
A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

A Qualitative Comparison of Specification Techniques for
Microservices Architectures

Jasper van Amerongen
University of Twente

P.O. Box 217, 7500 AE Enschede
The Netherlands

j.vanamerongen-1@student.utwente.nl

ABSTRACT
When designing and developing medium to large scale
software systems, architectural decisions are important to
get right. One architectural style is the microservices
architecture (MSA). Describing and specifying one service
or a monolith is well-defined in literature and in practice,
however there are doubts on the optimal method of doing so
when it comes to a complete MSA. Firstly, this research
aims to identify existing techniques for designing and
specifying MSAs by performing a systematic mapping
study. Secondly, a classification scheme has been applied to
perform a qualitative comparison of the found techniques
that in turn is used to provide recommendations for
business analysts, software architects and developers on
which specification technique to use in what scenario.

Keywords
Microservices architecture; MSA; software specification;
software architecture.

1. INTRODUCTION
The microservices architectural style is a style of architecting
software where a system is split up into relatively small
services. These services exclusively maintain their own concern
and can scale independently. Microservices architectures
(MSAs) have grown rather naturally in practice and have
initially been defined in the blog article by Lewis and Fowler
[9] that provides a multifaceted overview of MSAs and their
applications. In practice, pioneers were mainly tech giants with
streaming applications, such as Spotify and Netflix [6, 9], that
made the transition to such decoupled architecture.

As a newer approach to Service-Oriented Architectures (SOA),
the definition of MSA has not been firmly established at its
formal academic conception in Sam Newman’s book Building
Microservices [13], or at least so it has turned out in practice in
the last few years. Therefore, Zimmerman has compiled seven
tenets to define microservices based on a review of white and
grey literature: fine-grained interfaces; business-driven

TScIT 38, 3 February, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

development; following cloud-native design principles;
polyglot programming and persistence; lightweight container
deployment; decentralised continuous delivery; and DevOps
with holistic service monitoring [21]. MSA promotes
fine-grained, autonomous services most commonly deployed in
cloud environments. In particular, each service runs in an
exclusive process (e.g., a dedicated Docker container) and
interacts with others through lightweight media [9], like
RESTful APIs over HTTP or a shared enterprise message bus
(ESB) or message queue (MQ). MSAs can be augmented by
concepts such as API gateways, service discovery and circuit
breakers [12], which allows it to circumvent what commonly
plagues availability, maintainability, scalability and fault
tolerance [21].

The inherent fine granularity of MSAs paved the path for the
application of Domain-Driven Design (DDD) [5]. This and
decentralised governance (i.e., moving towards team’s life
cycle ownership of software) promises more agile development
cycles, benefitting a higher resilience to changing business
requirements [9].

Model-Driven Development (MDD) [4] is an approach for
developing distributed software architectures, like MSAs.
Throughout the development process, MDD utilises models as
a means of abstraction. This allows high-level overview and
consideration by omitting technical details, analysis through
formal denotation practices and speeds up the integration
process when code can be generated from the models. MDD
plays an important role in the specification techniques covered
in this research.

The rest of this document is structured as follows: Section 2
introduces the existing gap in academia and outline the research
questions this research aims to answer; Section 3 introduces the
chosen methodology and its justification and setup; Section 4
displays and interprets the results found; Section 5 provides
recommendations to what specification is appropriate in what
situation, based on the previously found results; and this paper
concludes with discussing the limitations and threats to validity
and suggests future work in Section 6.

2. RESEARCH QUESTIONS
Microservices have shown their benefits as an architectural
style for the reasons mentioned before. Looking to move
towards MSAs, one challenge is to find and select specification
techniques to model such architecture. To contribute to that, we
have compiled a list of techniques to specify microservices

1

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

found in literature and compared them by providing guidelines
for applying them in various circumstances. In order to do so,
we posed the following research question:

What are the leading techniques used in literature and practice
to specify a microservices architecture?

This in turn raises the following sub-questions:

1. Which are the techniques currently used to specify
microservices architectures?

2. What are the main criteria to compare these
techniques?

3. What is the result of this comparison?

When discussing literature in this research, we shall be
referring to both grey and white literature, the former being
sources authored by field experts, pioneers and researchers that
are not necessarily published or peer reviewed. Those may
include but are not limited to articles, blog posts and open
source software repositories. The justification for the inclusion
of grey literature is twofold: 1) grey literature appears to be a
common trend in existing white literature and 2) since the topic
of MSA is rather young and volatile, as it is initially the
professional who may find answers to the questions at hand, as
the scientific community has not yet have had enough time to
do so with academic rigour.

3. RESEARCH METHODS
This research was divided in three stages, one for each research
sub-question, respectively. First, a systematic mapping has been
performed to identify existing MSA specification techniques,
which gives answer to RQ1. This mapping was set up to be an
adaptation of Petersen et al.’s method for systematic mapping
studies [14]. Second, the results of this mapping feed into a
predefined classification scheme answering RQ2. Third, the
identified specification techniques are compared in-depth to
answer RQ3.

3.1 Systematic mapping study
We chose to perform a systematic literature mapping for its
benefits over narrative, scoping or meta-analysis reviews,
which are otherwise commonly employed methods of literature
review. The systematic attribute of a systematic mapping allows
for less biassed and more inclusive conclusions [8]. Systematic
mappings also allow a focus on breadth over depth [8]. Breadth
is preferable for navigating the academic landscape for
answering RQ1. In contrast, we demonstrate how depth is key
for classifying the yielded papers.

Petersen et al. [14] proposed a method for performing a
systematic mapping. They have divided this process up in five
steps:

1. Definition of Research Questions (Research Scope)
2. Conduct Search for Primary Studies (All Papers)
3. Screening of Papers for Inclusion and Exclusion

(Relevant Papers)
4. Keywording of Abstracts (Classification Scheme)
5. Data Extraction and Mapping of Studies (Systematic

Map)

In Figure 1, a flow chart describes the systematic mapping
pipeline, based on the pipeline proposed by Petersen et al.

Figure 1: Flow chart of systematic mapping pipeline.

3.2. Search for primary studies
In the pursuit of the primary paper base, the following
repositories of academic engineering literature were inquired:
IEEEXplore; ACM Digital Library; Springer Link; and Google
Scholar.

Two slightly different queries were used for the document title
and abstract, respectively. This decision was a result of the
iterative evaluation of our systematic mapping setup. As each
repository has a different querying interface, specific queries
were designed for each, which are shown in appendix A. In
general, the search queries used all resemble the following
primitives as closely as possible, where “?” denotes zero or one
character and “*” denotes zero or more characters.

Document title:
Microservice? + (specification | documentation |
model?ing)

Abstract:
Microservice? + (specification | documentation |
model?ing) + (technique? | method? | approach* |
practice?)

For each repository, the complete query result was stored in a
spreadsheet along with metadata, such as document title,
authors, publication year, journal title, abstract and DOI. The
exception to this is Google Scholar, since it utilises an elaborate
and inclusive algorithm to determine a search result.
Consequently, the size of the query result was around eleven
thousand and was deemed too large to be manually surveyed.
Ordered by relevance, the first ten pages of results were

2

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

considered for this mapping and the rest omitted. The result set
form Google Scholar intersected with those from the other
repositories and thus were also omitted, preferring the
repositories’ papers over the duplicates in Google Scholar.

For the sake of comprehension, let the result of this step and the
aforementioned substeps be set , with each found paperΠ

and for .π
𝑖

∈ Π π
𝑖
 ≠ π

𝑗
𝑖, 𝑗 ∈ ℕ

3.3. Papers Screening
Usually, the result of querying such repositories is a set of
papers, a vast portion of which may not necessarily be relevant
to answering the research questions [14]. Therefore, the third
step in the systematic mapping is distilling down the result by
applying inclusion and exclusion criteria to the initial set of
papers [14]. This step has been altered in two ways as will be
discussed. The acceptance criteria were applied in order that
they appear below, i.e., first the inclusion criteria and then the
exclusion criteria. They were defined as follows:

Include if

- The title mentions MSA or SOA design techniques;
- The abstract seems to introduce an MSA specific

design technique;
- The abstract mentions to build upon existing MSA

design techniques yielding a novel one.

Exclude if

- The abstract mentions to research the
implementation, applicability, performance or other
metric of an existing technique (validation/evaluation
research);

- The paper has been published before 2014;
- The paper introduces a technique already found in the

mapping and is not the more recent version;
- The paper is not written in English.

These conditions yield a set .Π' = {π
𝑖

∈ Π | 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(π
𝑖
)}

Strictly .Π'| | ≤ Π| |

Reiteration including skimming
These sets of acceptance criteria turned out to be insufficiently
precise. During the manual screening, a notable proportion of
potentially relevant papers seemed to be overlooked based on
their title and abstract, as the inclusion criteria propose. To
compensate, the systematic mapping setup was altered and the
screening process was executed again to include papers of
which the author deemed them to be equally relevant based on
an initial skim of the entire paper. This step was only performed
in edge cases, i.e., where the acceptance criteria wrongly
excluded the paper. This step updates accordingly.Π'

Second screening layer
After the analysis of title and abstract and a skim of the papers’
content, a more thorough screening process was applied. In this
step, the papers left after applying the acceptance criteria were
read thoroughly to determine whether an MSA specification
technique was being proposed. The reason for the second
screening layer is to systematically reduce the number of papers
that had to be read thoroughly. This was necessary given the
provided timeframe in which this research was performed.

Define a set . StrictlyΠ'' = {π
𝑖

∈ Π' | 𝑠𝑐𝑎𝑛𝑛𝑒𝑑(π
𝑖
)}

.Π''| | ≤ Π'| | ≤ Π| |

3.4. Classification Scheme
In order to gain insight into the found and accepted papers,
Petersen et al. recommend creating a classification scheme as
the next step in their methodology [14]. This should be done by
keywording the abstracts by selecting those keywords that
reflect the paper’s contribution best. The resulting list over all
papers can then be used to form categories that represent the
context they were formed from. However, as briefly mentioned
before, this paper will use a predefined classification scheme.
The reason for deviating from Petersen et al.’s method is that
the comparison metrics were determined beforehand. Important
metrics are completeness, tool support and the most prevalent
stakeholders of the specification technique, which were
extended with the technique's fabric and whether the technique
is defined formally.

Here, completeness is defined as the technique's ability to
specify a microservice, a data persistence solution, a fault/error
resilience solution, a deployment solution and the
microservice(s)’ interface(s). The aforementioned submetrics
are assessed with boolean values and completeness is assessed
as a ratio of these boolean submetrics.

The fabric of a MSA specification technique describes on what
medium the technique is used. This can be evaluated with
“textual” or “graphical”, whether the technique is conveyed
through text or the technique is displayed as a diagram or in any
other visual manner, respectively.

Tool support is assessed with a boolean value indicating
whether or not tools exist or are put forward to adopt the
respective specification technique. This does not include trivial
tools such as a text editor or pen and paper, but rather custom
tools in its totality or as a plugin for, e.g., an IDE.

It was also deemed important to understand which stakeholder
benefits the most from each technique. This can be measured
with one of {“Developer”, “Maintainer”,𝓟(𝑅) \ ∅, 𝑅 =
“Software architect”, “Business analyst”}. These roles have
been chosen as they were found to properly represent the actors
in relevant use cases of MSA specification techniques. E.g., a
technique that models MSAs in terms of business requirements
appeals more to a business analyst, whilst monitoring fault
tolerance appeals more to the system’s maintainer.

A technique that has a formal definition is denoted with a
boolean value indicating whether the technique has been
defined algorithmically or mathematically; by an abstract
language through a grammar; or as an metamodelling extension
of an existing modelling technique, e.g., an extension of UML.

4. RESULTS
The steps of the previous section were performed in the order
they appeared and in line with the method for systematic
mappings. The resulting dataset was retrieved between 8 and 12
December 2022.

3

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

4.1. Identified specification techniques
Initially, 101 papers have been identified for consideration.
After applying the first screening layer, this number was
reduced to 40. The second screening lowered this number to 12.
As per the second screening layer, each of these papers
introduces a novel technique to specify microservice
architectures. Table 1 and Figure 2 depict these results. The
distribution of repositories of the final set of papers is shown in
Figure 3.

Table 2: Distribution of found papers

Repository Raw
First

screening
Second

screening

IEEEXplore 15 7 1

ACM DL 6 4 0

Springer Link 32 10 5

Google Scholar 48 19 7

Total |Π| = 101 |Π’| = 40 |Π’’| = 12

Figure 2: Dataset size after applying two screening layers

Figure 3: Distribution of repositories in final dataset

4.2. Classified specification techniques
The next step is to catalogue the 12 identified specification
techniques according to the classification scheme. Table 3
provides an overview of these techniques alongside their
classification attributes. Some cells in the “Input” column are
left blank, which indicates that this technique may be used to
model MSAs without an initial specification. The subattributes

pertaining to completeness are shown in Table 3. The
completeness is visualised as a radar plot in Figure 3. Table 5
shows the tool support and the target stakeholder of each
technique.

4

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

Table 3: Specification techniques’ classification metrics

Name Input Output Fabric Formal definition

MSStack [7] Proprietary model*1 Java Textual

Zephyrus2 [1] Diagram Graphical ✓

AjiL [16] AjiML Java (Spring Cloud) Graphical ✓

DDMM UML [15] UML* DDMM UML Graphical ✓

Microservice DSL [2] Monolith Microservice DSL Textual

CBDI-SAE (SOA3) [11] UML + CBDI-SAE Graphical

4SRS-MSLA [17] UML UML Graphical

Silvera DSL [18] Silvera Textual ✓

MicroVision [3] 3D graphs Graphical

VxBPMN4MS [19] BPMN* VxBPMN4MS Graphical

Knowledge Graph [10] Monolith Graph Graphical ✓

BPMN Fragments [20] Complete BPMN BPMN fragments Graphical

Table 4: Specification techniques’ classification metric: Completeness

Name Completeness

Microservice Persistence Resilience Deployment Interfaces Ratio

MSStack ✓ ✓ 0.4

Zephyrus2 ✓ ✓ ✓ 0.6

AjiL ✓ ✓ 0.4

DDMM UML ✓ ✓ 0.4

Microservice DSL ✓ ✓ 0.4

CBDI-SAE (SOA3) ✓ ✓ ✓ 0.6

4SRS-MSLA ✓ ✓ 0.4

Silvera DSL ✓ ✓ ✓ ✓ 0.8

MicroVision ✓ ✓ 0.4

VxBPMN4MS ✓ 0.2

Knowledge Graph ✓ ✓ 0.4

BPMN Fragments ✓ 0.2

1 The paper in which this technique is presented puts forward a proprietary modelling technique that serves an input to the actual tool that is MSStack. It
has therefore been determined that this modelling technique is the input if MSStack is considered on its own. However, this modelling technique is part
of the workflow of the presenting paper and therefore the argument stands to consider this cell empty.
* One might adapt this input or start from a blank slate to directly obtain the output model.

5

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

Figure 4: Radar plot of specification techniques’ classification
metric: Completeness

Table 5: Specification techniques’ classification metric:
Management

Name Management

Tool
support Stakeholder

MSStack Business analyst,
Developer, Architect

Zephyrus2 Maintainer

AjiL ✓ Developer, Architect

DDMM UML ✓ Developer, Architect

Microservice DSL ✓ Developer

CBDI-SAE (SOA3) Developer, Architect

4SRS-MSLA ✓ Business analyst,
Developer

Silvera DSL ✓ Developer

MicroVision ✓ Developer, Architect

VxBPMN4MS ✓ Business analyst,
Developer, Architect

Knowledge Graph Developer, Architect

BPMN Fragments ✓ Business analyst,
Developer, Architect

5. RECOMMENDATIONS
In addition to the systematic mapping provided above, this
paper provides the following set of recommendations for which
technique to employ in a given situation. These
recommendations are based on each technique’s position in our
classification scheme and their attributes and this is implied in
each recommendation’s justification. Any further justification is
based on contributions of the papers in which the techniques are
presented.

5.1. Greenfield
Greenfield software systems are those that start off in a
completely new environment and no legacy code is present. In
the context of this paper, this can mean one of two scenarios: no
formal specification yet exists and will thus have to be
constructed; or the software to be developed has been modelled
in some way in compliance with high-level business
requirements as specified by existing business modelling
languages, such as UML or BPMN.

With prior business requirements & processes
MSStack is a framework for developing an MSA based on Java
with “built-in logging, monitoring, load balancing, and scaling
capabilities” [7]. Important for this paper is the proprietary
business model (see footnote 1) that will be the input for the
native model-to-code conversion module. This model is
inspired by BPMN, but it additionally also supports modelling
relevant data entities to enable the modelling of the overall
business domain [7]. The complete suite that comprises the
framework allows seamless cooperation between business
analysts, software architects and developers.

Domain-driven MSA modelling (DDMM) UML [15] is a UML
profile which extends UML metaclasses with stereotypes. Its
respective paper fills the gap between DDD and UML
modelling, which allows this specification technique to inherit
from both. DDD has shown to be a crucial consideration when
architecting MSAs [15].

VxBPMN4MS has been introduced to allow its users to model
business processes whilst taking variability into account by
extending the BPMN language [19]. Like MSStack, the
respective paper also puts forward an automation framework
for establishing an MSA and thus inherits those same properties
relevant to the context of this paper as MSStack

Valderas et al. [20] put forward a decomposition technique to
fragment BPMN models. The resulting BPMN fragments each
represent a microservice. This method allows a big-picture
overview through traditional BPMN, whilst the fragmented
version allows modelling the choreographic composition. This
approach is said to aid further analysis when making
engineering decisions [20].

All of the four specification techniques mentioned above allow
modelling an MSA after the input from the business side and
should thus be used in such situations. DDMM UML,
VxBPMN4MS and BPMN fragments are especially
recommended if it is expected that the specifications will be
further developed in their respective modelling languages.
Additionally, in case a technique covering the entire
design-to-deployment pipeline is sought, MSStack should be
the chosen candidate.

Without prior specification
Silvera [18] is a Domain-Specific Language (DSL) and
compiler for modelling and developing MSAs. It is based on
the principles of Model-Driven Development (MDD) and is
said to be easy to be used by both domain experts and beginners
[18]. Some highlighted features include a retargetable
plugin-based compiler, an automatic documentation generator
and MSA tailored metrics for architecture evaluation.

6

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

It is because of Silvera’s ability to model and develop MSAs
and nullish input that this specification technique is ideal for
previously unspecified greenfield MSAs. MSStack and DDMM
UML tick the same boxes and can therefore also be considered
for this type of greenfield MSA. In addition, Silvera’s rich
collection of features and compile targets, completeness across
the entire stack and proven ease of use makes it the
recommendation for any greenfield MSA.

5.2. Brownfield
In the context of software development, brownfield
development entails the architecting and developing of software
systems alongside, based upon or in close proximity to legacy
code. In this section, we cover the scenario where a monolithic
application is sought to be transformed into an MSA.
Microservice DSL, 4SRS-MSLA and a knowledge graph are
each techniques to model this change and microservices during
and after such changes.

Bucchiarone et al. present a model-driven approach for
migrating to an MSA [2]. This process is composed of two
components with a respective DSL. One of them is
Microservice DSL and is the extracted specification technique
in this paper. Microservice DSL relies on Jolie, but with added
concepts as typed interfaces for message exchange and input
and output ports. The DSL is verbose in its definition of MSAs,
which aids readability.

4SRS-MSLA is a four-step rule set (4SRS) for deriving a
Microservice-oriented Logical Architecture (MSLA) from a
monolith, that provides a logical view on the behaviour of and
relationships between microservices [17]. This is modelled
through UML use case diagrams. This specification technique
models MSAs as a collection of bounded UML components
with specified rules for pruning suboptimal interactions. It
should be noted that this technique need not necessarily be a
result from the 4SRS and thus this technique can be used for
greenfield MSLAs as well.

A technique to decompose a monolithic application based on
graph theory is the one presented by Li et al. [10]. A monolithic
application is represented with a graph, where each node
represents a data entity, module, function or resource and
weighted edges represent relationships between them. Then
communities are detected by means of the Louvain algorithm
which can be aggregated into microservices.

For the extraction of an MSA from a monolith the
recommendation is to employ the 4SRS-MSLA or the
knowledge graph technique, as they provide clear guidelines on
how to do so and the possibility to model not only the initial
and final states of the extraction, but also the intermediates.
Additionally, such graph-like representation of both is expected
to allow deeper analysis of each step by applying other
mathematical tools. If the microservice extraction is desired to
be executed by means of DSLs, the Microservice DSL (and
Deployment DSL from the same paper) should be chosen.

5.3. High-level spatial overview
Like Silvera, AjiL [16] is a specification technique to enable
MDD of MSAs. In contrast, AjiL is a graphical approach. With
the complementary Eclipse plugin, two types of diagrams can

be drawn up to be generated into code. The overview diagram
is suited to model an MSA’s topology, whereas the detailed
diagram allows specifying components, such as interfaces and
data entities, for each microservice. The simplicity of AjiL
allowed its researchers to successfully apply it in educational
settings and in designing MSAs with a small number of
services [16]. This is a double-edged sword, however, as they
also observed that the simplistic and human readable
representation may lack expressiveness and precision in larger
applications [16]. The recommendation extends their findings
that AjiL is best applied in smaller and/or less technical MSAs,
where spatial overview is regarded more than precise details.

A specification technique that transcends the two-dimensional
plane is MicroVision [3], using Augmented Reality (AR) to
represent an MSA in 3D space. In order to construct such
visualisation, each microservice’s abstract syntax tree is
analysed and a call tree is constructed. API endpoints are
determined by top-level functions together with their
annotations. The call tree is stored in a graph database, which is
then reconstructed in AR. Like AjiL, MicroVision presents two
ways: an overview and API view. Both are represented as a
graph and in the latter specifically, connections are highlighted
and the selected API’s interface displayed in a table. The added
dimension in this technique and the ability to physically move
through the representation makes it appealing to relatively
tightly-coupled MSAs when their interactions would otherwise
get obscured in other techniques.

6. EVALUATION
This section elaborates on the limitations and validity related to
this research. Limitations are mostly in the form of a short
timeframe and validity is threatened by a small sample size or
not sufficiently detailed classification scheme.

6.1. Limitations
The limitations of this paper were exclusively rooted in a stern
deadline. This paper was proposed, executed, drafted and
finalised in ten weeks, with six reserved for execution and
drafting. A more generous timeframe would have allowed this
paper to improve on the following points:

‐ Larger dataset
An increase in time would have allowed for more
repositories of scientific papers to be queried and
with possibly less exclusive queries. Also, more
papers could have been collected from Google
Scholar.

‐ More extensive comparison metrics
Another limitation is the relatively shallow
comparison that was performed. To gain a deeper
understanding of the found techniques more elaborate
comparison metrics must be used. A deeper
understanding is expected to then lead to more
representable recommendations.

‐ Real-world tests
Performing real-world tests with these techniques by
setting up a case study and attempting to specify such
microservice architecture by the hand of each found
technique would likely further aid the validity of the

7

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

comparisons and recommendations. Moreover, this
would allow the classification scheme to be extended
with performance metrics, e.g., temporal, compute,
latency, throughput performance. Real-world tests
could also be surveyed with field experts, such that
developer experience (DX) metrics can be employed
to the classification scheme.

‐ Analysis of related work sections
In the process of analysing the papers that were found
in the mapping, not earlier found techniques were
mentioned in some of the related works sections.
These were not found in the mapping, however.
Extracting techniques from the related works sections
was not part of the systematic mapping and these
techniques were thus ignored. This means that we
might have missed relevant papers. Due to time
limitations, the mapping study was not performed
again.

‐ More comprehensive textual coverage
Our comparison was based on their characteristics in
the classification scheme and other properties that
were outlined in the papers presenting the techniques.
The latter has been summarised in the respective
section of that technique. This has been kept brief,
however. In future iterations, it would be better for
the sake of completeness to elaborate more on each
technique. This will allow a deeper comparison and
with that a recommendation that is more complete.

6.2. Threats to validity
It stands to reason that validity might suffer from the fact that
the classification scheme has been designed for specification
techniques of MSAs specifically and thus with no regard to any
possible standards for classifying specification techniques that
might be found in literature. The classification scheme that is
used in this paper is not insusceptible for bias and classifying
based on different metrics is likely to alter our concluding
recommendations.

What might also impair the validity of the posed
recommendations is a shallow classification scheme. More
elaborate classification schemes based on multivocal
comparison metrics could be defined and applied. This
extension should increase the validity of conclusions drawn
from it.

7. CONCLUSION
In this paper, a systematic mapping study has been designed
and performed to map the academic landscape of MSA
specification techniques. Twelve papers that put forward a
specification technique have been found through this method.
These twelve techniques have been evaluated by means of a
predetermined classification scheme. This evaluation was used
to form recommendations in three scenarios. In the case of a
greenfield environment Silvera [18] is the recommended
specification technique. In brownfield environments we
recommend the use of the 4SRS-MSLA [17] to specify and
decompose a monolithic software system. Alternatively, a
knowledge graph can be formed by means of the technique in

[10]. When it is desired to create a high-level overview, AjiL
[16] is recommended for MSAs with a relatively little number
of microservices. MicroVision [3] is recommended for MSAs
with a relatively high number of microservices or where
microservices are tightly coupled.

7.1. Future work
In the process of forming the recommendations, we noticed that
VxBPMN4MS and BPMN fragments both use the BPMN
modelling language and DDMM UML and 4SRS-MSLA both
use UML. This inspires questions such as: Can techniques that
are built on the same modelling language interoperate in one
model? Does this allow the result to benefit from both models’
strength? Or rather the opposite? Future work might include
answering these questions.

As with any literature review, this is a snapshot in time. Thus
future work might also include performing a similar systematic
mapping study again. A repetition of this study allows the
authors to take the limitations of the current execution into
account.

REFERENCES
[1] Bravetti, M., Giallorenzo, S., Mauro, J., Talevi, I., &

Zavattaro, G. (2019). A Formal Approach to Microservice
Architecture Deployment. Microservices, 183–208.
https://doi.org/10.1007/978-3-030-31646-4_8

[2] Bucchiarone, A., Soysal, K., & Guidi, C. (2020). A
Model-Driven Approach Towards Automatic Migration
to Microservices. Software Engineering Aspects of
Continuous Development and New Paradigms of
Software Production and Deployment, 15–36.
https://doi.org/10.1007/978-3-030-39306-9_2

[3] Cerny, T., Abdelfattah, A. S., Bushong, V., Al Maruf, A.,
& Taibi, D. (2022). Microvision: Static analysis-based
approach to visualizing microservices in augmented
reality. 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE).
https://doi.org/10.1109/sose55356.2022.00012

[4] Combemale, B., France, R. B., Jézéquel, J. M., Rumpe,
B., Steel, J., & Vojtisek, D. (2017). Engineering Modeling
Languages: Turning Domain Knowledge Into Tools.
Taylor & Francis.

[5] Evans, E. (2003). Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-Wesley
Professional.

[6] Goldsmith, K. & GOTO Conferences. (2015, December
23). Microservices at Spotify [Video]. YouTube.
Retrieved January 22, 2023, from
https://www.youtube.com/watch?v=7LGPeBgNFuU

[7] Jayawardana, Y., Fernando, R., Jayawardena, G.,
Weerasooriya, D., & Perera, I. (2018). A Full Stack
Microservices Framework with Business Modelling. 2018
18th International Conference on Advances in ICT for
Emerging Regions (ICTer).
https://doi.org/10.1109/icter.2018.8615473

8

https://doi.org/10.1007/978-3-030-31646-4_8
https://doi.org/10.1007/978-3-030-39306-9_2
https://doi.org/10.1109/sose55356.2022.00012
https://www.youtube.com/watch?v=7LGPeBgNFuU
https://doi.org/10.1109/icter.2018.8615473

A Qualitative Comparison of Specification Techniques of Microservice Architectures TScIT 38, 2023

[8] Kitchenham, B.& Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering. Technical Report EBSE-2007-01, School of
Computer Science and Mathematics, Keele University.

[9] Lewis, J., & Fowler, M. (2014, March 25). Microservices.
martinfowler.com.
https://martinfowler.com/articles/microservices.html

[10] Li, Z., Shang, C., Wu, J., & Li, Y. (2022). Microservice
extraction based on knowledge graph from monolithic
applications. Information and Software Technology, 150,
106992. https://doi.org/10.1016/j.infsof.2022.106992

[11] Ma, Z., Liu, J., & He, X. (2018). An Approach to
Modeling Microservice Solutions. Information Science
and Applications 2018, 533–542.
https://doi.org/10.1007/978-981-13-1056-0_53

[12] Montesi, F. & Weber, J. (2016). Circuit Breakers,
Discovery, and API Gateways in Microservices. arXiv.
https://doi.org/10.48550/arxiv.1609.05830

[13] Newman, S. (2021). Building Microservices: Designing
Fine-Grained Systems (2nd ed.). O’Reilly Media.

[14] Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M.
(2008). Systematic Mapping Studies in Software
Engineering. Electronic Workshops in Computing.
https://doi.org/10.14236/ewic/ease2008.8

[15] Rademacher, F., Sachweh, S., & Zündorf, A. (2018).
Towards a UML Profile for Domain-Driven Design of
Microservice Architectures. Software Engineering and
Formal Methods, 230–245.
https://doi.org/10.1007/978-3-319-74781-1_17

[16] Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., &
Zündorf, A. (2019). Graphical and Textual Model-Driven
Microservice Development. Microservices, 147–179.
https://doi.org/10.1007/978-3-030-31646-4_7

[17] Santos, N., Salgado, C. E., Morais, F., Melo, M., Silva, S.,
Martins, R., Pereira, M., Rodrigues, H., Machado, R. J.,
Ferreira, N., & Pereira, M. (2019). A logical architecture
design method for microservices architectures.
Proceedings of the 13th European Conference on
Software Architecture - Volume 2.
https://doi.org/10.1145/3344948.3344991

[18] Suljkanović, A., Milosavljević, B., Inđić, V., &
Dejanović, I. (2022). Developing Microservice-Based
Applications Using the Silvera Domain-Specific
Language. Applied Sciences, 12(13), 6679.
https://doi.org/10.3390/app12136679

[19] Sun, C. A., Wang, J., Liu, Z., & Han, Y. (2021). A
Variability-Enabling and Model-Driven Approach to
Adaptive Microservice-based Systems. 2021 IEEE 45th
Annual Computers, Software, and Applications
Conference (COMPSAC).
https://doi.org/10.1109/compsac51774.2021.00130

[20] Valderas, P., Torres, V., & Pelechano, V. (2020). A
microservice composition approach based on the
choreography of BPMN fragments. Information and

Software Technology, 127, 106370.
https://doi.org/10.1016/j.infsof.2020.106370

[21] Zimmermann, O. (2016). Microservices tenets. Computer
Science - Research and Development, 32(3–4), 301–310.
https://doi.org/10.1007/s00450-016-0337-0

APPENDIX A.
IEEEXplore:
("Document Title":"microservice?") AND ("Document
Title":"design" OR "Document Title":"specification" OR
"Document Title":"documentation" OR “Document
Title”:”model?ing”) AND ("Abstract":"microservice?" OR
"Abstract":"MSA") AND ("Abstract":"design" OR
"Abstract":"specification" OR
"Abstract":"documentation" OR “Abstract”:”model?ing”)
AND ("Abstract":"technique?" OR "Abstract":"method?" OR
"Abstract":"approach?" OR "Abstract":"practice?")

ACM Digital Library:
"microservice?" AND ("design" OR "specification" OR
"documentation" OR “model?ing”)

"microservice?" AND ("design" OR "specification" OR
"documentation" OR “model?ing”) AND ("technique?" OR
"method?" OR "approach*" OR "practice?")

Springer Link:
microservice? (specification OR documentation OR model)
(technique OR method OR approach OR practice)

microservice?

Google Scholar:
microservice (specification OR documentation OR model)
(technique OR method OR approach OR practice)

9

https://martinfowler.com/articles/microservices.html
https://doi.org/10.1016/j.infsof.2022.106992
https://doi.org/10.1007/978-981-13-1056-0_53
https://doi.org/10.48550/arxiv.1609.05830
https://doi.org/10.14236/ewic/ease2008.8
https://doi.org/10.1007/978-3-319-74781-1_17
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1145/3344948.3344991
https://doi.org/10.3390/app12136679
https://doi.org/10.1109/compsac51774.2021.00130
https://doi.org/10.1016/j.infsof.2020.106370
https://doi.org/10.1007/s00450-016-0337-0

