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Abstract 
 
 
Climate vulnerable countries can expect an increase in the number of disasters, so investing in preparedness 
needs to be scaled up. Recently, there has been a remarkable shift in the focus of disaster risk practitioners, from 
traditional response mechanisms to proactive approaches of acting early based on impact-based forecasts (IbF). 
An effective implementation of these activities can only happen when the right information reaches the right 
people at the right time. For that, automatic trigger mechanisms are being developed, where pre-designed 
models are used to assess the impact and inform decisions with minimal human judgement. As the complexities 
in modelling algorithms increase, the interpretability of results from such models becomes more difficult, 
especially for users outside the domain. Therefore, benchmarking different approaches to IbF along with an 
interpretable evaluation mechanism is a top priority for humanitarian decision-makers, and is relatively 
unexplored. 
 
This study attempted to evaluate two different models: (1) an existing statistical trigger model, operationalized 
for informing decisions for typhoon early actions in the Philippines, which uses a machine learning algorithm 
with several predictor variables, and (2) an elementary trigger model used for informing cyclone early action in 
Bangladesh, that combines damage curves and composite index overlay. For an objective comparison, the 
elementary model was adapted to the Philippines, placing both the statistical and elementary model in the same 
spatial context. The models were evaluated based on (1) their performance for damage prediction and their 
sensitivity to different risk indicators in hindsight for Typhoon Kammuri (2019) in the Philippines, and (2) their 
interpretability/explainability based on the architecture and parameters. To support this further, an interactive 
decision support tool was built for post-hoc evaluation. 
 
Our findings suggest that, in retrospect, both models would have triggered with a minimum lead time of 72 
hours, which is considered adequate for carrying out the pre-defined early actions. However, the performance 
of both models at the trigger time is not satisfactory, with a F1 score of 0.05 and 0.26 for the statistical and 
elementary models, respectively. The performance did not show an improvement over lead time, which can be 
attributed to the characteristics of this typhoon with considerable deviation from its forecasted track. However, 
in relative terms the elementary model performed better, and would have been able to maximize the impact 
reduced through early action, suggesting that, for this particular case, complex was not necessarily a better 
choice. At the same time, the overall results show that both models' performances are inconsistent in terms of 
lead time, and the elementary model does not show improvement in performance, even with observed typhoon 
data. Out of the two models, the elementary model was able to correctly predict higher damage percentages, 
while the statistical model was more conservative in its predictions. The statistical model better captures the 
characteristics of damage associated with the typhoon track, which is not considered in the elementary model.  
 
In conclusion, the results are evidence that a more statistical analysis of events of different characteristics is 
needed to examine the overall suitability of these models for the implementation goal. A common evaluation 
framework needs to be built, not only to benchmark IbF models against each other, but also to communicate 
the uncertainties and considerations to relevant stakeholders. The interactive dashboard built in this research 
has the potential to be further expanded to fit that purpose. 
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GLOSSARY OF TERMS  

Impact-based Forecasting: A forecast of a hydrometeorological event that provides the weather's information 
along with its potential impact. This is done by considering the hazard along with vulnerability and exposure. 
They are intended to make the forecasts actionable.  

Early Warning Early Action, Forecast-based Action or Anticipatory Action: Terms used by different 
organizations to commonly describe pre-defined actions that are taken before a foreseeable crisis, based on 
scientific forecasts and evidence.  

Trigger: A pre-determined threshold for probability and magnitude of impact that activates an early action 
when reached.   

Forecast-based Financing: It is one of the implementation techniques for early action where the necessary 
humanitarian funds are released automatically once the pre-defined trigger threshold has been reached.  

Lead time: The time duration between the release of the forecast for an event and its occurrence.  

Early Action Protocol: These are the step-by-step guidelines for the implementation of early action in an area. 
It provides information on how and when the triggers are activated, who are responsible and how the funds will 
be released. It also contains a detailed description and justification of the chosen trigger model.   

Intervention Maps: An output map of the impact-based forecast, which visualizes the areas with the highest 
impact and is used for prioritizing the implementation of early action.  

Elementary Trigger Model: An impact forecasting model where the relationship between variables is 
constructed based on mathematical equations. 

Statistical Trigger Model: An impact forecasting model which trains a machine learning algorithm to find 
patterns in the data and does not rely on rule settings. 

 

 

 

 

 

 

 

 

 
 

 

The definitions in this section are based on the Forecast-based Financing manual 1 

 
1 https://manual.forecast-based-financing.org/en/chapter/glossary/ 
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1. INTRODUCTION 

1.1. Background 
The effects of natural disasters, especially those concerning hydrometeorological events, have been escalating 
in recent decades (Alexander, 2018; Masson-Delmotte et al., 2021; WMO, 2021a), raising the challenge of 
putting more effort into their prediction, preparedness, and mitigation. A significant fraction of these events is 
known to happen in low and middle income countries, prompting humanitarian agencies to be at the forefront 
in supporting financially for reducing the impact and quick recovery. Ideally, a long-term risk mitigation strategy 
must be designed in a community where such risks from hazards are identified. Risk in the context of a natural 
disaster is defined as the possibility of human, economic or environmental loss caused by the interaction 
between hazard and a vulnerable condition (ISDR, 2004). However, acting only based on the risk assessment 
has limited scope in terms of financial capacity and practicality. Records have shown that typically around 80 
percent of disaster finance is spent on relief and recovery, and only a small fraction is used for the prevention 
of risk (Jan and Caravani, 2017), even though the economic loss due to the impact of a disaster is much higher 
than the cost of its prevention (Mechler, 2005; Shreve and Kelman, 2014). The global disaster risk reduction 
framework has identified the need to prioritize on making the early warning information more actionable with 
the help of guidance on necessary measures for each forecast (Hyogo Protocol, 2005-2015). Over the years, the 
techniques for hazard forecasting have been evolving, while the scientific community is finding newer ways to 
make the preparedness and preventions well guided. To translate these forecasts into action, it is not only 
enough to have the location and hazard information, because an event of similar magnitude may have a different 
impact depending upon the spatially variable risk. Hence, an Impact-based Forecasting (IbF) is an ideal 
approach, which, unlike the traditional forecast, not only addresses the characteristics of the hazard itself, but 
also provides information on the space, time, as well as nature of its impact, allowing an objective measurement 
for preparedness action Figure 1 (Red Cross Red Crescent Center, 2020; WMO, 2015).  

This information from an IbF allows the crucial time between the forecast and occurrence of a disaster to be 
better utilized in taking the necessary set of actions, commonly termed as 'early action', 'forecast-based action' 
(FbA) or 'anticipatory actions’. As one of the ways to effectively translate these warnings to action, the 
humanitarian community has developed a framework of Forecast-based Financing (FbF), where necessary funds 
for preparedness activities are automatically released early based on the scientific forecast (Coughlan De Perez 
et al., 2015). In 1985, the International Federation of Red Cross Red Crescent Societies (IFRC) established the 
Disaster Relief Emergency Fund (DREF) for rapid release of funds post-disaster, and in 2015 had the FbA 
component added to it (IFRC, 2022a). IFRC defines the formal set of guideline for these anticipatory actions 

Figure 1: A simplified representation of disaster timeline, highlighting 
 the significance of early action to reduce impact. Source: Adapted and modified from UN-OCHA 
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as Early Action Protocol (EAP) (IFRC, 2020a), which describes the financing mechanism, type of early actions 
and the method of defining impact level for prioritization in each implementation area. Currently, there are 17 
EAPs approved or under review by DREF, and 21 EAPs under development, which takes on average 2 to 3 
years (IFRC, 2022b). Although unique to each implementation area, the steps of developing an FbA, can be 
broadly described in the following categories: (1) understanding risk, (2) forecasting hazard and impact, and (3) 
warning dissemination and early action (IFRC, 2020a).  

The process of understanding risk begins by identifying suitable source of hazard and impact information, based 
on their type, availability, and reliability. Hazard forecasts can be done from regional to global scale, but localized 
interventions require a forecast of higher spatial resolutions. Some approaches may also use a combination of 
global and regional models in suitable times before an event. During the Bangladesh flood of 2021, a 
probabilistic model from Global Flood Awareness System (GloFAS) (Alfieri et al., 2013) was used 10-15 days 
before the event for pre-planning, while a national forecast model was referred to when the event was closer 
(OCHA, 2021a). In terms of damage history, the available global disaster databases, such as EM-DAT2 and 
Desinventar Sendai3, are great tools considering their systematic operations and coverage. But having said that, 
these data are often on a regional or national scale, and obtaining localized data is more helpful in planning a 
focused intervention. The granularity to which an impact model can provide forecast, is completely dependent 
on the resolution at which all the risk indicators are available. 

There are several techniques being developed or used by agencies to integrate the risk information for financing 
early action: threshold-based, qualitative combination of hazard and vulnerability, impact modelling and climate-
based models (Wilkinson et al., 2018). A threshold method identifies the limit beyond which an impact becomes 
problematic - a "trigger", which helps determine the time and the target areas of activating the early actions.  With 
probabilistic or ensemble methods for hazard forecast, the models give not only the intensity of impact but also 
its likelihood, which is converted to a risk matrix (Figure 2) that is easily interpretable. The risk matrix allows 
the decision-makers to choose when these anticipatory actions must be triggered, depending on when an impact 
becomes a point of concern and certainty they require in their actions. If the forecasted impact does not 
materialize, then the action taken is considered as 'action in vain'.  

A trigger model can be designed utilizing different techniques, where some are automatic, while others are based 
on expert knowledge (IFRC, 2020a). Automatic approaches to prediction of absolute impact levels are generally 
done in two ways; (1) elementary modelling where a relationship between variables is constructed using 
mathematical equations, and (2) statistical modelling trains a machine learning algorithm to find patterns in the 
data and does not rely on rule settings. In both approaches the determination of impact level is done primarily 
with damage and hazard history along with social vulnerability or coping capacities, all integrated in different 
ways. The impact models used for humanitarian actions constantly improve with state-of-art prediction 

 
2 https://www.emdat.be/ 
3 https://www.desinventar.net/index.html 

Figure 2 An Example of a risk matrix based on 
probabilistic damage 
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algorithms, which allow better control over financial risk (Bierens et al., 2020). However, generating these 
models is still a challenge, since many areas have limited historical impact information, though researchers are 
focusing on reducing these gaps. Many promising studies have developed machine learning techniques for 
improved transferability of damage data in terms of location and event type (Valentijn et al., 2020; Wagenaar et 
al., 2021), and identifying damage patterns in areas where data are not abundant (De Perez et al., 2016). However, 
using such a black box technique makes it difficult to compare changes that might occur due to the nature of 
hazard or risk information. For example, the characterization of building vulnerability can have a different 
definition in two separate geographic locations. Moving forward, there needs to be a quantitative evaluation of 
how the availability of geodata and design of trigger model affects the prediction of impact and effectiveness of 
FbA strategies.  

While designing these triggers, the time is an essential consideration. In the case of typhoons, for example, the 
spatial accuracy of the forecast increases as it gets closer to land (Yu et al., 2013), while intervention decision 
needs to be taken with several days lead-time. On the other hand, drought has a very long lead time, which is 
how the World Food Program (WFP) released funding for an early response of drought in 2015 in Southern 
Africa, the effect of which was felt later in 2016-2017 (WFP, 2016). Thus, there is always a choice between 
waiting for a last-minute accurate forecast or acting in advance with enough time to prepare. In either case the 
chances of acting in vain and if they outweigh the loss of acting late need to be evaluated, and these trade-offs 
may differ for each hazard. This balance can also be affected by the scale at which the early actions are targeted, 
for instance, an intervention done at the household level will need a more accurate forecast compared to a 
community scale planning. On the other hand, there are also restrictions in terms of time required to take 
actions. During a pilot study done on Bangladesh during the 2020 flood event, it was deduced that the 
intervention would not have been successfully completed if the pre-activation, 10 days before the event, were 
not done (OCHA, 2020a). The quantitative determination of optimal time and spatial coverage for these actions 
is still an open question.   

The early action process usually begins with an implementation map which indicates the predicted impact and 
is used for prioritizing the intervention. The early actions are pre-designed and may be unique, depending on 
the implementation approach, hazard type, location, data availability, main economic activity, and organizational 
priorities. In the Philippines, for example, the Red Cross provides homeowners with a shelter strengthening kit 
before a major Typhoon strikes (Anticipation Hub, 2020), whereas in Bangladesh the Food and Agriculture 
Organization (FAO) provides them with materials to flood-proof agricultural assets (FAO, 2020). The prior 
evaluation of risk should keep this in consideration; to give an example, in a place where flood significantly 
affects crops, a detailed crop loss assessment must be done.  

As we are shifting to automated decision making in the humanitarian context, it is also an added challenge to 
make these processes more interpretable. The General Data Protection Regulation (GDPR) adopted by the 
European Union, establishes that an algorithm-based decision makings must be non-biased and explainable 
(Goodman and Flaxman, 2016). Meteorological agencies are a very good example of recognizing the need to 
deliver the uncertainties in their forecast for fair and effective decision making (WMO, 2008). The same needs 
to be adopted in impact forecasts, which require a high level of confidence considering how the decisions need 
to be triggered in a very short span of time. Gevaert et al., (2021) call attention to the fact that the replacement 
of traditional techniques by artificial intelligence (AI) has reduced the transparency in humanitarian decision 
making. There are multiple studies that (1) emphasize how the disparity in the understanding between users and 
producers increase as models become more complex, and (2) advocate the role of visualization for better 
communication (Kirchhoff et al., 2013; McInerny et al., 2014). As described in the study by Mittelstadt et al., 
(2019), explainability or interpretability of decision-making algorithms can be evaluated in two ways (Figure 3); 
(1) transparency, which is the ability to decipher the internal functions of the model, including the architectures 
and parameters, and (2) post-hoc interpretation that gives an understanding of how and why a model behaved 
in a certain way. The latter is often done through explanations or visual and interactive interfaces.  
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In the framework of IbF, most commonly only an implementation map is communicated with the end-users, 
which could lead to a gap in understanding the uncertainties and limitations during the modelling process. In a 
case study by Bierens et al., (2020), the authors have very well highlighted a lack of insight in the local stakeholder 
about what basis the IbF models are built on and what they can or cannot do. The study recommends shifting 
to a co-creation of these models, which can increase the understanding and help meet the end-user requirements 
more effectively. A similar issue is identified in the study by van den Homberg et al., (2020), which underlines 
the need to benchmark different approaches of IbF, such as the use of AI against expert opinion for decisions. 
There need to be more evidence-based studies on not only evaluating the choices made in IbF, but also making 
them assessable and effectively conveying them.  

 

1.2. Research Problem 
Problem Statement: A quantitative evaluation and communication of the performance and uncertainties of trigger 
models over time and under different scenarios is crucial for effective scaling up of the forecast-based early 
action practices.  

The IbF has allowed not only the generation of a systematic framework to use forecast information for 
preparatory action, but also provides a mechanism to validate the incentives. While the practice of IbF and FbA 
began with a very limited number of organizations and countries (Coughlan De Perez et al., 2015), by now it is 
being adopted across the globe for multiple hazards (Anticipation Hub, n.d.). However, to scale up, more robust 
evidence is needed on what kind of trigger model works in which area and in what context. Since investing 
effort in early action is a lot about different financial or managerial risks that various agencies are willing to take, 
it becomes crucial to increase the reliability of data-guided decisions and make it more transparent.  

As already highlighted in the introduction, in designing the trigger models for the FbA there are multiple trade-
offs to consider (Figure 4), and (1) the timing of these actions is crucial. This selection will further influence the 
(2) scale of implementation on whether to wait longer for spatially accurate forecasts, or to increase the spatial 
coverage. However, this trade-off in time and scale cannot be isolated, since several other indicators such as the 
(3) choice of the forecast, (4) availability of historical datasets and risk information, and (5) the technique used 
to integrate these will affect the accuracy of loss predictions and the success of a trigger model. There is also an 
associated question on (6) the ease of validation and interpretability of the results.  

These are fundamental questions that many organizations are currently tackling to make the practice effective 
and sustainable, while very few empirical studies have been done on assessing the trade-offs. This research aims 

Figure 4 Conceptual framework 

Figure 3 Ways to evaluate the interpretability or explainability of a decision-making algorithm as described by 
Mittelstadt et al., (2019) 
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to quantitatively measure this based on the accuracy of impact predictions, made with various forecast 
timestamps for a historical typhoon event using two different impact-forecasting technique. It further intends 
to investigate how this accuracy will vary with different choices of trigger models and how can it be effectively 
communicated.   

1.3  Objectives 
1.3.1 Main Objective 
To evaluate two IbF trigger models based on (1) statistical and (2) elementary techniques, by retrospectively 
assessing their performance for Typhoon Kammuri (2019) in the Philippines, and while identifying dependent 
parameters for accuracy of damage estimation.  

1.3.2 Sub-objective and Research Questions 
1) To compare the input parameters of the two IbF trigger models 

1.1 What is the difference in the way hazard forecast and hazard history are integrated in the two trigger 
models, and converted to the required spatial and temporal scale?  

1.2 What is the difference in how the models incorporate physical and social vulnerability? 

2) To validate the performance of the two trigger models 

2.1 What is the impact of lead time on the performance of the two IbF models in predicting household 
damage? 

2.2 What is the impact of choices made in trigger thresholds and municipality prioritization, on the 
performance of damage prediction? 

2.3 What is the sensitivity of the two trigger models to changes in one of the predictors (in terms of hazard 
and vulnerability)?  

2.4 What would be the most adequate combination of threshold and lead time for each trigger model to 
trigger early action during the event? 

3) To compare the explainability of the models in terms of their transparency and post-hoc 
interpretation 

3.1 What is the level of transparency in the two models in terms of interpreting individual parameters, 
algorithm and prediction results?  

3.2 What is a suitable method to evaluate the choices and uncertainties in the models for a post-hoc 
evaluation through an interactive platform? 

1.4  Thesis Outline 
The chapters of this thesis are organized in the following ways: Chapter 2 gives a brief background of the study, 
diving into IbF in the context of the study area, particularly for typhoon hazards. This chapter also includes a 
literature review on approaches of IbF in two different trigger models. Chapter 3 outlines the methodology that 
was used for answering the research questions. Chapter 4 then presents the results obtained in each step. Chapter 
5 includes a detailed discussion and implications of the results, in context of the research questions. Finally, 
chapter 6 highlights the identified limitations and recommendation for future work and the concluding remarks.   
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2. CONTEXT OF THE STUDY 

When a forecast-based early action is considered for an area, there are multiple influential variables which differ 
as per the hazard type and local context. This section briefly looks into a few of these components to set up a 
mechanism for early action, focusing on Typhoons but also with relevant example of other hazards. Along with 
that, the theoretical framework of the two trigger models and background of the study area has been presented. 

2.1 Trigger Development for FbA 
 

As previously discussed in Chapter 1, the process of developing early warning and early action strategies has 
multiple stages, and different tools can be employed to achieve it, which is summarized in the Table 1. 

Table 1 Key components in the timeline of an early warning and early action system along with its scale and 
assessment methods 

Early Warning 
Early Action 
(EWEA) System 
component 

Subcomponent Spatial scale Temporal scale Assessment 
method 

Risk knowledge This involves gathering 
data on historical 
disaster impact, 
vulnerability, and 
exposure to examine the 
nature of past impacts. 
A detailed risk analysis is 
done to develop the 
trigger, but also to help 
in identification of 
suitable early action.  

The risk indicators are 
often taken at the smallest 
administrative unit 
available. But this is highly 
dependent on the 
availability of regional, 
national or global 
databases.  

Depending on the type of 
risk indicator, the effect of 
timeliness of the dataset 
varies. For example, 
topographic variables can be 
considered stable for a more 
extended period, compared 
to demographics such as 
population. The granularity 
of the intervention area also 
greatly influences the extent 
to which these dynamic 
variables impact the trigger 
model.  
 

Sensitivity 
analysis can be 
done to test the 
effect of data 
quality in terms of 
timeliness, 
accuracy, 
reliability of 
source and 
granularity (van 
den Homberg et 
al., 2018). 

Monitoring and 
warning 

Identification of suitable 
forecast providers is 
done based on its type, 
availability, reliability 
and frequency.  

The spatial scale of 
forecast often depends on 
the data provider, where 
national and regional 
forecasts have better 
resolution compared to 
global. In the context of 
Ibf, the forecast is 
converted to the desired 
spatial scale at which the 
early action is targeted, 
using different modelling 
and estimation techniques.  

Lead time: Differs based on 
the hazard type, from short-
term forecasting within 
minutes for hazards such as 
earthquakes, to a long-term 
forecast of years ahead for 
droughts or sea-level rise. At 
the same time, it also 
depends on the forecast 
capacity in place for a 
specific country or context 
(for example, Bangladesh 
has a shorter available lead 
time for tropical cyclones 
compared to the Philippines 
due to the differences in 
coastal geometry).  
 

Skill analysis of a 
forecast provider 
can be done by 
evaluating the 
average 
differences in 
forecasted versus 
observed event at 
various lead times 
over a time frame.  
On the other 
hand, verification 
of forecast is 
something done 
after an event for 
a case-specific 
evaluation.  

Impact Modelling Based on risk indicators 
and hazard forecasts, 
impact predictions are 
made. Method of 
modelling can include 

The scale at which 
predictions are made is 
often dependent on the 
granularity of available 
variables of risk indicators 
and impact history. The 

The regularity of impact 
modelling within an event is 
dependent on the frequency 
of forecast data distribution. 
Trigger models are often 
directly linked to the forecast 

Detailed skill 
assessment of the 
trigger model can 
be carried out 
based on 
historical forecast 
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expert-based, statistical, 
or elementary.  

scale is also determined by 
the modality of the trigger 
mechanism, which can be 
either targeted at an entire 
region of a country or at 
the smallest administrative 
level.  
 

database, and impact can be 
modelled as soon as new 
forecast information is 
available.  

and observation 
to see how often a 
trigger would be 
reached and the 
chances of acting 
in vain.  

Communication 
and dissemination 

While the impact 
forecasts are being 
monitored during an 
event, they are 
continuously 
communicated to 
relevant users. Once the 
impact has reached the 
pre-defined trigger, an 
implementation map is 
generated and circulated 
for prioritization of early 
actions.  

The scale of the EWEA 
message is relevant at the 
level for which intended 
actions are targeted. For 
example, some can be for 
subnational level, to alert 
local authorities for 
strategizing preparedness.  
There could also be alerts 
for the community to 
timely evacuate.  

The time for communication 
and dissemination of EWEA 
messages depends on the 
procedural aspects of 
information flow from the 
national to the local level and 
the type of communication 
channel used (radio, social 
media, TV, information 
portals etc.). 

Assessment of an 
effective EWEA 
message can be 
done through 
several qualitative 
evaluation 
metrics. For 
example, how the 
warnings were 
understood, if 
they reached the 
intended users on 
time, or what 
actions were 
taken based on 
the warning.  

Response Based on the impact-
based warnings and 
implementation maps, 
the pre-defined early 
actions are carried out.  

The scale of implementing 
early action (the number of 
households, population or 
area that can be covered) 
depends on what is 
needed, the budget 
available and the chosen 
thresholds.  
 

The implementation time of 
an action is the duration of 
time taken to carry it out.  

Action lifetime is the 
duration until which the 
preparedness measure will 
have an effect. For example, 
early harvesting of crops, 
once done, will remain 
relevant for an entire flood 
or typhoon season, whereas 
measures such as evacuation 
are short-term.  

Monitoring and 
evaluation can be 
employed for 
measuring to 
what extent the 
early action 
contributed to 
minimizing 
impact, which 
often requires a 
detailed study 
(Bischiniotis et 
al., 2020; Gros et 
al., 2019; Lopez et 
al., 2020).  

 

 

2.2 Typhoon Impact Forecasting and Validation 
A tropical cyclone (also known as a Typhoon or hurricane, based on their origin) is a rapidly rotating storm that 
forms above warm tropical water (Montgomery and Farrell, 1993). Once formed, the global wind circulation 
causes the cyclone to move, where it continues to enlarge until it reaches land and starts dissipating energy, also 
known as the landfall. This weakening of the storm after landfall is caused by the change in temperature over 
land due to the influx of cooler and drier air. In the context of IbF, the lead time of tropical storms is when the 
forecast of landfall is made prior to its occurrence. Cyclones have destructive properties associated with extreme 
wind, rainfall and storm surge, followed by cascading effects such as floods and landslides, causing on average 
43 deaths per day worldwide (WMO, 2020).  

Tropical cyclones are forecasted from their formation based on movement (track) and wind speed (intensity). 
The position of the storm centre gives the track, while the intensity is calculated based on the maximum speed 
it sustains in a specific time, usually calculated in knots (1knot = 1.85 km/hour). The tropical cyclone forecast 
changed drastically since 1960 when the first meteorological satellite, TIROS-1, was launched (U.S Weather 
Bureau, 1961). Today many numeric predictions models are used to predict how a tropical cyclone will develop 
and move after its formation. A deterministic forecast for tropical cyclones gives a single value for intensity and 
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path at different lead times. On the other hand, a probabilistic forecast can either be dichotomous with binary 
results of the event, or an ensemble forecast which gives the probability of exceeding a threshold value instead 
of one best estimate (Tóth and Zhu, 2003). Most of the models today use an ensemble forecast technique that 
allows better predictions for longer lead time with inclusion of uncertainties in the model and climatic patterns 
(Wilkinson et al., 2018). The uncertainty is represented by a cone in the track based on historical errors in the 
official forecast (NHC, n.d.).  

A global model predicts for the entire globe and can provide forecasts at a longer lead time than a regional 
model. In contrast, a regional model with a higher spatial resolution is specific to local geography, but is used 
only once the storm has reached a certain intensity. These models are either entirely statistically based on 
historical events, or statistical-dynamic, i.e. combined with environmental variables. Currently, there are 
numerous forecast providers, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) 
(Molteni et al., 1996), United Kingdom's Meteorological Office (UKMET) (Radford, 1994), National Centers 
for Environmental Predictions (NCEP) (Tallapragada, 2016), which have been in place for a few decades now. 
Over the years the forecasts have improved much more in terms of storm track prediction, compared to its 
intensity, as concluded by Heming et al., (2019). The mean track error for 3 to 5 days lead time in UKMET 
forecasts has reduced by several hundred km in the past 3 decades, whereas the positional error in ECMWF has 
reduced by almost half since 2008 (Heming et al., 2019). Modelling techniques have also improved in forecasting 
not only typhoon track and intensity, but also its associated extreme weather such as storm surge and rainfall 
(Chen et al., 2020). 

To convert these forecasts into impact-based warnings, timing and location of hazard are highly crucial, along 
with the exposure data. There needs to be a strong coordination between national meteorological and 
hydrological services (NMHS), who are responsible for providing timely weather warnings, and relevant agencies 
for vulnerability and exposure information (WMO, 2015). In 1980, the World Meteorological Organization 
(WMO) launched the tropical cyclone program (TCP) to increase coordination between local and global 
forecasters for effectively using tropical cyclone warnings to reduce its impact (WMO, 2021b). The warning of 
tropical cyclones is given in categories 1 to 5, based on different thresholds for maximum sustained windspeed 
that vary in space and time (WMO, 2015). These warnings are dissipated through an impact matrix along with 
a probabilistic map for typhoon track, intensity, and its likely impact. There are still hydrometeorological forecast 
uncertainties, such as storms that undergo rapid intensification or are slow moving, which limit the performance 
in these models (Grimes and Mercer, 2016).  

IbF for typhoons can be assessed in terms of materialization of forecasted event and the impact. The skill of a 
tropical cyclone forecast is given by the similarity in the forecasted storm path and intensity with the 
observations. The observed track and windspeed vary within agencies, as they use a different metric for 
calculation, and the International Best Track Archive for Climate Stewardship (IBTrACS) gives the mean 
location and intensity estimated (Knapp et al., 2010). There are several methods used for the spatial verification 
of forecasts depending upon the application (feature-based, scale-decomposition and neighborhood-based). 
Casati et al. (2008) demonstrate a detailed study of how verification of forecast methods has dramatically 
advanced in the last decades, from traditional techniques with limited observational parameters to more user-
specific and meaningful interpretations. Several studies describe statistical methods to quantify the economic 
value gained from a forecast to judge the value of forecast over its quality (Katz and Lazo, 2012; Mylne, 2002; 
Thornes and Stephenson, 2001). On the other hand, the validation of predicted loss is often done using the 
observed damage data collected after the event through various sources (Example: government repository or 
satellite-based damage assessment).  

In this study, the evaluation of IbF model performance is limited to verifying the predicted damage against the 
actual (observed) damage.  

 

 

 



 

9 
 

2.3 The Study Area 
 

After a brief context of different influential factors of FbA, this section will focus on understanding more of 
the study area. The typhoon in the Philippines was chosen as the case study for this research based on the 
country’s high susceptibility to disaster impacts, while also having good examples of preparedness strategies 
adopted for it.  

2.3.1 Disaster Risk Management in the Philippines  
As per the records of past 20 years, the Philippines ranks top 5 in  the number of disaster events globally, with 
typhoons being predominant (EM-DAT, 2022). Yearly, on average, 20 storms enter the Philippines Area of 
Responsibility (PAR), out of which 5 are destructive (Santos, 2021), and the frequency of such extreme weather 
events is expected to rise in the future (Masson-Delmotte et al., 2021). With the growth in urbanization, the 
impact from typhoons will also naturally grow, including associated risks of flood, storm surge and landslide 
due to heavy rainfall. Figure 5 shows a map of the Philippines and areas affected by typhoon Kammuri.  

As of 2005, the country’s disaster management policy was largely limited to response mechanisms, with minimal 
action before an event (Bank, 2005). After recent devastating events, in particular Haiyan (2013), Hagupit (2014), 
and Mangkhut (2018), the approach towards typhoon risk management in the Philippines largely shifted to pro-
active preventive measures, such as pre-evacuation (ADRC, 2018). A recent revision in the government policy 
has also permitted the local administration to use the response funds for preparedness, if 15% of population 

Figure 5 A map of the Philippines, highlighting areas affected by Typhoon Kammuri (2019) 
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are predicted to be impacted based on forecasts (Bierens et al., 2020). The National Disaster Risk Reduction 
and Management Council (NDRRMC), which is formed under the Philippines government in partnership with 
several other stakeholders, is responsible for coordinating all pre and post disaster activities in the country 
(NDRRMC, n.d.). The Philippine Atmospheric, Geophysical and Astronomical Services Administration 
(PAGASA) is a dedicated body for disseminating flood and typhoon advisories in the region since 1972 
(GOVPH, n.d.). The department of science and technology (DOST-ASTI, n.d.), functioning under the 
government, also works actively in conducting research and product development to support the resilience 
activities.  

2.3.2 Typhoon Early Action Protocol 
The preparedness strategies of the government were adapted to more evidence-based actions under the FbA 
framework of the Netherlands Red Cross, as Typhoon Early Action Protocol (T-EAP), in 2018 (PRC et al., 
2020). The primary implementation of the EAP (PRC et al., 2020) is done under the Philippines Red Cross 
(PRC) in partnership with the German Red Cross, Finnish Red Cross and 510- initiative of the Netherlands Red 
Cross. Currently, the EAP is targeted to support 19 regions that were identified to be at the highest risk, and 
targeted explicitly to smallholder farmers, the fishing community and houses made of lightweight material. The 
EAP is performed with three pre-identified early actions: providing temporary shelter strengthening kits, cash 
for an early harvest of crops, and support for livestock evacuation. Evacuation of people is not considered, 
because the Philippines government is believed to be already implementing this quite efficiently. Figure 6 shows 
an overview of the operational process in this trigger model. 

 The early action trigger in its first implementation was agreed at 10% or more houses predicted to be 
damaged, affecting at least 3 municipalities and at least 3 days before the expected landfall (PRC et 
al., 2020).  

Figure 6 An overview of the steps used in impact-based forecasting for Typhoon early action in the Philippines 
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 The damage predictions are made using a statistical impact model developed by 510, (2020). The global 
ECMWF ensemble forecast for track and intensity is used in combination of a parametric wind field model 
based on Holland, (2008) to calculate windfields per municipality. This is done using limited storm parameters 
(intensity, track, forward speed, and structure in terms of radius) and landfall locations; however, the terrain 
effect is not considered. These parameters from historical typhoon events are used to fit the profiles of wind 
and pressure, and then converted to estimated windspeed based on the centroidal position of municipalities. 
This estimated windspeed is then combined with several pre-disaster indicators, topographic variables, rainfall 
data and landslide susceptibility maps to train the impact model using historical impact data. Once PAGASA 
has issued a warning for an approaching typhoon, the 510 team runs an operational pipeline using forecasted 
typhoon parameters on the trained models. This process is run for every 6 hours forecast timestamp to 
continuously monitor if the impact level reaches the trigger threshold at least 72 hours before the expected 
landfall. 

 

2.3.3 Typhoon Exposure and Vulnerability 
The exposure to typhoons in terms of their frequency and the susceptibility to impact differs spatially across 
the Philippines. Figure 7 shows the four super regions of the county divided from an economic standpoint 
(LawPhil, 2009), and the section below discusses their exposure and vulnerability in terms of typhoons, based 
on the community risk assessment dashboard (510 Global, 2022) which can be found in Annex 1.   

Northern Luzon Agribusiness Quadrangle: Experiences a very high frequency of typhoons every season. 
Population density is, however, comparatively lower than Metro Luzon. The house types are mostly of solid 
roofs and walls, making them more resilient to wind damage, and fewer people below the poverty line or 
belonging to the dependent age group. It also has a relatively higher coping capacity.  

Figure 7 Map showing the four super regions of the Philippines categorized based on economic standpoint 
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Metro Luzon urban beltway: Higher population density and higher frequency of typhoons, but the social and 
physical vulnerability is less, coupled with higher coping capacity. However, the island of Mindoro (as 
highlighted in Figure 7) does not share the exact characteristics of higher social and physical vulnerability, even 
though it belongs to Metro Luzon (Annex 1).    

Central Philippines: This region also experiences a very high number of typhoons. The physical and social 
vulnerability is higher than in Luzon, but it still has a better coping capacity than Mindanao. 

Mindanao: This region is exposed to relatively fewer storms every year, but has houses with weaker wall 
construction material and a significantly high number of people rank low in terms of social vulnerability.  So 
even with a lower wind intensity, the region gets easily affected.  

The damage due to wind on a house structure can be primarily attributed to the construction material. A detailed 
damage assessment report from Build Change for each house type after the devasting Typhoon Haiyan was 
conducted in the Bohol province of the Central Philippines (Build Change, 2014). The study findings highlight 
that most houses built with timber were blown away. Those made using a reinforced concrete frame had the 
walls intact with relative damages in other sections. Structures constructed with confined masonry were seen to 
have performed better than other designs in terms of impact. A similar classification has also been done by 
Pacheco et al. (2014) while creating a vulnerability curve across the Philippines for different housing types. Both 
the studies highlight the importance of solid wall material to prevent the impact of strong winds. 

 

2.3.4 Lessons from the past 
Different typhoon events of various characteristics that the Philippines has experienced in the past can be seen 
as an example of the complexities involved with this hazard, which needs to be considered for effective 
preparedness.  

Case under study - Typhoon Kammuri (2019) 

For this research purpose, Typhoon Kammuri in the Philippines was used as a case study, as this was the first 
time when the T-EAP was triggered and also has a detailed documentation of its implementation strategy. 
According to the report of NDRRMC, the typhoon, locally known as Tisoy, entered the PAR on 30th 
November and made its first landfall on 2nd December in Sorsogon province of the Central region (NDRRMC, 
2019). The report further suggests that it made 3 other landfalls the next day before leaving the area, followed 
by intense rainfall and flooding, affecting close to 2 million people.  

The T-EAP, which was still under review, was tested for the first time during this event. The 510 team started 
monitoring the event 120 hours before the landfall, when the first impact map was released (Figure 8) and 
updated every 6 hours (IFRC, 2020b). The trigger was reached 81 hours before landfall, predicting four 
municipalities exceeding the threshold, out of which two were selected for piloting the early action. Even after 
the trigger, 510 continued sending the impact prediction maps every 6 hours to support monitoring and planning 
for the event (510, 2019). The EAP supported the community through livestock evacuation, early harvesting 
and shelter strengthening. The damage predictions were limited to within 100 km from the forecasted track, 
which deviated considerably within 24 hours after the trigger. A post-event review of the EAP suggested that 
even though the trigger was reached within the expected lead time of 72 hours, the area of target could have 
been widened more (IFRC, 2020b). 
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Dealing with unexpected events 

Research has shown that around 31% of tropical cyclones undergo a rapid intensification (RI) once in their 
lifetime (Kaplan and DeMaria, 2003). There is no single agreed definition, but most widely a storm is believed 
to go through RI when its intensity change in 24 hours is similar to the 95 percentiles of typhoons studied over 
a time period. The incidence of such storms in the past decades has been increasing, which has commonly been 
attributed to climate change (Masson-Delmotte et al., 2021).  

The impact models heavily rely on hazard forecast accuracy and cannot perform better than that. For the 
research community currently, the biggest challenge in forecasting such events is identifying characteristics that 
distinguish the RI and non-RI storms (Grimes and Mercer, 2016). One of the reasons why current forecasts 
cannot locate such anomalies is the relatively low number of RI events for the forecasting models to learn from.  

A rapid intensification also has an additional effect on the impact itself, which is not only because of stronger 
windspeed, but because the information does not reach the people in time. During Typhoon Goni (2020) in the 
Philippines, the storm, which was initially identified as a tropical depression, went through rapid intensification 
only a few hours before the landfall, which meant that the model could not predict it with enough time for early 
action (The Philippines Humanitarian Country Team, 2020). The shock due to these storms is usually more 
intense when they occur in a less active season (December to February), also commonly termed a Christmas 
Typhoon. The most recent example of this is Typhoon Rai. In the past decade, the Philippines has seen a 70 % 
increase in such occurrences in the Western North Pacific (Basconcillo and Moon, 2021). The study reveals that 
even though the annual cost of typhoon damage in the Philippines has reduced after Haiyan, this is not true for 
those occurring in less active seasons. Additionally, some storms are slow-moving and bring intense rainfall 
followed by floods and landslides. The tropical storm Tembin in 2017 that affected Southern areas of the 
Philippines (IFRC, 2017) is a good example. It becomes crucial to weigh these complexities of storms and the 
unique nature of their impact, during the planning of FbA.  

 

Figure 8 Implementation map with predicted damage at municipality level, that was 
circulated before typhoon Kammuri to prioritize municipalities for early action. 

(Source: 510) 
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A recent example - Typhoon Rai (Odette) - 2021 

Typhoon Rai is a very recent example of a devastating super typhoon to hit the Philippines in the December of 
2021, which underwent rapid intensification. The effect due to this typhoon is believed to be comparable to 
that of typhoon Haiyan (2013) in terms of infrastructural damage and number of provinces affected. According 
to the internal reporting from the team of 510, the impact model did not reach its expected trigger before 72 
hours of lead time, but continuous monitoring of impact was done until the typhoon made landfall. The 
retrospective map suggested that the trigger would have reached at a later lead time of 36 hours, but this would 
not be enough time to carry out targeted interventions under the DREF framework. The humanitarian 
organization Oxfam was able to support 2600 families with cash support under their B-READY project, with 
which they are piloting the impact of digital cash transfer before the typhoon to the most vulnerable groups 
(OXFAM, 2021).    

A local humanitarian expert present in the field during the event was consulted to understand the forecast time 
dilemma for early action (Olaf Neussner, Personal Communication, January 18, 2022). Even though the 
institutionalized FbA mechanism failed due to an unexpected turn of events, the early action in terms of 
evacuation did take place, with a timely warning from the government. However, the practicality of taking the 
actions in time less than 72 hours seems very difficult, according to him. Firstly, the logistics of transporting 
materials for shelter will take time, especially in remote locations, and a lot of ship transportation is also closed 
near the landfall time. Once transported, it also needs to be brought to individual houses and put to use. Still, a 
more community-driven activity, such as a cash transfer carried out by Oxfam, can be feasible in time closer to 
the event, and people can utilize this money to buy materials from their local stores to strengthen the houses  
Yet, the effectiveness of cash-based support in minimizing impact, still remains mostly unexplored (Willitts-
King et al., 2020). 

Strengthening Data Capacity  

In 2012, the government of the Philippines launched the Nationwide Operational Assessment of Hazard 
(NOAH) program to assist in getting a timely warning for approaching floods with the help of WebGIS tools 
(Langmay et al., 2017). This was a significant step by the government in terms of obtaining risk maps and 
conduction hazard modelling to support early warning.  However, during Typhoon Haiyan in 2013 it was 
realized that the quality of data was not sufficient to incorporate the variability in the landscape, which resulted 
in unforeseen impact due to storm surges. As learning from this event, project NOAH created various storm 
surge hazard maps which are currently used at the national level for evacuation planning (Lagmay and Kerle, 
2015). Along with that, the government also funded a project for nationwide lidar mapping, which has assisted 
in producing a more localized hazard map and can be requested through the LiPAD portal4. Additionally, several 
risk assessment platforms5 6 are under development to support real-time decision making. This is evidence that 
the government of Philippines has been very progressive in handling disaster events by building a strong data 
capacity.  

 

2.4  An Alternative Trigger Model 
 

Currently, under the DREF there are 3 fully approved EAPs for wind-related hazards. One of them is for the 
typhoon in the Philippines, which was discussed in section 2.2.2, and one another EAP is for cyclone early 
action in Bangladesh. The trigger model for this EAP was found to have been developed using a different 
approach as compared to T-EAP, which is demonstrated in the sections below.  

 

 
4 https://lipad.dream.upd.edu.ph/ 
5 https://hazardhunter.georisk.gov.ph/map# 
6 https://geomapper.georisk.gov.ph/ 
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2.4.1 Background of the region 
Bangladesh lies in the junction of three major river systems and north of the Bay of Bengal, which is known as 
a hotbed for the most catastrophic tropical cyclones. The country which experiences around four cyclones every 
year is identified as highly vulnerable to it contributing to the most number of causalities from cyclones 
worldwide (Saha et al., 2014). The Bangladesh Meteorological Department (BMD) is responsible for the forecast 
of formation and movement of cyclones in the region and for providing timely warnings to the community. As 
of 2015, the warning of BMD were not executed into effective actions such as evacuation, as concluded by Roy 
et al., (2015). Factors such as the unreliability of forecast, ambiguity in warning message, unmanaged and 
inaccessible evacuation centers were the main reasons why people refrained from acting on warnings. A study 
by Tanner et al., (2019) also point out that the warnings of BMD are not very user-oriented. Recently many 
humanitarian agencies such as FAO and IFRC have been supporting the Bangladesh government in 
institutionalizing early actions for typhoons and floods. 

2.4.2 Cyclone Early Action Protocol 
Also funded by the DREF, the Cyclone Early Action Protocol for Bangladesh, which subsequently will be 
referred to as C-EAP, was approved in 2018 (BDRCS et al., 2021). This EAP, which is targeted on 13 out of 16 
coastal districts, is carried out at the community level through distribution of food, water, first aid and support 
for evacuation of people and livestock or other assets. The actions are carried out based on pre-defined hazard 
thresholds with the minimum expected lead time of 30 hours. Employing the learnings from cyclone Amphan 
(2020), the EAP has recently been revised and now includes global forecasts with a longer lead time to allow a 
preparatory phase at least 72 hours before the event. However, according to an expert from the development 
team of this EAP (Dr. Ahmadul Hassan, Personal Communication, January 17, 2022), within this lead time, the 
intervention is possible only at a community scale, and it is too late to implement activities such as individual 
cash transfer.  

Figure 9 An overview of the steps used in impact-based forecasting for cyclone early action in Bangladesh 
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As shown in Figure 9, forecasts from BMD, ECMWF, India Meteorological Department (IMD) and Global 
Forecast System (GFS) are used in this trigger model, and employs a relatively straightforward method for 
impact predictions, combining damage curve and composite index. The trigger is activated when more than 125 
km/hr of wind speed is expected at landfall in Bangladesh. Once activated, a map with predicted windspeed is 
prepared for the union level - the smallest administrative division. Bangladesh does not have a long term record 
of cyclone intensity and frequency, limiting the analysis of historical data for wind estimation (Fakhruddin et al., 
2022). Currently, this estimation is made by generating a wind speed reduction factor (Figure 10), where 20 field 
observations of reduced wind speed are plotted against the distance from landfall. Once the expected windspeed 
is obtained, the impact is predicted with the help of damage curves that have been prepared using one historical 
event and a simulation done on buildings for identifying damage at different wind speeds. All the unions 
expected to have at least 25% of houses completely damaged are considered for the intervention. However, due 
to limited capacity, the unions are then prioritized based on a vulnerability index that is calculated by a weighted 
overlay method.    

 

2.4.3 Comparison of the two trigger models  
The literature above clearly demonstrates that the two trigger models, T-EAP and C-EAP, have significant 
differences not only in the modelling method of impact but also in the modality of operation (Figure 6 and 
Figure 9). The differences between the two, based on different indicators, are listed in Table 2 below.  

Table 2 A comparison table between C-EAP and T-EAP in Bangladesh and the Philippines, respectively, in terms of 
different indicators influencing the implementation of early action 

 C-EAP (Bangladesh) T-EAP (Philippines) 

Minimum Lead Time 72 hours+ pre activation 
30 hours+ activation 

72 hours 

Activation Budget 177,405 Euro 242,040 Euro 

Target 40000 people 
All sea-facing unions (the smallest 
administrative unit) 

1275 – 1950 households 
Municipalities from 19 chosen provinces 

Forecast for pre-activation When BMD raises signal 4 warning OR any of 
the two agencies (BMD, IMD, ECMWF, 
GFS) forecasts the windspeed to exceed 125 
km/hr 

- 

Forecast for activation BMD raises danger signal no. VII (out of 11 
signals) or forecasted windspeed from 
BMD/IMD to exceed 125 km/hr 

PAGASA informs a typhoon to have entered 
PAR 
Probabilistic forecast ECMWF at different 
timestamp used for models 

Accuracy of forecast - track Roughly the error in track is 100 km in 30 
hours lead time with 3 hours error in the time 
of landfall. Based on cyclone Amphan, 50-250 

Avg error of 110 km in 24 hours lead time 
and 210-300 km in 48-72 hours lead time 

Figure 10 The reduction factor curve that was built using cyclone observations in Bangladesh and is 
currently used for the operational trigger model for cyclone early action (BDRCS et al., 2021) 
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km error for 48-72 hours lead time and 50km 
for 24 hours lead time  

Trigger Activation (When) If windspeed greater than 125 km/hr is 
forecasted at landfall 

If predicted damage exceeds 10% for at least 
3 municipalities 

Intervention area (Where) Unions with damage exceeding 25% and with 
priority ranking based on vulnerability index 
(as many as possible) – capacity of 40000 
people 

All municipalities identified with more than 
10% damage 

Windfield calculation Reduction factor for wind surface velocity 
(single value) based on the distance of union 
centroid from landfall using 20 ground 
observations 

Calculates radial profile of wind based on 
historical data on several wind parameters 
using Hollands 2008 parametric modelling 

Impact calculation Based on 3 damage curves (for western, 
eastern and central region) constructed using 
one historical cyclone and adapted for two 
different house construction type 

Typhoon impact model based on machine 
learning algorithm using several explanatory 
variables (related to social, physical 
vulnerability, geography and weather) with 
damage history from 37 typhoon datasets 

Frequency of impact 
calculation 

Just once when the trigger level is reached  Every 6 hours when the storm enters the 
PAR until the trigger is reached 

 

 

3 DATA AND METHODOLOGY 

After briefly introducing the study area and describing the principle behind the two IbF models for tropical 
cyclones, this section will explain the method employed to answer the research questions and the supporting 
data used.  

3.1 Methodological Overview 
The foundation of this research was based on evaluating the performance and explainability of models that are 
operationalized for triggering early action before an imminent crisis.  This was done using two different impact 
modelling approaches and testing their prediction accuracy under different scenarios. The first method was the 
machine learning model used by 510 for informing early action during typhoon Kammuri in the Philippines. 
The method was in section 2.2.2. and will from here on be referred to as the statistical modelling. The second 
approach used was the method of impact prediction for cyclone early action in Bangladesh, discussed in section 
2.3.2. Through literature, it was identified that this method uses a combination of damage curves and composite 
index for impact predictions, and will be referred to as an elementary modelling. Figure 11 demonstrates an 
overview of how the research was carried out, and Annex 2 lists the sources of the dataset and model codes. 

Figure 11 Overview of Research Design 
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In the first stage, all the input and damage dataset for the study area was prepared, which was used in the impact 
models and to validate predictions. The performance of the statistical model was tested on baseline conditions 
and on improving the quality of the demographic variables using the observed weather data. Following that, the 
damage predictions made during Kammuri at different lead time hours before the event (forecasted weather) 
were tested for accuracy. In the case of the elementary model, if the evaluation was done based on its 
performance during a cyclone event in Bangladesh, it would be rather challenging to benchmark the two models 
against each other. Hence, this modelling approach was adapted for the Philippines and tested on the same 
event - typhoon Kammuri.   

Comparing the prediction results from the two, primarily the effect of data availability and method complexity 
on the predictions were tested. At the same time, the integration of risk indicators in both methods was assessed 
to interpret the model performance and discuss their transparency. To achieve that, an interactive decision 
support tool was built, intended as a prototype for practical interpretation and evaluation of IbF models. The 
following section describes in detail how each of these steps were achieved.  

 

3.2 Statistical Impact Model  
 

3.2.1 Model setup and input variables 
Currently, the statistical model is based on the historical damage dataset of 37 typhoons recorded in the 
Philippines. This is used as the target variable, which in the context of machine learning is the variable expected 
to be modelled or predicted. Along with that, there are multiple explanatory variables related to social and 
physical vulnerability, topography, and weather parameters. An explanatory variable assists a model in finding a 
trend in the target variable to make predictions. The variables relating to household and vulnerability are used 
as a percentage of total instead of absolute numbers in the model input. The trained impact model is fed into 
an operational pipeline, where it automatically pulls the forecasts of an approaching typhoon and emails the 
prediction results to the concerned authority, as illustrated in Figure 12. The codes for the model were retrieved 
from the public repository of Red Cross and run locally using the docker platform.  

All the input variables for the model require a unique I.D. (P-codes) to link the datasets and extract new 
information (more information can be found in Annex 3).  

Damage dataset 

The target variable used in the impact model, the actual reported damage data, is collected by the Philippines’ 
government and circulated through NDRRMC. For the model input, 510 already has compiled this dataset for 
37 different historical typhoons, and it was mostly used as-is in this research. During the communication with 
developers of the model, it was found that the extraction of these damage data is partly automatized, but also 
requires manual correction. Consequently, for typhoon Kammuri, which was the case being looked at in this 
research, this information was re-generated from the raw data of NDRRMC. The reason for doing this was to 

Figure 12 Workflow of the statistical impact model 
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increase reliability in the actual damage data, which is crucial for calculating the accuracy metrics of the two 
model predictions.   

The ground truth data for household damage caused by Typhoon Kammuri were circulated through situational 
report no. 19 at the municipality level (NDRRMC, 2019). As a mandate of this EAP, the impact is considered 
as number of houses ‘totally damaged’ in a municipality. The data by NDRRMC are provided in a tabular form 
(Figure 13) in a hierarchical order of region, province, and municipality. The only form of identification, in this 
case, is the name of the municipality.  

While investigating the dataset, it was found that extracting the P-codes directly based on municipality names 
raises multiple concerns. One of the problems is that the names of region, province, and municipality are 
inconsistent and do not match within multiple datasets. Another issue is that of duplication, where many 
municipalities have the same name but lie in different regions and provinces. (Examples can be found in Annex 
3) 

Considering this, a two-step process was employed where all the mismatches in names were first manually 
corrected to have a uniformity in naming convention. After that, a unique I.D. was created with a combination 
of each administrative name in both the datasets (municipality name + province name + region name), using 
which the P-codes were assigned for linking. This avoided any source of miscalculation due to duplication in 
names. Once these damage data were obtained, it was cross verified with the operational dataset being used in 
the statistical modelling, the results of which will be discussed in Chapter 4.  

Household dataset 

Another set of data used in the model as an explanatory variable is the number of households in each 
municipality segregated based on roof and wall construction materials. Currently, the historical events in use 
range from 2006 (Typhoon Durian) to 2020 (Typhoon Goni). However, the pre-disaster variables associated 
with household numbers are based on the official census conducted in 2015. The timeliness of dataset, in terms 
of how often it is updated, is a relevant test for quality of model input (van den Homberg et al., 2018). As this 
study intends to test the effect of data quality in impact predictions, the household number was replaced with 
statistics based on census closer to the event date as explained below.   

The census in the Philippines is conducted every five years, and since 2015 it has been administered by the 
Philippines Statistical Authority (PSA, n.d.). The dataset for the official population of three different years (2010, 
2015 and 2020) was retrieved from PSA, (2021), and each Typhoon event was assigned values from the closest 
census possible (Table 3). An issue of duplication and non-uniformity in the municipal names was found in this 
dataset as well. Considering that, while assigning the P-code, a similar approach for unique ID generation was 
utilized in combination with manual correction, as discussed earlier in this section.  

 

 

Figure 13 A sample section of the situational report of NDRRMC, which lists total damages recorded at the 
individual municipality level 
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Once the population statistics for the different years were obtained, the next step was to generate the total 
household number for each municipality segregated based on construction material. For this, the relation 
between population to household numbers for 2010 and 2020 had to be generated based on existing statistics 
from 2015. There is a possibility that major events such as typhoon Haiyan could have been a catalyst in bringing 
significant changes in construction practices over a decade. This would mean that the distribution of houses in 
categories of construction material may be different in 2020 as compared to 2010. For this reason, stakeholders 
working in the reconstruction programs in the Philippines were consulted. Through them, it was confirmed that 
there is minimal change in construction behaviour due to several reasons: no national programs effectively 
promote disaster-resilient construction, implementation of the building code is very poor, and low-income 
families rely on cheap and poor-quality materials (Build Change, Personal Communication, January 31, 2022). 
A surge team deployed after Typhoon Odette in the Philippines also confirmed, that the biggest challenge in 
the field is the message of building back safer not being incorporated well during response activities. Instead of 
a safer choice, the homeowners opt for a faster way of rebuilding their houses (510 Internal Reporting, March 
17, 2022). An assumption was thus made that the number of houses in each construction typology has remained 
largely similar over the decade. Therefore, the distribution of roof and wall type for 2010 and 2020 was obtained 
by interpolation from the existing statistics of 2015.  

3.2.2 Performance Metrics 
Once the dataset was prepared, the model was evaluated for two scenarios: existing conditions and a modified 
dataset based on section 3.2.1. The model works on the binary classification of municipalities based on the 
percentage of damage noted in the trigger threshold. This existing architecture was used for the research, making 
changes in the script where required. Two optimised machine learning algorithms are currently utilized for 
impact prediction: Random Forest and XGBoost. Both of these algorithms are tree-based methods designed 
for regression and classification problems (Breiman et al., 2017). The optimised hyperparameter generated using 
K-fold cross-validation was applied to the validation set to test the accuracy. Three accuracy metrics were used 
for evaluating the results, defined as the following:  

 

 Precision = 
|்௉|

|்௉|ା|ி௉|
          Recall = 

|்௉|

|்௉|ା|ிே|
           F1 = 

ଶ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
 

 

 

 

A precision score is based on the classification, and shows, out of all the predictions of the model, how many 
are actually true. On the other hand, a recall score is based on ground truth and shows the ability of the model 
to identify the municipality with actual damage. An F1 score represents the harmonic mean of precision and 
recall and can be used to assess the trade-off between the two.  

The operational pipeline can be run automatically once the Typhoon has entered the PAR, starting by retrieving 
forecast information from the ECMWF database. In case when there is no active typhoon, the forecast 
information is extracted from a remote directory where ECMWF stores predictions for past storms. However, 

Year of Typhoon Event Year of Census 

2006, 2008, 2009, 2010, 2011, 2012 2010 

2013, 2014, 2015, 2016 2015 

2018, 2019, 2020 2020 

Table 3 A list of years when different Typhoons existing in our dataset made landfall and the census data assigned 

T.P. True Positive 
TN True Negative 
FP False Positive 
FN False Negative 

Figure 14 Accuracy metrics for testing the performance of the models based on the actual and classified damage 
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this information is only stored for a duration of 180 days, which meant that for typhoon Kammuri, this dataset 
was unavailable limiting our ability to test the model performance on forecasted windspeed. In that case, for 
comparison purpose with the elementary model, the existing database for predictions made during Kammuri in 
2019 were used.   

 

3.3 Elementary Impact Model  
 

As already discussed above, an elementary technique used in Bangladesh was adapted for the study area (the 
Philippines) and evaluated for a historical event. Figure 15 shows an overview of four major steps taken in 
preparation of the trigger model on the basis of model description given earlier in Figure 9.  

 

3.3.1 Trigger Identification  
The first step for this elementary modelling technique is to identify the hazard threshold above which the early 
action would be triggered. The example case of Bangladesh uses a trigger of 125 km/hr of windspeed predicted 
during the landfall. As per the IFRC mandate, an event is defined as extreme when it has a return period of 5 
years, or has a 90th percentile of magnitude in all historical scenarios (IFRC, 2020a). This is considered the point 
where substantial damage can occur, and this way, an EAP is expected to be activated at least once every five 
years, which otherwise is revised.  

To identify this trigger value, a study on return periods of typhoons done by Espada, (2018) was referred to. 
The study looks at all the major storms in the Philippines in the last 45 years, and investigates the maximum 
sustained wind and minimum central pressure at different return periods, along with damage and death counts. 
Based on this literature, the one in 5-year return period maximum sustained wind and the 90th percentile of all 
windspeed in that time frame was identified. The threshold of hazard for triggering action was then considered 
to be the minimum of the two values.   

Alternatively, C-EAP also starts monitoring, as a pre-activation stage for EAP, when BMD raises a level 4 
warning, which is defined as: “The port is threatened by a storm, but it does not appear that the danger is as yet 
sufficiently great to justify extreme precautionary measures.” - (BMD, 2014). A similar warning level was 
identified for the Philippines based on PAGASA’s recently revised wind warning signals (PAGASA, 2022). This 
warning level was concluded to be the pre-activation stage at least 72 hours before the predicted landfall to plan 
and implement any preparatory actions that can support in the later stage.  

 

3.3.2 Windspeed Reduction Curve 
Once the hazard is identified, the next step is to develop a factor to estimate the wind speed experienced at each 
municipality level: the intervention scale.  The reduction factor in this case is defined as the fraction of 
windspeed that is felt at a certain distance in comparison with that reported at the landfall location.  

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 𝑓𝑟𝑜𝑚 𝑙𝑎𝑛𝑑𝑓𝑎𝑙𝑙 =
஺௖௧௨௔௟ ௪௜௡ௗ௦௣௘௘ௗ ௥௘௣௢௥௧௘ௗ ௔௧ ௟௔௡௙௔௟௟

ை௕௦௘௥௩௘ௗ ௪௜௡ௗ௦௣௘௘ௗ ௔௧ ௗ௜௦௧௔௡௖௘ ௫ ௙௥௢௠ ௧௛௘ ௟௔௡ௗ௙௔௟௟
   (1) 

Figure 15 Steps in preparation of an elementary trigger model 
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Wind Observations:  

The actual (1-minute averaged) windspeed reported for different typhoon event was obtained from IBTrACS. 
The observations for wind that reached different location were taken from ASTI-DOST, (2022), which has 
deployed 255 automated weather stations (AWS) across the country for measurement of various parameters, 
including wind speed. ASTI also uses an automated quality control system to ensure consistency in crucial 
elements such as the range and spatial correctness of these datasets, since they are being used in very sensitive 
decision support, such as disaster risk (DOST-ASTI, 2018). 

To construct the reduction factor curve, observations had to be taken from stations at various distances from 
the landfall location, and at a time very close to when the landfall occurred. For this purpose, the observations 
were made for multiple typhoons with different intensity and landfall regions to have a better generalization 
capacity (Figure 16). Though these wind observations are publicly available for use, an issue to note is that the 
datasets are not in a downloadable tabular format, which would have allowed a faster retrieval. Given that, the 
stations had to be individually examined for records around the landfall time. While compiling this dataset it 
was also found that there are very limited stations that are close to the landfall, and some of them have missing 
records during the day of the storm. The stations were initially deployed in 2010, but it was found that many of 
them have stopped operating for the past few years, and some have gaps in between. A total of 45 observations 
were collected for nine different historical typhoons for the construction of reduction curve.  

 

The geo-coordinates of observed landfall are not available in any of the repositories. Hence, manual extraction 
was done by intersecting the typhoon path (Knapp et al., 2010) with the coastal boundaries of the country. The 
locations were then cross validated with the names of municipality where the landfall was reported, and 

Figure 16 A map of the Philippines representing the location of automated weather stations and 
historical typhoon landfall locations used for constructing the reduction factor curve 
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adjustments were made accordingly. The shortest distance between each observation station to the 
corresponding typhoon landfall was then calculated in ArcGIS software.  

Normalization of Observations:  

Since the observations are taken from multiple stations, factors such as the exposure at the site, the elevation 
where it is placed, and averaging time of windspeed, may affect the value of recorded observations. To normalize 
this value, the approach of Powell et al., (1996) was adopted, which describe a method to correct these 
differences and obtain a common framework for usage. 

The normalized observation is given by the following equation and explained in Figure 17:  

௎ଵ଴

௎௭
= ln ቂ

ଵ଴ି௓ௗ

௓௢
ቃ /ln [

௓ି௓ௗ

௓௢
]   (2) 

Uz = 10mins sustained mean wind measurement at   
a height z 

U10 = Wind speed at 10m height 

Zd = 75% of the height of the blocking object (H) 

Zo = Roughness coefficient (range 0 – 1)  

Z = Elevation of the station from the mean sea level 
  
The first step was to adjust the measurement to a 10m elevation from sea level. In an implementation of this 
method, Powell et al., (2010), consider ‘Zd’ to be 0, unless there is very poor exposure at the site, and the same 
was adopted for this research. The study also describes the surface roughness (Zo) as a subjective estimation, 
based on satellite images of the area where the stations are placed, and a quantitative method to do that is 
provided by Wieringa, (1992). A visual inspection in Google Earth imageries was done for all 45 stations and 
their surroundings to make an estimation of the roughness coefficient for each. It was also ensured that the date 
of the historical imagery referred to was around the same time as that of the event date. Using equation (2), 
windspeed adjusted to 10 meters height was obtained. The literature also suggested the observations to be 
converted to 1-min sustained wind speed which was done by multiplying the observation by in land conversion 
factor of 1.21 as per WMO, (2010).  

Using the normalized observed windspeed and the actual windspeed at landfall, a reduction factor was computed 
for all 45 observations using equation (1). Finally, a windspeed reduction curve was then obtained by plotting 
this reduction factor against the distance from its corresponding landfall. Along with that, the resulting curve 
was also evaluated against the one built for C-EAP (Figure 10). This will be discussed in the result section 4.3.2.  

 

3.3.3 Damage Curve 
The next step was to obtain a damage curve that employs an empirical method of understanding the physical 
vulnerability based on historical damage statistics and its relationship with wind magnitude at each municipal 
level. The C-EAP uses the impact data only from one historical cyclone based on a very intensive field survey 
of the damage. For the Philippines, there exists a considerable amount of past impact ground truth information, 
as explained in section 3.2.1. Using that dataset, the percentage of damage for each municipality per event was 
calculated.  

Percentage of damage =  
୒୳୫ୠୣ୰ ୭୤ ୦୭୳ୱୣୱ ୤୳୪୪୷ ୡ୭୪୪ୟ୮ୱୣୢ ୧୬ ୑୳୬୧ୡ୧୮ୟ୪୧୲୷ ଡ଼

୘୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୦୭୳ୱୣୱ ୧୬ ୑୳୬୧ୡ୧୮ୟ୪୧୲୷ ଡ଼
  (3) 

For each event, the actual wind speed experienced at the municipal level was then estimated based on the factor 
of windspeed reduction obtained in section 3.3.2. The distance from the centroid of each municipality to the 
landfall location was calculated for that purpose.  

Figure 17 An illustration to describe the 
parameters used for normalizing the windspeed 

of AWS 
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Windspeed in municipality X = Factor of windspeed reduction * Maximum Windspeed at landfall  (4) 

Before constructing the damage curve, the aggregation of damage in different categories was done to have a 
better fit in the estimations.  

Categories for Damage Curve 

The vulnerability and typhoon exposure in the Philippines was discussed in section 2.2.3 based on the 
classification of super regions. It was observed that the four areas have stark differences in terms of the number 
of typhoons they experience, and also the extent of the impact. Consequently, an individual damage curve was 
prepared for each of these four regions to account for the differences.  

From the literature it was also noted that even though the super regions follow a general characteristic, there 
are still areas, such as Mindoro, that do not follow the same trend in terms of vulnerability. To account for the 
differences in physical vulnerability, another classification was made on the basis of construction material used 
to build houses. For C-EAP, a detailed model simulation was done to test different typologies of houses, and at 
what wind speed they entirely collapse. Since doing that was not feasible in this research, the classification was 
obtained based on literature, which has also been described earlier in section 2.2.3.  

Through the works of literature, it was observed that the material used for the wall construction in a house is 
very crucial in determining its likely impact level. Considering this, the houses with stronger wall type were put 
in a less vulnerable category, and everything else was assigned as highly vulnerable, as shown in Table 4. The 
housing unit data for the Philippines are consolidated at the municipality level, and there is no damage 
information available for individual houses. Hence, a sum of house types in each municipality was calculated in 
the two damage likelihood classes, and they were assigned a value of the majority class. This way each 
municipality had a corresponding damage curve based on its region but also the predominant house construction 
type.  

Table 4 A list of house categories (based on construction materials) and the vulnerability class assigned to it for the 
damage curve 

House type Damage likelihood 
Strong Roof/Light Wall 

Highly vulnerable  

Strong Roof/Salvage Wall 
Light Roof/Light Wall 
Light Roof/Salvage Wall 
Salvaged Roof/Light Wall 
Salvaged Roof/Salvage Wall 
Strong Roof/Strong Wall 

Less vulnerable  Light Roof/Strong Wall 
Salvaged Roof/Strong Wall 

 

The percentage of damage were plotted against their corresponding wind speed after which a best fit line for 
each category was generated using a linear model function in R programming. A total of 12 different damage 
curves were obtained: 4 per region with 2 damage likelihood class and one overall curve. The trend of these 
curves in each category is reflected upon in section 4.3.3.  

 

3.3.4 Vulnerability Index 
In the final step of this trigger model, there needs to be an assessment of the vulnerability index which will be 
used to prioritize the areas for intervention. This index was generated based on a weighted overlay method 
where multiple indicators and the quantification of the relative importance of each can be used for decision 
making (Greco et al., 2018). The datasets for the indicators were prepared as explained below: 
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Poverty: Poverty incidence is defined as “the proportion of families/individuals with per capita 
income/expenditure less than the per capita poverty threshold to the total number of families/individuals” 
(PSA, 1997).  

Vulnerable Age Group: This was defined as a sum of the number of people in a municipality that belong to 
the following category – Child headed, solo headed, disabled, single parent, or older population.  

Evacuation Center: Based on the total number of evacuation centers in each municipality and assuming a 
capacity of 10000 per center, the unserved percentage of the population was calculated.  

House Typology: This was defined with a similar approach as explained earlier in section 1.3.3; however, 
classified into four instead of two categories. Each category of houses was given different weightage (adapting 
the C-EAP) in terms of their vulnerability to different wind speeds. The index was the sum of houses in each 
category within a municipality, multiplied by its corresponding weightage as shown in Table 5.  

Table 5 A list of house categories based on construction materials and the corresponding vulnerability class with weights 
assigned for physical vulnerability index calculation 

Vulnerability to wind Weightage House Types Included 

Very High 50 Salvaged Roof/Salvage Wall 

High 30 Strong Roof/Light Wal, Strong Roof/Salvage Wall, Light 
Roof/Salvage Wall, Salvaged Roof/Light Wall 

Moderate 15 Light Roof/Strong Wall, Salvaged Roof/Strong Wall 

Low 5 Strong Roof/Strong Wall 

 

The index obtained from all the four indicators was normalised to a scale of 0 to 1 and multiplied with different 
weights (adapting the C-EAP), as shown in Table 6, to calculate the overall vulnerability index at the municipality 
level.  

Table 6 The weights assigned to each indicator for calculating the overall vulnerability index at the municipality level 

 

 

 

 

This vulnerability index of each municipality was used along with the predicted impact for prioritization.  

Once all four variables of the elementary modelling were obtained, the integration of hazard, vulnerability and 
exposure was evaluated against the existing statistical model to achieve Objective 1.  

 

3.4 Model Evaluation 
As the next step, the two modelling methods were then tested for their prediction accuracy and explainability 
on different scenarios (Objective 2). In context of this research, the explainability has been tested in two ways; 
(1) case specific post-hoc interpretations based on the performance during the event of Kammuri, and (2) effect 
of change in input parameter on the prediction accuracy. To effectively communicate these trade-offs, an 
interactive web-based platform was built, which did not only make this process efficient, but can also act as a 
potential decision-support tool to evaluate various alternatives (Objective 3). The predictions made from the 
existing statistical modelling method were used in this platform as a static input, only to visualize the predictions 

Indicator Weightage 

Poverty 35 

Vulnerable Age Group 15 

Evacuation Center (Unserved) 15 

House Typology 35 
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and accuracy metrics. In the case of the elementary impact modelling method, which was developed as a part 
of this research for the Philippines, the entire process described in section 3.3 was automated and visualized in 
an interactive decision support tool developed using the R package “shiny” v.1.5.0 (Chang et al., 2020). The tool 
allows the users to input the forecasted hazard information and adjust different variables for a quick calculation 
and visualization of impact predictions. Each element is meant to serve a purpose of increasing the transparency 
of the prediction algorithm and at the same time testing the choices or uncertainties involved an IbF. A need 
for inclusion of the following components was identified, and their importance have been briefed below:   

Uncertainties: The platform incorporates forecast uncertainty in terms of margin of error in forecasted location 
and intensity of storm which are the two dependent factors in the elementary modelling. Along with that, the 
number of historical events in preparation aggregation of damage curve is also added to highlight the effect of 
quantity and quality of historical loss data.  

Alternatives: This includes dynamic variables which permits the user to make certain choices and visualize the 
change in the prediction based on that. The prototype dashboard currently includes the two-modelling methods, 
trigger threshold and number of municipalities to intervene as choices for the user.  

Intermediate Results: Damage curve and vulnerability index maps were also incorporated in the platform. These 
elements are added to permit the users to view the intermediate results which is driving the predicted losses 
making it better interpretable.  

Actual and predicted maps: This allows the users to easily visualize and interpret the predicted loss against what 
was recorded in the ground. Along with that, multiple past typhoon events were included in a drop box. Each 
event will have unique characteristics in terms of how they progressed, and an evaluation of those scenarios 
may also be highly relevant in context of model performance. This will further support in understanding how 
and to what extent does forecast uncertainty propagate to the model. 

 

3.4.1 Modelling technique 
The study primarily intended to compare the accuracy metrics obtained for the same event using the two 
methods: statistical and elementary modelling.  

For elementary modelling, the first step was to obtain the landfall location at the time when the wind speed was 
predicted to exceed the trigger level identified in section 3.3.1. The data were retrieved based on different 
reporting made through media and news platforms. The actual time of landfall of this event is known to us, i.e. 
2nd December 2010 at 23:00. This time stamp was used to decide the lead time at which the prediction of our 
trigger threshold was made, which is shown in Table 7 along with landfall locations at different lead time is 
illustrated in Figure 18. 
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Table 7 Predictions of landfall location and maximum wind speed made for Typhoon Kammuri at different lead time 
hours 

Maximum 
Windspeed 

Date Lead 
time 

Location Geo- Coordinates Source 

215 km/hr 

(Actual) 

2nd Dec 2019 
23:00 

0 Gubat Municipality, 
Sorsogon 

124.119 E 13.005 N 

 

NOAA historical 
hurricane track 

185 km/hr 
(Forecast) 

1st Dec 2019 24 Sagnay Municipality, 
Camarines Sur 

123.550320 E 13.595774 N News report, JWTC7 
forecast 

166 km/hr 

(Forecast) 

29th Nov 2019 72 Pandan Municipality, 
Catanduanes  

124.214001 E 14.086363 N News report, JWTC 
forecast 

 

The distance from all municipality centroids to the landfall location was calculated as a next step. Based on this 
distance and the forecasted wind speed, the factor of reduction obtained through section 3.3.2 was used to 
estimate the wind speed at each municipality. Finally, each municipality’s expected impact (in terms of 
percentage of house damage) was calculated using the damage curves obtained through section 3.3.3. For each 
municipality, the corresponding curves based on its region and majority house type was used. All the 
municipalities that exceeded the damage threshold were selected for the intervention in this scenario. 

A common damage threshold was then applied to the actual damage reported for the event, as explained earlier 
in section 3.2.1, as well as the modelled results (from both elementary and statistical technique). A binary 
classification was done where any municipality exceeding this threshold is assigned a value of 1, while the rest 
is set at a value of 0. The performance of the model was then tested using the accuracy parameters discussed 
earlier in section 3.2.2, explained as:  

True Positive (TP) Exceeding the damage threshold in both actual and modelled results 

False Positive (FP) Exceeding the damage threshold in modelled result but not in reality 

 
7 Joint Typhoon Warning Center (JTWC) 

Figure 18 A map representing the actual landfall location of typhoon Kammuri along with 
forecasts made at different lead time hours 
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True Negative (TN) Does not exceed the damage threshold in both actual and modelled results 

False Negative (FN) Exceeds the damage threshold but modelled otherwise 

 

3.4.2 Threshold for selection 
One of the criteria of selection in the trigger models is the damage threshold above which impact is deemed to 
be problematic. Along with that, the elementary modelling technique also requires a specification for the number 
of municipalities to be prioritised for action. Both selections might be affected by various criteria, including the 
financial policies of the organisation, scale of implementation or even the vulnerability of the target community. 
Considering that, a flexible range of 0 to 50 % for damage threshold, and 0 to 100 for priority municipality, was 
tested at every interval of 5 steps. This will cause no change in the impact prediction, but the accuracy metrics 
that depend on these factors, as explained in section 3.3.5, will be affected.  

3.4.3 Lead time 
Lead time before the typhoon landfall at which the forecast information is used is also a crucial factor for FbA, 
which has already been highlighted in section 2.1.1. To demonstrate this, the accuracy of impact was tested 
using the predictions made during the event, which was available for the following lead time: 81 hours, 60 hours, 
51 hours, and 45 hours before the expected landfall.  

For the trigger model using an elementary technique, in a real scenario, there is only one lead time at which the 
prediction is made; once the hazard threshold is reached. However, forecasts at two different timestamps (Table 
7) were tested for the purpose of this research: 72 hours, 24 hours and 0 hour (the observed data).     

 

3.4.4 Quality of data  
Forecast Data 

The skill of the forecast provider is a crucial factor for IbF, because even the most accurate impact prediction 
models cannot do better than the weather forecast models. The elementary modelling technique relies mainly 
on the location and maximum windspeed predicted for landfall. To allow an evaluation of forecast uncertainty 
in this approach, a landfall location error ranging 0 to 500 km and maximum windspeed error running from -
50 to +50 km/hr was tested. For example, for an error of 200 km, an assumption will be made that the landfall 
can occur anywhere within 200 km radius from the forecasted location. Hence the distance to landfall from all 
the municipalities lying within this buffer will be considered as 0. Similarly, a selection of +20 km/hr of 
windspeed uncertainty would mean that this would be added to the forecasted windspeed before performing 
the impact calculation.  

Damage History 

Along with hazard forecast, the quality of the pre-disaster dataset can potentially impact the performance of the 
model. In the elementary modelling method, the most critical historical dataset used for prediction is the actual 
damage data reported for past typhoons. As explained in 3.3.3, the Philippines has an extensive record of damage 
dataset compared to Bangladesh. So instead of using only one event, different number and combination of past 
typhoon data was used to test the construction of the curve. A total of 7 events used to build the reduction 
factor curve have been put in this list based on the order of highest impact. The difference in the fit of the curve 
in each scenario and its effect on the accuracy was tested and critically evaluated.  

In summary, the trigger model of C-EAP was adapted for the Philippines, generating the required equations 
and this, along with statistical model, was tested for prediction accuracy of damage during typhoon Kammuri 
in different scenarios. The upcoming sections will present the key findings of the study.  
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4 ANALYSIS AND RESULTS 

In this chapter, the individual analysis results are provided.  

Section 4.1 presents the results of the statistical modelling. It includes findings on the quality of input data, 
specific to population and damage statistics. Along with that it also describes how the model's performance is 
affected by the change in these datasets.  

Section 4.2 examines the results of the adaptation of the elementary modelling method for the same study area. 
It covers the derivation results of various risk indicators.  

Section 4.3 compares the elementary and statistical modelling techniques and their impact predictions across 
the lead time and across various scenarios. It also highlights the implication of the decision support tool 
developed for making this evaluation.  

4.1 Statistical Impact Model 
4.1.1 Quality of input variables 
Figure 19 outlines the trend in population over the years, calculated for super regions based on the census 
statistics obtained for 2000, 2010, 2015 and 2020.  

As can be seen, the growth rate in the population has been sharply increasing over the years, the highest being 
in Metro Luzon. The existing input dataset of the model were assessed for the degree to which it is influenced 
by these changes in population. Out of 272 municipalities affected by typhoon Kammuri, 33 exceeded the 10 
% damage threshold based on the household dataset from the 2015 census. When this value was recalculated 
using the statistics of 2020, the maximum change observed in the individual municipality was 2% from the 
threshold.  

The ground truth of damage from Kammuri, upon validation with the current model input, also showed a 
considerable discrepancy. There were 49 municipalities (out of the 272) that had an error in the existing input 
database and are factored as having no damage. Out of these, 13 municipalities had damage exceeding the 10% 
threshold, which can affect the identification of target areas. Upon examining, it was found that most of the 
errors corresponded to municipalities either having duplication or mismatch in the naming convention, which 
was resolved through manual editing during this research (Examples in Annex 1).  
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Figure 19 The population growth rate in four super regions of the Philippines over the past two decades 
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4.1.2 Model Prediction 
Table 8 below shows the accuracy metrics of this model, with two different qualities of input parameters. With 
an improved dataset, one would assume that it will result in a change in model's performance. However, the 
model's accuracy did not appear very sensitive with these adjustments relating to the dataset proximity to the 
event and a revised damage count as shown in Table 8.  

Table 8:  Accuracy metrics of the two algorithms for the baseline dataset versus one with an update in demographic 
variables 

  
Census data - 2015 Census data - 2010, 2015, 2020 

Models F1 score Recall Precision F1 score Recall Precision 
Random 
Forest 

0.62543 0.614588 0.63666 0.626434 0.614588 0.638746 

XGBoost 0.585663 0.518685 0.672504 0.581651 0.512382 0.672577 

 

4.2 Elementary Impact Model   
The following section will present the results of each step in designing a trigger model for the Philippines, by 
adapting the technique of C-EAP.  

4.2.1 Trigger Identification  
Based on the study of Espada, (2018), the one in 5-year return period maximum sustained wind was found to 
be approximately 165 km/hr. Similarly, the 90th percentile of all windspeed in 45 years duration was observed 
as about 180 km/hr. For defining a trigger, the minimum of the two values was considered, to allow a higher 
margin of safety. Hence using this scenario, early action would be activated once the maximum sustained wind 
speed at landfall is predicted to be 165 km/hr or more.  

A pre-activation trigger was also identified based on a corresponding warning signal level for storms in the 
Philippines. When compared with PAGASA, the warning resembles signal no:2, where a wind speed ranging 
62-88 km/hr is expected in the next 24 hours, likely to cause minor to moderate threats to lives and 
infrastructure. The release of this signal will be the pre-activation stage in this trigger model.   

 

4.2.2 Windspeed reduction curve 
For determining the factor of windspeed reduction, a total of 45 observations were identified from the AWS, 
corresponding to 9 different storms (Haiyan, Sarika, Haima, Yutu, Kammuri, Phanfone, Goni, Vamco, Odette). 
The distance of landfall location of the storms from the observation stations ranged from 9 to 453 km, and the 
maximum windspeed recorded during landfall by a station was 117 km/hr.  

During the normalization of observations, it was noticed that the stations had substantial differences in elevation 
at which they were placed (5 to 2881 meters) as well as their surrounding environment (Roughness coefficient 
0.1 – 0.75). Annex 4 can be referred to for a few examples of google earth imagery of the station location and 
the coefficient assigned to it after visual inspection.  
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Figure 20 shows the reduction factor curve constructed from the recorded windspeed at different distances from 
landfall, after normalization. A comparison of the curves before and after normalization can be found in Annex 
3.  

 

Figure 20 Windspeed reduction factor curve obtained for the Philippines, with factor of reduced windspeed (AWS - 
observations) against the distance from landfall plotted after normalizing 

From the curve, it can be noted that majority of values are at the bottom of the graph, suggesting a very high 
reduction in wind speed. Within 50 km from the landfall, there is a steep decay in the curve, where only 30 per 
cent of the intensity is felt, after which it shows a more gradual drop. Furthermore, at a distance of 100 km, the 
values of reduced wind ranged from 5 to 35 %, indicating a variations in observation.  

The results obtained for the Philippines were compared with that being used operationally for C-EAP, as shown 
in Figure 10. As can be seen, the fit of the two curves is quite dissimilar even though both have the same 
characteristic hazard. The curve constructed for Bangladesh shows that most of the areas that lie within 100km 
from landfall experience almost 80 percent of the landfall windspeed. This curve also shows a better fit with 
fewer deviations in observation.  

The reduction equation from the normalized curve was further used in the next steps to derive the windspeed 
for all the municipalities based on the landfall location of the windspeed events. 

4.2.3 Damage Curve 
Figure 21 shows the damage curves obtained for the four super regions and two physical vulnerability classes 
of each. The curves are based on loss data from 7 different historical events for which the windspeed at each 
municipality was estimated based on the results of 4.2.2.  
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The curves show that at a same windspeed, municipalities with predominance of highly vulnerable buildings 
show a larger fraction of damage as opposed to those with less vulnerable structures. Similarly, in terms of 
regions, metro Luzon shows higher resistance to windspeed compared to the other three, and a significant 
damage, higher than 10%, is seen only after windspeeds of 150 km/hr. In contrast, for North Luzon and the 
Central Philippines, this damage corresponds to a windspeeds of 50 km/hr to 100 km/hr. The curve for the 
Central shows an unusual behaviour for the low vulnerability class, where the damage is seen reducing for higher 
windspeed, which does not appear reasonable. Annex 5 shows all the data points that were used to fit this 
particular curve, which indicates that there is not enough information at higher windspeed. In the case of 
Mindanao, theoretically, it is expected to have a higher vulnerability, but the curve shows steepness only after 
the windspeed crosses 100 km/hr. It is, however, important to note that this region gets very few typhoons; 
hence there were only a limited number of observation available for fitting the curve.  

The behaviour of the curves was also different when they were aggregated based on a different number of 
events, as shown in Annex 5. Using a single historical storm, the fit of the curve is poor, especially in regions 
that are far from its track and have no damage record. The implication of using these curves on the prediction 
accuracy, is discussed later in section 4.3.3.   

4.2.4 Vulnerability Index 
After obtaining the damage curve, the final step for the selection of municipalities for intervention was 
multiplying this impact with the vulnerability index for each municipality. The vulnerability index obtained based 
on the composite overlay method will now be discussed in this section.  

Figure 21 Damage curves from 7 historical events for 4 super regions based on the windspeed 
experienced by each municipality and the fraction of houses that were totally damaged 
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Figure 22 shows the overall vulnerability index at the municipal level, while Annex 5 shows the index obtained 
for each indicator and its detailed description. All the values were normalized before comparison, and ranges 
from 0 (low) to 1 (high).  

The overall vulnerability indicates higher values in the southern region of the country, i.e., Mindanao, and in the 
coastal areas of the Central Philippines. The areas of Northern and Metro Luzon have a comparatively lower 
vulnerability in terms of the four indicators the calculation is based on. These results show a very close 
agreement with the overall vulnerability of these areas, as previously identified through the literature and 
discussed in section 2.2.3. 

 

4.3 Model Evaluation 
Once the two models were set up, the evaluation was done through an interactive dashboard. Figure 23 shows 
a screen capture of the decision support tool designed as a part of this research, which can also be publicly 
accessed through the web8. Several variables have been assigned a default value, but the users have the flexibility 
to make selections and dynamically view the changes. The details of each section on the dashboard and its 
functionalities can be found in Annex 6. The two maps visualize predictions against the actual damage by 

 
8 https://bit.ly/IBFScenarioPortal_Sedhain   Note: The platform may show an error at the start and takes 
around 10 seconds to load 

Figure 22 Overall vulnerability index at municipality level of the 
Philippines, obtained through a weighted overlay of four indicators 
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typhoon Kammuri, for an effective post hoc evaluation. Predictions from both elementary and statistical 
modelling methods are available along with the corresponding accuracy metrics. However, as previously 
mentioned, most of the dynamic variables currently do not support the predictions made through statistical 
modelling, as they were only fed as static input into the system. 

The tool allows the user to input the details of forecasted or actual storm parameters to obtain impact predicted 
at the municipality level, which can be tested for various lead times. As shown in Figure 24, the two maps can 
interact in parallel, to get more details, such as the predicted damage percentage and windspeed calculated after 
the reduction factor curve for each municipality. This, along with the damage curves allows the user to easily 
interpret how impact to certain municipalities is assigned. Similarly, it also includes vulnerability maps and 
accuracy metrics, all of which can be downloaded for documentation purposes. The option of region selection 
not only reduces the processing time, but also allows an area-specific comparison. The section below 
summarizes key results of accuracy metrics tested in various scenarios for both models.  

  

Figure 23 A screenshot of the decision support tool designed for effective comparison of trade-offs in impact 
forecasting tools 

Figure 24 A section of the dashboard where the actual damage (left) and 
predicted damage (right) can be compared and interacted with in parallel 
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4.3.1 Modelling technique 
In this section, the results of the impact prediction for Kammuri will be discussed, using the baseline scenario 
for both trigger models:  

Elementary model: Trigger activated at 165km/hr with 10% damage threshold and margin of error at landfall 
location set as 50 km.  

Statistical model: Trigger activated when at least 3 municipalities exceed 10% damage threshold  

Table 9 Accuracy metrics of two impact models based on the number of municipalities predicted to have exceeded the 
damage threshold of 10 %, using the forecast at the lead time when the trigger would have been reached 

  Statistical Modelling (81 hours before 
landfall) 

Elementary Modelling (72 hours before 
landfall) 

TP 1 6 

FP 3 4 

FN 34 30 

Precision 0.25 0.60 

Recall 0.03 0.17 

F1 Score 0.05 0.26 

 

The result in Table 9 shows that fewer losses would have been predicted correctly using a trigger model based 
on statistical technique. This model also appears more conservative, indicating fewer municipalities with damage, 
compared to the elementary model. However, both model performances have a low recall score, suggesting a 
poor ability to identify all the impacted municipalities. The elementary model has a higher precision score, hence 
considering all predicted values it has a better chance of being correct.  

4.3.2 Threshold for selection 
The accuracy metrics differ when tested against two different damage thresholds. In the case of elementary 
modelling, a suitable threshold choice is also made to prioritise the municipality for intervention based on the 
vulnerability index. As can be seen in Table 10, when 5 municipalities are selected for intervention from those 
predicted, the elementary model’s ability to correctly identify gets reduced. However, when the damage 
threshold is increased from 10 to 25 %, then the overall performance improves, showing that the model is good 
at predicting the higher damages classes. In the case of the statistical model, it performed poorly and predicted 
none to have damage of 25%, when in reality there were 7 municipalities affected, as shown in Table 11.  

Table 10 Number of municipalities predicted by the elementary impact model to have exceeded two different damage 
thresholds, based on the forecast at 72 hours lead time before landfall 

  Damage threshold – 10% Damage threshold – 25% 
  Total prediction Prioritizing 5 

municipality 
Total prediction 

TP 6 3 2 
FP 4 2 3 
FN 30 33 5 
Precision 0.60 0.60 0.40 
Recall 0.17 0.08 0.29 
F1 Score 0.26 0.15 0.33 
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Table 11 Number of municipalities predicted by the statistical impact model to have exceeded two different thresholds 
based on the forecast at 81 hours lead time before the landfall 

Statistical Modelling 

 Damage threshold Using 10% threshold Using 25% threshold 

TP 1 0 

FP 3 0 

FN 34 7 

Precision 25% 0 

Recall 3% 0 

F1 Score 5% 0 

 

4.3.3 Lead time 
Based on Table 7, showing the predictions made for the event at various time steps, it was found that in the 
baseline scenarios, using the elementary model, the trigger would have been reached at 72 hours. Similarly, for 
the statistical model Table 11 shows that 4 municipalities are predicted to exceed the damage threshold, 
indicating the activation trigger. Both methods were further tested for the same damage threshold of 10% along 
the lead time, and the results are summarized in the Table 12 and Table 13 below.  

Table 12 Accuracy metrics using statistical impact modelling based on the number of municipalities exceeding the trigger 
threshold of 10% damage 

Elementary Modelling  

Lead time 0 hours (Observed) 24 hours (Forecast) 72 hours (Forecast) 

TP 7 1 6 

FP 20 44 4 

FN 29 35 30 

Precision 0.26 0.02 0.60 

Recall 0.19 0.03 0.17 

F1 Score 0.22 0.02 0.26 

 

Table 13 Accuracy metrics using elementary impact modelling based on the number of municipalities exceeding the 
trigger threshold of 10% damage 

  Statistical Modelling 
 Lead time 45 hours 51 hours 60 hours 81 hours 
TP 0 0 3 1 
FP 3 8 9 3 
FN 35 35 32 34 
Precision 0 0 0.25 0.25 
Recall 0 0 0.09 0.03 
F1 Score 0 0 0.13 0.05 

 

The performance of the elementary model is the lowest at 24 hours lead time where it identifies 1 more 
municipality correctly, but also predicts many false negatives, so the overall performance reduces. The prediction 
ability of the statistical model is seen to be highest at 60 hours before the expected landfall, but still with a 
relatively lower precision score. Figure 25 illustrates the actual and predicted impacts across lead time by the 
two models. 
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Map A The actual damage of typhoon Kammuri as reported by NDRRMC 
Map B Prediction by elementary model using forecast at 72 hours Map E Prediction by statistical model using forecast at 81 hours 

Map C 
 

Prediction by elementary model using forecast at 24 hours Map F Prediction by statistical model using forecast at 60 hours 

Map D Prediction by elementary model using observed weather Map G Prediction by statistical model using forecast at 45 hours 

Figure 25 Damages due to typhoon Kammuri (actual and predicted values by the two models) 



 

38 
 

 4.3.4 Quality of data  
The effect of forecast data quality was tested in terms of the error at the landfall location and track as a safety 
margin incorporated in the elementary model. As seen in Figure 26, the allowance of an error of 50 km increases 
the overall performance by 10%, after which it remains constant. But it should also be noted that having a 
higher safety margin has reduced the precision score substantially, as the model is predicting many more 
municipalities having an impact. An optimum in this case would be to allow a 50 km buffer to maximize all 
three-accuracy metrics. In the case of error margin for landfall windspeed, the increase in overall accuracy is not 
as prominent, and a 20 km/hr addition in forecasted windspeed gives the best in terms of F1 score.  

  

Along with that, impact accuracies based on damage data for different events were also looked at in the following 
order of the total damage: Goni, Phanfone, Haima, Vamco, Yutu, Sarika, Haiyan (Annex: 5). As can be seen in 
Table 14,  the effect of increasing the quantity of damage history data did not have a substantial impact on the 
accuracy metrics. However, excluding Haiyan led to a slight improvement in model performance, both in terms 
of precision and F1 score.   

Table 14 Accuracy metrics using elementary impact modelling, predicted using a different number of historical events, 
ranked according to the highest impact 

Elementary Modelling 

Number of Event 7 events 6 events 4 Events 1 Event 
Name of the events Goni, Phanfone, Haima, 

Vamco, Yutu, Sarika, 
Haiyan 

Goni, Phanfone, Haima, 
Vamco, Yutu, Sarika 

Goni, Phanfone, 
Haima, Vamco 

Goni 

TP 6 6 6 6 

FP 4 3 3 3 

FN 30 30 30 30 

Precision 0.60 0.67 0.67 0.67 

Recall 0.17 0.17 0.17 0.17 

F1 Score 0.26 0.27 0.27 0.27 

 

All the results presented here, will now be discussed, and interpreted in the following chapter.  

Figure 26 Change in accuracy metrics for elementary impact model, for allowance of different error margin in 
predicted landfall location (left), and landfall windspeed (right) 
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5 DISCUSSIONS 

As highlighted in Chapter 1, there are multiple choices and uncertainties while designing an IbF model, which 
need to be quantified and communicated well for effective scaling up of early action processes. This research 
attempted to answer these questions by comparing two different approaches to the trigger model, and by 
developing a prototype interactive decision support tool for its evaluation. In this chapter, the results for each 
identified research objective and question will be critically reflected upon. It will also signify the implication of 
the results in an operational context.  

5.1 Objectives and Questions 
The main objective of the research was to evaluate how accurately two trigger models predict damage, and 
which parameters affect the accuracy. The objectives were achieved by first adapting an elementary trigger model 
of Bangladesh in the context of the Philippines for typhoon early action. The variables relating to hazard, 
vulnerability and exposure were generated in the process. This adapted model and the currently operational 
statistical IbF model were then tested on a historical event, typhoon Kammuri, for their impact predictions. 
Finally, the two models were evaluated for their performance across changes in different parameters and 
visualized through an interactive decision support tool. The research questions associated with these objectives 
are individually discussed below.  

 

5.1.1 Model parameters 
 

Research objective 1: To compare the input parameters of the two IbF trigger models 

Trigger threshold 

For the Philippines, the trigger threshold using the elementary technique was identified to be 165 km/hr for 
activation, and pre-activation would be when PAGASA raises signal no.2. In terms of the lead time, the pre-
activation is expected to reach at least 72 hours before the expected landfall, while the activation based on the 
windspeed threshold needs to have a minimum lead time of 30 hours. As opposed to the current T-EAP, this 
trigger model allows a two-stage activation, giving time to prepare necessary support in the early action. The 30 
hours lead time also increases the likelihood of getting an accurate forecast closer to the event. It remains an 
open question whether this lead time is adequate for performing the necessary actions. Bangladesh is a good 
example of implementing early actions in a short lead time, but which is mostly community centered. In contrast, 
for activities such as shelter strengthening, 30 hours of lead time before landfall carries the risk of very high 
wind, making the implementation difficult. Hence the applicability of such triggers essentially depends on the 
choices of actions.  

In the elementary model, the trigger threshold is based on a windspeed value instead of damage. This means it 
only utilizes a single forecast value to generate implementation map and trigger actions. This also raises a concern 
of whether one windspeed justifies the trigger level for all regions with different vulnerabilities. For example, if 
the typhoon is making landfall in Mindanao or the Central Philippines, then the wind speed of 165 km/hr will 
likely have already resulted in higher impact than in Metro Luzon. Conversely, in the statistical model, the 
predictions are made every 6 hours and the triggers are based on impact. This gives space for performance 
improvement over the lead time during the same event with more accurate forecasts. In future, the values of 
both approaches must be weighed against each other, while making the choices of trigger.  

 

R.Q. 1.1: What is the difference in the way hazard forecast and hazard history are integrated in the two 
trigger models and converted to the required spatial and temporal scale?  
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Windspeed estimation 

The elementary modelling method estimates the windspeed for each municipality based on an equation which 
was generated for the Philippines during this study. The relation was formulated using two parameters: fraction 
of windspeed observed and the distance of municipality from landfall. In comparison, this curve was found to 
be notably different from the one operational for C-EAP. What also needs to be looked at is that observations 
made for Bangladesh were only based on data from 20 AWS for a single event, most of which were within 100 
km from landfall. In contrast, for this research, more than 40 weather stations were included that covered unique 
spectra of distances and event types. To increase certainty in the estimation, more observations covering several 
events can be tested for Bangladesh in the future revisions of the C-EAP.  

The reduction curve for the Philippines showed a strong initial decay and had more variations in data points 
over the distance. This can be indicative of differences in elevation and roughness over the region, as compared 
to Bangladesh which is mainly flat. The strength of a tropical storm in terms of its central pressure is very 
dependent on the influx of warm air above the sea and cool and drier air above land, as previously discussed in 
section 2.1.1. Many studies have looked into the interaction between the waves induced by a storm (DeMaria et 
al., 2006; Kaplan and Demaria, 1995), highlighting the importance of topography to be factored in, while 
generalizing the behaviour of a storm in a specific location. As Bangladesh is a landmass and the Philippines is 
a cluster of islands, the way a storm progresses across the two regions will differ. Even within the Philippines, 
storms over larger islands such as North Luzon could act different compared to smaller islands, such as in the 
central region. Therefore, such simplification in storm behavior based on limited parameters can be a source of 
inaccuracies. This further implies that adaptation of trigger models in a new context needs to factor in physical 
differences such as topography, along with all the risk parameters.  

Likewise, there is also a concern of using distance from landfall instead of the actual track for constructing this 
curve. By definition, a landfall occurs when the centre of the storm reaches the land (NHC, n.d.). With an 
average radius of 100 to 250 km from the centre to the outermost edge, the storm has already reached some 
areas hours before the landfall happens or will pass some regions hours later. A good example is typhoon 
Kammuri that had four landfalls over 13 hours, in which the storm had travelled more than 500 kms, maintaining 
a windspeed of 165 km/hr (which is the trigger in this scenario). Figure 27 shows an example four AWS looked 
at in relation to typhoon Yutu (2018), which passed over a relatively large landmass. A clear interpretation can 
be made that a station is likely to experience maximum windspeed at a time different from the landfall when the 
storm is closer to that area. This underlines the fact that a storm’s track is an essential parameter in wind 
estimation, and needs to be taken into account for further improvement of the operational elementary impact 
model. 

 

Figure 27 Windspeed recorded by 4 different AWS during typhoon Yutu, around its landfall 
time versus the maximum recorded within 12 hours from landfall 
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A good example can be taken from the statistical trigger model, which uses a parametric windfield model based 
on Holland (2008), for the estimation of various wind profiles at the municipality level. Even though based on 
a similar concept of wind decay over the distance, this modelling method is able to capture more characteristics 
of the storm through its intensity, track and central location. Additionally, interpolation techniques such as the 
parametric modelling are highly beneficial when ground-based stations are not available. A similar approach can 
be tested for the elementary model, even with limited hazard history data. In a recent study, Fakhruddin et al., 
(2022) assess ways to create synthetic cyclone tracks for 1000 years to generate wind attributes, using which 
more reliable results can be generated. At the same time, the accuracy of the parametric windfield model can 
also be validated against weather station data, to evaluate its performance. Both models at the moment do not 
take into consideration the terrain effect on the wind fields. Hence, these insights can be integrated for 
continuous improvement in the hazard components of impact forecasting models.  

 

To establish the relation of physical vulnerability for elementary modelling, multiple damage curves were 
obtained based on windspeed reduction and impact history. These curves, used for impact prediction, were 
adapted to four geographical areas and two construction mechanisms to make them more localized. It was 
observed that the curve’s fit shifted when the number of event variables used for its construction was reduced. 
Besides, the curves also deviated from the normal expected trend of a damage function for cases with less data 
such as Mindanao. In that reference, several limitations were identified in using this approach for impact 
predictions. Firstly, total damage in a municipality is correlated only to the windspeed based on the time and 
distance from landfall even though a stronger wind can be experienced when the storm travels closer to it. At 
the same time, damage during a tropical storm potentially also results from a storm surge or other related events, 
such as during Haiyan. Moreover, the possible inaccuracy in the reduction factor estimation due to the reasons 
pointed out while answering RQ1.1 will also propagate to the damage curve. Finally, as pointed out in a study 
by Andres Diaz Loaiza et al., (2021), topographic data play the most important role when generating damage 
curves for coastal area, which is not well accounted in this method.  

The social vulnerability and coping capacity in elementary model were incorporated through an index generated 
at each municipal level. In this trigger model, the consideration of vulnerability index for each municipality 
allows their prioritization for intervention. Hence, in case of limited institutional capacity for early action, areas 
with higher vulnerability, such as in Mindanao or Central Philippines, will be given first priority, also considering 
the magnitude of impact predicted for those areas. For this research, the indicators related to poverty, dependent 
population, evacuation centre and house type were used for ranking the vulnerability. However, there is a 
flexibility in selection of indicators and weights, adapting it to fit the implementation purpose. For example, an 
agriculture-based indicator can be relevant when early action includes crop harvesting. However, since these 
weights are user-defined, it also introduces a great amount of bias, as their determination is not straightforward 
and open to debate. The subjectivity of these choices made during the modelling process should be considered 
and communicated well with all the relevant stakeholders.  

The statistical method uses classifier algorithms to predict the impact based on a total of 36 variables that include 
observed weather, topographic features, social and physical vulnerability and damage records from 37 events. 
Therefore, compared to the elementary model, several variables draw the relation of impact to physical and 
social vulnerabilities. This method has a better ability to incorporate the complexities of the event since storm 
surges, landslide and rainfall records are also included. Consequently, this also means that the method is quite 
data demanding and requires a higher level of technical expertise. In areas with limited capacity in those terms, 
the implementation of a statistical modelling approach can be challenging.  

As seen for both methods, the damage is generalized at municipality scale, which means the values in relation 
to construction mechanism or local topography will also be averaged. Moving forward, even the damage curves 
or model inputs can be localized at intervention scale, such as the municipality. This would mean a finer 
resolution of damage data would be required for individual household types. This calls for advocacy in local 

R.Q. 1.2: What is the difference in how the models incorporate physical and social vulnerability? 
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government for sharing the household level damage information, at least in regions that have a well implemented 
data collection and sharing process such as the Philippines. For data scarce regions, the use of satellite based 
damage assessment can be useful, which have shown good accuracy in assessing multiple dimensions of impact 
(Hoque et al., 2016). There are still gaps for it to be utilized in an operational level and this can be reduced only 
if the procedure includes the development of standards with the involvement of all responsible institutions 
(Kerle, 2010). This can also stand true with local level impact information, which comes from various sources 
and has differences in definition of impact level.  

 

5.2.2 Model performance 
 

Research Objective 2: To validate the performance of the two trigger models 

From the prediction results at different lead times, it was found that even though both models reached the 
triggers 3 days before the event, their performances were considerably low. The two models, statistical and 
elementary, had the best prediction accuracy at 60 and 72 hours before landfall, respectively. In contrast to what 
is generally expected, both models did not show an improvement in performance with forecasts closer to the 
event. This can be attributed to the fact that Kammuri intensified in the last hours before landfall and deviated 
from its forecasted track (Figure 18). This means that the conclusion on overall performance of the model over 
lead time cannot be generalized based on a single event. But at the same time, tropical storms are complex 
phenomena, and these tools need to be robust enough to capture the unforeseen circumstances, which does 
not stand true for both the models in this study. While ideally accurate predictions for RI storms are desired, 
and there are several ongoing studies taking place (Miyamoto and Takemi, 2015; Wang and Zhou, 2007), we are 
not quite there yet. And it is also true that its frequency can only be expected to increase in the near future 
(Masson-Delmotte et al., 2021). In that case, adapting our strategies and modelling approaches to possible 
deflection is deemed necessary. Operationally this could be achieved in multiple way, by either increasing the 
implementation area or having a flexible lead time. Additionally, the models must also be tested on realistic 
scenarios such as in this research, but with a broader number of events with unique physical characteristics.    

The choices of thresholds used had notable effects on the overall accuracy of both models. However, the 
elementary model showed a better ability to predict higher damage threshold, which was not true in the case of 
the statistical model. The lower prediction accuracy can potentially be linked with the class imbalance in the 
model inputs. Out of 9103 past damage records, only 472 municipalities have damage of more than 10%, and 
229 exceed damage of 25%.  In a real world applications, datasets will typically be imbalanced and bias correction 
techniques such as the one described by Wagenaar et al., (2021) can be used for eliminating this issue.  

The performance of the elementary model reduced when only 5 municipalities were prioritized out of all 
predicted. The threshold for selection here becomes very relevant for the practicalities of intervention. In the 
case of Kammuri, a total of 36 municipalities had exceeded the damage threshold. So, even if our models had a 
100 % accuracy, there may not be a capacity for intervention in these many potentially affected areas. Given 
that, assigning the vulnerability index values accurately also becomes very crucial in elementary modelling 
methods.  

R.Q. 2.2: What is the impact of choices made in trigger thresholds and municipality prioritization, on the 
performance of damage prediction? 

R.Q. 2.1: What is the impact of lead time on the performance of the two IbF models in predicting household 
damage? 
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Currently most of the EAPs, including the two studied in this research, use a single trigger value. As highlighted 
in GRC, (2022), agencies are exploring ways contextualize the triggers for various seasons and socioeconomic 
categories, and this has to be done based on cumulative of multiple events instead of one extreme event. In 
some instances, for the development of EAP, the local community also helps in identifying the trigger levels 
based on their experience. For that, an evaluation of different trigger models done in this research can be 
expanded to find customized trigger values for each scenario.  

In terms of forecast accuracy, an increase in the margin of error in forecasted landfall location increased the 
overall accuracy, but also lowered the precision score in the elementary modelling. However, the sensitivity of 
accuracy to the landfall location was much higher than to the intensity of windspeed. This implies that for 
accurately modelling the impact in this approach, it is more important to get the location of landfall correct, 
compared to its windspeed. And this is also true considering the state-of-art in forecast skill which over the year 
have improved more in modelling storm track than its intensity (Heming et al., 2019). But at the same time, the 
results suggest that if this model were to be operationalized in the Philippines, it tends to over-estimate for 
municipalities close to the landfall. From a visual interpretation of the prediction maps in Figure 25, it can be 
deduced that the predictions of elementary model are constricted around the landfall location while the statistical 
model predicts well across the entire track showing similarities with observed damage. Hence, the distance from 
landfall, which is the most important parameter in elementary model, is not providing the most correct 
estimation. In a real storm event, there could be municipalities that do not necessarily feel the first landfall and 
still experience the typhoon across its track. The elementary modelling approach can lead to lesser preparedness 
in these areas.  

The effect of the availability of historical damage data on the elementary model was tested through multiple 
damage curves constructed based on different number of events. It was noted that the prediction accuracy did 
not improve on increasing the number of historical events. Results suggest that it is not only the quantity of 
historical data, but also the nature of events in use that affects the model performance. For example, removing 
typhoon Haiyan from the damage curve showed an improvement in the model performance, which is an 
exceptional event with a large proportion of damage attributed to storm surge (Lagmay et al., 2015). Hence, a 
linear relation of windspeed to damage is not applicable in that context. Moreover, since the central region had 
considerably larger amount of damage data (Annex: 4) and typhoon Kammuri also affected the same region, in 
this case study, the accuracy was not affected even when using single event damage data. Consequently, the 
resulting damage curves show that if prediction was made in regions with limited damage data, such as 
Mindanao, there is a higher uncertainty in the modelled results. Going forward, the suitability of these methods 
for data scarce areas within a region must be tested as well. It also means that, when employing historical dataset 
in modelling methods, there needs to be a good understanding of specific characteristics of the event.  

For the statistical model, the sensitivity of the data quality in terms of timeliness of demographic variables was 
tested. The performance of the model did not show any change when 10 variables (total number of houses with 
roof and wall type) were improved with the statistics closer to the event date. There could be multiple possible 
explanations for this behaviour of results. The variables correlating to hazard information, such as wind speed 
and typhoon track, potentially have more weight in assisting the model in making an impact estimate. Similarly, 
it is also important to consider the scale of intervention which may also play a role here, and if the IbF was done 
at household level instead of municipality, the change in exposure would have more impact. As already shown 
in Figure 19, there is an increase in absolute value of population over the years, but relatively the four regions 
show a similar trend in the growth. Even so, the growth rate of population, is evidence of changing exposure, 
which must be factored into the impact models while defining triggers based on percentage instead of absolute 
values. There are already ongoing pilots on using absolute damage data and associated probabilities for triggering 
actions for typhoons in the same study area (OCHA, 2021b). In that context, a similar statistical impact model 

R.Q. 2.3: What is the sensitivity of the two trigger models to changes in one of the predictors (in terms of 
hazard and vulnerability)? 
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is deployed by 510, which uses a regression instead of the classification algorithm tested in this research, to 
identify the highest impacted municipality based on probabilistic forecasts.  

The damage history data coming from official sources showed multiple issues relating to duplication and 
inconsistency, along with discrepancies when compared to the existing model input. Even though the difference 
found may appear negligible, it is still 18% of the total damage data. It should also be noted that the corrections 
were made only for the single event, Kammuri, and did not affect the model performance. But a similar issue is 
imminent if recalculations are done for all historical typhoons used to train the model. This further emphasizes 
the importance of unique identifiers such as P-codes to be adapted even at the local level, which is the source 
of many datasets we use in our models. Not only for accuracy purposes, but using standardized codes instead 
of names, can help overcome the challenges of processing geographic information.  

The test of data quality for the model in this research was limited to the timeliness of the demographic variables 
(population and household). Other dynamic variables, for example the assumptions made in averaged values of 
physical vulnerabilities over the year, could also have an effect. For instance, Typhoon Goni which was followed 
by Typhoon Vamco affected common areas in two provinces of the Philippines within 10 days (OCHA, 2020b). 
This means that houses already damaged by Goni and people in temporary shelters are not taken into 
consideration by the model. This opens the floor for further exploration of changes in exposure or physical and 
social vulnerabilities, and how prominent their effect is on the model performance.  

 

From the results, it was seen that, using both trigger models, the threshold of FbA activation was reached at 72 
hours before the predicted landfall. To carry out shelter strengthening, early harvesting of crops and livestock 
evacuation, the time frame of 72 hours have already been identified to be sufficient, and is the minimum time 
required for the operational EAP in the Philippines. If we consider the early action C-EAP adapted in this 
research, the activities mainly carried out are evacuation and distribution of food and water. This means that for 
both scenarios 72 hours would be more than enough with a lot of safety margin to carry out the aforementioned 
early actions. 

When considering FbA, humanitarian agencies have to make a choice in two aspects, as termed by Lopez et al., 
(2020); (1) prevented event maximization, where the cost of preparedness is expected to justify what would be 
spent in response, hence there is no constraints in budget, and (2) expense minimization, where the goal is to 
minimize the impact but also considering the cost effectiveness. The selection of the optimal thresholds and 
impact model for this research can be looked at in the following two contexts in reference to typhoon Kammuri:  

Prevented event maximization:  

A recall score is more relevant when the goal is to maximize impact reduction without missing any municipality 
that could possibly exceed a threshold. Thus, in hindsight for typhoon Kammuri, the elementary model would 
have been the better choice for triggering action in terms of maximizing impact reduction, as it attained a higher 
recall score. Along with that, the prioritization done through vulnerability ranking is also relevant in terms of 
designing early actions, in such a way that even if the event does not materialize, those who need it the most 
benefit from it. Meanwhile, a damage threshold of 10 % with an error margin of 200 km in landfall location and 
20 km/hr in windspeed, gives the highest number of correctly identified municipalities. The study was not able 
to re-run the statistical model, for which the predictions were limited to municipalities within 100km of the 
forecasted track. Based on visual interpretation, it can be deduced that an increase in this distance, would have 
reduced the effect of track change on the model results. The determination of most optimal distance can be a 
relevant test for future works.  

Expense Minimization:  

R.Q. 2.4: What would be the most adequate combination of threshold and lead time for each model to 
trigger early action during the event? 
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From a financial perspective, an F1 score is an ideal metric of evaluation to have a good balance in correctly 
identifying damage (recall), but also not overpredicting (precision). In that scenario, for the elementary model a 
25 % damage threshold is seen as suitable. In terms of error margin, 50 km in landfall location and 20 km/hr in 
windspeed are recommended for optimal accuracy. Moreover, increasing the damage threshold also showed to 
have limited the number of municipalities for intervention, without compromising on the model performance 
in the case of the elementary model. However, the theoretical reliability of the statistical model is higher than 
the elementary model, since the latter makes less validated assumptions like in windspeed estimation. This is 
reinforced by the elementary model’s inadequate performance at 24 hours (F1 score = 0.02), showing that it 
performs inconsistently. Conversely, the statistical model that uses machine learning, holistically considers more 
characteristics of the typhoon, and the model validation results allow a more objective measurement for financial 
risk.   

 

5.3.3 Model explainability 
Research Objective 3:  To compare the explainability of the models in terms of their transparency and 
post-hoc interpretation 

As pointed out early on by Breiman, (2001), to make better predictions, generally, a complex model is required 
against interpretable functions. The results, however, suggest this might not be entirely true. The elementary 
modelling had a linear assumption concerning impact, based on calculated windspeed with minimal variables 
involved. The accuracy results can easily be traced back to the damage curve or reduction factor curve to identify 
the possible source of over or underestimation. In fact, the entire model can be summarized within a single 
equation combining the damage curve and windspeed reduction value. However, the interpretability is relatively 
lower with several variables involved in the statistical modelling. Especially since this is not a rule-based 
algorithm, they do not operate under a simple ‘cause and effect approach’. There are, however, multiple proven 
methods such as the partial dependence plots (Friedman, 2001) and individual conditional expectations 
(Goldstein et al., 2015), to better visualize the role of each variables in such machine learning algorithms, moving 
us closer in decoding the black box. But at the same time, it should be taken into consideration that these plots 
should be interpretable also by audiences other than domain experts. 

Among the two models, the elementary technique was observed to be easily reproducible, considering a smaller 
number of forecasted and observed dataset. This also meant post-hoc evaluation, in this case, was more 
straightforward and required only few storm parameters from the historical forecast. However, in the case of a 
statistical model, the formulation of the model but also its post-event validation requires an extension 
preparation of the dataset since the forecast information are not officially stored after 180 days. 

Transparency can also be looked at in terms of access of codes and dataset of the models to allow the reviewing 
process (European Commission, 2021). In that context, the process of the elementary model, even though well 
described, is limited to a written document (BDRCS et al., 2021), and the access to datasets is not provided. 
This raises concern of ambiguity in the modelling process while adapting this model. On the other hand, the 
statistical model along with the written description (PRC et al., 2020) is also well documented in the GitHub 
repository9 along with all the datasets, making it accessible for users to validate.  

 

 

 

 
9 https://github.com/rodekruis 

R.Q. 3.1: How can the results of forecasted damage by the two models be interpreted in terms of their 
parameters and prediction algorithm used? 
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Interpretation of a model is often limited to the developers or scientific experts, which in fact should also be 
for the intended users. This adds more reasons to explore ways to not only evaluate the trigger models, but also 
make it accessible. An interactive dashboard was created to establish transparency in the modelling approaches, 
and intends to serve the purpose of communicating two things in an IbF model: (1) The uncertainties in different 
parameters, which may not be within our control. For example, the skill of the forecast provider or the credibility 
of damage data used for model construction. Meanwhile, (2) there are certain choices taken by the decision-
makers, such as at what time to trigger action, safety margins for forecast error or indicators for priority ranking. 
Both of these elements are incorporated into the decision support tool.   

One potential use of the presented tool is in the development and training process of EAP. When trigger models 
are designed, a detailed skill testing is done (IFRC, 2020a), where historical forecast is compared to historical 
observation to assess how often a trigger would reach and chances of ‘acting in vain’. This process involves 
funding agencies, meteorological offices, government stakeholders, National Red Cross Society members, in 
short, individuals from different backgrounds and interests. The effectiveness of the process can be increased 
through a dynamic interactive platform that is standardized across all projects. Furthermore, a recent study also 
highlighted how user centered designs must be strongly advocated in communicating risk (Twomlow et al., 
2022), and identifying the gaps would be the logical first step. The study by van den Homberg et al., (2020) 
found that when implementation maps for Kammuri were provided 3 days before the event, the end-users failed 
to comprehend the role of forecast uncertainty in the impact results. In those events, the forecast roles can be 
highlighted better with a similar interactive tool that can be used during the training phase by the service 
providers. It can also potentially incorporate scenario what-if analysis including future projections and climate 
change scenarios and its effect on the model performance.  

The concept behind this platform can also be employed for an effective post event evaluation. There are many 
portals existing across various countries for real-time information dissemination during crisis, with forecasted 
parameters10 11 12. But these tools do not currently incorporate features to compare the predictions against the 
observed event and how it changed over time. The interactive platform developed in this study fits very well 
with the principles of the evaluation framework for predictive analysis in humanitarian decision making (OCHA, 
2021c). It can be an effective means in technical review for benchmarking the tools and testing their robustness 
and usability. But the process of validation, as done in this research, might not be applicable to all hazards. For 
example, in heat waves where the early action ideally reduces the impact that was predicted, a straightforward 
validation technique cannot be employed, and further studies are required for generation of common evaluation 
metrics.   

As highlighted above, the purpose of model interpretations may vary to either improve the models or to justify 
the results. These use-cases must be taken into consideration while further designing similar tools along with 
measuring its effectiveness on achieving the purpose.  

 

 

 

 

 

 
10 https://www.510.global/impact-based-forecasting-system/ 
11 https://bipadportal.gov.np/ 
12 https://startnetwork.org/dynamic-risk-monitors 

R.Q. 3.2: What is a suitable method to evaluate the choices and uncertainties in the models through an 
interactive platform? 
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6 CONCLUSION AND RECOMMENDATIONS 

Section 6.1 lists the limitations of this research and provides recommendations for further work. Finally, section 
6.2 provides a concluding remark from the author’s perspective.  

 

6.1 Limitations 
As already highlighted in previous chapters, several assumptions were made during this study that was done 
with reasonable justification and considering the objectives. Along with that, several improvements and 
additional tests could be done in future work. The section below lists down some key limitations along with 
recommendations to improve it, where relevant.  

Datasets and modelling:  

 One of the biggest limitations in this research was that the evaluation of the two models was done using 
a single event. Based on a single case, one can only deduce how actionable the impact-based forecasts 
are in that scenario, and how well they represented changes in hazard forecast. But it is not possible to 
draw conclusions on the overall suitability/performance of one model over the other. For this, a more 
elaborate statistical analysis with many more historical events needs to be done.  

 Wind speed observations taken from AWS had to be manually extracted, limiting the efficiency and the 
quantity of the derived dataset. Provision of downloadable data format such as .csv would have allowed 
a faster retrieval and lowered the chances of inaccuracies. A better estimation of windspeed reduction 
would have been possible if the landfall windspeed was also taken from the ground station to calculate 
the reduction factor. Unfortunately, this was not possible due to the unavailability of operational 
stations very close to landfall at that time.  

 The household damage obtained from NDRRMC was used for the calculation of accuracy metrics, 
with an assumption of being the ground truth. However, since these data are collected at the Barangay 
level (smallest administrative unit) and then aggregated to the municipality, there might be a possible 
discrepancy in definitions of ‘totally damaged house’. These factors of data quality have not been 
considered in this research.  

 In preparation of risk information (reduction factor curve, damage curve and vulnerability index) for 
elementary modelling, the considerations were largely based on the C-EAP. The elementary model can 
also be improved by testing the applicability of parametric modelling, instead of using a reduction factor 
curve to incorporate typhoon track parameter. Finally, better documentation of this model (example: 
GitHub) in addition to the written report, can support future researchers and practitioners to adapt and 
validate it quickly. 

 Some experiments, such as the wind simulation testing, were not possible in this research and 
assumptions were made based on literature, which may have compromised the quality of obtained 
damage curves. For future research, expert consultation can be taken to assign vulnerability class and 
weights to have a better reliability in the results.   

 Due to limitations in data preparation, the operational statistical model could not be tested for 
performance evaluation, as the forecast of past typhoons in the ECMWF database is stored only for 
the past 180 days. The predictions used for accuracy metrics were made during the event in 2019, when 
the model had a coarser resolution and used a deterministic forecast. In the future, there can be more 
exploration of ways on increasing the feasibility of such post-hoc evaluation.  

 Furthermore, the effect of data quality on the statistical model performance was limited to the timeliness 
of variables relating to population and household, while testing other dynamic variables is open to 
further research.  

 The parametric windfield model used in the statistical approach, was considered more reliable due to 
the inclusion of a greater number of wind parameters. However, testing the validity of this is also an 
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open possibility. There are several weather station datasets available for the Philippines, as utilized in 
this research for reduction curve generation. These observations can be used to cross-validate the 
windfields that have been estimated at each municipality level to increase the reliability of this approach. 

 Forecast lead time when the predictions were made, differed for the two models since the information 
was dependent on separate sources. Due to the same reason, a prediction of statistical model using the 
actual windspeed of Kammuri (0 hours lead time) was also not available. A common frequency of 
predictions in terms of lead time, would have allowed more objective measurement in their 
performances.  

 The impact history information used for both the models was based on damage data obtained from the 
national level disaster authority. While preparing these datasets, and in order to link them, the utility of 
unique identifier p-code was recognized. There were discrepancies identified in the model input which 
was corrected, but only for the event Kammuri. The inaccuracies shed light on the importance of 
revisiting these datasets to examine their correctness. At the same time, in organizational level, 
advocacies for standardization of local level datasets are needed.   

Interactive portal:  

 Currently, the interactive platform was built to answer the research questions, and is based largely on 
subjective choices. Moving forward, it must be co-created considering what the service providers are 
able to and willing to share, and also a requirement analysis of the users. There is a potential of 
expanding its use with addition of several other variables. For example, the forecast uncertainties in the 
statistical modelling method require more complex parameters and are not included as a part of this 
decision portal, which can be explored moving forward. Along with that, a dynamic choice of weights 
and indicators for the vulnerability index can be incorporated to allow case-specific adjustments and 
testing. Similarly, the prototype only includes the list of multiple typhoon events and its actual damage 
map, and the effect of lead time was also tested but not visualized. These can also be useful additions 
to evaluate the performance across various events and lead time scenarios, to be able to draw better 
conclusions.  

 The statistical model was not explicitly tested on variable importance to correlate the behaviour of 
predictions. In future work, the inclusion of graphics such as the partial dependence plots can be utilized 
to understand the role of each variable better and dissect the black box which can also be visualization 
portal.  
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6.2 Conclusion 
 

The contribution of this research is twofold: (1) benchmarking of two very different approaches of IbF based 
on their damage prediction performance on a historical typhoon event in the Philippines, and (2) designing a 
suitable decision-support tool to evaluate and communicate the choices and uncertainties involved in an impact 
forecasting model. One model used only a few hazard and impact history parameters (elementary modelling), 
while the other used a machine learning algorithm trained on a substantially larger number of variables (statistical 
modelling). The study did not only perform a theoretical assessment of these models, but by testing them on a 
real case, multiple insights were generated for its operational relevance. The results showed that, in hindsight 
for typhoon Kammuri, the elementary model would have given slightly better performance than the statistical 
model. This implies that, for this specific case, complex was not the better choice. But at the same time, the 
results also varied generally on changing parameters associated with lead time, trigger threshold, forecast 
uncertainties and input data, and neither model produced satisfactory results. More importantly, the 
unprecedented change in forecasted information highly affected the model performance. This further highlights 
the importance of testing model robustness across multiple events and scenarios, deepening the integration of 
such tests in the IbF. This study also demonstrated how, while developing or validating these trigger models, a 
thorough understanding of the local context in FbA approaches as well as the characteristics of historical events 
are needed, and this was achieved through interaction with several experts in the domain. 

Another major take away for IbF practitioners is a call towards accessibility in the evaluation process to move 
towards transparent decision making. With an expansion in data-driven decision-making for humanitarian 
support, an increasing number of tools is being operationalized. With that comes the challenge of effectively 
communicating their complexities to the end users and allowing them to conduct scenario “what-if” analyses. 
The resulting interactive platform of this research was only an attempt to explore its benefit and present a 
prototype. Going forward, its operationalization can make this evaluation of decision tools more systematic for 
funding agencies and the local actors, for an evidence-based understanding of IbF.  The end goal is not always 
to find the best performing model, but to find the one that is best suited for the implementation plan, and such 
evaluation tools can accelerate this process.   

As we are dealing with gaps in data collection and quality, gaps also exist in how effectively this information can 
be incorporated for making informed decisions. Hence, moving forward, we are responsible to make these 
processes more open source, but also easily interpretable and usable by other practitioners and policy makers. 
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7 ANNEX 

Annex 1: Typhoon exposure and vulnerability in the Philippines retrieved from the community risk 
assessment dashboard13 

 

Map A Cyclones exposure 

Map B Percentage of houses with a strong roof 

Map C Percentage of houses with strong wall type 

Map D Vulnerable population (that includes Child head of HH, Single head of HH, 
Disabled person, Solo Parent, older people) 

 

Annex 2: Dataset 

Table 15 Source of all the dataset and the models used during this research 

Impact 
Model Data Description Source 

Retrieved from 

St
at

is
tic

al
 

M
od

el
lin

g Windspeed Estimation for statistical 
modelling was done using the existing 
model built by 510 that uses Holland 2008 
parametric modelling 510 IBF Typhoon Model 

github.com/rodekruis  

 
13 https://dashboard.510.global/#!/community_risk 
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Impact prediction for statistical model 
was made using the existing impact model 
from 510 

510 Typhoon Impact 
Model 

Forecasted wind speed and track for 
historical events ECMWF 

Pre-disaster indicators used as explanatory 
and target variables in the impact model 
were used from the existing model input 
database Multiple Sources 

Population Statistics 
Philippines Statistics 
Authority 

psa.gov.ph/statistics/census/projected-
population 

E
le

m
en

ta
ry

 m
od

el
lin

g 

Actual windspeed and landfall location for 
Kammuri IBTrACKS 

ibtracs.unca.edu/  

Forecasted wind speed and landfall 
location for Kammuri 

Joint Typhoon Warning 
Center (JWTC)  

Media reportings 

Wind observations from Automatic 
Weather Stations for 8 historical typhoons Philsensors- Dost-Asti https://philsensors.asti.dost.gov.ph/ 

Indicators for composite weighted overlay 
to calculate the vulnerability index 

Human Data Exchange by 
UN-OCHA humdata.org 

Post-event household damage data for 
historical events to build the damage 
curve 

National Disaster Risk 
Reduction and 
Management Council, 
Philippines 510 Database 

V
al

id
at

io
n Household damage data for typhoon 

Kammuri to validate the predictions of 
both the models 

National Disaster Risk 
Reduction and 
Management Council, 
Philippines 

https://ndrrmc.gov.ph/ 

Tisoy Situational Report No: 19 

 

Annex 3: Data quality issues:  

Place code, also known as P-code, which is being adopted in the humanitarian community, represents individual 
administrative regions with distinct values (OCHA, 2021d). P-codes allow a systematic linkage of data, avoiding 
any possibility of miscounting and making the validation process much faster. Currently, the administrative 
regions of the Philippines are also set up based on similar P-codes for three administrative levels (region, 
province, and municipality), as shown in Figure 28, creating a standard dataset for all the processes.  

 

Figure 28 An example of a P-Code used to link all the datasets for the Philippines at the municipality level 

 

 

Table 16 Examples of inconsistency in naming conventions of administrative boundaries in official data sources 

NDRRMC Data Standard Dataset with P-codes 
CALABARZON Region IV-A 

SagÃƒÂ±ay sagnay 
City of naga naga city 
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Table 18 An example illustrating the discrepancy in the count of damage due to Kammuri when compared against the 
current input database for the model 

Province Municipality Observed number 
of completely 
damages houses in 
the municipality 
(after manual 
correction) 

Observed number 
of completely 
damages houses 
in the 
municipality (In 
the current model 
input) 

Total Housing 
Units 

Percentage of  
houses totally 
destroyed 

Occidental Mindoro San Jose 40 0 33208 0.12 

Romblon San Jose 274 0 2392 11.45 

Camarines Sur San Jose 74 0 8684 0.85 

Northern Samar San Jose 554 0 3907 14.18 
 

 

Annex 4: Windspeed Reduction Factor 

Table 17 Example of duplication in official names of administrative boundaries in official data sources 

Name of Municipality Region Province 

San Isidro Region II Isabela 
San Isidro Region III Nueva Ecija 
San Isidro Region VII Bohol 
San Isidro Region VIII Leyte 
San Isidro Region VIII Northern Samar 
San Isidro Region XI Davao del Norte 
San Isidro Region XI Davao Oriental 
San Isidro CAR Abra 
San Isidro Region XIII Surigao del Norte 

Figure 29 Example of four imagery with locations of wind observation stations, and the 
corresponding roughness coefficient (Zo) assigned to it 
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It can be observed that there are not very significant differences in the reduction factor before and after 
normalizing the observations. This might lie in the fact that the values are expressed as a fraction of landfall 
windspeed, instead of absolute number. However, it should be noted that the normalization factor used here 
is merely an estimate and are subject to deviation from the true value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 A representation of how wind speed decays over the distance from 
landfall based on windspeed recorded at different intervals of the track by 

WMO 

Figure 31 Windspeed reduction factor curve obtained for the Philippines with factor of reduced windspeed 
(observations -AWS) against the distance from landfall plotted without the normalization (left) and after normalizing 

(right) 
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Annex 5 Damage Curves 

Table 19 List of all the events and the number of municipality if affected (at least one completely damage 
house) across 4 different regions. 

  
GONI 
(2020) 

PHANFONE 
(2019) 

HAIMA 
(2013) 

VAMCO 
(2020) 

YUTU 
(2018) 

SARIKA 
(2016) 

HAIYAN 
(2013) 

Total affected 
municipalities 

Central 74 113 1 40 2 0 298 528 
Metro 
Luzon 44 10 8 74 0 0 24 160 
North 
Luzon 37 5 292 110 70 57 2 573 
Mindanao 1 1 0 0 0 0 19 21 

Table 20 Damage curves for four super regions based on combination of different events which highlight the 
role of event characteristics in influencing the shape of the curve 

 Central Metro Luzon Mindanao North Luzon 

1 
E

ve
nt

 (H
ai

ya
n)

 

    

1 
E
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nt

 (G
on

i) 

    

Annex 6: Vulnerability index generated for different indicators 

Figure 32 Data points of the damage curve for central region using 7 events. 
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Poverty index: The index for the percentage of the population below the poverty line, shows higher values in 
southern areas of the country, the coastal parts of the Central region and some areas of North Luzon.  

Dependent population index: In terms of dependent populations, a low number of municipalities can be 
identified with values above 80 %. Areas of Luzon and Central Philippines have a relatively higher index, but 
the difference is not very substantial.  

House type index: Mindanao shows a very high proportion of houses built with light weight material and that 
are susceptible to wind, followed by the Central Philippines and coastal areas of Northern Luzon.  

Evacuation centre accessibility index: Compared to other indices, the percentage of the population in terms of 
access to an evacuation cente is unevenly distributed amongst the municipalities and cannot be generalized as 
being high or low in a particular region. However, some islands in the central Philippines which are in the coastal 
extremes and susceptible to frequent typhoons, have 80 to 100 % of population without access to an evacuation 
centre, which is alarming.  

 

Figure 33 Index for 4 indicators of vulnerability generated at municipality level 
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Annex 7: Description of decision support tool  

Variables Description Functional for:  Remarks 
Landfall X, 
Landfall Y, 
Maximum 
sustained wind 

This is the forecasted or actual 
parameters of the typhoon and can 
be tested for any event and lead time 

Elementary 
method 

The coordinated must be 
entered in projected 
coordinate system. 
Windspeed must be 1-min 
sustained.  

Landfall 
location and 
windspeed 
error 

This allows a selection of tolerance 
of error in forecast for re-
calculation of reduced windspeed 

Elementary 
method 

 

Actual Vs 
Predicted Map 

Displays the landfall location and 
impact that was reported and what 
was predicted based on the variables 
selected.  

Elementary and 
Statistical 
method 

The two maps are mirrored 
so can be interacted to make 
area specific comparisons as 
shown in Figure 24. The 
cursor can also be hovered 
around each municipality to  
get more details such as 
damage percentage and 
windspeed.  

Damage Curve To display the damage curve which 
is being used to convert calculated 
windspeed into damage. Also allows 
selection of number of events for 
the curve construction and the area 
curve to display. 

Elementary 
method 

Based on the number of 
events, prediction will be 
recalculated but the selection 
of super region is only for 
display purpose 

Accuracy 
metrics 

The bar chart on the bottom left 
displays the accuracy of prediction 
when compared against the actual 
damage from the event.  

Elementary and 
Statistical 
method 

Can be downloaded as an 
image to allow comparison 
of multiple scenarios 

Trigger 
threshold 

Selection of damage percentage 
which will be used as the threshold 
for trigger 

Elementary and 
Statistical 
method 

This value cannot affect the 
prediction but will only 
change the calculation of 
accuracy metrics 

Priority 
Municipality 

Out of all the predictions, number 
of municipalities to prioritize based 
on vulnerability index 

Elementary 
method 

This value cannot affect the 
prediction but will only 
change the calculation of 
accuracy metrics 

Select Map to 
Display 

Selection of actual damage or 
vulnerability index calculated 

-  The index is based on results 
obtained from section 4.2.4 

Select a 
typhoon 

Contains list of past typhoons in the 
area  

- Currently meant only for 
displaying the actual damage 
for the event. The prediction 
results from statistical 
modelling only include 
Kammuri. 

Select a region To select a region for prediction and 
display 

Elementary 
method 

This will reduce the 
processing time for faster 
predictions  
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Annex 8: Accuracy Metrics 

Table 21 Accuracy metrics using elementary impact model, based on number of municipalities exceeding the 
trigger threshold of 10% damage, considering four different allowances of error in landfall location 

Elementary Model 
 Landfall location error 0 km 50 km 100 km 200 km 
TP 6 3 8 16 
FP 4 2 17 74 
FN 30 33 28 20 
Precision 0.60 0.60 0.32 0.18 
Recall 0.08 0.17 0.22 0.44 
F1 Score 0.15 0.26 0.26 0.25 

 

Table 22 Accuracy metrics using elementary impact model, based on number of municipalities exceeding the 
trigger threshold of 10% damage, considering four different allowances of error in landfall windspeed 

 Landfall Windspeed Error 0 km/hr 20 km/hr 50 km/hr 70 km/hr 
TP 3 4 4 4 
TN 1595       
FP 2 5 5 5 
FN 33 32 32 32 
Precision 0.60 0.44 0.44 0.44 
Recall 0.08 0.11 0.11 0.11 
F1 Score 0.15 0.18 0.18 0.18 

 


