq
[C]q 0

][
q̈

λ

]
=

[
Qa −Kq

− [[C]qq̇]q q̇

]
. (1.17)

Here the applied forces can be split up as

Qa = ST
τ τ + Jρρ+ JextQext +Qg, (1.18)
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where τ are the actuator torques, ρ are the global
ground reaction forces and Qext is an external force
on the system in the global frame. Sτ , Jf , and Jext

map these force to the generalized coordinates. Qg is
the generalized gravity force.

A differential equation in the form of equation
(1.17) is called a differential algebraic equation. Only
a limited set of state observers, called indirect Kalman
filters, can directly estimate these types of equations
[1.19]. However, it is possible to transform equation
(1.17) into the form of an ordinary differential equa-
tion, as the full system dynamics depends uniquely
on a smaller set of coordinates called the independent
coordinates, qi. A designer has the freedom to choose
any set of independent coordinates as long as they are
independent; all remaining coordinates are called de-
pendent coordinates, qd. For floating base robots, the
standard choice is body rotation, flexible coordinates,
and the position of one body. The acceleration of all
coordinates can be determined from the independent
coordinates using

q̈ = ΛT

[
q̈d

q̈i

]
= Bqi + b, (1.19)

where Λ is a perturbation matrix to reorder q into the
dependent and independent coordinates,

B = ΛT

[
−
(
([C]q)d

)−1
([C]q)i

I

]
, (1.20)

b = ΛT

[
−
(
([C]q)d

)−1
[[C]q q̇]q q̇

0

]
. (1.21)

Here (.)i, (.)d are selections of matrices for the rows
related to the (in)dependent coordinates, I is and
identity matrix. Using this transform, the equation of
motion becomes

BTMBq̈i = BT
(
Qa − (K)iqi −Mb

)
. (1.22)

After integrating 1.22, the dependent coordinates fol-
low from solving the holonomic constraint equation
matrix.

A. Centroidal parameters

Essential properties for control of legged robots are
the location of the center of mass of the robot, cR,
and the centroidal momentum, hR. These values can
be computed from the DOFs of the system using

cR = HGq, (1.23)

where HG is the center of mass matrix. Since the de-
grees of freedom matrix contains the absolute positions

of the center of mass of all bodies HG is a constant
matrix equal to

HG =
1

mtot

Nb∑
i

miSc,i. (1.24)

Here mtot is the total mass, mi is the mass of the body
i, and Sv,i is a selection matrix for the center of mass
coordinates of this body. Since the flexible modes do
not change the center of mass of a body, HG depends
solely on the rigid coordinates and is constant.

The centroidal linear momentum of the robot, kG,
is the sum of the linear momentum of each body given
by

kG = AG,kq̇ =

Nb∑
i

miċi =

(
Nb∑
i

miSc,i

)
q̇. (1.25)

This is similar to the Center of Mass matrix. The total
centroidal angular momentum is given by the sum of
the body angular momentum relative to the center of
mass of the robot

lG =

Nb∑
i

((ci − cR)× ki + IiSθ,i) , (1.26)

where Sθ,i is a selection matrix of the rotation of the
center of mass of body i. Substituting Eq. (1.25) and
Eq. (1.24) gives

lG = qT
Nb∑
i

(
m2

i

mtot
S̃c,iSc,i −miH̃GSc,i

)
q̇

+

Nb∑
i

IiSθ,iq̇,

(1.27)

where (̃.) for a 2×N matrix equals

(̃.) = (.)T

[
0 1

−1 0

]
. (1.28)

Finally Eq. (1.25) and Eq. (1.27) combine to become
the centroidal momentum matrix, AG,

hG =

[
lG

kG

]
= AGq̇. (1.29)

III. STATE OBSERVING FLEXIBLE MULTI BODY

SYSTEM

For flexible multibody systems, the state vector
contains the independent coordinates and the first
derivative of these coordinates, which define the dy-
namics of the robot and are essential for full-body
control. However, sensors in a robotic system are not
able to measure all of these states directly. A state
observer combines sensor information with the system
dynamics to estimate the state vector.
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The most well-known state observer is the Kalman
filter, which was first introduced by Kalman in 1960
[1.20]. However, the original filter is only suitable for
linear systems and must be modified for use in non-
linear systems. One such modification is the Extended
Kalman Filter (EKF) developed by Julier [1.21], which
uses local linearization to estimate the states.

The system for the extended kalman filter is given
as

xk = f(xk−1,uk) (1.30)

yk = h(xk) (1.31)

where xk = [
(
qi
)T

,
(
q̇i
)T

]T , uk are the input torques,
and yk are the measured outputs of the system, such
as encoder angles or the orientation of an IMU.
f(xk−1,uk) follows from combining 1.22 with an
integration scheme, and h(xk) follows from relative
rotations at joints based on the rigid body rotation and
the flexible rotation.

The EKF starts with an initial estimation of the
state, x̂0, and its estimated covariance, X0. Based on
these values, the current state and its covariance are
estimated using

x̂−
k = f(xk−1,uk), (1.32)

X−
k = ([f ]x̂−

k
)Xk−1([f ]x̂−

k
)T +Qk, (1.33)

where (.)− is the a priori estimate, so before taking the
current measurement into account. x̂k is the estimated
state at time step k. Qk is the estimated process noise
on the system, a designer has to choose this value.
Finally, [f ]x̂−

k
is the numerical Jacobian of the state

equation given by

[f ]x̂−
k
=

∂f(xk,uk)

∂xk

∣∣∣∣
xk=x̂−

k

, (1.34)

([f ]x̂−
k
)ij =

fi(x̂
−
k +∆xδj ,uk)− fi(x̂

−
k −∆xδj ,uk)

2∆x
.

(1.35)

where ej is a base vector with all zeros except at
location j, ∆x is a design parameter set to 10−3.

In addition to the covariance of the estimated state,
EKF also requires the estimated value and covariance
of the measurements. Given as,

ŷ−
k = h(x̂−

k ), (1.36)

Y−
k = (H−

k )X
−
k (H−

k )
T +Rk, (1.37)

where Rk is the expected covariance in the measure-
ments and H−

k is given by

H−
k =

∂h(xk)

∂xk

∣∣∣∣
xk=x̂−

k

, (1.38)

and computed as in 1.35. Using these two covariance
estimates, the Kalman gain is estimated to,

Kk = X−
k (H−

k )
T (Y−

k )−1 (1.39)

which determines how much to trust the state estima-
tion. The state estimation is updated using the Kalman
gain as

x̂k = x̂−
k +Kk(zk − ŷ−

k ), (1.40)

where zk are the real measurements. Finally, the
estimated covariance is corrected using the Kalman
gain:

Xk = X−
k +KkH

−
k X

−
k (1.41)

This paper applies a basic implementation of the
extended kalman filter to focus on the required adap-
tations of the estimation.

IV. METHOD

A. Simulation of the Robot

The simulation presented in this paper is based on
a half-quadruped, as illustrated in Fig. 3. This model
is a planar version of a quadruped robot. The body
of the quadruped in the simulation is flexible, with 5
flexible modes corresponding to the lowest eigenfre-
quencies. The material properties of the different links
are provided in Table I.

T2

F1

T1

F2
Body

0.3 m

1 m

O

5N

g = 10 m/s2

ρρ

Fig. 3. Schematic of the half quadruped with location of the
origin. The stars depict the location of the colocated encoders and
actuators. The triangle shows the location of the position IMU.

The contact forces of a multi-contact robot cannot
be computed directly and require an iterative method.
Hwangbo et al. propose a method for quick multi-
contact computation based on the impulse of the
dynamics [1.22]. This method requires all forces acting
on the system, including the constraint forces. Con-
sequently, Eq. (1.17) is used to solve the simulation
model, since it also yields the constraint forces. This
simulation runs with a time step of 10−4s.
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TABLE I
PROPERTIES OF THE SIMULATION MODEL AND THE PLANT

MODEL

Quantity T1, T2, F1, F2a Plant Spine Model Spine

Length 0.3 m 1 m 1 m
Width 0.15 m 0.15 m 0.15 m
Height 10 mm 8 mm 8 mm
Density 1 000 kg/m3 1 000 kg/m3 1 030 kg/m3

Young’s
Modulus

- 1 GPa 1 GPa

Modes -
[8.2, 22.7, 44.5,

73.9, 110.9] rad/s
[8.2, 22.6] rad/sb

a Identical for both the plant and the simulation model
b When the robot is flexible and no different number of modes is
mentioned

B. Measurement and Actuation of the Robot

The simulation model in this study includes three
types of sensor output that the state estimation can
utilize. All the joints have encoders that measure the
local relative angle. This angle is a combination of
the angle due to body rotation and the angle due
to the flexible modes. This measurement includes a
noise N (0, 10−3 rad), where N (µ, σ) defines Gaus-
sian noise, where µ is the mean value of the added
noise and σ is the standard deviation of the noise.
The body has a specialized IMU that provides the
location and orientation of a point on the body with
noise N (0, 10−3 m, 10−3 rad). Additionally, the robot
has a force sensor that measures the ground reaction
forces with noise N (0, 10−1 N). The velocity of the
feet is also included when there is a contact force,
which is assumed to be zero with no noise throughout
the simulation.

The actuators are co-located with the encoders,
allowing for actuation at every joint. The controller’s
task is to maintain the original encoder angle using a
proportional controller with gain Kp = 100 Nm/rad
at a frequency of 1kHz. The state estimator uses the
output of the proportional controller as the torque act-
ing on the system. However, an additional disturbance
is added to the actuators to simulate unknown effects,
which equals N (0, 10−1 Nm).

Lastly, a load causes an additional force, Nload, on
the middle node at the back of the robot, which is
not known to the state estimator. The state observer
uses the dynamics of the estimation model with the
measurements of the simulation model to estimate the
state of the robot. The estimation model should have
similar properties to the state of the simulation model,
but it may differ in the number of modes taken into
account for the body of the robot, as well as the density

of the links to account for modelling errors, as shown
in Table I.

C. Performance Metrics

The performance metrics in this study evaluate the
performance of the algorithm. The first performance
metric is based on the method presented in [1.23],
where Koolen et al. demonstrate the robot’s flexibility
by analysing the estimated foot position. In a real
robot, the feet remain fixed in position, but due to flex-
ibility, the feet location varies relative to the original
position. This comparison allows for examining of the
differences between a rigid estimation model and a
flexible estimation model.

The second performance metric is based on the
centroidal parameters. Both the center of mass position
and momentum are critical properties for a robot’s
balance [1.24]. This metric compares the differences
between using flexible links and not using flexible
links in the estimation model.

The final performance metric is the potential energy
stored in the flexible link. Since the estimation model
and simulation model use a different number of modes,
this metric compares the effect of flexibility on actuator
forces.

V. RESULTS
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Fig. 4. Location of the two feet of the robot over a simulation
of 10 seconds. A larger deviation from the real plant foot location
means a worse estimation of the model.

Fig. 4 shows that the model with the compliant spine
results in a smaller deviation in the foot position. When
the plant model is rigid, the feet move with a standard
deviation in the main principle axis of 0.93 cm and
0.84 cm for the front and back feet, respectively. If the
plant model includes a compliant spine, this variation
decreases to 0.23 cm and 0.26 cm, respectively.

Fig. 5 demonstrate that the estimation of the center
of mass position is more accurate when flexibility is
considered in the plant. The root-mean-square errors
between the estimation and the real center of mass
position are 0.22 cm and 0.31 cm for the rigid robot,
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Fig. 5. The deviation of the center of mass using cR = HGq
over 10 seconds. The variation is caused by swaying due to active
control of the robot.

and 0.04 cm and 0.13 cm for the flexible robot for the
x and y direction, respectively.
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Fig. 6. The centroidal momentum of the robot split into the angular
momentum lR in the top plot and the linear momentum in the
bottom two plots, kR,x and kR,y . This momentum is calculated
using h = [lR kRx kRy ]

T = AG(q)q̇

In the estimation of the momentum, the rigid plant
exhibits an offset in the momentum, as shown in
Fig. 6. This offset is caused by energy stored in the
compliant spine of the robot, which negatively impacts
the balance of the robot. Specifically, controlling based
on this offset momentum will result in a constant
positive momentum on the real robot.
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Fig. 7. The energy stored in the flexible beam relative to the
number of modes in the plant, compared to the other energy sources
in the robot. The potential energy, Ep equals QT

g ∆q, the kinetic
energy, Ek equals (qr)T Mrqr . The motor energy is computed
by integrating the total supplied power Pmot = τTSτ q̇

The energy of the actuators is stored in the bending
of the compliant spine, as shown by Fig. 7. In the
real robot, the flexible beam element has 5 modes
which store 40% of the supplied energy. The error
in the energy stored decreases drastically when the
model uses more than 1 mode. For one mode, the root-
mean-square error is 50 mJ, while for 2 modes it has
decreased to 16.3 mJ. Using 3 modes, only, decreases
the error to 13.3 mJ. This indicates that the higher
frequency store less energy and can be neglected in
the model.

VI. DISCUSSION

This study is simulation-based and has not been vali-
dated with real-world examples. The Extended Kalman
Filter can use measurements that are not typically
known, such as the location and orientation of the body
node. Additionally, the simulation assumes all noise
in the system is Gaussian and without an offset. This
assumption is simulated by introducing a small error
in body density, leading to a small offset in the total
gravity vector and the ground reaction forces working
to counteract this.

Even though the plant uses fewer mode shapes,
the used mode shapes are still similar to the simu-
lation model. For a more accurate comparison, the
simulation model should use different mode shapes,
such as Craig Bampton modes, or employ a different
simulation method that allows for larger deformations.
The main difference between the plant and plant model
simulation is that the simulation model solves the
Constrained Equation of Motion in Augmented From,
in Eq. (1.17). While the state observer simulates the
model in the form of reduced from in Eq. (1.22).

The state estimation in this paper is separated from
the control of the robot, which may result in potential
instability not being shown. Additionally, there is no
offset in the plant orientation at the start of the simula-
tion, which can often cause instability for an Extended
Kalman Filter. To address these issues, the Kalman
filter can be modified to be more robust against initial
offset, for example, by using the Unscented Kalman
Filter (UKF), the Error-state extended Kalman filter
(errorEKF), or the indirect Kalman Filter [1.25]. Ad-
ditionally, the process noise could be better estimated
by integrating it using Van Loan’s method [1.25].

Finally, the excitation in this paper is limited as there
is only a proportional controller on the relative angles.
The addition of a balance controller enables the robot
to begin walking, resulting in greater excitation with
larger forces, a greater movement of the center of mass,
and larger variations in momentum.
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VII. CONCLUSION

This paper demonstrates the feasibility of state es-
timation for a floating frame robot with a flexible
spine by simplifying the system by only consider-
ing the planar case and by incorporating sensors for
the position of the body and ground reaction forces.
With these sensors, state estimation using an Extended
Kalman Filter for a flexible link in the plant results in
improved estimation of foot position, center of mass,
and momentum. The observer’s robustness is evaluated
by running the observer at a lower frequency, varying
the link density, and using fewer mode shapes.

In future work, it would be beneficial to apply this
algorithm to a physical robot to test the observer’s
robustness. This means replacing the magical position
IMU with a regular IMU and measuring the ground
reaction forces using force sensors. As an alternative,
the simulation of the robot can be performed using
a different simulation method, such as the Absolute
Nodal Coordinate Formulation, to gain a better under-
standing of the observer’s robustness. Furthermore, it
would be worthwhile to integrate the state observer
into a controller for further testing.
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Momentum-Based Control for Quadrupeds with a
Compliant Spine

Sander W.S. Oosterveld, BSc and dr. ir. Arvid Q.L. Keemink

Abstract—This paper presents a method to balance
quadrupeds with a compliant spine. Robots with com-
pliant spines have been researched for their energy
efficiency in walking, however, the control of these
quadrupeds is still a challenge. We approach this chal-
lenge based on a framework to control rigid bipeds
and quadrupeds, called the momentum-based controller.
We show that this framework can be modified for
robots with compliant elements and successfully apply
quadruped in simulation. Finally, we check the robust-
ness of the framework to modelling errors.

Index Terms—Momentum-based control, flexible
multibody systems, quadrupeds

I. INTRODUCTION

Two possible ways for robots to move around are
wheeled motion and legged motion. While wheeled
robots are easier to control, legged motion provides the
ability to move over rougher terrain. In legged motion,
the motion of each leg is independent. This allows
legged robots to move over uneven terrain, which is
not possible for wheeled robots.

However, this independence of the legs poses spe-
cific control challenges for legged robots. One such
challenge is the redundancy in the actuators of a legged
robot, similar to the abundance of control options avail-
able for human motion [2.1]. This results in infinite
possibilities for control to perform a task. Additionally,
a legged robot can only move around in an open space
when a leg disconnects from the ground. This results in
a changing number of contact points during a walking
cycle.

The robot should maintain its balance throughout
the entire walking cycle. Researchers have been at-
tempting to solve this challenge since 1980. Initially,
the focus was on full-body trajectory optimization, but
this method is still infeasible for online balance control
due to non-linearities. Therefore, the focus shifted to
simplified models of the robot dynamics using the Lin-
ear Inverted Pendulum Model (LIPM) [2.2], Inverted
Pendulum Model (IPM) [2.3], Linear Pendulum Model
(LPM) [2.4], or Hybrid Zero Dynamics (HZD) [2.5].
Abdallah and Goswami show that humans control
(angular) momentum to balance, and proposed using
only the centroidal dynamics as a simplified system
[2.6].

The application of momentum to balance a robot
is called momentum-based control. This momentum-
based control has shown good performance in bal-
ancing the robot, both in simulation [2.7]- [2.11] and
on fysical robots [2.12]- [2.15]. The robotic model in
all these applications only uses rigid links to describe
the robot. Koolen et al. notes that the physical robot
has some link compliance, but simplifies this to joint
compliance [2.14].

The design freedom of a robotic system will increase
when the momentum-based framework also considers
compliant links. The compliant links can improve the
performance of a system by storing energy while walk-
ing, for example, in the spine [2.16]. Compliance can
also result from cheaper production methods, such as
3D-printed plastics [2.17]. Therefore, link compliance
can lead to better-performing and cheaper robots.

A. Contributions

Flexibility in robotic systems have been applied,
especially in the spines of different quadrupeds. In pas-
sive compliant spines, the robots are often controlled
either trough open-loop trajectory-based control [2.18]
[2.19], energy-based control [2.20], or no control at all
[2.21]. Alternatively, when there is a form of closed
loop control, it often contains non-linear model predic-
tive control [2.22]- [2.24]. Even though momentum-
based control is applied to quadrupeds [2.25], there is
no information on the effect of a compliant spine.

An unactuated compliant spine results in a fur-
ther under-actuation of a quadruped robot. This paper
applies momentum-based control to a robot with a
compliant spine to show the effects of the complaint
spine on the control. The contributions of this paper
are:

• Extend the momentum-based control framework
to include flexible links, resulting in a more
general application of momentum-based control.

• Show that a compliant spine cannot be neglected
in the controller design when using momentum-
based control.

• Define the challenges of applying momentum-
based control on a robot with a flexible spine.
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B. Outline of the Paper

The goal of the paper is to apply momentum-based
control to a quadruped with a flexible spine. Section II
explains the method for modelling a floating base robot
with a flexible element. Section III explains hierar-
chical momentum-based control and how this can be
modified to account for flexible elements. Based on the
model and the momentum-based controller, Section IV
shows how to apply this to a planar quadruped with
a flexible spine. Section V shows the results of this
application and Section VI discusses these results. The
final section presents the conclusions of this paper.

II. MODELLING OF COMPLIANT LINK ROBOTS

There are multiple ways to simulate compliant link
robots [2.26]. This paper uses the floating frame of
reference formulation. In this formulation, the flexible
coordinates are separated from the rigid body coor-
dinates, which allows the flexible coordinates to use
linear flexibility theory. This speeds up the computa-
tion and allows the use of modal expansion to decrease
the number of degrees of freedom.

For a planar robot, the coordinates of each body are
a combination of rigid body coordinates and flexible
coordinates, for a body A

qTA =

[
cTA φA

(
qfA

)T]
(2.1)

where, q is the vector of coordinates, cA is the center
of mass position, φA is the orientation, and qfA are
the modal coordinates. These modal coordinates scale
the deformation modes shapes to find displacement of
each node in a body

u =
[
ϕf
1 ϕf

2 . . . ϕf
Nf

]

qf1
qf2
...

qfNf

 = Φfqf , (2.2)

where u are the nodal displacements and ϕf
1 are

constant mode shapes.
The type of deformation mode shape is a design

parameter in the simulation. One example, is to use
an eigenfrequency analysis to create the so-called free-
free modes. These are the modes with the lowest
eigenfrequency for the linear elastic model given by

Mü+Ku = Q. (2.3)

where M, K, and Q are the finite element mass
matrix, stiffness matrix and generalized forces. The
eigenmodes are such that

(K− ω2
iM)ϕi = 0 (2.4)

The first three modes always correspond to the rigid
body modes, Φr, i.e.

Kϕi = 0 (2.5)

which is the motion of the center of mass of the
body without exciting the flexibility and have an
eigenfrequency of zero. Since all modes are linearly
independent, all remaining modes, the flexible modes,
Φf , do not move the center of mass location. The
flexible modes with a low eigenfrequency contain
most of the energy, so often only those are used in
simulation by only selected the first columns of Φf

[2.26].
Using these modes the dynamics for one body are

defined by

MAq̈A +KAq = Qc +Qa (2.6)

where Qc are the generalized force due to the con-
straints and Qa are applied forces from actuators,
gravity, or the ground reaction forces. MA and KA

are the body mass and stiffness matrix found using
the rigid and flexible modes, for example,

MA =
[
Φr Φf

]T
M
[
Φr Φf

]
(2.7)

These different equations of motions can be stacked to
form

Mq̈ +Kq = Qc +Qa, (2.8)

where q =
[
qTA, q

T
B, . . .

]T
, and M, K are block

diagonal matrices with body matrices

M = blkdiag {MA,MB, . . . ,MNb} (2.9)

The constraint forces and applied forces are also the
stacked versions of the forces on each body.

The actuated forces for the whole system are given
by

Qa = STτ +Qg + JT
f ρ+ JT

extW ext. (2.10)

Here τ are the actuator torques, ρ are the ground
reaction forces in the global frame and W ext is an
external wrench on the system in the global frame.
S, Jf , and Jext map these force to the generalized
coordinates. Qg is the generalized gravity force.

Different bodies are connected using holonomic
constraints given as

C(q) = 0 (2.11)

where, C, contains all the constraints. Each revolute
joint results in two holonomic constraints, reducing
the number of degrees of freedom by two. Using
d’Alembert principle Eq. (2.6) with an admissible field
equal to

δC(q) = [C]qδq = 0 (2.12)
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where [(.)]q is the Jacobian with respect to q, gives

Mq̈ +Kq = ([C]q)T λ+Qa (2.13)

where λ are Lagrange multipliers. This equation is
combined with the fact that

C̈ = 0 → [C]q q̈ + [[C]qq̇]q q̇ = 0 (2.14)

to give the constrained equations of motions in aug-
mented form[

M ([C]q)T

[C]q 0

][
q̈

λ

]
=

[
Qa −Kq

− [[C]qq̇]q q̇

]
. (2.15)

Solving Eq. (2.15) requires inverting a large matrix,
since it computes both the Lagrange multipliers and all
the generalized coordinates. It is, however, possible to
split all the coordinates into dependent, qd and inde-
pendent coordinates, qi. The independent coordinates
are sufficient to describe the dynamics of the system.
For floating base robots, the standard choice is to use
the body rotations, the flexible coordinates, and the
position of one body

qi =
[
φA φB . . . φNb−1 (qNb)

T (
qf
)T ]T

.

(2.16)
The acceleration of all coordinates can be determined
from the independent coordinates using

q̈ = ΛT

[
q̈d

q̈i

]
= Bq̈i + b, (2.17)

where Λ is a constant perturbation matrix to reorder q
into the dependent and independent coordinates,

B = ΛT

[
−
(
Sqd([C]q)

)−1
(Sqi [C]q)

I

]
, (2.18)

b = ΛT

[
−
(
Sqd(Cq)

)−1
[[C]q q̇]q q̇

0

]
. (2.19)

Here Sx are selection matrices to select the rows
related to x. For clarity all the parameter transformed
to the independent coordinates are given a tilde. Using
this transform, the equation of motion becomes

BTMBq̈i = BT
(
Qa − SqiKqi −Mb

)
. (2.20)

when using the tilde form this equals

M̃q̈i = S̃Tτ + J̃T
f ρ+ Q̃

i
(q, q̇) (2.21)

where

Q̃i(q, q̇) = BTQg +BTJT
extW ext − K̃qi −BTMb,

(2.22)
and

J̃T
f = BTJT

f (2.23)

After integrating 2.20, the dependent coordinates
follow from the roots of the holonomic constraint
equation matrix for the given independent coordinates.
These roots can be found, for example, using the
Newton–Raphson method [2.27].

III. HIERARCHICAL MOMENTUM-BASED

CONTROL

This section explains the momentum-based con-
troller. It begins by introducing the basics of a
quadratic program, followed by a description of the
regular momentum-based controller. Finally, this sec-
tion explains the concept of hierarchical momentum-
based control, and concludes with the required modi-
fications to apply it to a robot with compliant links.

A. Quadratic optimization

A quadratic program is an optimization of a problem
in the form

x∗ = argmin
x

1

2
xTHx+ fTx (2.24)

subject to

Ax ≤ b

Aeqx = beq
(2.25)

where x∗ is the output of the optimization.
The advantage of a problem in this formulation

is that the problem is linear in and convex in the
optimization parameters x. This makes solving this
problem fast. This paper uses the Matlab quadprog
function to solve a quadratic program.

In robotics, x often equals the vector of acceleration
and the torques, so x = [q̈T , τ ]T . If the goal is to get
an acceleration at point A to ades

A then the algorithm
would look like follows. This acceleration is given
based on q̈ as

ap = JAq̈ + J̇Aq̇ = Jx+ d, (2.26)

where d is called the bias and the Jacobian equals

JA = [pA]q, J̇A = [[pA]qq̇]q (2.27)

the goal is then to minimize the absolute value of
aA − ades

A . Using the L2 norm to minimise this using
a weighting matrix, W , is equivalent to

min
x

(
aA − ades

A

)T
W
(
aA − ades

A

)
(2.28)

min
x

(
Jx+ d− ades

A

)T
W
(
Jx+ d− ades

A

)
(2.29)

min
x

(
xTJTWJx+ 2

(
d− ades

A

)T
WJx

)
(2.30)

with a residual part, r, not depending on x equal to

r =
(
b− ades

A

)T
W
(
b− ades

A

)
. (2.31)
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In addition to this optimization, there can also be a
constraint on the system. There can be an equality
constraint based on the dynamics given as Mq̈ +
h(q, q̇) = STτ results in[

M −ST
]
x = −h(q, q̇). (2.32)

Alternatively there can be an inequality constraint
limiting the torques, for example[

0Nτ×Nq INτ

0Nτ×Nq −INτ

]
x ≤

[
τmax

−τmax

]
, (2.33)

where 0x×y is a zero matrix with x rows and y
columns. Similarly, Ix is a square identity matrix with
x rows and columns. Nτ and Nq are the number of
torques and generalized coordinates, respectively.

Rewriting these equations in the form of Eq. (2.24)
gives

H = 2JTWJ, fT = 2
(
d− ades

A

)
WJ,

Aeq =
[
M −ST

]
, beq = −h(q, q̇),

A =

[
0Nτ×Nq INτ

0Nτ×Nq −INτ

]
, b =

[
τmax

−τmax

]
.

The Jacobian and biases of different optimization cri-
teria stack for more complicated quadratic programs.
The minimal value of the optimization reflects the
quality of the optimization. Adding the residual, r, to
this minimal value gives L2 norm of the error between
the optimized acceleration and the target acceleration.

B. Momentum-Based Control

Koolen et al. present the application of momentum-
based control on the Atlas robot [2.14]. In the
momentum-based control formulation, the optimiza-
tion variables consist of only the acceleration, q̈
and the ground reaction forces, ρ. The torques are
computed based on the inverse dynamics, which is
discussed in Section III-C. A momentum-based con-
troller optimizes the rate of change of the centroidal
momentum, ḣG, based on the desired rate of change
of the centroidal momentum, ḣ

des
G . This results in

argmin
x

(
ḣG − ḣ

des
G

)T
Wh

(
ḣG − ḣ

des
G

)
+ xTWrx

(2.34)
where Wh is the weighting matrix on the centroidal
momentum and Wr is a regulating term on the ac-
celerations and the ground reaction forces. With the
constraints,

ḣG = Jc,fρ+W g +
∑
i

W ext,i (2.35)

where Jc,f is the jacobian of the centre of mass loca-
tion to the feet location. W g and W ext,i are wrenches

on the center of mass of the gravity and external forces,
respectively. Finally, Koolen et al. limits the ground
reaction forces similar as done in Eq. (2.33) for the
torques.

The centroidal momentum is essential in this frame-
work, and based the definition from Orin and Goswami
[2.28]

ḣG = AGq̈ + ȦGq̇ (2.36)

where AG is called the centroidal momentum matrix
(CMM), which can be computed efficiently as shown
in the Appendix. The desired change in centroidal
linear momentum, k̇

des
is based on PD control of

the center of mass, the desired change of angular
momentum, l̇des, is a P control on a reference angular
momentum, lref . Both terms also include a feedfor-
ward reference term which combines to give

ḣ
des
G =

 Kp,l

(
lrefG −AGq̇

)
+ l̇refG

Kp,k(c
ref
R − cR) +Kd,k(ċ

ref
R − ċR) + k̇

ref
G


(2.37)

where Kp,k, Kd,k are the PD gains, cR is the center
of mass position of the robot. crefR is the reference
center of mass position of the robot. Finally, lref is the
reference angular momentum. Both reference values
follow from the gait planner, the reference angular
velocity is often equal to 0 [2.13].

C. Hierarchical Momentum-Based Control

In Eq. (2.34) only the weighting between the mo-
mentum optimum and the regularization is important.
There are, however, more tasks to optimize such as
end-effector/feet location tracking, body orientations,
contact forces, and the center of pressure location of
the ground reaction forces [2.13].

The prioritization between these tasks is achieved
through the chosen weight matrices for each parameter
in a standard quadratic program. Often, one specific
task has a higher priority over other tasks; the feet
position tracking has a higher priority compared to
body orientation. In this case, a hierarchical quadratic
program can solve a quadratic program for each task
priority separately [2.29].

The task priorities use the number 0 to N where the
task with priority 0 has the highest priority. A task
with priority, p, has a task Jacobian Jp, bias dp and
target tp such that the goal is

min
x

∥Jpx+ dp − tp∥ (2.38)

subject to the same constraints as in Eq. (2.25). This
task should remain optimal when solving the lower
priority tasks. This is possible by limiting the solution
space of the lower priority tasks to the null space of the
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current task. So instead of optimizing x, we optimize
a variable, u which parametrizes the nullspace

x∗
p = x∗

p−1 + Zp−1u
∗
p (2.39)

where x∗
p is the x after optimizing over the task with

priority p. Zp is the null space basis of the task of
priority p. These are the vectors corresponding to
a zero value in a singular value deposition of the
Jacobian at task p.

Substituting 2.39 into 2.38 gives an optimization
task in the form

u∗
p = argmin

up

∥JpZp−1up+dp−tp+Jpx
∗
p−1∥. (2.40)

Also the (inequality) matrices change to

AZp−1up ≤ b−Ax∗
p−1

AeqZp−1up = beq −Aeqx
∗
p−1

(2.41)

due to the substitution of Eq. (2.39) into Eq. (2.25).
The null space for the next priority equals:

Zp = Zp−1 null(JpZp−1) (2.42)

D. Solving the zeroth Hierarchy for Compliant Link
Robots

When Herzog et al. presents their Hierarchical
Momentum-Based Controller, the first task ensures the
resulting combination of contact forces and accelera-
tions is feasible [2.13] with given motor locations. It
is not possible for the center of mass of the robot to
move up without ground reaction forces.

When the equation of motion is in the form,

M̃q̈i −
(
J̃T
ρ ρ+ Q̃(q, q̇)

)
= S̃Tτ (2.43)

This system is under actuated since rank(S̃) = Nq −
3 − Nf . So, the force in some direction has to equal
0, these directions correspond to the basis of the left
null space of S̃T , given the letter ẐS̃. This gives

ẐS̃M̃q̈i − ẐS̃B
TJT

ρ ρ = ẐS̃Q(q, q̇). (2.44)

For a rigid system,

ẐS̃ =
[
I3 03×Nq−3

]
Λb (2.45)

where Λb is a perturbation matrix to reorder the coor-
dinates into first the floating base coordinates and then
all the other coordinates. The formulation in Eq. (2.44)
can be applied to any under actuated system.

The solution of the first hierarchy solves Eq. (2.44)
when the ground reaction forces are zero,

x∗0 =

[(
ẐS̃M̃

)†
ẐS̃Q(q, q̇) 0

]
. (2.46)

where
(
ẐS̃M̃

)†
= M̃−1ẐT

S̃
the corresponding null

space basis at priority 0 then equals

Z0 = null
([

ẐS̃M̃ ẐS̃B
TJT

ρ

])
(2.47)

After solving the different priorities, the momentum-
based controller returns the desired accelerations and
ground reaction forces. These cannot be applied di-
rectly to the robot and need to be transformed to
torques. This requires the singular value deposition of
S̃T , which equals

S̃T =
[
UC UN

] [ΣC

0

]
VT , (2.48)

where UT
N ≡ ẐS̃. Eq. (2.44) ensures that there are

no torques in the direction of UN , therefore S̃Tτ =
UCΣCV

Tτ . The inverse dynamics then solve for τ des

τ = V (ΣC)
−1UT

C

(
M̃q̈des − J̃T

ρ ρ
des + Q̃

i
(q, q̇)

)
,

(2.49)
where q̈des and ρdes are the desired acceleration of
the independent coordinates and the desired ground
reaction forces. These are the parameter optimized by
the quadratic program. The matrix, V (ΣC)

−1UT
C , is a

pseudo inverse of S̃T and will be denoted with
(
S̃T
)†

IV. APPLYING MOMENTUM-BASED CONTROL TO A

QUADRUPED WITH A COMPLIANT SPINE

Fig. 1 shows different blocks of applying
momentum-based control on a robot with a compliant
spine. This section discusses the different parts of this
block diagram. For clarity, the ‘plant’ refers to the
simulation of a real robot, the ‘plant model’ refers to
a model of the plant used by the controller and state
estimator. The ‘plant model’ used for control is not
perfect. Therefore, the models are similar but not the
same.

A. Plant simulation

The goal of the simulation is to mimic a physical
robot, so it should be realistic. The plant is a planar
version of a quadruped, as shown in Fig. 2. The
dimensions and properties of the different links are
given in Table I. Only the spine of the robot is
compliant.

The contact forces of a multi-contact robot cannot
be computed directly and require an iterative method.
Hwangbo et al. propose a method for quick multi-
contact computation based on the impulse of the
dynamics [2.30]. This method requires all forces acting
on the system, including the constraint forces. There-
fore, Equation 2.15 is used to solve the simulation
model, as it also yields the constraint forces. The
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(EKF)

Quadratic Program
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Simulation Control Δt = 0.1 ms Δt = 1 ms

Section IV-C Section IV-CSection III & IV-B

Section III-D

Section IV-A
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Fig. 1. Structure of the Hierarchical Momentum-Based framework as used in this paper. Including the relevant sections for each of the
blocks. The simulation part uses the ‘plant’ to simulate the robot, while the control part uses the ‘plant model’.

Wext

t=0.5 t=3
Tibia

Femur

Spine

O

g = 10 m/s2

ρ

Fig. 2. Schematic of the quadruped with location of the origin. The
stars depict the location of the colocated encoders and actuators.
The triangle shows the location of the position IMU.The dotted
line shows the desired movement of the leg.

simulation of the plant runs with a time step of 0.1 ms
using the Sympletic Euler Integration Scheme [2.31].

Eight actuators control each of the legs using direct
torque control. Noise is added to simulate motor dy-
namics, with a value of N (0, 0.2Nm). Here, N (µ, σ)
defines Gaussian noise, where µ is the mean value of

TABLE I
PROPERTIES OF THE PLANT AND THE PLANT MODEL

Quantity Tibia/Femura Plant Spine Plant Model Spine

Length 0.3 m 1 m 1 m
Width 0.15 m 0.15 m 0.15 m
Height 10 mm 13 mm 13 mm
Density 1 000 kg/m3 1 000 kg/m3 1 010 kg/m3

Young’s
Modulus

- 1 GPa 1.02 GPa

Modes -
[13.4, 36.9, 72.3,

120.0, 180.2] rad/sb [13.4, 37.0] rad/sb

a Identical for both the plant and the plant model.
b Maximum number of modes to be considered.

the added noise and σ is the standard deviation of the
noise.

In addition to the actuators, the plant has two types
of sensors. Firstly, there are eight encoders on the knee
and hip joints, measuring the relative local angles, θ,
including any additional angles due to bending. Addi-
tionally, there is a non-physical IMU, which measures
the position and orientation of the center node on
the spine, pIMU , including any possible bending. The
noise on these measurements is N (0, 10−3rad) and
N (0, 10−3m), respectively.

B. Quadratic Program

The hierarchical quadratic program contains four
priority levels, as shown in Table II. Note that both
tasks in priority 2, can be absent.Section III explains
how to solve these different priorities. The zeroth
hierarchy is solved as shown in Section III-D. The
remaining priorities are defined in this section. First,
the required (in)equality matrices will be explained.

The zeroth hierarchy ensures that the dynamics hold
so the (in)equality constraints only relate to the maxi-
mum torque, and allowed ground reaction forces. The
maximum torques follows from rewriting Eq. (2.49)(

S̃T
)† [

M̃ J̃T
ρ

]
x ≤ −

(
S̃T
)†

qi + τmax

−
(
S̃T
)† [

M̃ J̃T
ρ

]
x ≤

(
S̃T
)†

qi − τmax

(2.50)

where x = [˜̈qT , ρ]T and τmax is the maximum torque,
set to 10 Nm. For the ground reaction forces, there
are two constraints. First, there can only be a ground
reaction force when the feet are (supposed to be) on
the ground so for foot i

Af,iρi = I2
(
yfi ≥ ϵρ

) [ρx,i
ρy,i

]
= 0 (2.51)
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TABLE II
HIERARCHIES OF THE MOMENTUM-BASED CONTROLLER

Priority
Related

Equations
Weight Goal

0 Eq. (2.44) −a Result is feasible

1
Eq. (2.55)
Eq. (2.56)

−a Contact feet stay at contact points

2 Eq. (2.57) Wspine Torso does not rotateb

Eq. (2.55)
Eq. (2.56)

Wf Swing feet follows trajectoryc

3
Eq. (2.37)
Eq. (2.58)

Wh Balance control on momentum

Eq. (2.59) Wρ Regularization of GRFs

a There is no weighting required because there is only one task
b Only when 1 mode is used in the controller.
c Possibly, this does not exist when all feet should be in contact, so
when all feet are on the ground, there might be only 3 priorities.

where yf,i is the y-position of foot i, ϵρ is a small value
of 10−2m to counteract instability in the estimation.
Combining these gives[

0 blkdiag {Af,1, Af,2, Af,3, Af,4}
]
x ≤ 0

(2.52)
The second limitation is that the ground reaction force
should be within the linearized friction cone [2.32]:
ρx < µρy, −ρx > −µρy, and ρy > 0. This gives for
foot i

Aρ,iρi ≡

 1 −µ

−1 −µ

0 −1

[ρx,i
ρy,i

]
≤ 0, (2.53)

where µ is the friction coefficient and set to 1. Com-
bining this for the four feet gives[

0 blkdiag {Aρ,1, Aρ,2, Aρ,3, Aρ,4}
]
x ≤ 0,

(2.54)
First, the controller should ensure that the feet stay

on the floor. When the feet release from the floor,
they cannot enact a ground reaction force, while this is
essential to control momentum. For each foot touching
the floor, the highest priority task is a PD control on
the feet location, such that

p̈des
f,i = Kp,f

(
pf,i − pref

f,i

)
+Kd,f

(
ṗref
f,i − ṗf,i

)
+p̈ref

f,i

(2.55)
where pf,i is the absolute position of the feet and pref

f,i
is the reference position of the feet. This acceleration is
related to the vector of independent coordinates using
Eq. (2.17)

p̈f,i = Jf,iBq̈i + J̇f,iq̇ + Jf,id. (2.56)

The goal is to minimize the difference between
Eq. (2.55) and Eq. (2.56) for all the feet, which should
be on the floor based on the gait planner. Herzog et
al. use a constraint of the acceleration of the feet
instead of a PD control [2.13], this, however, shows
undesirable results due to the unknown disturbances.

The second priority ensures the robot follows the
gait planner. These are PD controller on the spine body
angle, φSp, and the swing foot trajectory. The task for
the swing feet is identical compared to the contact feet
in Eq. (2.55) and Eq. (2.56). The coordinate for the
spine angle is one of the states, so the Jacobian is a
constant selection

φSp = êT11q
i → φ̈Sp = êT11q̈

i (2.57)

where êx is a vector with zero at all places except
at position x, where it is 1. The desired value of this
angular acceleration is similar to Eq. (2.55) but with
different scalar Kp,φ and Kd,φ.

The final priority handles the balance control of
the robot by weighting between centroidal momentum
and the ground reaction forces. The target for the
momentum is defined in Eq. (2.37). The difference
between this target and

ḣG = AGBq̈i +AGb+ ȦGBq̇ (2.58)

should be minimized. The regularization of the ground
reaction forces is done using

min
x

∥∥∥[01×Nq 11×Nτ

]
x
∥∥∥ . (2.59)

All the PD values are scaled to ensure the damp-
ing factor is 1/

√
2, the crossover frequencies and a

crossover frequency of 3.6 rad/s. For the angular mo-
mentum, Kp,l = 1. The weights used in the quadratic
program are given in Table III.

TABLE III
HIERARCHIES OF THE MOMENTUM-BASED CONTROLLER

Task Weight

(Swing)Foot positions Wf = 1

Spine orientation Wspine = 2

Momentum Wh = diag([10, 10, 50])
GRF Wρ,i = diag([0.5, 0.1])

C. State estimation and gait planner

The encoder angles are not sufficient to define
the dynamics for the plant model. The plant model
uses Eq. (2.20) and therefore requires the vector of
independent coordinates, qi, q̇i. A state observer es-
timates these independent coordinates based on the
measurements and the system dynamics.
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T < 0.5s T > 3s

T = 1.5s

Fig. 3. Target trajectory of one of the feet during the simulation

In the presence of measurement and process noise,
the Kalman Filter can optimally estimate these inde-
pendent coordinates [2.33]. For the non-linear system,
Jullier presents a linearized version named the Ex-
tended Kalman Filter (EKF). The state vector consists
of qik, q̇

i
k, which is a discrete vector at step k. Using

Symplectic Euler Integration [2.31], the system is then
defined as[

qik+1

q̇ik+1

]
=

[
qik +∆T (q̇ik +∆T q̈ik)

q̇ik +∆T q̈ik

]
(2.60)

where q̈ik depends on the input torque, ground reaction
forces and the previous state in Eq. (2.20).

The measurement used by the EKF are the encoder
angles, IMU position and the desired feet velocities.
These can all be found as a linear combination of
the state variables. In addition, the state estimator uses
the desired torques, τ des and desired ground reaction
forces, rdes.

In addition to the states, the momentum-based con-
troller also requires the desired momentum, feet posi-
tion and spine orientation. This is not the focus of this
paper; therefore, the target is to move one leg on the
trajectory shown in Fig. 3. The desired center of mass
position, body orientation and angular momentum are
their original values.

V. RESULTS

During movement of the foot, the robot receives
two disturbance pushes of 5 N for 0.1 seconds—one
push at time zero and one push when t = 1.5s. As
illustrated in Figure 4, the results for the recovery of
the center of mass position suggest that the compliant
spine should be considered when modelling the plant.
When both the plant and the plant model are similar,
the controller controls the center of mass back to the
desired position with the expected natural frequency
(3.6rad/s) and damping ratio (1/

√
2).

However, when the flexibility in the models is
inconsistent, the system becomes unstable. This is
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Fig. 4. Recovery off a push for different plants and plant models.
When a plant (model) is flexible, it has a compliant spine. In the
plant, the compliant spine is modelled with 5 flexible modes, while
in the plant model the comliant spine has 2 flexible modes. The
two plots show the variation in the center of mass from the original
position, the goal of the controller is to keep the center of mass at
the original position.

particularly pronounced when the model has a com-
pliant spine, but the plant does not. One explanation
for this instability is that a flexible model requires
additional actuator torque, which would put energy
into the compliant spine. If the robot does not have a
compliant spine, this additional force causes the feet to
detach from the floor, resulting in the robot collapsing.
Similarly, when the plant has a flexible spine, but the
model does not take this into account, the system is
unstable.

There is always a discrepancy between a physical
robot and its model, as seen in Fig. 5, which highlights
the limited robustness of the algorithm. Observations
of unstable trials suggest that the orientation of the
spine rotates, causing one leg to overextend, which
leads to the robot falling. To address this, a compen-
sation term is proposed in Table II, with a priority of
2. However, combining this task with 2 modes results
in unstable solutions. As a result, the next tests will
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Fig. 5. Stability check related to error between plant and plant
model, an error of 10% means the value in the plant model is 1.1
times the value in the plant. In the unstable cases the robot drops,
in the marginally stable cases the flexible spine keeps oscillating
after 10 seconds. The stable tests result in a damped vibration of
the flexible spine.

34



be conducted using only one mode in the plant.
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Fig. 6. Stability check related to error between plant and plant
model, similar to Fig. 5. In this simulation, both the plant and the
plant model only contain 1 mode shape.

Fig. 6 shows an increase in the robustness of the
algorithm. Still, the stability of the algorithm dete-
riorates when the Young’s modulus of the model is
higher than that of the plant. This causes the output
torque from the inverse dynamics to increase, leading
to oscillations. The variation in the density seems to
only have a minor influence on the stability of the
solution when the plant contains one mode shape.

In a real system, there are more modes than consid-
ered in the model. Fig. 7 shows the effect of this. The
algorithm can handle this difference, but a larger dif-
ference in the number of modes causes the oscillations
to increase. With 5 modes in the model, the system is
unstable, while with 3 modes it is (marginally) stable.
The final plot in Fig. 7 shows that using two modes
in the model with the spine correction causes the
controller to become unstable almost instantly. Since
the body orientation is required for the robustness,
solving this will be left to future work.

VI. DISCUSSION

The simulations in this paper demonstrate that it
is possible to incorporate compliant links within a
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Fig. 7. The amount of excitation of the flexible modes in the robot.
In the first three plots the model has one flexible mode and the
plant has an increasing number of flexible modes. In the last plot,
both the plant and the plant model have 2 flexible modes

momentum-based framework, but the application of
this approach is limited. The framework requires an
accurate model of the flexible modes, which is often
difficult to obtain. An alternative approach, called
dual estimation, which combines state and parameter
estimation, may help to reduce the impact of modelling
errors on the system [2.34].

A significant limitation of the algorithm is that it
is unable to produce a robustly stable solution when
the spine has more than one flexible mode. This is not
due to the state estimator, as it also fails in when the
robot states are used directly. The main limitation is
that when there are two flexible modes in the plant, the
robot is unable to control the orientation of the spine.
Preliminary testing has shown that this is due to the
interaction between the feet position task in priority 1
and the spine orientation task. A possible solution is
to put both tasks in the same hierarchy or controlling
the body orientation through the angular momentum.

The tasks in this algorithm do not depend on the
flexible mode. It would be beneficial to include some
control tasks based on the compliance of the spine
to induce more damping. For example, the flexing of
the spine could be minimized by using sliding mode
control [2.35].

Finally, the robot in the simulation maintains full
contact with the floor for most of the time, which
greatly reduces its movement freedom, as it results in
eight constraints. It would be interesting to focus on
the stages when the robot does not have full contact
with the floor, as it can use the swing feet to generate
additional momentum. This is similar to a biped using
its arms to balance [2.10].

VII. CONCLUSION

This paper presents a hierarchical momentum-based
controller applied to a planar quadruped, and investi-
gates its performance. The results indicate that when
there is one flexible mode, the controller performs
well, but it cannot handle two modes. Additionally,
the stability of the system is highly dependent on
accurate parameter estimation. The study indicates that
the system can tolerate a deviation of approximately
10% before the system becomes unstable

In future work, the issue with multiple modes in
the model should be addressed, and the framework
should be tested on a spatial system. In addition, the
performance of this framework should be compared
with a model which incorporates joint flexibility.
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APPENDIX

CENTROIDAL MOMENTUM IN FLOATING FRAME

FORMULATION

Essential properties for control of legged robots are
the location of the center of mass of the robot, cR,
and the centroidal momentum, hR. These values can
be computed from the coordinates of the system using

cR = HGq (2.61)

where HG is the center of mass matrix. Since the de-
grees of freedom matrix contains the absolute positions
of the center of mass of all bodies HG is a constant
matrix equal to

HG =
1

mtot

Nb∑
i

miSc,i. (2.62)

Here mtot is the total mass, mi is the mass of the body
i, and Sv,i is a selection matrix for the center of mass
coordinates of this body. Since the flexible modes do
not change the center of mass of a body, HG depends
solely on the rigid coordinates and is constant.

The centroidal linear momentum of the robot, kG,
is the sum of the linear momentum of each body given
by

kG = AG,linq̇ =

Nb∑
i

miċi =

(
Nb∑
i

miSc,i

)
q̇.

(2.63)
This is similar to the Center of Mass matrix. The total
centroidal angular momentum is given by the sum of
the body angular momentum relative to the center of
mass of the robot

lG =

Nb∑
i

((ci − cR)× ki + IiSθ,i) , (2.64)

where Sθ,i is a selection matrix of the rotation of the
center of mass of body i. Substituting Eq. (2.63) and
Eq. (2.62) gives

lG =

[
qT

Nb∑
i

(
m2

i

mtot
S̃c,iSc,i −miH̃GSc,i

)
+

Nb∑
i

IiSθ,i

]
q̇

(2.65)
where (̃.) for a 2×N matrix equals

(̃.) = (.)T

[
0 1

−1 0

]
. (2.66)

Finally Eq. (2.63) and Eq. (2.65) combine to become
the centroidal momentum matrix, AG,

hG =

[
lG

kG

]
= AGq̇ (2.67)

The derivative of AG follows directly from Eq. (2.65)
and equals

ȦG =

[
q̇T
∑Nb

i

(
m2

i

mtot
S̃c,iSc,i −miH̃GSc,i

)
0

]
(2.68)

such that

ḣ = AGq̈ + ȦGq̇ (2.69)
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Conclusion
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Chapter 6

Conclusion

This thesis presented two papers that investigate the effects of including a compliant spine in a
planar quadruped. The first paper showed that the inclusion of a compliant spine improves the
state estimation, even when the plant and the model are different. The second paper showed
that a momentum-based controller can be applied to a quadruped with a compliant spine, but
the controller is sensitive to modelling errors.

The papers in this thesis demonstrated that a compliant spine can be included in a planar
quadruped, and that it improves the performance of both the state estimation and control al-
gorithm. The literature review provided an overview of the broad subjects of state-estimation
of robotic systems and control of legged robots, and revealed that there is limited research in
adding compliant links to legged robots. Both in the fields of state estimation and control, the
models only include joint flexibility.

The first paper applied state estimation to a quadruped with a compliant spine and revealed that
the rotary encoders with the position of the body and the ground reaction forces are sufficient
to estimate the flexible states. When the state estimator does not use a model including the
compliant spine, the quality of the center of mass and momentum estimation decreases. However,
the inclusion of a compliant spine did not require additional steps, and it improved the estimation
even when the plant and the plant model are different, with the inclusion of two flexible modes.

The second paper modelled a quadruped with a compliant spine and applies the momentum-
based controller. The controller used the states from the state-estimator discussed in paper
1. The first step in the quadratic program proposed by [10] must be modified to include the
under-actuation of the flexible spine. With the adaptation, a momentum-based control could
be applied to a quadruped with a compliant spine, but the controller was only robust when it
included one mode. Additionally, the controller was sensitive to an erroneous estimation of the
Young’s modulus, indicating that the controller, as it was applied in the paper, was not robust
to modelling errors.
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Chapter 7

Future work

Even though the work in this thesis shows promising results regarding the implementation of
compliant links in the legged robots, there is still additional research required before this can
be implemented. This section will give an overview of subjects which could be interesting to
investigate.

This thesis demonstrates the potential of incorporating compliant links into legged robots, and
compares the results to those of a completely rigid robot. The flexible joint model is not discussed
in the comparison. However, the successful application of this simplification in several studies[11,
43] suggests that further investigation into the benefits of modelling flexible link, rather than
flexible joints, should be conducted.

The Extended Kalman Filter used in the state estimation and momentum-based controller can be
replaced with newer techniques such as the Unscented Kalman Filter, or extended to include the
flexible mode uncertainty. Furthermore, the tasks of the momentum-based controller should be
modified to include compliance. The positive effects of a compliant spine can then be investigated.

When implementing compliant links into a robot’s controller, the algorithm must first be im-
proved to ensure robustness. Currently, the algorithm is not robust enough for practical applica-
tions. Adding a parameter estimator increases robustness against parameter errors, but can also
lead to parameter instability. Currently, the controller is limited to include one mode robustly.
Removing the spine orientation as a task eliminates the direct instability, however, does not
produce a robustly stable solution. An alternative task which results in a robust solution when
more than one mode is included is left as future work.

Once the robustness of the algorithm is improved, more realistic use cases should be investigated.
A more complex simulation model, incorporating a nodal finite element method to estimate
bending, actuator dynamics, lower level control, and the lack of position and absolute ground
reaction force sensors, can better estimate the performance of the controller and state estimator.
Such a model would follow the approach taken by Bloesch et al.[8].

Finally, an extension to 3D should be made. This not only add more degrees of freedom, but
also induces additional flexible modes such as torsion. This extension requires large changes in
both the model and the controller. For a spatial model, the different modelling methods should
be compared again, since modelling of three-dimensional flexible beams brings some additional
challenges[68]. In addition, the computation of spatial momentum should be extended to the
three-dimensional case.
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Appendix A

Extending the Floating Frame Beam
Element

A.1 Add damping

There are two reasons to add damping to a flexible model: it makes the system more numerically
stable, and it makes the system more realistic. An integration scheme can induce energy into
the system, which can cause the system to explode if there are no dissipative elements such
as damping. Furthermore, damping exist in most real materials, especially plastics, as nothing
keeps oscillating forever.

The damping changes the floating frame equations of motions to

[
MR 0

0 Mf

]

c̈

φ̈

q̈f


+

[
0 0

0 Df

]

ċ

φ̇

q̇f


+

[
0 0

0 Kf

]

c

φ

qf


 = Qfr (A.1)

where Df is the focus of this appendix. In this thesis, the damping matrix follows from the
damping ratio, ζ. This can only be done when using the free-free modes, such that both Mf and
Kf are diagonal matrices. Each flexible coordinate is uncoupled and a separate second-order
differential equation

mf q̈
f + df q̇

f + kfq
f → q̈f + 2ζωnq̇

f + ω2
nq

f (A.2)

where mf , df , and kf are the element values of the matrices, ωn is the natural frequency and

equals
√

kf
mf

. The damping ratio, ζ, is a design parameter set to 0.1 to result in underdamped

system the required damping value then equals df = 2ζmfωn = 2ζmf

√
kf
mf

= 2ζ
√

kfmf .

Fig. A.1 shows the effect of the added damping on an input impulse. After around 3 seconds,
the oscillation damps out when using the symplectic Euler scheme. The second plot shows how
damping makes the system more stable by integrating using a non-energy preserving algorithm.

When different mode shapes are used, this damping is no longer applicable. The same counts
when one beam is split to use a non-linear model. In these cases, Rayleigh damping could be
used where D = αM+ βK, where α and β are design parameters. Even though, this damping
has little physical meaning, it is a convenient way to represent damping in complex models[83].
Note, that these are the full mass and stiffness matrices, so this damping will also affect the rigid
body motions. For that reason, α is often set to 0.
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Figure A.1: The tip deflection after an impulse of 200 N for 0.01 s resulting in an impulse of 2 Ns as
shown on the left. The right shows the response. The top figure is integrated using the symplectic Euler
method, while the beam in the bottom figure is integrated using forward euler.

A.2 Split bodies

One limitation of the floating frame formulation is its limitation to systems with a linear flexibil-
ity. Nada et al. propose to split the beam such that one beam has multiple floating frames [80].
This is shown schematically in Fig. A.2. This results in additional degrees of freedom and more
constraints. Each additional body adds 3 rigid body coordinates and some flexible coordinates.
Similar to a revolute joint, the position of each connection constrained, however, for these split
beams also the angle of the two connected beams must be equal at the connection. So, each
additional beam also results in three additional constraints.

Figure A.2: Schematic of changing from one single beam to 3 beams.

The response of this split system is compared to the response of the non-split beam in the same
setup, as shown in Fig. A.1. Fig. A.3 shows the response is similar, however adding more beams
results in a lower eigenfrequency due to the complexer motion it can make. Furthermore, a split
beams results in a higher amplitude in the x-direction due to it better estimating the elasticity
in that direction.
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Figure A.3: Deflection of a beam due to an 2Ns impulse when the beam is split.
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Appendix B

Ground Contact Model in the Floating
Frame Formulation

The contact model defines the forces of the floor acting on the robot. Hwangbo et al. model the
ground forces in the case of an inelastic contact[84]. This model considers multiple contacts and
slipping using a model in the form

M(q)q̈ + h(q, q̇) = τ + JT
ρρ (B.1)

where h(q, q̇) are all the non-linear forces. The model used by the FFRF is

Mq̈ +Kq − ([C]q)T λ = ST
τ τ + JT

extW ext + JT
ρ ρ+Qg (B.2)

which for this section is rewritten as

Mq̈ = h(q, q̇) + JT
ρ ρ (B.3)

where h(q, q̇) are all the nonlinear forces

h(q, q̇) = −Kq + ST
τ τ + JT

extW ext +Qg + ([C]q)T λ. (B.4)

This section derives the ground reaction forces when there is a non-slipping contact. The exten-
sion to multiple contact and slipping contact does not change, and is described by Hwangbo et
al..

In an inelastic collision, the velocity of each of the feet should equal zero after the collision. The
first step is to transform Eq. (B.3) to the acceleration of foot i using p̈i = Jρ,iq̈ + J̇ρ,iq̇:

q̈ = M−1 ([C]q)T λ+M−1h(q, q̇) +M−1JT
ρ ρ,

Jρ,iq̈ + J̇ρ,iq̇ = Jρ,iM
−1 ([C]q)T λ+ Jρ,iM

−1h(q, q̇) + Jρ,iM
−1JT

ρ ρ+ J̇ρ,iq̇,

p̈i = Jρ,iM
−1 ([C]q)T λ+ Jρ,iM

−1h(q, q̇) + Jρ,iM
−1JT

ρ ρ+ J̇ρ,iq̇.

Next using Euler integration ṗ+
i = ∆tp̈i + ṗi = ∆tp̈i + Jρ,iq̇i, where ṗ+

i is the velocity of foot i
at the next time step, ∆t. In an inelastic contact, this velocity should be zero. This results in

|ṗ+
i = ∆tJρ,iM

−1h(q, q̇) + ∆tJρ,iM
−1JT

ρ ρ+∆tJ̇ρ,iq̇ + Jρ,iq̇i = 0, (B.5)

which we have to solve for the ground reaction forces, ρ at each foot. Using the fact that

JT
ρ ρ =

Nf∑

k=0

JT
ρ,kρk = JT

ρ,iρi +

Nf∑

k=0, k ̸=i

JT
ρ,kρk (B.6)
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where Nf is the number of feet. This makes it possible to rewrite Eq. (B.5) as

Jρ,iM
−1JT

ρ,i∆tρi = ∆tJρ,iM
−1h(q, q̇) + ∆tJρ,iM

−1
Nf∑

k=0, k ̸=i

JT
ρ,kρk +∆tJ̇ρ,iq̇ + Jρ,iq̇. (B.7)

This can be solved using iteration for each of the ground reaction forces. Hwangbo et al. defines
∆tρi as the ground reaction impulse λi, not to be confused with the Lagrange multiplier in
Eq. (B.3).

Similar to how the contact forces depend on each other, also the ground reaction forces and
Lagrange multiplier influence each other. Therefore, one cannot be solved without the other.
The solution is to also compute the Lagrange multiplier iteratively, as shown in Algorithm 1.

Algorithm 1: Iterative contact and Equations of motion solving
Data: nonlinear forces: Kq, ST

τ τ , JT
extW ext, Qg, and Data from previous time step:

q−, q̇−, λ−

Result: States for next time step: q+, q̇+, λ+

/* Start of Algorithm */
λ← λ−

while not converged do
h(q−, q̇−) = −Kq− + ST

τ τ + JT
extW ext +Qg + ([C]q)T λ

ρ← Contact Solver(h(q, q̇), q̇−)[
q̈+

λ+

]
=

[
M

(
[C]q−

)T

[C]q− 0

]−1 [
h(q, q̇) + JT

ρ ρ

−
[
[C]q− q̇−

]
q− q̇−

]

λ← λ+

end
q̇+ ← q̇− +∆tq̈+

q+ ← q− +∆tq̇+

/* End of Algorithm */
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