
Fighting Phishing at the Website Host

Niclas van Eyk

February 15, 2023

Abstract

The Anti Phishing Working Group (APWG) regularly reports an in-
crease in phishing attacks. Recent events, such as the COVID-19 pan-
demic, forced more people to use the internet, making phishing more
interesting and amplifying the aforementioned trend. Users can protect
themselves client-side by relying on built-in browser security mechanisms
or installing additional extensions to identify dangerous websites. How-
ever, this shifts the responsibility to each end-user. This work focuses
on finding ways to detect phishing at the website host instead. All users
are protected by such mechanisms, making it more efficient than client-
side detection. The website host also has access to data not commonly
available to clients, which could help to improve the classification process.
CodeSandbox’s platform regularly is exploited by phishers as a free web-
site host. Their data is used to create a machine learning system that
helps to classify phishing before it is able to fool victims. With the XG-
Boost classifier achieving a balanced accuracy of 90.64%, the results are
comparable to academic literature.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 CodeSandbox . 2
1.3 Problem Statement . 4
1.4 Structure . 5

2 Background 6
2.1 Phishing . 6

2.1.1 Types of Phishing Attacks 6
2.2 Classification . 9
2.3 Cloaking . 9
2.4 Human-in-the-loop Machine Learning 10

2.4.1 Human Guided and Interactive Machine Learning 10
2.4.2 Explainability . 11
2.4.3 Sampling . 11

3 Related Work 13
3.1 Methods . 13

3.1.1 Blacklists . 13
3.1.2 Rule-based . 14
3.1.3 Machine Learning . 14
3.1.4 Deep Learning . 15

3.2 Features . 15
3.2.1 URL-based . 16
3.2.2 Content-based . 16
3.2.3 Other . 18

3.3 Datasets . 19
3.4 Contributions of This Work . 19

4 Dataset 20
4.1 Operational Data . 20
4.2 Phishing Data . 20
4.3 Training Data . 21

5 Methodology 23
5.1 Improving the False Positive Rate (FPR) 23

5.1.1 New Scanning Approach 23
5.1.2 Features . 23
5.1.3 Model Training . 28

5.2 Impact Analysis . 29
5.3 Designing The System To Be Scalable 30

5.3.1 Performance . 31
5.4 Redesigning The Review Process 32
5.5 Comparison Through Proactive Scanning 34

ii

6 Results 35
6.1 Classification . 35

6.1.1 Error Analysis . 35
6.1.2 Login Form Detection . 37

6.2 Feature Impact . 37
6.3 Performance . 39
6.4 Review . 40

7 Discussion 43
7.1 Classification . 43
7.2 Features . 43
7.3 Performance . 44
7.4 Review Dashboard . 44
7.5 Security . 45

8 Conclusion 46
8.1 Summary . 46
8.2 Future Work . 46

A Appendix 48

iii

Figure 1.1: Detected phishing websites since 2020 as reported by the APWG [2].

1 Introduction

Phishing is a social cyber-attack where the attacker tricks the victim into trust-
ing them by impersonating another authority. Common examples include steal-
ing user credentials by rebuilding a popular website’s login form but hosting
it under a different name. The victim thinks it logs into their account, but in
reality, they provide sensitive information to the attacker. Technically literate
or trained staff can identify such attacks by e.g. noticing that the website’s URL
is different. However, research suggests that even after being made aware that a
website may not be legitimate, many people are not able to reliably distinguish
them from a fake one [1].

1.1 Motivation

As the recent Covid-19 pandemic forced many people to work from home,
a large number of employees is now required to use the internet, even if they
lack technical literacy. This rise in internet users also sparked an increase in
the number of phishing attacks [3]. Since the first lockdowns during the first
half of 2020, the Anti Phishing Working Group (APWG) regularly reports new
all-time highs for the number of detected phishing attacks [2], as can be seen in
Figure 1.1. Detecting and warning users about them is therefore more important
than ever.

To fight phishing, one can try to educate users or install software that scans
websites visited by them and either runs detection algorithms [4, 5] or looks up
known phishing incidents reported by third parties [6]. All of these measures
work but require additional steps by the user of the computer, who is interested
in not being a victim of a phishing attack. However, platforms hosting content
on the internet also might be interested in preventing phishing, as it hurts their
users and reputation. A user, who visits a link on a social media website and
falls for a phishing attack, is likely associating it with their negative experience,
driving them away from the platform. Therefore, actively fighting phishing at
the host level benefits the platform and its users.

1

Figure 1.2: The CodeSandbox online editor.

1.2 CodeSandbox

CodeSandbox1 provides web developers with a tool for collaboratively creating
websites. Their virtualized in-browser sandboxes are set up for common web
development tasks. This is shown in Figure 1.2, where the code can be edited
on the left, and the resulting website is displayed on the right in an automat-
ically refreshing website preview. The preview can also be accessed without
the editor user interface via a short link (e.g. https://g8mfiu.csb.app), es-
sentially making CodeSandbox a free website host. According to literature [7],
such short links are attractive to phishers since people are used to them due
to the widespread usage of URL-shortener services on social media. These two
features make it an attractive target for phishers to exploit. As the host of
potential phishing websites, they are in a unique position to automatically de-
tect and remove them, thereby saving users from getting their credentials stolen.
However, phishing detection on a platform aimed at helping developers to create
websites faces challenges not present in traditional phishing detection. Users of-
ten try to rebuild popular websites as a training exercise. Falsely flagging such
harmless replicas as phishing hurts the user experience and may drive them
away from the platform. Additionally, the difference between a harmful replica
and a dangerous one is hard to detect since the web provides multiple ways of
transferring data to an external source.

Currently, CodeSandbox runs a number of checks when a preview is opened
to detect phishing sandboxes. This saves computing resources compared to run-
ning them on every change, since a phishing website that has not been accessed
yet can not do much harm. Each Hypertext Markup Language (HTML) file
in the sandbox is evaluated using a JavaScript based Document Object Model
(DOM) implementation, on which a set of predefined rules compute a final

1https://codesandbox.io

2

https://g8mfiu.csb.app
https://codesandbox.io

Figure 1.3: Two entries on the review dashboard.

Figure 1.4: The red banner is displayed to users until a human reviewer marks
it as a false-positive.

score. This score is a natural number between 0 and 999 and tries to quantify
the likelihood of a sandbox being used for phishing. By dividing the score by 10,
one can think of it as a probability, where a score of 999 represents the detec-
tion mechanism being 100% certain that the sandbox is used for phishing. The
number of points awarded for each matching rule is set based on experience and
estimation. An example rule scans the generated HTML content and increases
the score by 100 points for each form element with an “action” attribute con-
taining the string “http”. This indicates that the sandbox issues a request to an
external website, which could potentially send credentials typed into the form
to a third party. If the final score does not exceed a predefined threshold, the
sandbox is marked as harmless and otherwise as possibly containing phishing.

Harmless sandboxes are discarded, while the potentially harmful ones show
up on an internal review dashboard, where an employee manually inspects the
sandbox and decides whether the classification was correct or represents a false-
positive. In the former case, the employee is able to directly take action against
the phisher by deleting their account and thereby all associated sandboxes. Two
example entries of the dashboard are displayed in Figure 1.3. To support Code-
Sandbox’s own detection mechanism, they collaborate with another company
that can report phishing sandboxes detected by their proprietary mechanism,
which also creates entries on the review dashboard. While a sandbox is pend-
ing human review, the banner shown in Figure 1.4 is displayed on the preview
page alerting viewers that the site they are currently looking at possibly tries
to deceive them.

However, not all sandboxes detected by the current mechanism are indeed
used for phishing. Out of the 13,000 entries that were at one point listed on the
review dashboard, only around 600 were actually deleted by a human reviewer

3

for containing phishing.
If we treat an entry showing up on the review dashboard as it being clas-

sified as phishing and the decision of the human reviewer as the ground truth,
the system has a False Positive Rate (FPR) of 95%. At the same time, users
still report phishing incidents. The company supporting CodeSandbox in their
fight against phishing reports on average three previously undetected and later
confirmed phishing sandboxes per day. In a recent incident2, Google found
phishing activities on of the subdomains used by CodeSandbox to display their
sandbox previews. This led to users visiting any preview on the subdomain
through Google’s Chrome browser seeing a red warning page instead, labeling it
as insecure and potentially containing harmful content. Since Chrome has 60%
market share, this leads to the majority of visitors of that subdomain needing to
dismiss the warning in order to visit their previews. To summarize, the current
detection mechanism misclassifies many harmless sandboxes as phishing, lead-
ing to more work for human reviewers. User reports and findings from external
entities prove that it misses multiple sandboxes per day.

1.3 Problem Statement

This work is concerned with creating a server-side phishing detection system
that utilizes machine learning (ML) technologies, manually designed features,
and is operated by the website host. Given this context, the following research
questions need to be answered:

RQ1 How can the FPR be reduced? The current method adds too many
irrelevant entries to the review dashboard, likely because of its simple
rule-based approach. This work should find a new ML-based approach
better suited for this complex problem domain. Additionally, the new
method should use higher quality information since the current one only
utilizes data obtained through simulated execution of source code. By
actually running sandboxes in a headless browser and incorporating meta-
data about the sandboxes, the algorithm has access to more and higher
quality information to issue more informed predictions. Together, these
improvements aim to improve the current system’s high FPR.

RQ2 What identifies a phishing sandbox? The new features obtained
through answering RQ1 are unlikely to contribute equally to the final pre-
diction. While new and anonymously created sandboxes have an increased
probability of containing phishing, a sandbox containing a login form is
more likely to identify it as being used for phishing. Due to the unique
position of being the website host, this could reveal influential features
that were previously not used for phishing detection. Therefore this work
explores the influences of the new features on the classification result.

RQ3 How can the new mechanism still be fast enough? Although the
current method has a high FPR, it is fast and does not use many system
resources. As there are close to 30,000,000 sandboxes on the platform, a
new detection run is triggered about 24 times per minute. If the result of
the phishing scan takes too long to complete, a user might already have

2https://twitter.com/csbstatus/status/1559834311838388225

4

https://twitter.com/csbstatus/status/1559834311838388225

typed their credentials into a fake login form. It is therefore crucial that
a new mechanism needs to be scalable and reasonably fast to execute.
However, the newly introduced methods and features described in RQ1
will increase the complexity and computational cost of server-side phish-
ing detection. An important question is therefore how to ensure that a
sandbox can still be analyzed in under 10 seconds. This work tries to find
a system design that realizes this goal.

RQ4 How can the design of the review system be changed to make
better use of the reviewers’ effort? Human reviewers detecting phish-
ing need expert knowledge about web technologies in order to e.g. distin-
guish between a harmless replica of a popular website’s login page and a
dangerous one used for phishing. Because of these requirements, the devel-
opers of CodeSandbox handle the review, whose time should be used in the
most effective way possible. Currently, this is not the case, as they need to
invest time into reviewing obviously harmless sandboxes with no appar-
ent signs for why they showed up on the dashboard. While RQ1 should
improve this situation, there are fundamental issues with the current de-
sign of the review system that hinder its usefulness when using machine
learning. Supervised ML algorithms require training data but classifying
a sandbox as phishing deletes data associated with it. Since users also
modify and delete sandboxes, part of the annotated labels that make up
the training data are lost over time. The user interface of the review
dashboard neither reflects the “danger” of a sandbox nor why it should be
considered dangerous, making it hard for the reviewers to provide feed-
back on the automated decisions. Due to all these shortcomings, this work
explores an improved design for the review system, which combats train-
ing data loss and makes the reasoning behind automated decisions more
transparent to the reviewers.

In addition to these research questions, there are aspects that are intention-
ally left out in order to maintain a reasonable scope. Sandboxes can be used
for many undesirable purposes, but this work solely focuses on detecting phish-
ing. Other problems, like detecting spambots, sandboxes that just redirect to
Google searches to gain popularity, or explicit content are outside the scope of
this research.

1.4 Structure

The rest of this document is structured as follows: section 2 describes relevant
background topics, such as the type of attacks used by phishers. Section 3
then lists several related works and categorizes them by their used features and
methods. Section 4 describes the data model of CodeSandbox and the available
data used to detect phishing. A selection of features and methods used by this
work to answer the research questions are defined in section 5. The achieved
results are listed in section 6 and discussed in section 7. Finally, this work is
summarized in section 8, including the mention of potential future work.

5

Figure 2.1: Historic overview of events related to phishing from 1996 to 2020 [3].

2 Background

This section includes relevant background knowledge about topics related to
phishing and its prevention. First, phishing is defined and examples are shown
of common and clever attacks. Then the problem of classifying websites is
defined. The last subsection describes techniques for incorporating humans into
machine learning processes and how to use their work in the most effective way.

2.1 Phishing

As seen in Figure 2.1, phishing has historically been a problem since the cre-
ation of email and the internet. With technological advancements, phishing
strategies also got more creative and new record were set highs. In general,
all phishing attacks work by making the user think they visit a trusted web
page or communicate with a person they trust. Email, SMS, and more recently
social networks like Facebook, Instagram, or YouTube are used for phishing.
The attacker impersonates another authority, prompting the user to send them
money, credentials or otherwise doing harmful actions.

2.1.1 Types of Phishing Attacks

Since phishing is a social attack, it can be executed in various technological
ways. A phishing attack should deceive many users with a high probability
to maximize its impact. Therefore, spear phishing or whaling [8] attacks focus
on increasing the probability of a single person being deceived, at the cost of

6

the target audience being smaller. This necessitates the attacks being more
personalized to the victims to appear more credible.

An example is presented by Siadati, Nguyen, and Memon [8], who showed
X-Platform Phishing, where they used the ability to trigger transactional emails
like social media friend requests with customizable content containing hyperlinks
leading to potentially harmful websites. As these emails are sent by an authority
trusted by the user, they are more likely to visit the linked website. In their
experiments using the GitHub platform, all emails containing phishing links
were delivered to the victims inbox, sometimes even forwarded to others and
not caught by any spam or phishing filters. As the results demonstrate, this
attack is hard to detect, but requires the attacker to address the users directly,
making it harder to quickly distribute the emails to a large number of users.

An important part of most phishing attacks are fake websites, which repli-
cate the look of a popular one, but are controlled by the attacker. In these
website forgery [9] attacks the phisher makes the user think they visit familiar
site. In reality, they are served a visually similar copy that sends their data to
the attacker. According to the APWG [2] and phishing datasets [10], popular
targets for such attacks are financial websites such as PayPal or online banking
providers. In general, a website forgery attack has the following lifecycle [9, 11]:

1. The attacker sets up a website similar to an existing one.

2. The attacker somehow makes the victims aware of the phishing website.
This can be done in a variety of ways, such as linking to it from a mail
that is sent out to the victims, a comment on a social media website or
an SMS.

3. Victims fooled by the phishing website enter their credentials, thinking
they are interacting with its original counterpart. In reality, the credentials
are transferred to the attacker, thereby compromising them.

4. The phishing website gets detected by entities. This could be the hosting
provider, or another third-party, such as Google, who wants to warn the
users of their Chrome browser of potentially harmful websites. A recent
study [11] states that it takes nine hours on average for these third-parties
to detect a phishing website from the point where the first victim is de-
ceived. During this timeframe, the majority of the damage has been done,
since 62.73% of the victims have been deceived.

5. The website is finally taken down by the hosting provider as it was detected
as harmful. Alternatively the attacker could be motivated to remove the
site themselves, since the cost of hosting is not worth it, as external entities
already marked is as phishing, thereby lowering its efficiency.

The URL is an important part of a webpage, that an attacker cannot just re-
use to appear legitimate. However, there are techniques that allow them to look
official, such as slightly altering a commonly known one. A user might not catch
a missing “e” in appl.com, if the website looks convincing enough. Similarly,
“vv” can look very similar to a “w”, depending on the kerning, tracking and the
chosen font of the browser. These techniques are called homoglyph or homograph
attacks [12]. They abuse the fact, that there are similar looking characters in
different alphabets. As an example, the letter “a” (U+0061) has a very similar

7

appl.com

Figure 2.2: A fake popup window (left) built with HTML3 to look and feel like
a native macOS one (right). While there are some subtle differences, phishers
could add trust signifiers like the currently missing padlock or change the URL.

looking counterpart (U+0430) in the Cyrillic Unicode block. Unicode charac-
ters from blocks other than the Basic Latin one need be encoded in URLs, so
apple.com using the Cyrillic “a” would become xn--pple-43d.com. However,
browsers choose to display the Cyrillic letters instead, as it is better readable
to speakers of languages using such alphabets. Even though measures against
this have been implemented, to e.g. display the escaped version if a URL uses
letters from multiple Unicode blocks, this attack vector has been abused in the
past and continues to represent a tradeoff between security and user experience.

These types of attacks can be detected by comparing the similarity of the
current URL to a list of known ones. This is not the case, if the browser
window is entirely rendered by the web-page and controlled by the phisher.
This is the case for Picture-in-Picture (or Browser-in-the-Browser) attacks [13]
where a popup window is replicated using HTML and JavaScript. Based on
the browser’s user agent string, the attacker can infer the operating system
and therefore make the replicated user interface look like a native one. As a
consequence, the URL or other trust signifiers can be arbitrarily controlled by
the attacker. An example is displayed in Figure 2.2, where the fake popup on
the left looks very similar to the native one on the right. The developer tools
at the bottom show the HTML structure used to build the fake one and reveal
that the displayed URL can be set to an arbitrary string chosen by the phisher.
The user can still notice the difference by e.g. trying to drag the fake popup
outside the original browser window, which is only possible for real ones. A
study by Jackson et al. [13] showed, that these types of attack are as effective

3https://github.com/mrd0x/BITB

8

apple.com
xn--pple-43d.com
https://github.com/mrd0x/BITB

as homograph ones.

2.2 Classification

Detecting phishing attacks is a binary classification problem, where a non-
phishing site is associated with the negative class and a phishing one with
the positive. Some related works are able to achieve high accuracy scores of
more than 95% [14, 15, 16]. However, as the web is constantly changing, so do
phishing attacks and relevant features. Methods and features that achieve high
accuracy now, may not do so as time passes, and browser introduce new APIs.
Menon and Gressel [17] showed, that this concept drift needs to be taken into
account, otherwise model performance will worsen over time.

When a phishing classifier is built, it needs to be determined when and where
it should run. Most implementations from related works run on the client-side,
in response to a user opening a webpage. Some browsers support this out of
the box, e.g. Google’s Chrome browser uses their Safe Browsing service [18] to
detect when a potentially harmful website will be visited. Other techniques from
research [4, 5] can be installed as a browser extension, to enhance the built-in
detection mechanisms. However, client-side protection only works for users who
installed it. In an ideal scenario, fraudulent websites could be detected, before
they can harm any users. To realize this, Maurya and Jain proposed shifting
the detection to the Internet Service Provider (ISP) [19]. CodeSandbox, as a
website host, is in a similar position to implement server-side detection on behalf
of their users.

2.3 Cloaking

Phishers use techniques referred to as cloaking to evade detection. A generic
example is making their websites look harmless when scanned for phishing but
still displaying a fake login form when a victim visits the website. The authors
of the CrawlPhish [20] paper analyzed different cloaking techniques and their
usage in the wild. Suppose a server-side phishing scanner uses the Chrome
browser to analyze the website. In that case, phishers can analyze the user
agent header to block all requests by Chrome users or serve them a harmless
website instead. Similar server-side cloaking techniques can be implemented
based on the requests’ IP or included cookies. They also describe client-side
detection techniques, such as requiring the user to move their mouse to display
the real page. Humans express such subconscious behavior but not by phishing
crawlers. The authors of the PhishFarm [21] project described similar patterns
and showed that a phishing site using cloaking takes almost twice as long to be
detected by popular blacklists than one without.

9

const parameters = parseQueryParametersToObject();

const email = parameters["email"];

if (email) {

window.location.replace(`https://phishing.com/?e=${email}`);

}

Listing 1: JavaScript code that only redirects the user if a specific query pa-
rameter is present. The value of the query parameter is then passed on to the
phishing site to pre-fill the email field in the displayed login form, making it
seem more trustworthy.

The most prominent example of cloaking on CodeSandbox is through query
parameters. As displayed in Listing 1, the sandbox redirects the visitor if a query
parameter is present or has a specific value. Sometimes this is done explicitly
using an if-statement and sometimes as a byproduct of using the atob function
to decode a base64-encoded string, which fails if the passed value is undefined.
More advanced methods redirect the user, but the target page validates a token
passed through a query parameter. If that token does not have a valid value
only known by the phisher and the victim, the target website displays a harmless
version. This effectively blocks human reviewers from adequately accessing the
danger of the website. Other forms of cloaking are placing a static phishing
HTML file inside an otherwise compiled web app. The phishers then deep-link
to the phishing file, which has to be found by human reviewers, making it harder
to detect. Finally, CAPTCHAs are used in a few cases to prevent automated
access to phishing sandboxes. While this is less common than the other phishing
patterns, it prevents automated phishing scans.

2.4 Human-in-the-loop Machine Learning

While machine learning models should replace manual human processes, humans
are not completely eliminated from the task. Many algorithms require labeled
data points created by humans to work and tasks like quality control or feedback
on classification results also require human effort. This section describes related
research that deal with human-machine-learning interaction.

2.4.1 Human Guided and Interactive Machine Learning

While machine learning models can help to automate manual tasks, no classifier
achieves a perfect accuracy of 100%. Sometimes, they are wrong. During the
training process, the model can adjust its weights based on the correct label
provided by a human expert. However, after the model is deployed to produc-
tion, it is expected to make a decision on its own regularly. But if the model is
only 50% certain that a website is used for phishing, should it be deleted auto-
matically or left as is? Another option would be to delegate the final decision
to a human expert. Human Guided Machine Learning (HGML) [22] (or simply
Guided Machine Learning [23]) and Interactive Machine Learning are research
areas for interactively incorporating humans into the machine learning lifecycle.

Examples from other domains than phishing include search engines, where
the end-user can provide feedback to the search results [24]. The model can

10

then use this feedback to rank the search results and improve over time. Human
reviewers already vote on the results of the phishing detector at CodeSandbox,
the feedback is just not incorporated back into the model. Another example
is ManiMatrix [25], a system where users interactively adjust parameters of
a machine learning process based on the resulting confusion matrix. Thereby
users can control their decision preferences, which can vary between use cases.
Classifying a regular email as spam is likely to have worse consequences than
the inverse [24].

2.4.2 Explainability

When using a machine learning algorithm to solve a classification problem, it can
be hard to explain the result. Simple methods like linear regression can use the
coefficients to derive an explanation for how much each feature contributed to
the final result. Decision trees can be visualized and, depending on the depth,
make it easy to follow their decision as a human. The same holds for rule-
based systems, like CodeSandbox’s current approach, where one could simply
list the contributions of each rule to the final score. More complex methods
like neural networks or an ensemble of decision trees can lead to more accurate
results but are not as easy to explain and are often treated as black boxes. This
can lead to models with good classification performance, which may focus on
unintended details such as the presence of text instead of the actual subject
of the image [26]. Such mistakes are hard to spot without transparency about
what the model focuses on and how specific feature values influence its decision.

Post-hoc explanation methods [27] are created after the model has been
trained. They provide an idea of a feature’s influence without requiring the
classification algorithm to be inherently explainable, such as a decision tree.
Permutation importance [28] can be computed by simulating the absence of
a feature and measuring how much the accuracy decreases. This covers the
overall influence but fails to explain a particular decision. Local Interpretable
Model-agnostic Explanations (LIME) [29] tries to simplify a complex model by
assuming that a local part of the decision boundary can be approximated by
a simple linear model. These much simpler models can then be used to derive
an explanation. SHapley Additive exPlanation (SHAP) [30] and its adaptation
for tree-based algorithms TreeSHAP [31] use an additive model to represent
the attributions of each feature to the final classification result. For regression
models, this has the additional effect that the sum of the expected value and the
SHAP values of each feature is equal to the regression result. When computing a
risk score for a sandbox containing phishing, one can see numerical attributions
of each feature on the final score.

2.4.3 Sampling

When incorporating humans into machine learning processes, one must decide
which data points should be handled automatically, and which ones need to be
manually reviewed. If reviewers were presented with a random sample of the
data to classify, it is likely, that the model could have classified many of those
data points correctly [32].

Uncertainty sampling [34] represents a family of sampling algorithms that
select the data points that a model has the most trouble identifying correctly.

11

(a) (b) (c) (d) (e)

Figure 2.3: Samples from the MNIST dataset [33]. While (a) and (c) are easy
to classify as either 9 or 8, the results for (b) will likely be less certain. Images
(d) and (e) show different styles of writing the digit 1. All images were inverted
to improve legibility.

The digit displayed in Figure 2.3 (b) could either be classified as an 8 or as a
9, making a classification result made by a model less certain. When employing
uncertainty sampling, the model would try to detect the displayed number in
each image while recording a measure for the certainty of the decision. A human
would then manually label a number of uncertain data points and retrain the
model. Das Bhattacharjee et al. [35] applied this technique to phishing detection
based on URL features. They gradually increased the number of manually
annotated samples, each time tracking the classifiers’ accuracy. At each step,
the newly introduced samples were chosen through uncertainty sampling. The
results show that the classifier’s performance stabilizes after approximately 1%
of the dataset is annotated.

Another challenge when only looking at a subset of the overall dataset, is to
obtain a diverse sample. Otherwise, the model might overfit on the chosen data
points [36], thereby lowering its accuracy on unseen data. Imagine a sample from
the MNIST dataset [33], where the digit “1” is written as a straight line, as seen
in Figure 2.3 (d). A classifier trained on this sample is likely to mistake a “1” in
the style of (e) as a “7”. To obtain a more diverse sample, the general strategy is
to find groups of data points that are similar. Concrete implementations lever-
age techniques such as outlier detection [36], clustering [37] or regression [32].
Diversity sampling can also be combined with uncertainty sampling, to obtain
a subset that helps the model learn fast, while still generalizing well [38].

12

M
et
h
o
d

S
et
ti
n
g

F
ea
tu
re
s

S
cr
ee
n
sh
o
t

P
o
p
u
la
ri
ty

T
ex
t

D
O
M

U
R
L

Phish. Leg. Acc. FPR

[39] C 8 ✓ ✓ ✓ 100 100 95.0% 10.0%
[40] C 2 ✓ ✓ 1,000 200 96.1% 1.4%
[41] Rule- E 6 ✓ ✓ 9,661 1,000 97.0% 2.0%
[42] Based C 1 ✓ - - - 16.9%
[43] E 1 ✓ ✓ 100 100 99.0% 0.0%

[44]

ML

E 15 ✓ ✓ 4,883 8,118 - 0.4%
[45] E 30 ✓ ✓ ✓ ✓ 615 489 98.3% -
[46] E 212 ✓ ✓ ✓ 1,216 100,000 95.6% 0.0%
[47] E 17 ✓ ✓ 800 600 92.1% -
[48] E 12 ✓ 1,428 1,121 98.4% 1.5%
[49] S 1 ✓ 193 347 95.2% -
[4] S 22 ✓ ✓ 1,473 1,500 92.5% 5,4%

[50]
DL

E 9 ✓ 24,539 24,502 97.0% 2.6%
[51] E 1 ✓ 8,796 9,000 98.3% 1.7%

Table 1: Overview of the method, features, and results of related works im-
plementing phishing website classifiers. The Setting column describes whether
the method is intended to be run on the server (S), the client (C), or was of
experimental nature (E). In an experimental setting, the detection can run on
the server side, but the authors neither mention this explicitly nor describe real-
world challenges, such as time or resource constraints. If known, the amount of
phishing (Phish.) and legitimate (Leg.) samples in the training set is displayed,
as well as the accuracy (Acc.) and FPR. When a work compares multiple meth-
ods, only the best metrics are listed.

3 Related Work

This section describes existing phishing classifiers from academic literature.
Their methods, features and datasets are described and broadly categorized.
A summary is displayed in Table 1.

3.1 Methods

The methods used to detect phishing evolved over time from being simple and
requiring manual effort, towards being more complex, resilient to changes and
automated. They can be broadly categorized into blacklists, rule-based, ma-
chine learning and deep learning approaches, which will be described in this
section. These categories are not exclusive and can be combined to leverage the
advantages of another method.

3.1.1 Blacklists

The first thing a user interacts with before they visit a web page is usually its
URL. It uniquely identifies a website, can not be controlled by an attacker and

13

is therefore valuable for detecting phishing websites. In the most simple way, a
URL is checked against a blacklist of sites known to contain phishing. Examples
include PhishTank [52], OpenPhish [53] and Google Safe Browsing [18]. How
sites get blacklisted differs between providers. PhishTank allows its users to
submit entries, which are then voted on by others. The other two do not publicly
state how the detection works, but both expose ways to report false positives
or suspicious websites.

A study from 2007 suggests that list-based methods are able to detect up to
90% of phishing websites [1]. It is to be noted that they sourced their phishing
URLs from PhishTank, which is available for free. The evaluated lists might use
PhishTank as a source, thereby possibly inflating the measured accuracy. More
recent studies [54, 55] show similar results, with Google Safe Browsing being re-
ported as the largest and most precise list. However, when using more advanced
evasion techniques can be circumvented leading to worse performance. Oest et
al. [21] showed that Google was able to detect 97% of non-evasive phishing
sites. When they implement techniques to prevent detection, such as blocking
US traffic or IPs known to be used by Google’s crawlers, only 1–3% of websites
were detected. This illustrates that while using a blacklist may be simple to
implement, they still have their drawbacks. Their effectiveness is dependent on
how frequently they are kept up to date and literature suggests that it takes
hours rather than minutes for new sites to be detected [21]. This means they
are less effective against zero-day attacks, compared to other methods which
actively scan for phishing content.

3.1.2 Rule-based

In order to be independent of third parties, one can manually implement rules
that if satisfied to a certain degree, classify a website as phishing. These rules
or heuristics are similar to features in machine learning. The impact of each
rule on the classification result is defined manually, as it is done by CodeSand-
box’s current system described in section 1.2. This is a clear drawback of such
systems, since the influence of a feature can change over time [17], requiring
continuous adjustments in order to maintain a good classification accuracy. An
example from academic literature is given by Nguyen et al. [41], who were able
to achieve 97% accuracy and a FPR of 2% with only six rules. They queried
search engines for the domain and path of the website and measured the Leven-
shtein distance to the returned spelling suggestion. This way they intended to
detect phishers using homograph attacks. They also used Alexa to determine
scores for popularity and reputation, since phishing sites are less frequently vis-
ited than their counterparts. All these metrics were combined into a weighted
sum that if it exceeds a threshold leads to the site being classified as phishing.

3.1.3 Machine Learning

As an evolution to the manually created rule-based systems, ML techniques are
used in combination with features derived from the URL or from the pages con-
tent. This way, one does not need to manually create rules and let the algorithm
decide how to best utilize the features. Shahrivari, Darabi, and Izadi compared
12 commonly used algorithms throughout phishing detection research [45, 3].
Those include Logistic Regression, Decision Tree, Random Forest, K Nearest

14

Neighbor (KNN), Support Vector Machine (SVM), Neural Network and vari-
ous boosting algorithms such as XGBoost or Gradient Boosting. The resulting
accuracy scores range from 92% to 98% with the ensemble methods XGBoost
and random forest achieving the overall best performance. As all classifiers
were able to detect phishing websites with high confidence, one can choose one
depending on the specific problem. If explainability is important for the use
case, one can sacrifice a bit of accuracy, and implement a decision tree classi-
fier, whose predictions can be easily visualized as a diagram. Similarly good
results were achieved by Jain and Gupta [48] who also tried several different
ML classifiers. They used 12 different content-based features mostly focusing
on URLs contained in attributes of HTML like the ones from anchor tags, forms
or loaded Cascading Style Sheets (CSS). Using a balanced test set of phishing
and legitimate sites and a logistic regression classifier, they were able to achieve
an accuracy of 98.4% while maintaining a low FPR of 1.5%. This approach
sounds promising for this work, since it is proven to work well with a reasonable
amount of features and computational cost.

3.1.4 Deep Learning

Through the use of specialized machine and deep learning methods, several
authors have tried to reduce the maintenance burden induced by having to
constantly respond to new types of phishing attacks. While traditional ma-
chine learning algorithms improve upon rule-based systems, they still require
the effort of manual feature engineering. Deep learning based methods try to
circumvent this, by inferring important features from raw data. This way, they
are also more resilient towards change and are able to deal with concept drift
and the introduction of new browser APIs [17]. For example, the introduction of
the global fetch function to JavaScript supplied phishers with a new way of is-
suing requests to external servers. Traditional machine learning models created
previously need to be made aware of this fact, or otherwise their false negative
rate will likely increase over time, as they miss phishing attempts using this new
API. Deep learning based methods can be retrained on phishing pages abusing
the new API, thereby circumventing the need for new feature engineering. The
gained advantages come at the expense of requiring larger datasets and more
resources while training [3].

A recent implementation leveraging deep learning is PDRCNN [50]. Based
solely on URL features extracted by a Long Short-Term Memory (LSTM) net-
work, which are then passed to a Convolutional Neural Network (CNN), they
achieve 97% accuracy on 500,000 websites crawled from Alexa and PhishTank.
The approach followed by CNN-MHSA [51] also works solely based on the URL,
but requires no explicit feature engineering. Each letter of the URL is one-hot-
encoded based on the valid 84 characters it can contain. The resulting matrix
is then passed through a CNN containing a multi-head self-attention (MHSA)
layer that should discover relationships between the characters. This method
yields an accuracy of 98.3% with a FPR of 1.7%.

3.2 Features

There are numerous signifiers indicating that a website is used for phishing.
Marchal et al. [46] alone use 212 different features in their implementation. In

15

https

protocol

://accounts

subdomain

. paypal

domain

.com

TLD

/secure/login

path

?key=secret

query

Figure 3.1: Selected parts of a URL.

general, the features are derived from the URL, the content of the page or other
metadata about both. This section lists popular examples found in literature
and describes them in more detail.

3.2.1 URL-based

Since URLs uniquely identify a website, data extracted from them is promi-
nently used in research. Some signifiers, such as popularity, can also be derived
from other features making them not exclusive to the URL. To put URL-based
works into perspective, Althobaiti, Meng, and Vaniea conducted a study [56] to
find out how well humans can detect phishing when presented with URL-based
features. They used 7 different features derived from the URL and the subjects
achieved on average an accuracy of 91.6% with a FPR of 12%.

The protocol, so whether the URL begins with “http://” or “https://”, sig-
nifies whether the traffic is transferred in plain text or encrypted. In the former
case, all credentials entered by a user will be visible to anyone monitoring the
networks traffic. This is not the case for the latter, which requires the website
host to obtain a possibly paid Secure Sockets Layer (SSL) certificate. As this
means extra effort for phishers, it could be used as a detection mechanism [1,
47]. However, over time browsers started marking websites making use of un-
encrypted forms as insecure rendering this feature less reliable [11]. Advances
in technology and the widespread availability of free SSL certificates amplified
this effect.

Other features are derived from the text of the URL. Unusual lengths, such
as very short or very long ones are used by phishers to confuse users or hide parts
of it [50]. For similar reasons, an unusual number of dots or other special char-
acters is seen as suspicious. By utilizing Natural Language Processing (NLP)
techniques such as word embeddings, the used language can also be processed
by machine and deep learning models. [47, 45]

Some features can be derived from the metadata about the URL. Algorithms
like PageRank determine the popularity of a website based on its incoming and
outgoing links. A phishing website imitating PayPal’s login form is likely to have
a drastically smaller number and less popular sites that link to it compared to
the real one [44]. Due to the short lifespan of a phishing website, the domain
ownership duration can also be used as an indicator [4, 56].

3.2.2 Content-based

While using URL-based features works well, solely relying on them has its down-
sides. If the phishing site is hosted on a free provider, which make up a sig-
nificant portion of phishing attacks [57], the URL is determined by the host
and therefore not informative. Users also have trouble judging the legitimacy
of a website based on the URL [56]: the user is required to know its canonical
version and link shorteners such as bit.ly make it impossible to know the real

16

bit.ly

<script>

// This redirects the current page to other-website.com

window.location = "https://other-website.com";

// This has the same effect, but will not be detected by

// statically scanning for "window.location ="

const w = window;

const l = "location";

w[l] = "https://other-website.com";

</script>

Listing 2: Two different ways of redirecting the current page using JavaScript.

destination of a link. It is therefore also important, to search the content of the
page for phishing signifiers.

One of the first projects to detect phishing websites based on their content
is Cantina [39]. They used the term frequency-inverse document frequency
(TF-IDF) algorithm to identify signature terms of the website, then search
for them on Google to find its canonical URL, and finally compare the URLs
from the search results to the one from the website in question. Additionally
they incorporated URL-based rules such as checking whether it contains special
characters or IP-adresses to reduce the number of false positives. Once these
rules are evaluated, a final classification decision is made. This way Cantina
is able to achieve 95% accuracy and a 10% FPR. This work has been iterated
upon since, for example Cantina+ [44] lowering the FPR to 0.4% by using more
features, such as how likely it is that the website represents a login form and
using a machine learning based method.

As the source code of a website can easily be read, it is also often used to
derive phishing features. For example, a phishing website is likely to load its
favicon, a little image displayed next to the page’s title in a browser tab, from
the canonical version of the website. This way it is always up-to-date, making
it more resilient to changes. Therefore, if the favicon is loaded from a domain
different from the one of the website, it could mean that the website could
be used for phishing [48]. Similarly, JavaScript can be used to e.g. hide the
target of a link, change the URL in the address bar without actually navigating
away, or directly redirect the page [49]. In the past these have been used as
features by scanning the page’s source code, but due to the dynamic nature of
JavaScript, these scanners can easily be avoided. An example is illustrated in
Listing 2. While the first example is caught by static code scanners, the second
one needs to be evaluated to detect a redirect and is not able to be caught by
static analysis.

The overall DOM, the tree of HTML tags that make up the page, can also be
used to detect phishing replicas. The easiest way to copy the style of a website
is to just copy its HTML code and make some adjustments to send credentials
to the phisher. By comparing the nodes and attribute values of the DOM tree
to ones of popular websites, Rosiello et al. [42] were able to identify almost all
phishing websites, with a false-positive rate of 16%. This falls under the rule-
based category, with only one rule and a threshold for the calculated similarity

17

html

body

form action=”paypal.com/login”

input input button

html

body

form action=”attacker.com/phishing”

input input button

Figure 3.2: Parsed DOM tree of a legitimate website (left) that has been copied
and modified by an attacker (right).

to the similar page. Figure 3.2 shows a simplified example that is detected by
this method.

However, only relying on the textual content extracted from the HTML
can be exploited by attackers by using images of text instead of actual text in
their phishing websites. While this may be detected by users and make them
question the legitimacy of the website, it is not immediately obvious without any
interaction. To combat this, implementations such as Goldphish [43] use website
screenshots and extract its text through Optical Character Recognition (OCR)
algorithms. This way, the signature terms are based on what the real users
see instead of the HTML, which may contain text that is not actually visible.
Prominent regions, such as the websites’ logo, are treated as more significant,
similar to how a user perceives them.

The image data of website screenshots can also be utilized to create a mea-
sure of visual similarity to existing popular websites. Implementations following
this approach usually keep track of a set of canonical websites with an accom-
panying screenshot. This introduces the overhead of needing to maintain a con-
tinuously updated set of canonical websites and their screenshots. By spending
this additional effort, one gains the ability to quickly react to zero-day attacks
against a specific website, by simply adding it to the set. If a website under
question looks similar to one in this set, it gets flagged as phishing, as it is
assumed the similarity is intended to fool users. Afroz and Greenstadt [40],
stored a feature vector in addition to the screenshot, measured visual similarity
through the Scale-Invariant Feature Transform (SIFT) algorithm and achieved
an accuracy of 96.1% with a FPR of 1.4%. Another more recent implementa-
tion leveraging deep learning is VisualPhishNet by Abdelnabi, Krombholz, and
Fritz [58]. They were able to match 81% of phishing pages to their canonical
counterpart, solely based on visual similarity computed by a triplet CNN.

3.2.3 Other

In traditional website phishing detection, the authors of the phishing pages
are typically not known to the public. However, this is not the case when
detecting phishing on social media platforms. Aggarwal, Rajadesingan, and
Kumaraguru detected phishing tweets in their Phishari paper [4] using a mix of
URL based, tweet content, and metadata features. Besides URL-based features,
metadata such as the age of the account or the ratio of accounts followed by

18

the account and the number of its followers were amongst the most informative
features. Similar results were obtained by Lee, Caverlee, and Webb [59], who
also observed other platforms than Twitter. They came to similar conclusions,
but showed that the account age is far more informative than social features.

3.3 Datasets

The UCI Website Phishing Data Set [60] is used by many works. As it contains
features of phishing, as well as legitimate websites. Since this dataset provides
derived feature data, implementations using it can be compared to each other.
However, the dataset was created in 2014. Since the web evolves at a rapid rate,
the importance of some contained features can diminish over time [17], making
the dataset less useful.

Instead of using an off-the-shelf dataset, many researchers create their own
by crawling the previously mentioned public blacklists. PhishTank [52] is pub-
licly accessible and seems to be more popular than the lesser used OpenPhish [53].
This has the advantage that researchers can derive their own features. At the
same time, this makes it harder to compare implementations, since they are
using different datasets. As a compromise, the PhishMonger [10] project cre-
ated a dataset by crawling active phishing websites from PhishTank from 2015
to 2018. It contains the raw HTML files, as well as other files requested by
the documents, such as the CSS, JavaScript or image files. Because the source
code is openly available, it can be used to create similar, more recent versions
without needing to reimplement the scraping logic.

3.4 Contributions of This Work

The main contribution of this work is that it shows how to proactively detect
phishing on the website host instead of experimental settings or the client side.
This approach works without any action required by the users and utilizes fea-
tures only known to the website host. Knowing when a website owner pushes
new changes enables immediately triggering a phishing scan. Detailed account
information can help distinguish regular users of the platform from suspicious
ones, something that historically relied on publicly available information. Con-
trolling the incoming and outgoing network traffic enables deferring the phishing
scan until a user visits the website. Academic literature does not describe this
approach, even though it has unique advantages compared to e.g. running a
browser extension on the end-users system. This work also discusses the chal-
lenges faced with this type of detection, such as balancing computational costs
with security benefits and the vulnerability to cloaking. Finally, it uses a holistic
approach and describes the phishing detection from the end-user to internal re-
view systems that enable continuous improvements to the automated detection
process.

19

4 Dataset

The dataset is built up from several sources and consists of real-world data from
CodeSandbox. The feature data is extracted from the operational PostgreSQL
database, which stores data used to run their primary user-facing application.
The existing phishing detection stores the results in a MongoDB. Out of the
30 million public sandboxes, 600 contain detected phishing websites. While the
actual number will likely be larger, it shows that the dataset is intrinsically
imbalanced towards harmless sandboxes.

4.1 Operational Data

Data in the operational database is distributed across several tables connected
by foreign keys. The main entity for the phishing context is the sandbox. It
stores the primary identifier, a user defined title and description, the foreign
keys to other tables and metadata such as creation timestamps and whether the
sandbox was created in a manual or automated manner. In order to uniquely
identify a sandbox together with its contents, a version field is incremented on
every edit of the sandbox.

Unauthenticated users can create up to three sandboxes before they are re-
quired to create an account. These are linked to sandboxes and contain valuable
feature data. Users can sign up either through their GitHub or Google account.
Next to the usual username, email and name fields, CodeSandbox stores the
creation date and the time the user was last active on the platform.

Tables required for social features connect both previous entities. It is known
which user liked which sandbox, how many times a sandbox was shared or
forked, and who created comments. Similarly, the number of times a sandbox
was viewed is tracked for a given timeframe.

The files in the sandbox are also stored in the database, along with their
contents. The directory path of a HTML file corresponds to its path on the
website, thereby controlling parts of the URL it will be served at.

4.2 Phishing Data

The current phishing detection process described in section 1.2 stores all its
data in a single MongoDB collection. Each item in this collection stores a
sandbox ID, a score calculated from the rules, a string describing which rules
were matched and a checksum of the rules available at the time. The last field is
needed in order to invalidate an existing score, after new rules were introduced
into the system. Reviewing entries on the dashboard then sets flags whether
the sandbox was falsely flagged, or indeed phishing.

Since February 2022, 5.8 million scans were triggered. Most of the scans
receive a score of zero, meaning none of the configured rules were matched.
Only 250,000 scans yielded a non-zero score, with an average 500. As Figure 4.1
shows, the number of sandboxes with a non-zero score decreased over time,
which can be attributed to less phishing activity or adjustments made to reduce
the number of false positives. On an average day, 150 non-zero scores were
computed, out of which 73 exceeded the configured threshold, leading them to
be displayed on the review dashboard. Around 36% of the reviewed dashboard
entries were marked as a false-positive. However, only 8% of the dashboard

20

Figure 4.1: Number of daily detected sandboxes with a non-zero score over time.

entries were actually voted on. As the sandboxes on the review dashboard are
sorted by date and score, the most recent and most likely dangerous sandboxes
are displayed first. This seems to lead to most harmless entries just being
ignored, thereby being pushed to the end of the review queue. Currently, there
are roughly 11,000 unreviewed entries in the phishing database with a high
enough score to be displayed on the dashboard.

4.3 Training Data

In order to detect phishing with supervised machine learning techniques, a
dataset is required containing labeled examples for harmless and phishing sand-
boxes. The data in MongoDB is used to obtain an initial set of labeled sand-
boxes. Each label belongs to a sandbox id, its version, and the path it was
opened from by the user to uniquely identify its contents as seen by the user at
the time of labeling.

It contains around 1000 entries deleted for phishing activities. Unfortunately,
one can not distinguish between instances deleted by the regex-based filter and
ones manually annotated by a human reviewer, so the dataset will contain some
amount of false positives. Entries with a low score are selected as examples
for the harmless class. While they could contain undetected phishing due to
shortcomings of the current detection mechanism, there are far less phishing
sandboxes than harmless ones. Therefore the probability of false negatives in
the training data influencing the learning process is assumed to be low enough
that this source of errors can be neglected. Using this method, around 5800
harmless examples are randomly sampled.

In addition to the randomly sampled instances, a few edge cases are included
to combat bias in the phishing samples. Since phishing is commonly used to

21

harvest user credentials, the number of phishing samples containing login forms
is higher than the one of harmless ones. While the presence of a login form
increases the possibility of the sandbox being used for phishing, it is not a
sound proof. However, if all samples containing login forms in the training set
are labeled as phishing, the model is likely to overfit on this correlation. To
prevent this, harmless login form replicas are included as well. Utilizing the
search feature of CodeSandbox, the first 200 results matching the query “login
form” are included as examples of the harmless class.

All in all, applying the described sampling techniques leads to a dataset
consisting of 6995 samples.

22

5 Methodology

This section describes a phishing detection system that answers the research
questions. The described system differs from related works since it runs on
the website host instead of the client’s device. Therefore it can utilize different
features that have not been used before and protect end users without any
actions needed on their part.

5.1 Improving the FPR

5.1.1 New Scanning Approach

When running detection client-side, the detector only needs to scan the website
the user is visiting. From the website host’s point of view, a user could visit an
unknown number of paths on the website, all of which could potentially contain
phishing. Maybe visiting /, /about and /terms-of-use all return harmless
content, but the phisher sends out links leading to a specific phishing sub-page
at /login collecting user credentials.

Even if the server knows all possible paths to all sub-pages, their content
can still change through JavaScript. Consider the example of a minimal page
containing a button labeled “Login”. A human user will likely press the button,
leading to a login form being built up dynamically through JavaScript. This
intuitive behavior represents a challenge to automate. How can an algorithm
detect that pressing the button changes the website’s state and displays a phish-
ing login form? It would either need to try every possible interaction with the
website, which, given the amount of APIs available in a modern browser, is too
large to try practically, or one could train an algorithm to behave like a human
visiting the website. Either way represents a challenge needing to be solved
since static analysis alone can not find all possible states of a web presence.

The current scanner solves this by scanning and evaluating all HTML files
proactively in one run. However, phishing is not detected if the code does not
reside in a HTML file. It also results in the system being vulnerable to server-
side cloaking techniques, as described in the CrawlPhish paper [20]. Since it
only uses a simulated DOM, it does not request images or execute JavaScript.

The new approach solves this by passing more information about the user’s
visit to the scanner. It enables the scanner to simulate a user’s visit more closely,
thereby being less vulnerable to cloaking. It also reproduces the user’s request
in a headless browser which should lead to more realistic results than simply
parsing the HTML. In addition to the id and version of the sandbox, the request
to the phishing detector also includes the path on which the user opened the
sandbox. This affects performance since it increases the number of necessary
scans. In CodeSandbox’s case, the server access logs revealed that most users
visit the root path of a sandbox, so the performance impact should be negligible.
As a consequence, a scan is now identified by the id, version, and path.

5.1.2 Features

Related works show multiple possible approaches for lowering the FPR and an-
swering RQ1. The current system mainly relies on a sandbox’s source code and
resulting HTML to compute the final score. As shown in section 4, CodeSand-
box has much more information about sandboxes than its source files. A phisher

23

ID Feature Description

f1 Has author Whether the sandbox author has an account
f2 Age of the author Account age in days
f3 Relative sandbox age Age difference in days between author and

sandbox
f4 Number of views
f5 Number of likes
f6 Sandbox version Number of changes made to the sandbox af-

ter its creation
f7 Method of creation If the sandbox was created automatically

using the CLI
f8 Number of files Total number of files in the sandbox
f9 Redirection Whether the sandbox immediately redirects

the user to a different domain
f10 Required compilation Whether the sandbox had to be compiled

before any HTML was rendered
f11 Compiler Error Whether an error occurred while compiling

the sandbox
f12 Login form similarity Binary classification result of a model de-

tecting login form screenshots
f13 Number of external URLs Number of links pointing to domain other

than CodeSandbox

Table 2: Overview of the classification features.

may be able to trick the current system by not using a form to send the user
data to their server, but if the classifier also checks if the website visually looks
like a login form, the system will be a lot harder to circumvent. Similar hints
can be obtained from all the metadata, such as how many users liked or viewed
the sandbox. The remainder of this section discusses the features used by the
new system and why they were selected. All of them are summarized in Table 2.

Metadata Currently, platform users can create up to three sandboxes until
they are required to create an account. These represent a good source for meta-
data features not present in traditional phishing website detection scenarios.
Academic literature shows that attackers tend to avoid additional effort needed
to create phishing, such as obtaining SSL certificates in the past [1]. Whether
the author of the sandbox created an account or not (f1) should therefore be
relevant. If available, the age of the sandbox author (f2) is tracked to prevent
phishers from appearing more credible simply by creating an account. Related
works concerned with phishing on social media platforms validate this fact, as
they list the account age as one of the most informative features [4, 59]. Fig-
ure 5.1 also shows a difference between the author ages of harmless and phishing
sandboxes. Additionally, the time between the account and sandbox creation
(f3) is computed to surface accounts intended to appear more credible.

Phishing detection research commonly uses the popularity of a website to
determine if it is used for phishing. This work makes similar assumptions for
sandboxes. Phishing sandboxes mainly abuse the preview feature, so they are

24

Figure 5.1: Per label distributions for the metadata features f4 and f2. Note
that the x-axis of the “views” distribution has been cut off at 104 to improve
legibility.

unlikely to get many views (f4), likes (f5), shares, or other social signifiers of
popularity. While it is still possible to artificially increase these metrics by e.g.
creating lots of accounts, it requires additional effort, making the platform less
attractive to phishers. Mass account creation is also detrimental to the platform
in general, so it is assumed to be a solved problem.

Since creating a website takes time, regular users will likely make many
edits to their sandboxes. Phishers, on the other hand, are interested in creating
their sites quickly since they are short-lived [11]. This might be a reason for
the version column in the current phishing detection database having a median
value of 1 for the version field for confirmed phishing sandboxes. Therefore, the
sandbox version (f6) is a good indicator since it reflects how often the contents
of a sandbox have changed. Similar time-savings can be achieved by creating
a sandbox via automated methods such as the CodeSandbox CLI (f7). The
current rule-based approach punishes large projects since the more HTML files
it has, the higher the probability of one matching a rule. Since creating more
files requires time and effort, the number of files in the sandbox (f8) is included
as a feature intended to prevent false positives.

All metadata features are simple to retrieve since they are stored directly
in the operational database. Some values are computed at query time (e.g.
the number of files (f8) and the author age (f2)), but the majority is selected
from existing columns after joining the necessary tables together. This feature
extraction part should be fast and finish after a few milliseconds.

Content-based The content-based features are available only after looking
at the HTML served to the user and the behavior of the website. Especially the
latter is something that the previous detection mechanism can not analyze, as it
does not run the website. The previously mentioned new approach of evaluating
the website in a headless browser enables the collection of more content-based
features described in this section.

A typical phishing pattern on CodeSandbox is redirecting the user to a phish-
ing website hosted elsewhere. The authors of such sandboxes likely exploit the
short preview URLs and CodeSandbox’s credibility to evade phishing detection
on other platforms. As shown in Figure 5.2, almost all sandboxes in the training

25

Figure 5.2: Per label distributions for the content-based features f12 and f9.

set that redirected the users were also considered phishing. Therefore whether
the website redirects to a host not controlled by CodeSandbox (f9) is a reliable
feature for identifying true positives. A listener is attached when running inside
the headless browser to obtain this information. Once a navigation attempt
is detected, the host value of the target URL is compared to the original one
when opening the sandbox. If the host changes, a list of allowed ones is checked
to see if the new host is owned by CodeSandbox. This step is necessary since
sometimes redirection happens internally for backward compatibility. If this is
not the case, the sandbox is considered to be redirected externally and f9 is
set to true. The distribution shown in 5.2 suggests that this is a promising
indicator for finding true positives.

Since CodeSandbox is a developer-focused platform and modern web devel-
opment commonly includes compiling the source code before serving it to the
user, many sandboxes include a compilation step before being served to the user.
When visiting a preview of a sandbox requiring compilation, the visitor sees a
loading screen, which might seem suspicious to potential victims and drive them
away. Phishers prefer using static files served immediately to the user, skipping
the compilation and loading screen. While some harmless sandboxes also use
static files, they are the minority. Therefore requiring compilation is used as a
feature (f10), as it is likely to reduce the number of false positives. Since the
compilation step is managed by injected code, the result of it is known. If an
error arises during compilation, a big red popup containing a stack trace covers
the preview. It helps developers but is likely to alarm phishing victims or drive
them away completely. This makes an error during the potential compilation
process (f11), another suitable feature to reduce the false positive rate.

Phishers often use login forms to harvest user credentials, which is why a
sandbox containing one is more dangerous than others. To incorporate this risk
into the model’s decisions, the likelihood of it showing a login form is used as
a feature (f12). A screenshot of the sandbox is taken and passed to a deep
learning model, which computes a number between 0 and 1. It is implemented
using Tensorflow [61] and an Xception [62] network, which was pre-trained on
ImageNet. The output layer consists of two nodes representing the classes “login
page” and “other” using a sigmoid activation function. The value of the “login
page” node is then used as the value of f12.

In order to adjust it to analyze screenshots, it is re-trained on a modified

26

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Screenshots included in the Pentest dataset. (a)–(c) belong to the
“login page” category, (d) to “custom 404 page”, (e) to “parked domain” and
(f) to “web application”.

version of the Pentest Screenshots dataset [63] originally intended to surface
websites that are interesting for security penetration testing. The dataset con-
sists of 14,000 images labeled as either “web application”, “old-looking”, “login
page”, “custom 404 page” and “parked domain”. Figure 5.3 shows examples for
each category. Out of the six available features, only the “login” column is used,
which states whether the screenshot contains a login form. Finally, the dataset
is balanced to contain the same amount of login forms and other screenshots.

As Jain and Gupta [48] achieved good results with their features, this work
will also use a similar one. CodeSandbox hosts most of the content on their
servers, so external URLs in either form actions, links, or images indicate phish-
ing. Phishers often reference e.g. the image file hosted on the original websites’
server to not have to update it when it changes. Therefore the number of exter-
nal URLs (f13) is included as a feature. When the sandbox has finished loading
in the headless browser, the href attribute of all a-tags, the src attribute of all
img- and iframe-tags and the action attribute of all form-tags on the page are
collected and the number of them pointing to external domains are counted.

The compilation process demonstrates the challenge of extracting content-
based features for server-side phishing detection, which is when to run the ex-
traction. For traditional static websites, this is usually realized by waiting until
all requests have settled and the browser has painted something to the screen
(e.g. by listing for the domcontentloaded event using JavaScript). If the screen-
shot for f12 is taken while the compilation has not finished, it will have a low
value, most likely leading to a false negative. To solve this, the feature extrac-
tion process checks if the sandbox requires compilation and waits until it has
terminated. Another problem occurs when the user is redirected to an external
site, but the redirection includes two steps. The first one redirects to a waiting
page, where the user is finally redirected to the intended website after some-
where between 1–10 seconds. After all, requests have settled on the first page,

27

it is considered ready, and a screenshot is taken. While f9 will be true, the
value of f12 is likely to influence the final analysis result to be less dangerous.
Waiting for the page to be ready before being able to extract features also makes
it harder to solve RQ3 and scale the system to prevent multiple simultaneous
scans from overloading the servers. As a solution, temporary placeholder pages
found in the training data are detected based on the presence of CSS classes
and HTML structures. However, these do not generalize well and could lead to
false positives, so finding a generic solution remains an open problem.

5.1.3 Model Training

Together with the labels described in section 4.3, the features enable the training
of machine learning models for phishing detection.

Some features are not always present, while others can contain non-numeric
datatypes such as periods of time. Before the model can operate on these
features, they must be pre-processed and converted into a number. According
to literature [64], one option to deal with missing data is to discard the entries,
which would not be sensible when running in production. The alternative is to
compute placeholder values instead, such as setting the sandbox and author age
to zero for anonymously created sandboxes. Another commonly used technique
is using the mean or another statistically computed value. Both approaches will
be tested to see the influence on classification accuracy.

After preprocessing, the data is ready to be interpreted by a machine learn-
ing algorithm. A binary classifier would be sufficient to answer RQ1 and distin-
guish phishing sandboxes from harmless ones. However, a probabilistic classifier
is able to quantify how likely a sandbox contains phishing, enabling further im-
provements to the review process. When including the probability on the review
dashboard, two sandboxes classified as phishing now do not look equally dan-
gerous anymore. Reviewers can either focus on confirming the sandboxes most
likely to contain phishing or support the model in cases where the two class
probabilities are similar.

For the implementation, Decision Tree, Random Forest, Linear Regression,
and Gradient Boosting were selected from scikit-learn [65] in addition to Ex-
treme Gradient Boosting (XGBoost) [66], based on prior usage in academic
literature. Each algorithm is evaluated using different hyperparameters, which
will be listed next to the results. For each parameter combination, the metrics
of 5 different splits are averaged, where 80% is used for training and the remain-
der for computing metrics on unseen data. The ratio of phishing to harmless
samples is preserved in each split to prevent it from influencing the resulting
metrics. Since only 12% of the samples belong to the phishing class, the models
are using the class weight parameter exposed by the selected algorithms.

This research aims to improve the existing detection mechanism’s high FPR.
To achieve a more natural metric where a higher number indicates better per-
formance, its inverse, the True Positive Rate (TPR), is computed instead. How-
ever, solely optimizing for a low FPR might lead to the model developing a high
threshold for classifying a sandbox as phishing, leading to many undetected
phishing sandboxes. This is why the True Negative Rate (TNR), the portion of
correctly detected phishing sandboxes, is also important. To combine the two,
Balanced Accuracy (BA) is used, which for binary classification is defined as
the arithmetic mean of the TPR and TNR [67]. The formulas to compute these

28

metrics are shown in equation 1–3 where TP , FP , TN and FN represent the
number of true positives, false positives, true negatives, and false negatives.

TPR =
TP

TP + FN
= 1− FPR (1)

TNR =
TN

TN + FP
(2)

BA =
TPR+ TNR

2
(3)

Since the labels from section 4 are partially based on automated classifica-
tions, they may include misclassifications that the newly trained model should
not learn. During the development of the models, the intermediate results of
the validation dataset are used to surface such errors in the training data. Since
manually re-labeling all sandboxes in the dataset would consume too much time,
uncertainty sampling is used to surface anomalies or otherwise interesting sam-
ples.

The absolute difference between the class probabilities is computed to ob-
tain a measure of the model’s confidence. A value close to zero indicates that
the model has difficulty deciding between the two classes, while a score near
one represents the model being certain. Intuitively, the classification accuracy
should be higher when the model is confident and lower when it is less so. A
misclassification with high confidence can either indicate an error in the under-
lying data or that the model needs to be revisited. Similarly, predictions with
low confidence scores are manually checked for wrong labels. If one is found, it
is adjusted, which increases the model’s accuracy and data quality.

5.2 Impact Analysis

To answer RQ2, the influence of each feature on the final classification result
needs to be quantified. When training the classifier, it constantly issues predic-
tions for samples of the training dataset. By computing SHAP values for these
predictions, each feature’s contribution to the final phishing probability can be
approximated.

The hypothetical samples shown in Table 3 demonstrate the gained infor-
mation. Each sample’s predicted phishing probability is represented as the sum
of the SHAP values of its features and the overall probability of it containing
phishing without any information about its features. Note that the latter is
derived from the whole training set and omitted from the table. Positive SHAP
values make the sample more likely to be classified as phishing, while negative
ones have the opposite effect. Therefore the fact that sample 1 has an author
makes it seem harmless, but the low author age increases its probability of
containing phishing.

While the per-sample SHAP values provide local explanations for a single
prediction, the statistical properties of all SHAP values need to be analyzed in
order to derive a global one. To find the overall most influential features, their
mean absolute SHAP value is computed. Additionally, the relation between the

29

Features Prediction
Has Author Author Age

. . .
Ext. URLs

Value SHAP Value SHAP Value SHAP H P

1 true -0.03 2 days 0.23 . . . 20 0.23 0.24 0.76
2 false 0.25 missing 0.25 . . . 3 -0.10 0.50 0.50

. . .
N true -0.02 674 days -0.03 . . . 0 -0.04 0.99 0.01

Table 3: Hypothetical values for the resulting data when computing SHAP
values while training. Note that the sum of the general probability of a sample
containing phishing (0.10 in this example) and all of its SHAP values always
result in its predicted probability of belonging to the phishing class (P). The
predicted probability for the sample being harmless (H) is 1− P .

value of a feature and its SHAP value can reveal interesting insights, such as
whether a low author age generally makes the classifier lean towards classifying
a sample as phishing.

Together, these two measures should provide a good idea about what features
provide the most value for phishing detection.

5.3 Designing The System To Be Scalable

The deployed system consists of a Python server (phishing API) responsible for
phishing detection, a NodeJS server responsible for launching browsers and ex-
tracting content-based features (browser feature extractor), as well as databases
for persistent storage. Figure 5.4 shows the communication between the com-
ponents of the system, which is as follows: When a user visits a sandbox pre-
view, an injected script issues a request to the CodeSandbox server. Since the
CodeSandbox server is the central system responsible for serving any frontend
requests, it also acts as a proxy for the phishing API. It gathers the sandbox id,
version, and the path at which the user opened the sandbox. All this information
is then forwarded to the phishing API, triggering a phishing scan.

These processes already existed to support the rule-based phishing detector.
This work added the path to the information communicated to the phishing API.
Additionally, all following parts of the system have been newly implemented to
enable the feature extraction needs.

The arrival of a request at the phishing API starts the extraction of the
features described in section 5.1.2. Retrieving the meta- and content-based data
are independent processes executed in parallel to save time. The latter requires
a request to the NodeJS server, which spawns a headless browser and extracts
content-based features. After the sandbox is ready, the DOM is analyzed to
retrieve all content-based features except the login form similarity (f12). The
server creates a screenshot of the website and uploads it to a cloud storage
bucket. Then the NodeJS server sends the response containing the values of
each extracted feature and a URL of the screenshot. The phishing API then
downloads the and uses the deep learning model to compute f12. All features are
now available, stored in a database for retraining purposes, and finally passed
to the phishing detection model.

30

Figure 5.4: Communication between the sub-systems when a sandbox contains
phishing.

The model then computes the probabilities for each class from which the final
classification result is derived, depending on which class is more probable. All of
these values are stored in the database alongside the features and metadata, such
as the time taken when extracting features. These enable a new version of the
review dashboard to show more rich and relevant results to the employees. The
phishing API returns one of three responses to the CodeSandbox server, which
forwards it directly to the injected script on the sandbox preview. Similar to the
existing logic described in section 1.2, two thresholds exist for the phishing class
probability. The sandbox is harmless if it does not exceed the first one. If it
does exceed it, the phishing banner previously shown in Figure 1.4 is displayed.
If it also exceeds the second one, the sandbox is considered dangerous, and the
injected script redirects the user to a safe website, telling them about what just
happened.

5.3.1 Performance

The new feature extraction process yields more information about a sandbox,
but it is also more complex, takes longer to terminate and requires more com-
putational resources than the existing one. Therefore measures are necessary to
answer RQ3 and ensure that the phishing API responds to request on time. The
most significant contributor to the increase in time and complexity is opening
the sandbox in a headless browser. Since the browser feature extraction server
uploads the screenshots to a cloud bucket, it does not require any local state.
This enables the deployment of multiple instances behind a load balancer. If all

31

instances are occupied, additional ones can be spawned on demand to cope with
the current load. Once the demand decreases again, the number of instances
can be reduced to save resources. Overall this guarantees that the feature ex-
traction process only takes a similar amount of time as the compilation process
on the user’s machine.

The previous system cached the scan results based on the sandbox id and
version. The new one has similar logic but adds the path visited by the user
to the cache key. Before triggering a scan, the phishing API fetches all existing
entries for the sandbox version from the database. If a reviewer has labeled
any as phishing, the API does not trigger a new scan and immediately returns
the phishing response to the CodeSandbox server. Similar logic exists for the
automated classifications made by the model. Even if the currently visited path
turns out harmless, the user should be warned or redirected if a dangerous or
suspicious path exists elsewhere in the sandbox. If any scan yielded a score
exceeding the previously mentioned second threshold, no new scan is triggered
since it would not change the response.

A final step towards better scalability is to reduce the load on the phishing
API overall. The system is less likely to be overloaded when fewer scans are
triggered. Regular users of CodeSandbox are typically making many edits and
review the results in the preview window. Each time they save their progress,
the sandbox version is incremented and the preview window refreshes. The
refresh triggers a request to the phishing detector, which needs to re-scan the
sandbox since the version changed. It is unlikely that a user other than the
sandbox author will visit the preview in between these version updates. When
the CodeSandbox server receives the request for a phishing scan, it knows if
the author issued the request or an external unauthenticated visitor. Since
authors can not phish themselves, many unnecessary phishing scans can be
prevented by not passing their own requests to the phishing API. This is an
optimization that would need to be implemented in the main CodeSandbox
server application, which at the time of writing, has not been completed yet.
Even though its implementation is not part of this work and no results can be
presented, it provides an example of how work can be avoided in server-side
phishing detection.

5.4 Redesigning The Review Process

The review system described in section 1.2 enables the human reviewers to
either remove the phishing banner to correct a false positive or to delete a
sandbox if it contains phishing. These two actions effectively generate labels,
which are currently not used to improve the detection system. By deleting
phishing sandboxes, the reviewers actually do the phishers a favor since it makes
it harder to find examples of patterns used by them to evade detection. Some
phishers delete their sandboxes by themselves after they e.g. have been detected
by popular blacklists or have tricked enough users.

While the new system also allows the reviewers to label the sandbox as
harmless or phishing, the decision is stored in a database and overrides the one
issued by the model. The overridden decision is then used to hide the phishing
banner or redirect users to a safe page instead of the phishing sandbox preview.
Since the system stores the computed features alongside the reviewers’ decisions,
it now contains new data for training future iterations of the phishing detection

32

Figure 5.5: Envisioned lifecycle of the training data and resulting models.

model. Every label created by a human reviewer increases the available training
data, hopefully leading to a more accurate model and less manual work in the
future. Figure 5.5 shows this lifecycle.

It also includes the fact that some entries in the training dataset will expire
over time. If a sandbox is edited, its label may not be accurate anymore. A
phisher could have updated it to prevent their patterns from being detected as
phishing. Similarly, they could have turned a harmless sandbox into a phishing
one. If a user chooses to delete their sandbox, it will not be available after
re-running the feature extraction for the training dataset. Recomputing the
features might be necessary when the way a feature is computed changes or
new features are added. While the improvements due to more training data
being available will most likely stagnate at some point, they are necessary to
combat the described loss of training samples.

The current phishing dashboard entries shown in Figure 1.3 neither include
the final score nor the exact numerical contributions of each rule. To a reviewer,
all entries on the dashboard look equally dangerous, even though their scores
might suggest otherwise. In an internal conversation, a CodeSandbox employee
asked why a particular sandbox was classified as phishing, and another employee
answered: “No one really knows exactly how it works”. While this answer was
mostly intended as a joke, it highlights that the existing system could be more
transparent. This lack of transparency also makes it harder for the reviewers to
provide helpful feedback on the scoring system. Consider a rule adding a high
value to the score for each form tag in a sandbox. A detailed breakdown of
the final score enables the reviewer to suggest lowering the value added by said
rule or even outright removing it if it mostly leads to false positives. Without
knowing the exact contributions, reviewers can just complain about irrelevant
results.

The new system includes transparency where possible. As a first step, it
shows the reviewers the models’ scores for the sandbox being harmless or con-
taining phishing. Additionally, they can request a detailed breakdown of each
feature’s contribution to the final classification result. This would have been
easy to compute for the previous rule-based system but can still be approxi-
mated using the new machine learning-based approach. By computing SHAP
values, the system obtains a post-hoc explanation for each decision. This way,
the probability computed by the classifier can be represented as a sum of the

33

overall chance of a sandbox containing phishing and the contribution by each
feature. It is comparable to the score computed by the previous system, but
this time it is visible to the reviewers. Each feature has a “score” that pushes
the probability value closer to either 0 or 1. The larger a value, the higher its
influence on the final probability.

A reviewer can now immediately spot predictions that have been made based
on questionable feature values. Consider a hypothetical example of a sandbox
that looks harmless but was classified as phishing. Computing the SHAP values
reveals that the most influential is the author age (f2) having a SHAP value
of 0.6. Moreover, the author’s age is high, which intuitively would make them
more trustworthy. On top of reporting a missclassification, the reviewer can now
provide more granular feedback about the intended weights the model should
assign to each feature. If high author ages often lead to misclassifications,
it indicates a flaw in the training data or the model requiring deeper analysis.
Even though the analysis needs to be carried out by data scientists, the example
illustrates how the SHAP values enable the reviewers to provide more insightful
feedback on the predictions without requiring any domain expertise in machine
learning.

5.5 Comparison Through Proactive Scanning

A proactive scanner is built to evaluate the model and overall system on out-
of-distribution samples. This also enables comparing the new and the existing
phishing detection systems. The scanner periodically samples recently accessed
sandboxes from the production database. After this step, the filesystem struc-
ture of each sandbox is obtained from the CodeSandbox server to find potential
paths to scan. This way not, only the root path / will be scanned, but also all
statically served HTML files in subfolders such as /public/login.html. Once
all interesting paths are collected, the scanner posts a scanning request for each
one to the new phishing detector, triggering the process shown in Figure 5.4.
Local versions of the phishing detection API, the browser feature extractor, and
the review dashboard run locally on the same system. The results will show
how long the feature extraction and classification processes will take and how
much phishing is detected by the new one compared to the old one.

34

Algorithm TPR TNR BA Parameters

XGBoost
88.93% 92.35% 90.64% lr: 0.1, md: 4, ne: 220
91.73% 87.79% 89.76% lr: 0.05, md: 5, ne: 60
81.66% 94.50% 88.08% lr: 0.01, md: 9, ne: 220

Gradient Boosting
83.68% 91.38% 87.53% lr: 0.2, md: 4, ne: 100
84.57% 89.30% 86.94% lr: 0.1, md: 4, ne: 100
76.96% 94.56% 85.76% lr: 0.2, md: 5, ne: 500

Random Forest
74.36% 97.14% 85.75% cw: bs, c: e, mf: none
72.04% 97.65% 84.85% cw: none, c: g, mf: log2

Decision Tree
72.83% 95.94% 84.38% cw: none, c: e, mf: sqrt
59.40% 97.71% 78.56% cw: b, c: e, mf: log2

Logistic Regression
60.29% 87.24% 73.76% cw: b, mi: 500
12.87% 98.94% 55.90% cw: none, mi 1000

Table 4: Best metrics for each classification algorithm on the phishing sand-
boxes dataset. The highest values for a metric per classifier are highlighted in
bold text. Parameters in the last column are shortened versions of the ones
used by scikit-learn. The ones used are learning rate (lr), maximum tree depth
(md), number of estimators (ne), class weight (cw), criterion (c) which can be
either “entropy” (e) or “gini” (g), the number of features to consider for splits
(mf), and the maximum number of iterations (mi). For XGBoost the objec-
tive is set to “binary:logistic” and the class weight was balanced by setting the
scale pos weight parameter to the ratio of negative and positive samples.

6 Results

This section describes model training results such as metrics, error analysis, and
feature importance. It also describes the feature importances by analyzing the
SHAP values computed from the training data. Finally, it lists the improve-
ments made to the review dashboard and shows how it makes it easier for the
reviewers to find phishing.

6.1 Classification

On the training set, the classifier achieves a balanced accuracy of close to 93%
using the XGBoost algorithm. An overview of the top results per metric for
different algorithms is displayed in Table 4. As can be seen, the parameters can
be used to fine-tune the classifier to focus on detecting more phishing sandboxes
or yielding fewer false positives. The imputation method used to replace missing
values does not influence the results in a significant way and is therefore not
listed.

6.1.1 Error Analysis

The most common misclassifications surfaced by repeatedly running the model
using the best parameters on different training and validation splits. Figure 6.1
shows the result of running this process 250 times. Each histogram shows the

35

Figure 6.1: Confusion matrix and prediction confidence distribution per con-
dition. The true class labels are color coded where blue means harmless and
orange phishing.

distribution of the prediction confidence per predicted and true label. As can
be seen, most of the correct predictions are issued with high confidence. These
graphs looked different during the first iterations of the error analysis processes.
The models made a few highly confident but ultimately wrong predictions. After
manually verifying the sandboxes, they turned out to be false positives made
by the old classifier. After 40 of these instances were corrected, the remaining
misclassifications can be attributed to the model and wrong labels.

The false negatives mainly consist of phishing, which does not work directly
via login forms. They try to trick the victim into thinking they have won a price
and need to enter their credit card details to claim it. In these cases, the login
form similarity is of no use and even makes the sandbox look more harmless
than it really is. This is also the case when the sandboxes use effective cloaking
techniques, such as displaying a CAPTCHA before revealing the real content.
Other false negative samples revealed that some of the sandboxes labeled as
phishing reference external websites that were taken down. A sandbox contain-
ing an iframe that once embedded an active phishing page inside a sandbox
now only consists of the text “404 — Not Found”. In this case, there is neither
something that looks like a login form nor any external links. Interestingly the
model identifies sandboxes that redirect the visitor to a taken-down phishing
website as phishing, which suggests that f9 has a high impact on the overall
classification result.

The false positives often contained non-login forms created by anonymous or
young accounts. This shows that the login form detection can still be improved
or that more training data is required. Other sandboxes containing forms were
correctly classified as harmless. There was no apparent difference between a
true negative and a false positive sandbox containing a form.

36

(a) (b)

Figure 6.2: Two screenshots of misclassified login forms. The login similarity
score (f12) of (a) is close to 0, even though it depicts the old login screen for
OneDrive. For (b) it has a value of 1, even though it shows a contact form
instead of a login page.

6.1.2 Login Form Detection

After training the model for 25 epochs, it achieves an accuracy of 90,6% on
the validation data. The login form detection model works well, even though
it was not explicitly trained on sandbox screenshots. After manually looking
at a randomly sampled set of 500 screenshots with a login form similarity (f12)
larger than 0.9, 86% of the samples indeed depicted login forms. Most were
traditionally looking and contained two rectangular input fields and a submit
button. The remaining ones still displayed forms, but they were intended for
purposes other than authenticating a user, such as Figure 6.2 (b), showing
a comment form for a blog article. Such false positives were also commonly
unstyled or otherwise not imitating the look of popular websites, making them
uninteresting for phishing detection.

In contrast, less traditionally looking login forms including Single Sign-on
(SSO) capabilities, such as shown in Figure 6.2 (a), were not detected. This
specific example originates from a phishing sandbox.

The results suggest that the model focuses on traditional login forms contain-
ing two or more input fields. To lower the FPR, one could add more examples
of non-login forms to the training dataset.

6.2 Feature Impact

Computing the SHAP values for the dataset provides an approximation of how
important each feature is and helps to answer RQ2. The mean absolute SHAP
values are displayed in Figure 6.3 and provide an idea of what features influenced
the decision results the most. If the model is trained without the number of
views, which on average contributes the most based on the SHAP values, the
BA drops to 87% and the highest TPR to 84%. This indicates that a high
mean absolute SHAP value is correlated to the feature being important for the
model’s predicitons.

The plot in Figure 6.4 shows how some features have a larger influence
on a few classification results than the averages in Figure 6.3 suggest. It is
constructed based on the data of the feature columns as described in Table 3.
Each row in the diagram represents a feature. The points represent samples,

37

Figure 6.3: Mean SHAP values for each feature in descending order.

Figure 6.4: Approximated contributions (SHAP values) to the final classification
result per feature colored by value. The y value is randomized to get a qualitative
idea of the distribution.

38

where each one is mapped onto the x-axis based on its SHAP value, while its
feature value after preprocessing determines its color. Therefore, the position
of each point provides an idea of its influence on the predicted probability. The
further it is to the right, the more it influences the phishing probability to be
higher. Inversely, points on the left side make it seem more harmless.

This uncovers relations between the feature value and its influence on the
predicted phishing probability. Most sandboxes in the dataset do not redirect
the user, as shown by the training data distribution in 5.2. Therefore, f9 does
not have a huge influence on the result when it is false, leading to a compara-
tively low mean absolute SHAP value. However, when redirection occurs, it is
usually enough for the sandbox to be classified as phishing. The plot also con-
firms some assumptions made when selecting the features. A sandbox having no
author or one that was recently created makes the model more likely to classify
a sandbox as phishing. Another less reliable hint for phishing is a high number
of external links. A high author age seems to be associated with less phishing
activity, thereby confirming its initial inclusion as a measure to lower the false
positive rate. The inverse can be observed with anonymous sandboxes, which
clearly make the model lean more towards phishing, though with a negligible
impact.

An unexpected result is obtained for the version feature. If the version
number contributed to the sandbox being classified as phishing, its value was
commonly high. This relation is the opposite of why this feature was included.
Similarly, the method of creation (f7), compiler error f11 and the number of
likes (f5) did not influence the results in any meaningful way.

6.3 Performance

The new system is computationally more expensive than the previous system
since the sandboxes are opened in an actual browser when extracting content-
based features. This means that the overall time from a user opening the sand-
box until the classification result is ready is longer. The median classification
took 21 seconds. When waiting longer than 2 minutes for a sandbox to be
ready, content-based features were extracted regardless of current compilation
processes to unblock the extraction queue. Since 95% of scans terminated in
under 60 seconds, this time can be cut in half to get faster classification results
in these edge cases.

While the median classification time is larger than the 10-second goal defined
in RQ3, one can argue that the system is still fast enough. The time tδ between
the visitor seeing the webpage and the phishing API responding can therefore
be expressed as equation 4. To illustrate this, consider the example of a user
visiting a sandbox, which is visualized in Figure 6.5. They visit the sandbox,
the compilation process downloads the necessary dependencies, and after a short
delay d, the request to the phishing detector is triggered. If all browser feature
extraction workers are busy, the request has to wait for some time w until it can
be processed. Therefore the compilation process on the server begins up to a
few seconds after the one on the client. Depending on the server’s hardware h,
the compilation will be faster or slower than the one on the users’ machine tc.
Additional constant time b is spent consulting the cache, storing the features,
and creating and storing the classification result.

39

Figure 6.5: Timeline of the subprocesses from equation 4.

tδ = d+ w + h× tc + b− tc (4)

To optimize the tδ, b is unlikely to take more than one second and is unlikely
to have much room for improvement besides using proper database indices when
looking up past classification results. Similarly, d can be kept below one second
by injecting the phishing detection script at the top of the HTML document,
making it the first request that the page issues. In an ideal case, a headless
browser is ready, the request can be served immediately, and the server hardware
is equally powerful as the client one, making their compile times equally long.
This results in tδ being equal to d + b = 2, which meets the 10-second goal
defined in research question RQ3.

As mentioned during the definition of the research questions, the current
phishing detector starts 24 scans per minute on average. While running the
proactive scanner, the locally running instance of the browser feature extractor
could handle up to 10 sandboxes simultaneously while maintaining similar com-
pile times to those when opening one sandbox. This illustrates that only a few
instances are required to run in production to maintain the load and prevent w
from significantly influencing tδ. If the user has more powerful hardware and
compiles the sandboxes more quickly, it is likely to exceed the 10-seconds goal.
Assuming that due to high server load, the user can compile the sandbox twice
as fast, even with the median compile time tc of 21 seconds, the clients’ compi-
lation process finishes 10 seconds faster. However, phishing sandboxes generally
take less time to compile since the compilation screen makes their websites look
less legitimate and drives potential victims away. In the case of shorter or even
no compile time, the influence of h becomes less significant. All in all, the system
can achieve the intended 10-second goal with a reasonable amount of computing
resources, which also can be easily scaled up or down based on demand.

6.4 Review

The new iteration of the review dashboard is displayed in Figure 6.6 and provides
a view into all decisions made by the model. Currently, the reviewers are only
exposed to unreviewed predictions, which are expected to contain phishing. This
means that reviewers are not able to detect false negatives, and no harmless
samples could be generated for retraining. Additionally, there was no way to
track the review decisions, to e.g. manually check whether some phishing pattern
were already reviewed in the past. Displaying all scanned sandboxes addresses
these shortcomings, but new problems arise due to the now larger result set.

40

Figure 6.6: The new review dashboard.

A filter bar at the top is introduced to limit the displayed result set. Sand-
boxes can be filtered on their review status (“all”, “unreviewed”, “reviewed”,
“harmless”, “phishing”), the prediction made by the model (“all”, “harmless”,
“phishing”), and the date at which the sandbox was scanned (“all”, “last 30
days”, “last 7 days”, “today”).

Additionally, three feature-based filters are introduced to make the displayed
results more relevant. Sandboxes that threw a compiler error while extracting
features can be excluded, which is active by default. Since a red overlay is
shown and the probability of them being functional is low, excluding them is
unlikely to increase the danger for users. Around 20% of 5000 randomly sampled
sandboxes do not compile properly, so this filter helps to reduce noise for the
reviewers. The other two feature-based filters can be used to either only show
sandboxes looking like login pages or ones that immediately redirect the users
to another website not controlled by CodeSandbox. While both indicators are
not proof of phishing, they represent relevant cases for reviewers to look at.
As the distributions shown earlier in Figure 5.2, the overwhelming majority of
sandboxes redirecting their users are used for phishing. Also, fast redirection
circumvents measures like the phishing banner from being effective since the
sandbox can redirect the user before the response from the phishing detector is
received.

By default, the entries are listed by the order they were scanned in. For
the phishing review, there are additional sorting options “danger” and “uncer-
tainty”. The first one sorts by the phishing class score in descending order and
is intended to provide the reviewers with the most likely phishing entries first.
As the distributions in Figure 6.1 show, the models also make fewer errors in
high-confidence regions, so the reviewers should also see fewer false positives.
The second sorting option sorts by confidence in ascending order. It enables un-
certainty sampling, which generates valuable training data for entries the model

41

Figure 6.7: Waterfall chart displaying the influence of each feature based on their
computed SHAP values. The reviewers can view detailed values and feature
descriptions by hovering with their mouse.

has difficulty classifying correctly.
The intended way of using the dashboard is as follows: A reviewer visits the

dashboard and presses the button at the top right to apply the filters for the
“review mode”. This limits the result set to unreviewed sandboxes predicted
to contain phishing, sorted by the likelihood of them containing phishing in
descending order. If the list of sandboxes to be reviewed is still too large to
review manually in a reasonable amount of time, it can be further limited using
feature-based filters. These have already been helpful during development since
they revealed a bug in the feature extraction process. The listeners running
inside the headless browser tracked redirects inside iframes, which resulted in
false positives for sandboxes embedding YouTube videos.

An entry on the dashboard displays the sandboxes’ id alongside its version
and the path that was scanned. Additionally, the screenshot from the scan
is shown, which was used to determine the likelihood of it depicting a login
form. The reviewer is then presented with two buttons to label the entry as
either harmless or phishing. Additionally, the prediction scores for each class
are displayed above each button. The one representing the more likely class
is displayed in bold, while the other one has lower opacity. If an entry was
reviewed, the reviewer’s decision is appended below the one of the model.

When the reviewers disagree with the model’s decision, they can open the
detail view of an entry. Next to a larger version of the screenshot and the
raw feature values, this view contains a waterfall chart like the one shown in
Figure 6.7 explaining the decision result. This is based on SHAP values that are
computed on-demand using the raw features from the database and the stored
model.

42

7 Discussion

7.1 Classification

The resulting (balanced) accuracy is comparable to the lower end of related
works shown in Table 1. Possible reasons are the more complicated domain
of developer tooling. Distinguishing an educational login form and a phishing
one is hard to get right. The number of features is also low compared to other
ML-based approaches. This is amplified by three of the 13 features not having
a meaningful influence on the classification results. The inclusion of even more
features might help, as well as more accurate data.

The results of the proactive scanning show that the model still yields more
false than true positives. A potential reason for this could be the ratio of
phishing samples in the training data being higher than in the real world. If
the model is influenced by this distribution, it is more likely to classify a sample
as phishing than if it was trained with more harmless examples than currently
used.

While the new ML-based approach decreases the high FPR compared to the
rule-based approach, the number of false positives still remains a problem.

7.2 Features

The feature importance results are close to those of Phishari [4]. Similar to
their results, the account age and redirects significantly influence the classifica-
tion decision. Redirects are more important for this specific scenario, probably
because the attractive short preview links make CodeSandbox a more popular
target to redirect from.

When observing the SHAP values of manually sampled false positives, the
metadata features like the number of views have a huge influence on the pre-
dicted probabilities. While the metadata features were intended to surface sus-
picious sandboxes for reviewers to look at, automatically classifying one mostly
based on its number of views and the age of its author seems unreasonable.
They also lead to the model learning unwanted patterns. As stated previously,
a sandbox having a high version number leads to a smaller probability of con-
taining phishing. This is not something that the model should learn and might
point to flaws in the training data. A regular user of CodeSandbox should not
be penalized and classified as phishing because they made more edits to their
code than others.

The content-based features seem to be more reliable. Their SHAP values
show a clear correlation to e.g. a redirect happening and the sandbox being
classified as phishing. This is less pronounced for the login form feature, however
the explicit inclusion of harmless sandboxes containing login forms might have
influenced this. If there are the same number of harmless and harmful sandboxes
that contain login forms, the model is less likely to rely on this feature.

To answer RQ2, the content-based features are the most helpful for iden-
tifying phishing sandboxes. While the metadata ones have a high impact on
average, they are more likely to lead to false positives.

43

7.3 Performance

The current system triggers 24 scans per minute on average. As the results of
local scanning presented in section 6.3 show, non-server hardware can handle
10 concurrent scans while maintaining a median compile time of 21 seconds.
When using more powerful hardware and more than one instance, this shows
that a real-world deployment can handle the current load of the system without
an unreasonable amount of computational cost.

However, most requests to the phishing API can currently be served from
the cache and trigger no new scans. A requirement for caching to work correctly
is to capture all parameters that influence the computation. If the path were
excluded from the cache key in the new system, phishing hidden in a sub-path
would potentially never be found. When the visit that triggered the first scan
was to the root path, all subsequent requests, even for other paths, will be
retrieved from the cache.

Also, passing the visits’ query parameters to the phishing API would be an
effective measure to fight redirect cloaking. At the same time, it would increase
the number of scans required. Besides the query parameter, modern browsers
offer many parameters that can determine the page’s contents. Examples in-
clude any header value of the request, but also client-side features such as the
presence of a gyroscope sensor on the device. Including them all in the cache
key would render the cache effectively useless.

Even if we assume the existence of a perfect phishing detector, implementing
caching opens up new attack vectors. Since JavaScript can read the current
time, a phisher is able to create a website that displays harmless content up
until a chosen point in time, after which it displays a phishing form instead.
Once a phishing scanner evaluates the site, it finds only harmless content and
caches the result. If the site is not scanned again for further visits, the phishing
version of the site will not be detected. The system can mitigate this attack by
expiring entries in the cache after a certain amount of time. The host therefore
needs to balance the security of their users and the resulting increase in resource
usage. The larger this timeframe, the more time a phisher has to attract victims.
Lowering this timeframe increases the number of scans and computational costs.

To answer RQ3, the system can be fast enough by using a stateless ar-
chitecture for the most computationally expensive part, the headless browser
analysis. The current load could be handled without unreasonable amounts of
additional compute, but when extending the system in the future, passing more
information to the phishing API might affect its performance.

7.4 Review Dashboard

As stated at the end of section 7.1, the number of false positives remains a prob-
lem for the automated classifications. However, the inclusion of filters based on
content-based features on the review dashboard makes this problem more man-
ageable. Especially filtering based on redirects helps with finding true positives.
If two entries have a score of 99% and one redirects the user, it is more likely
to contain phishing than the other one. The same holds for login forms, though
this filter still contains some amount of false positives.

The explanations provided by SHAP and the waterfall chart shown in Fig-
ure 6.7 generally work well. However, due to their post-hoc nature, they only

44

describe the features’ influence, not why a particular feature value is a sign of
phishing. As can also be seen in the beeswarm plot in Figure 6.4, a high author
age generally makes the sandbox look more harmless, but for some instances,
it also makes the model think it contains phishing. This is most likely due to
other features having a specific value, which is not reflected in the explanation.

The continuous collection of training data based on the reviewers’ decisions
also proves to be necessary. After manually confirming 18 phishing sandboxes
found the described active scanning approach, only 12 of them were still present
after two weeks after their discovery. While another approach might be to
prevent deletion after a sandbox is confirmed to contain phishing, adding new
samples to the training data.

All in all, the implemented measures answer RQ4. The review system pro-
vides the reviewers with more transparency, explainability, and uses their deci-
sions to fight data loss and improve the automated predictions in the future.

7.5 Security

The error analysis shows that the feature extraction phase is vulnerable to the
influence of phishers. For content-based features, this is mainly represented by
cloaking. As already mentioned, one of the most common types of phishing
is redirection to external phishing websites. If a phishing login form is hidden
from the browser feature extractor, it will be missing on the screenshot, and
f12 will be lowered. Similarly, the detected number of external links f13 can be
decreased.

The query parameter cloaking can be prevented by passing more informa-
tion from the initial request to the phishing scanner. To prevent phishers from
detecting the automated visit, one needs to try to appear as convincing as pos-
sible. Addons for headless browsers exist that make their detection harder and
even enable them to solve CAPTCHAs4. While simple detection mechanisms
like the user agent can easily be circumvented, more advanced ones like moving
the mouse as described in CrawlPhish [20] are harder to solve. Not being able to
detect bots also creates problems in other areas, as it is e.g. vital for limiting the
automated creation of user accounts, something that could harm other features
such as the sandbox having an author (f1).

The metadata features are mostly resilient to the influence of attackers.
While they can change the sandbox version with little effort, creating new ac-
counts or gaining access to old ones takes more effort. Similarly, the view
count could be incremented through automation, again requiring effort on the
phisher’s side. The increase in effort required by phishers to game the features
can also be seen as an additional security mechanism. If a phisher needs to
create automation scripts specific to a single provider, it will likely drive them
away to a different host.

4https://github.com/berstend/puppeteer-extra/tree/master/packages/

puppeteer-extra-plugin-recaptcha

45

https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-recaptcha
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-recaptcha

8 Conclusion

8.1 Summary

All in all, the results show that phishing detection at the website host can be
effective. While hosting providers with a free plan represent an attractive target
for phishers, they have access to unique information, enabling them to detect
phishing more effectively. This work focused on CodeSandbox, but the ideas
and techniques can be generalized to other hosting platforms such as Amazon
or DigitalOcean.

This work provides answers to four research questions. The new system
improves upon the current one’s high FPR (RQ1) by incorporating more infor-
mation into the classification process and using a more advanced method. SHAP
values have been computed to obtain a post-hoc breakdown of the contribution
per feature. This revealed the number of views (f4) and files (f8) to be the most
influential features on average (RQ2), while redirects (f9) or the author age (f2)
have a more significant influence for a few specific instances. While the new fea-
tures require a more complicated and resource-intensive extraction process, the
classification process is still fast enough (RQ3) by utilizing a flexibly scalable
architecture, caching classification results, and requiring fewer phishing scans
overall. Finally, it makes the automated decision process easier to understand
and fills the review dashboard with more relevant entries. It also provides the
reviewers with tools to filter the resultset if it gets too large. The reviewers’
decisions are used to continuously improve the automated classification results,
thereby using their manual work more effectively (RQ4).

The experiments also showed up unique challenges involved in server-side
phishing detection. Since users of the platform can constantly change or delete
their websites, additional steps are necessary to ensure a large and up-to-date
dataset. The host is also required to balance the effectiveness of the system and
its associated cost.

8.2 Future Work

The results show that the login form detection can still be improved by expand-
ing the functionality of the review dashboard. It could let the reviewers also
label the screenshots of sandboxes as login forms or not, similar to how the
phishing voting system works. This would help them to receive more relevant
results when using the login form filter and will likely improve the relevance of
f12.

Cloaking remains another crucial area for future research. The more infor-
mation is passed from the user’s visit to the phishing detector, the more closely
it can be replicated. However, this also makes caching harder since the web-
site could be different depending on the query parameter, cookies, and other
request-specific parameters. This increases the computational load, potentially
making the whole system more expensive.

Another possible future research would be to explore the effectiveness of user
feedback. This way, the user base can support the employees with their review
duties. While users may not be as trustworthy as paid workers, community
websites such as PhishTank use such a crowd-based system and are widely used
for phishing detection. It would also help an author whose sandbox was falsely

46

flagged as phishing to report this mistake and make them feel less helpless in
such a situation.

47

A Appendix

References

[1] Christian Ludl et al. “On the Effectiveness of Techniques to Detect Phish-
ing Sites”. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer. 2007, pp. 20–39.

[2] Phishing Activity Trends Reports. url: https://apwg.org/trendsreports
(visited on 06/20/2022).

[3] Nguyet Quang Do et al. “Deep Learning for Phishing Detection: Taxon-
omy, Current Challenges and Future Directions”. In: IEEE access : prac-
tical innovations, open solutions (2022), pp. 36429–36463. doi: 10.1109/
ACCESS.2022.3151903.

[4] Anupama Aggarwal, Ashwin Rajadesingan, and Ponnurangam Kumaraguru.
“PhishAri: Automatic Realtime Phishing Detection on Twitter”. In: 2012
eCrime Researchers Summit. IEEE. 2012, pp. 1–12.

[5] Mahmood Moghimi and Ali Yazdian Varjani. “New Rule-Based Phish-
ing Detection Method”. In: Expert Systems with Applications 53 (July 1,
2016), pp. 231–242. issn: 0957-4174. doi: 10.1016/j.eswa.2016.01.028.

[6] Simon Bell and Peter Komisarczuk. “An Analysis of Phishing Blacklists:
Google Safe Browsing, OpenPhish, and PhishTank”. In: Proceedings of the
Australasian Computer Science Week Multiconference. ACSW ’20. New
York, NY, USA: Association for Computing Machinery, 2020. isbn: 978-
1-4503-7697-6. doi: 10.1145/3373017.3373020.

[7] Neha Gupta, Anupama Aggarwal, and Ponnurangam Kumaraguru. “Bit.Ly/
Malicious: Deep Dive into Short URL Based e-Crime Detection”. In: 2014
APWG Symposium on Electronic Crime Research (eCrime). 2014 APWG
Symposium on Electronic Crime Research (eCrime). Sept. 2014, pp. 14–
24. doi: 10.1109/ECRIME.2014.6963161.

[8] Hossein Siadati, Toan Nguyen, and Nasir Memon. “X-Platform Phishing:
Abusing Trust for Targeted Attacks Short Paper”. In: Financial Cryptog-
raphy and Data Security. Ed. by Michael Brenner et al. Cham: Springer
International Publishing, 2017, pp. 587–596. isbn: 978-3-319-70278-0.

[9] Ibrahim Waziri. “Website Forgery: Understanding Phishing Attacks and
Nontechnical Countermeasures”. In: 2015 IEEE 2nd International Con-
ference on Cyber Security and Cloud Computing. 2015 IEEE 2nd Interna-
tional Conference on Cyber Security and Cloud Computing. Nov. 2015,
pp. 445–450. doi: 10.1109/CSCloud.2015.77.

[10] David G. Dobolyi and Ahmed Abbasi. “PhishMonger: A Free and Open
Source Public Archive of Real-World Phishing Websites”. In: 2016 IEEE
Conference on Intelligence and Security Informatics (ISI). 2016 IEEE
Conference on Intelligence and Security Informatics (ISI). Sept. 2016,
pp. 31–36. doi: 10.1109/ISI.2016.7745439.

[11] Adam Oest et al. “Sunrise to Sunset: Analyzing the End-to-end Life Cycle
and Effectiveness of Phishing Attacks at Scale”. In: 29th USENIX Secu-
rity Symposium (USENIX Security 20). 2020, pp. 361–377. isbn: 978-1-
939133-17-5.

48

https://apwg.org/trendsreports
https://doi.org/10.1109/ACCESS.2022.3151903
https://doi.org/10.1109/ACCESS.2022.3151903
https://doi.org/10.1016/j.eswa.2016.01.028
https://doi.org/10.1145/3373017.3373020
https://doi.org/10.1109/ECRIME.2014.6963161
https://doi.org/10.1109/CSCloud.2015.77
https://doi.org/10.1109/ISI.2016.7745439

[12] JonathanWoodbridge et al. “Detecting Homoglyph Attacks with a Siamese
Neural Network”. In: 2018 IEEE Security and Privacy Workshops (SPW).
2018 IEEE Security and Privacy Workshops (SPW). May 2018, pp. 22–28.
doi: 10.1109/SPW.2018.00012.

[13] Collin Jackson et al. “An Evaluation of Extended Validation and Picture-
in-Picture Phishing Attacks”. In: Financial Cryptography and Data Secu-
rity. Ed. by Sven Dietrich and Rachna Dhamija. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2007, pp. 281–293. isbn: 978-
3-540-77366-5. doi: 10.1007/978-3-540-77366-5_27.

[14] Jhen-Hao Li and Sheng-De Wang. “PhishBox: An Approach for Phishing
Validation and Detection”. In: 2017 IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelli-
gence and Computing, 3rd Intl Conf on Big Data Intelligence and Com-
puting and Cyber Science and Technology Congress(DASC / PiCom /
DataCom / CyberSciTech). Nov. 2017, pp. 557–564. doi: 10.1109/DASC-
PICom-DataCom-CyberSciTec.2017.101.

[15] Yi-Shin Chen et al. “Detect Phishing by Checking Content Consistency”.
In: Proceedings of the 2014 IEEE 15th International Conference on Infor-
mation Reuse and Integration (IEEE IRI 2014). 2014, pp. 109–119. doi:
10.1109/IRI.2014.7051880.

[16] Mahmood Moghimi and Ali Yazdian Varjani. “New Rule-Based Phishing
Detection Method”. In: Expert Systems with Applications (2016), pp. 231–
242. issn: 0957-4174. doi: 10.1016/j.eswa.2016.01.028.

[17] Aditya Gopal Menon and Gilad Gressel. “Concept Drift Detection in
Phishing Using Autoencoders”. In: Machine Learning and Metaheuristics
Algorithms, and Applications. Ed. by Sabu M. Thampi et al. Communi-
cations in Computer and Information Science. Singapore: Springer, 2021,
pp. 208–220. isbn: 9789811604195. doi: 10.1007/978-981-16-0419-
5_17.

[18] Safe Browsing – Google Safe Browsing. url: https://safebrowsing.
google.com.

[19] Swati Maurya and Anurag Jain. “Deep Learning to Combat Phishing”.
In: Journal of Statistics and Management Systems 6 (2020), pp. 945–957.

[20] Penghui Zhang et al. “CrawlPhish: Large-scale Analysis of Client-side
Cloaking Techniques in Phishing”. In: 2021 IEEE Symposium on Secu-
rity and Privacy (SP). 2021 IEEE Symposium on Security and Privacy
(SP). May 2021, pp. 1109–1124. doi: 10.1109/SP40001.2021.00021.

[21] Adam Oest et al. “PhishFarm: A Scalable Framework for Measuring the
Effectiveness of Evasion Techniques against Browser Phishing Blacklists”.
In: 2019 IEEE Symposium on Security and Privacy (SP). 2019 IEEE Sym-
posium on Security and Privacy (SP). May 2019, pp. 1344–1361. doi:
10.1109/SP.2019.00049.

[22] Yolanda Gil et al. “Towards Human-Guided Machine Learning”. In: Pro-
ceedings of the 24th International Conference on Intelligent User Inter-
faces. IUI ’19. New York, NY, USA: Association for Computing Machin-
ery, Mar. 17, 2019, pp. 614–624. isbn: 978-1-4503-6272-6. doi: 10.1145/
3301275.3302324.

49

https://doi.org/10.1109/SPW.2018.00012
https://doi.org/10.1007/978-3-540-77366-5_27
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.101
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.101
https://doi.org/10.1109/IRI.2014.7051880
https://doi.org/10.1016/j.eswa.2016.01.028
https://doi.org/10.1007/978-981-16-0419-5_17
https://doi.org/10.1007/978-981-16-0419-5_17
https://safebrowsing.google.com
https://safebrowsing.google.com
https://doi.org/10.1109/SP40001.2021.00021
https://doi.org/10.1109/SP.2019.00049
https://doi.org/10.1145/3301275.3302324
https://doi.org/10.1145/3301275.3302324

[23] Florian Westphal, Niklas Lavesson, and H̊akan Grahn. “A Case for Guided
Machine Learning”. In:Machine Learning and Knowledge Extraction. Lec-
ture Notes in Computer Science (2019). Ed. by Andreas Holzinger et al.,
pp. 353–361. doi: 10.1007/978-3-030-29726-8_22.

[24] Saleema Amershi et al. “Power to the People: The Role of Humans in
Interactive Machine Learning”. In: AI Magazine 35.4 (Dec. 22, 2014),
pp. 105–120. issn: 2371-9621. doi: 10.1609/aimag.v35i4.2513.

[25] Ashish Kapoor et al. “Interactive Optimization for Steering Machine Clas-
sification”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’10. New York, NY, USA: Association for
Computing Machinery, Apr. 10, 2010, pp. 1343–1352. isbn: 978-1-60558-
929-9. doi: 10.1145/1753326.1753529.

[26] Sebastian Lapuschkin et al. “Unmasking Clever Hans Predictors and As-
sessing What Machines Really Learn”. In: Nature Communications 10.1
(1 Mar. 11, 2019), p. 1096. issn: 2041-1723. doi: 10.1038/s41467-019-
08987-4.

[27] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):
Concepts, Taxonomies, Opportunities and Challenges toward Responsible
AI”. In: Information Fusion 58 (June 1, 2020), pp. 82–115. issn: 1566-
2535. doi: 10.1016/j.inffus.2019.12.012.

[28] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 1,
2001), pp. 5–32. issn: 1573-0565. doi: 10.1023/A:1010933404324.

[29] ”Why Should I Trust You?” — Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. url:
https://dl- acm- org.ezproxy2.utwente.nl/doi/abs/10.1145/

2939672.2939778 (visited on 12/30/2022).

[30] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting
Model Predictions”. In: Advances in Neural Information Processing Sys-
tems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–
4774.

[31] Scott M. Lundberg et al. “From Local Explanations to Global Under-
standing with Explainable AI for Trees”. In: Nature Machine Intelligence
2.1 (2020), pp. 2522–5839.

[32] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. “Learning Ac-
tive Learning from Data”. In: Advances in Neural Information Processing
Systems. Vol. 30. Curran Associates, Inc., 2017.

[33] Li Deng. “The MNIST Database of Handwritten Digit Images for Ma-
chine Learning Research [Best of the Web]”. In: IEEE Signal Processing
Magazine 29.6 (Nov. 2012), pp. 141–142. issn: 1558-0792. doi: 10.1109/
MSP.2012.2211477.

[34] David D. Lewis and Jason Catlett. “Heterogeneous Uncertainty Sampling
for Supervised Learning”. In: Machine Learning Proceedings 1994. Ed.
by William W. Cohen and Haym Hirsh. San Francisco (CA): Morgan
Kaufmann, Jan. 1, 1994, pp. 148–156. isbn: 978-1-55860-335-6.

50

https://doi.org/10.1007/978-3-030-29726-8_22
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1145/1753326.1753529
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1023/A:1010933404324
https://dl-acm-org.ezproxy2.utwente.nl/doi/abs/10.1145/2939672.2939778
https://dl-acm-org.ezproxy2.utwente.nl/doi/abs/10.1145/2939672.2939778
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477

[35] Sreyasee Das Bhattacharjee et al. “Prioritized Active Learning for Ma-
licious URL Detection Using Weighted Text-Based Features”. In: 2017
IEEE International Conference on Intelligence and Security Informatics
(ISI). 2017 IEEE International Conference on Intelligence and Security
Informatics (ISI). July 2017, pp. 107–112. doi: 10 . 1109 / ISI . 2017 .
8004883.

[36] Robert (Munro) Monarch. Human-in-the-Loop Machine Learning. Man-
ning, June 2021. isbn: 978-1-61729-674-1.

[37] Hieu T. Nguyen and Arnold Smeulders. “Active Learning Using Pre-
Clustering”. In: Proceedings of the Twenty-First International Conference
on Machine Learning. ICML ’04. New York, NY, USA: Association for
Computing Machinery, July 4, 2004, p. 79. isbn: 978-1-58113-838-2. doi:
10.1145/1015330.1015349.

[38] Yi Yang et al. “Multi-Class Active Learning by Uncertainty Sampling with
Diversity Maximization”. In: International Journal of Computer Vision
113.2 (June 1, 2015), pp. 113–127. issn: 1573-1405. doi: 10.1007/s11263-
014-0781-x.

[39] Yue Zhang, Jason I. Hong, and Lorrie F. Cranor. “Cantina: A Content-
Based Approach to Detecting Phishing Web Sites”. In: Proceedings of
the 16th International Conference on World Wide Web. WWW ’07. New
York, NY, USA: Association for Computing Machinery, 2007, pp. 639–
648. isbn: 978-1-59593-654-7. doi: 10.1145/1242572.1242659.

[40] Sadia Afroz and Rachel Greenstadt. “PhishZoo: Detecting Phishing Web-
sites by Looking at Them”. In: 2011 IEEE Fifth International Conference
on Semantic Computing. 2011 IEEE Fifth International Conference on Se-
mantic Computing. Sept. 2011, pp. 368–375. doi: 10.1109/ICSC.2011.
52.

[41] Luong Anh Tuan Nguyen et al. “Detecting Phishing Web Sites: A Heuris-
tic URL-based Approach”. In: 2013 International Conference on Advanced
Technologies for Communications (ATC 2013). 2013 International Con-
ference on Advanced Technologies for Communications (ATC 2013). Oct.
2013, pp. 597–602. doi: 10.1109/ATC.2013.6698185.

[42] Angelo P. E. Rosiello et al. “A Layout-Similarity-Based Approach for De-
tecting Phishing Pages”. In: 2007 Third International Conference on Se-
curity and Privacy in Communications Networks and the Workshops -
SecureComm 2007. 2007 Third International Conference on Security and
Privacy in Communications Networks and the Workshops - SecureComm
2007. Sept. 2007, pp. 454–463. doi: 10.1109/SECCOM.2007.4550367.

[43] Matthew Dunlop, Stephen Groat, and David Shelly. “GoldPhish: Using
Images for Content-Based Phishing Analysis”. In: 2010 Fifth International
Conference on Internet Monitoring and Protection. 2010, pp. 123–128.
doi: 10.1109/ICIMP.2010.24.

[44] XiangGuang et al. “CANTINA+: A Feature-Rich Machine Learning Frame-
work for Detecting Phishing Web Sites”. In: ACM Transactions on Infor-
mation and System Security (TISSEC) (Sept. 1, 2011). doi: 10.1145/
2019599.2019606.

51

https://doi.org/10.1109/ISI.2017.8004883
https://doi.org/10.1109/ISI.2017.8004883
https://doi.org/10.1145/1015330.1015349
https://doi.org/10.1007/s11263-014-0781-x
https://doi.org/10.1007/s11263-014-0781-x
https://doi.org/10.1145/1242572.1242659
https://doi.org/10.1109/ICSC.2011.52
https://doi.org/10.1109/ICSC.2011.52
https://doi.org/10.1109/ATC.2013.6698185
https://doi.org/10.1109/SECCOM.2007.4550367
https://doi.org/10.1109/ICIMP.2010.24
https://doi.org/10.1145/2019599.2019606
https://doi.org/10.1145/2019599.2019606

[45] Vahid Shahrivari, MohammadMahdi Darabi, and Mohammad Izadi. “Phish-
ing Detection Using Machine Learning Techniques”. 2020. arXiv: 2009.
11116.

[46] Samuel Marchal et al. “Know Your Phish: Novel Techniques for Detect-
ing Phishing Sites and Their Targets”. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS).
June 2016, pp. 323–333. doi: 10.1109/ICDCS.2016.10.

[47] Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey. “Predicting
Phishing Websites Based on Self-Structuring Neural Network”. In: Neural
Computing and Applications 2 (Aug. 1, 2014), pp. 443–458. issn: 1433-
3058. doi: 10.1007/s00521-013-1490-z.

[48] Ankit Kumar Jain and B. B. Gupta. “A Machine Learning Based Ap-
proach for Phishing Detection Using Hyperlinks Information”. In: Journal
of Ambient Intelligence and Humanized Computing 10.5 (May 1, 2019),
pp. 2015–2028. issn: 1868-5145. doi: 10.1007/s12652-018-0798-z.

[49] Dongjie Liu et al. “Malicious Websites Detection via CNN Based Screen-
shot Recognition”. In: 2019 International Conference on Intelligent Com-
puting and Its Emerging Applications (ICEA). 2019 International Con-
ference on Intelligent Computing and Its Emerging Applications (ICEA).
Aug. 2019, pp. 115–119. doi: 10.1109/ICEA.2019.8858300.

[50] Weiping Wang et al. “PDRCNN: Precise Phishing Detection with Recur-
rent Convolutional Neural Networks”. In: Security and Communication
Networks 2019 (Oct. 29, 2019), e2595794. issn: 1939-0114. doi: 10.1155/
2019/2595794.

[51] Xi Xiao et al. “CNN–MHSA: A Convolutional Neural Network and Multi-
Head Self-Attention Combined Approach for Detecting Phishing Web-
sites”. In: Neural Networks 125 (May 1, 2020), pp. 303–312. issn: 0893-
6080. doi: 10.1016/j.neunet.2020.02.013.

[52] PhishTank — Join the fight against phishing. url: https://phishtank.
org.

[53] OpenPhish - Phishing Intelligence. url: https://openphish.com.

[54] Adam Oest et al. “PhishTime: Continuous Longitudinal Measurement of
the Effectiveness of Anti-phishing Blacklists”. In: 29th USENIX Secu-
rity Symposium (USENIX Security 20). 2020, pp. 379–396. isbn: 978-1-
939133-17-5.

[55] Simon Bell and Peter Komisarczuk. “An Analysis of Phishing Blacklists:
Google Safe Browsing, OpenPhish, and PhishTank”. In: Proceedings of
the Australasian Computer Science Week Multiconference. ACSW ’20.
New York, NY, USA: Association for Computing Machinery, Feb. 4, 2020,
pp. 1–11. isbn: 978-1-4503-7697-6. doi: 10.1145/3373017.3373020.

[56] Kholoud Althobaiti, Nicole Meng, and Kami Vaniea. “I Don’t Need an Ex-
pert! Making URL Phishing Features Human Comprehensible”. In: Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. New York, NY, USA: Association for Computing Machinery,
2021. isbn: 978-1-4503-8096-6. doi: 10.1145/3411764.3445574.

52

https://arxiv.org/abs/2009.11116
https://arxiv.org/abs/2009.11116
https://doi.org/10.1109/ICDCS.2016.10
https://doi.org/10.1007/s00521-013-1490-z
https://doi.org/10.1007/s12652-018-0798-z
https://doi.org/10.1109/ICEA.2019.8858300
https://doi.org/10.1155/2019/2595794
https://doi.org/10.1155/2019/2595794
https://doi.org/10.1016/j.neunet.2020.02.013
https://phishtank.org
https://phishtank.org
https://openphish.com
https://doi.org/10.1145/3373017.3373020
https://doi.org/10.1145/3411764.3445574

[57] Tyler Moore and Richard Clayton. “Evil Searching: Compromise and Re-
compromise of Internet Hosts for Phishing”. In: Financial Cryptography
and Data Security. Ed. by Roger Dingledine and Philippe Golle. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 256–
272. isbn: 978-3-642-03549-4. doi: 10.1007/978-3-642-03549-4_16.

[58] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. “VisualPhish-
Net: Zero-Day Phishing Website Detection by Visual Similarity”. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security. New York, NY, USA: Association for Computing
Machinery, Oct. 30, 2020, pp. 1681–1698. isbn: 978-1-4503-7089-9.

[59] Kyumin Lee, James Caverlee, and Steve Webb. “Uncovering Social Spam-
mers: Social Honeypots + Machine Learning”. In: Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’10. New York, NY, USA: Association for
Computing Machinery, July 19, 2010, pp. 435–442. isbn: 978-1-4503-0153-
4. doi: 10.1145/1835449.1835522.

[60] Neda Abdelhamid, Aladdin Ayesh, and Fadi Thabtah. “Phishing Detec-
tion Based Associative Classification Data Mining”. In: Expert Systems
with Applications 41.13 (Oct. 1, 2014), pp. 5948–5959. issn: 0957-4174.
doi: 10.1016/j.eswa.2014.03.019.

[61] Mart́ın Abadi et al. TensorFlow: Large-scale Machine Learning on Het-
erogeneous Systems. 2015.

[62] Francois Chollet. “Xception: Deep Learning With Depthwise Separable
Convolutions”. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2017, pp. 1251–1258.

[63] Dan Petro. Pentest Screenshots. 2021-06-10, 2021.

[64] Tlamelo Emmanuel et al. “A Survey on Missing Data in Machine Learn-
ing”. In: Journal of Big Data 8.1 (Oct. 27, 2021), p. 140. issn: 2196-1115.
doi: 10.1186/s40537-021-00516-9.

[65] F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[66] Tianqi Chen and Carlos Guestrin. “Xgboost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining. 2016, pp. 785–794.

[67] Isabelle Guyon et al. “Design of the 2015 ChaLearn AutoML Challenge”.
In: 2015 International Joint Conference on Neural Networks (IJCNN).
2015 International Joint Conference on Neural Networks (IJCNN). July
2015, pp. 1–8. doi: 10.1109/IJCNN.2015.7280767.

53

https://doi.org/10.1007/978-3-642-03549-4_16
https://doi.org/10.1145/1835449.1835522
https://doi.org/10.1016/j.eswa.2014.03.019
https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/10.1109/IJCNN.2015.7280767

List of Figures

1.1 Detected phishing websites since 2020 1
1.2 The CodeSandbox online editor. 2
1.3 Two entries on the review dashboard. 3
1.4 CodeSandbox phishing banner. 3
2.1 Historic events related to phishing. 6
2.2 Browser-in-the-browser attack. 8
2.3 MNIST dataset. 12
3.1 Structure of a URL . 16
3.2 Legitimate and phishing DOM trees. 18
4.1 Historic number of phishing sandboxes. 21
5.1 Per label distributions for metadata features. 25
5.2 Per label distributions for the content-based features f12 and f9. 26
5.3 Screenshots included in the Pentest dataset. 27
5.4 System communication. 31
5.5 Data lifecycle. 33
6.1 Confusion matrix per condition 36
6.2 Missclassified login forms. 37
6.3 Mean SHAP values for each feature in descending order. 38
6.4 Shap values per feature. 38
6.5 Timeline of the subprocesses from equation 4. 40
6.6 The new review dashboard. 41
6.7 Mean absolute shap values. 42

List of Tables

1 Overview of phishing classification methods. 13
2 Overview of the classification features. 24
3 SHAP values and training samples. 30
4 Results of the classification metrics. 35

54

	1 Introduction
	1.1 Motivation
	1.2 CodeSandbox
	1.3 Problem Statement
	1.4 Structure

	2 Background
	2.1 Phishing
	2.1.1 Types of Phishing Attacks

	2.2 Classification
	2.3 Cloaking
	2.4 Human-in-the-loop Machine Learning
	2.4.1 Human Guided and Interactive Machine Learning
	2.4.2 Explainability
	2.4.3 Sampling

	3 Related Work
	3.1 Methods
	3.1.1 Blacklists
	3.1.2 Rule-based
	3.1.3 Machine Learning
	3.1.4 Deep Learning

	3.2 Features
	3.2.1 URL-based
	3.2.2 Content-based
	3.2.3 Other

	3.3 Datasets
	3.4 Contributions of This Work

	4 Dataset
	4.1 Operational Data
	4.2 Phishing Data
	4.3 Training Data

	5 Methodology
	5.1 Improving the fpr
	5.1.1 New Scanning Approach
	5.1.2 Features
	5.1.3 Model Training

	5.2 Impact Analysis
	5.3 Designing The System To Be Scalable
	5.3.1 Performance

	5.4 Redesigning The Review Process
	5.5 Comparison Through Proactive Scanning

	6 Results
	6.1 Classification
	6.1.1 Error Analysis
	6.1.2 Login Form Detection

	6.2 Feature Impact
	6.3 Performance
	6.4 Review

	7 Discussion
	7.1 Classification
	7.2 Features
	7.3 Performance
	7.4 Review Dashboard
	7.5 Security

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	A Appendix

