
BSc Thesis Applied Mathematics & Techni-
cal Computer Science

On the effects of smoothing on
machine learning performance
in fatigue detection using
sensor data

Stan Verschuren

Supervisor: Katharina Proksch, Dennis Reidsma

February, 2023

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

I want to thank my supervisors Katharina Proksch and Dennis Reidsma for their valuable
feedback and sharp comments, their assistance and the cookies. I also want to thank the
people in the Bachelor Project Support Group for helping me organize and stay positive
during the creation of this paper.

On the effects of smoothing on machine learning
performance in fatigue detection using sensor data

Stan. P. Verschuren

February, 2023

Abstract

Fatigue detection during a running session is important to decrease the risk of
injury. Machine learning in combination with wearable sensor technology is a viable
option to detect it, and can be used to provide live feedback to the runner. The raw
data is often smoothed to decrease the noise, but the effects of this smoothing can be
drastically different, depending on the setup of the sensors and data processing. In
this paper, we compare the difference in performance of a machine learning algorithm
using smoothed data against non-smoothed data in order to examine the influence
of different smoothing setups on the detection of fatigue. This experiment used raw
acceleration data from 7 sensors placed on the body during a fatiguing treadmill run.
On that data, we applied Butterworth low-pass filters with different orders and cutoff
frequencies, and for each sensor, the magnitude of the acceleration was calculated.
The data was then segmented into strides and four features were extracted per sensor.
Then, twelve combinations of sensors were tested by comparing the performance, in
terms of accuracy, of a random forest with the smoothed dataset and the non-smoothed
dataset using the 5x2 cross validation t-test. We found that the smoothing could
increase or decrease the accuracy by 15% when using a single sensor as input data for
the random forest. Moreover, the smoothing did not increase or lower the performance
in a significant way (α = 0.05) when multiple sensors are used, independent of the
configuration of the cutoff frequency and order. Additionally, the accuracy increased in
general the more sensors are used. Keywords: smoothing, sensors, machine learning,

Butterworth, filter, running, fatigue, detection, random forest, 5x2 cross validation

1 Introduction

Running has risen in popularity as a recreational sport all across Europe [15]. Consequently,
the number of people who get a running-related injury is high [4]. There can be a lot of
factors that contribute to this, and one of those factors is fatigue [17]. It changes the way
we move in multiple ways [7], and so it is something to keep track of during a run.

A means to do so is gait analysis which can be used to determine if someone is exerted.
Gait analysis studies the characteristics of the steps someone makes, for example knee
angle, foot height or leg swing acceleration. These measurements can be extracted using
wearable sensor technology [16]. However, researchers try to minimize the amount of
sensors used to reduce the intrusiveness towards the runners [13].

Machine learning is an advancing technique that can detect fatigue with promising
performance [3, 11, 18]. When fitted, it can detect a fatigued state faster than a human
analyser can and might be able to pick up on more subtle changes in movement, and thus
can give live feedback during training. The wearable sensors can provide live data to the

1

algorithm to detect the state of the runner, which can be used to give the runner a training
suggestion in real time, for example to take a break.

In traditional gait analysis, the data would be processed into features which can be
used to make a judgement about fatigue, like acceleration data and consequently joint
reaction forces [6]. However, this method is prone to noise. If a noisy signal is processed
into features, then the features can be inaccurate [6]. Therefore, a smoothing procedure is
often applied in practice before handling the data [6, 9].

Machine learning algorithms can be reasonably resistant to noise, for example the
random forest algorithm [2]. However, it is not uncommon to apply some smoothing
process before providing the data to the machine learning algorithm [3, 18]. Smoothing
removes the noise present in the sensor data, but it might also remove real data. This
data can be beneficial when detecting fatigue, and a machine learning algorithm might be
able to pick up on it. Additionally, There exists no general consensus on how to configure
the smoothing procedures. The questions in this article are thus whether the smoothing
process is needed at all for a machine learning algorithm to detect fatigue accurately, and,
if so, how important is the configuration of the smoothing for the performance?

One smoothing procedure which is dominant in the field of bio-mechanics is the But-
terworth low-pass filter [1, 3, 12, 14, 18]. A Butterworth low-pass filter reduces parts of
a signal as function of frequency. There are two parameters to be set for a Butterworth
low-pass filter, the order and the cutoff frequency. The cutoff frequency determines at
which frequency the filter starts to reduce the signal. If the cutoff frequency is set to 15
Hz, all frequencies higher than 15 Hz will be reduced, leaving the ones below 15 nearly
untouched. However, the reduction is applied gradually from 15 Hz onward. How steep
the reduction occurs, is determined by the order of the filter. A higher order means steeper
reduction, (see Figure 1 for a visual example on what these two parameters do).

(a) (b) (c)

Figure 1: Comparison of frequency responses with different order or cutoff fre-
quency. (a) frequency response when the order is set to 5 and the cutoff frequency
to 5 Hz; (b) frequency response when the order is set to 5 and the cutoff frequency
to 15 Hz; (c) frequency response when the order is set to 1 and the cutoff frequency
to 15 Hz.

In this article, we will use the random forest algorithm as machine learning algorithm to
test our hypotheses. This algorithm is present in different other studies regarding fatigue
detection with machine learning [3, 11, 18], and is robust with respect to noise [2]. A
random forest is a machine learning algorithm that takes majority votes from a collection
of randomized decision trees. A decision tree is a binary tree with condition checks as
nodes and a final outcome on the leaf nodes. This way, a decision can be made based on
certain conditions. In machine learning, the split nodes in decision trees are established
by comparing how effective the split is (this will be explained in further detail in the next

2

section), and predictions are made by iterating through the tree. A small example of a
decision tree can be seen in Figure 2.

Figure 2: An example decision tree for predicting the fatigued state of a runner
based on the peak value and average acceleration of a sensor. The red nodes are
the final outcomes whereas the green nodes are the condition checks.

Each decision tree in random forest is trained using a new bootstrapped dataset with
a set sample size. This is a set of randomly picked entries from the original set, with
replacement. Additionally, only a subset of features is chosen at random when determining
the optimal split for each decision tree in the forest. These measures provides a randomness
factor to each tree, making them distinct from each other but not unrelated.

The goal of this article is to analyse the effects of the cutoff frequency and the order of
a Butterworth low-pass filter on the detection of a fatigued and non-fatigued state based
on sensor data using a random forest algorithm. We will look into the performance of the
random forests and see if there is a difference between algorithms trained on smoothed or
raw data. This will be done using a specialized t-test called the 5x2 cross validation t-
test, as proposed by Dietterich in his paper "Approximate Statistical Tests for Comparing
Supervised Classification Learning Algorithms" [8]. Furthermore, this difference, when
statistically significant, can tell us more about the importance of the configuration of the
smoothing procedure.

2 Methods

For our numerical experiments we use Python v3.10.7 and the libraries Pandas v1.5.1
for data manipulation, Numpy 1.24.4 for general mathematics, Scipy v1.9.2 for signal
processing, Scikit-learn v1.1.3 for the machine learning and Matplotlib v3.6.1 for creating
the plots and graphs.

3

2.1 Data

The raw data used for this experiment was gathered using several IMU sensors attached
on multiple different places on the body during a fatiguing run. The sensors were set to
measure with a rate of 240 Hz. To mitigate errors and noise from external factors like
wind, the experiment was done indoors on a treadmill. The sensors were placed on the
pelvis, the upper and lower parts of both the legs, and on both feet (see Figure 3).

Figure 3: caption.

All sensors reported the acceleration in all 3 spacial directions. A sample of the raw
sensor data of the left lower leg can be seen in Figure 4.

Figure 4: A sample of the recorded acceleration in all three spacial directions
from the sensor on the left lower foot.

The data was directly read from the sensors, without any processing beforehand. After
loading in the data, certain data features, like the sampling rate, were determined.

2.2 Smoothing

First the smoothing is applied to the sensor data. This is done normally to remove the noise
from the sensors and to reduce the error in the processing to come. We use a Butterworth
low-pass filter to achieve this smoothing [5].

4

Definition 1 (Butterworth (zero-phase) low-pass filter). The Butterworth low-pass filter
is a filter that is applied in the frequency domain. Let fc be the cutoff frequency and o be
the order of the filter. Then the frequency response r to the filter is defined as

r =
1√

1− f
fc

2o
.

However, the resulting signal will be shifted in the time domain, and so the smoothed signal
does not fit exactly on the original signal. This is called a phase shift. A Butterworth zero-
phase low-pass filter mitigates this problem. It applies the smoothing twice, first forwards,
then again backwards. This does not change the resulting signal smoothing-wise, but realigns
the smoothed signal with the original signal.

For every combination of parameters, cutoff frequency and order, a Butterworth zero-
phase low-pass filter set with that combination was applied on the sensor data separately.
The filter was applied using the forward-backward digital filter included in the ’signal’
module of the Scipy library. See Figure 5 for a sample of our filtered data.

Figure 5: A sample of the smoothed acceleration of the left lower leg accelera-
tion in all three spacial directions compared to the raw data using a Butterworth
zero-phase low-pass filter. The filter is configured with an order of 3 and a cutoff
frequency of 6 Hz.

The order was set between 1 and 5, and the frequency was set to range between 1
and 20 Hz. Both these parameters have an infinite domain to choose a range from, and
for completeness, all those values need to be evaluated. However, due to practical limi-
tations, we can only evaluate a smaller range. The order range from 1 to 5 was set with
the mindset that in other papers, no order was set higher than 5 [3, 9, 12, 18], and the
general recommendation is an order of 4, since filters with higher order introduce unwanted
oscillations [6]. The frequency range set from 1 to 20 in increments of 1 was set this way
with a similar mindset. The papers mentioned above had their frequencies set in the range
between 5 and 15. We widened the range from 1 to 20, to include more edge information,
but kept the set reasonably small for performance reasons. The frequency of the strides
is also determined to be 1.4 Hz (discussed later on), showing that the range we chose fits
in the order of magnitude of the data. This results in a set of 100 datasets, each with a
different smoothing applied.

5

2.3 Data processing

After the smoothing, the data needs to be translated into meaningful signals. The data
was first trimmed on both ends to exclude the calibration periods before and after the
measurement run, and to remove the distortion at the edges caused by the low-pass filter.
After that, we calculated the magnitude of the total acceleration for every sensor, (see
definition 2).

Definition 2 (Magnitude of acceleration). Let at,X , at,Y and at,Z be the acceleration at
time t measured in the three spacial directions X, Y and Z respectively. Then the magnitude
of acceleration at time t is defined by

at =
√

at,X2 + at,Y 2 + at,Z2.

This was done to keep the data as raw as possible, but to be independent on how the
sensor axes are setup. This means that this can be calculated by every setup with similar
sensor placements, without the need for exact directions. This technique, calculating the
magnitude of the acceleration of a sensor was also done by Wang et al. in their paper
"Fatigue Detection in Running with Inertial Measurement Unit and Machine Learning"
[18]. A sample of the calculated signals can be seen in Figure 6.

Figure 6: A sample of the magnitude of the acceleration of all sensors, calculated
with the smoothed data configured with an order of 3 and a cutoff frequency of 6
Hz.

2.4 Stride segmentation

The sensors have measured the run on a sample rate of 240 Hz. But since a run is a made
of repeating strides, the detection of fatigue can best be based on features of a stride, for
example by peak values of acceleration of a leg during each stride. Therefore, a stride
segmentation needs to be done.

We will define a stride as the cyclic repeating movement of one leg during a run. That
is, a stride starts when a foot touches the ground, and ends when the same foot touches
the ground again. To find these start and end points, one can look at the sudden peaks
of acceleration upwards in one of the legs, since the contact with the ground exerts a
sudden force upwards. To cut up the data, we used a peak finding algorithm from the
signal module in the Scipy library. This peak finding algorithm was set to find the peaks
in the upwards acceleration of the right lower leg. These points were indexed and used as
splitting points for the segmentation. The strides were approximately 0.7 seconds long and
had a frequency of approximately 1.4 Hz. The first two hundred strides will be labeled as

6

non-fatigued, whereas the last two hundred strides will be labeled as fatigued. The strides
in between are not used. See Figure 7 for a visualization of the first 30 and last 30 strides.

Figure 7: The magnitude of the acceleration of the left lower leg for the first and
last 30 strides, calculated with the smoothed data configured with an order of 3
and a cutoff frequency of 6 Hz.

2.5 Feature extraction

In this experiment, we extracted several statistical features from the acceleration signals
per stride. We collected the area under the curve, the minimum value, the maximum
value, and the difference between the minimum and maximum value. These features were
calculated for every sensor. The features of the left lower leg are shown in Figure 8

Figure 8: The minimum, maximum, area under the curve (velocity) and difference
between minimum and minimum of the acceleration of the left lower leg, extracted
per stride, calculated with the smoothed data configured with an order of 3 and a
cutoff frequency of 6 Hz.

With these features, multiple datasets were created by joining features from different sen-
sors. First, a dataset was created for every sensor on its own. Secondly, both upper
leg, both lower leg and both feet sensors were each joined to create a dataset, as well
as all sensors on the legs combined. Finally, all sensors were joined to create the largest
dataset with all calculated features. This results in 12 datasets, summarized in the list
below. These datasets were used separately as input for the machine learning algorithm.

7

• Pelvis

• Left upper leg

• Right upper leg

• Left lower leg

• Right lower leg

• Left foot

• Right foot

• Left and right upper
leg

• Left and right lower leg

• Left and right foot

• Left and right upper
and lower leg

• All sensors

2.6 Random forest training

For the classification, a random forest classifier was used. The random forest was created
using the random forest classifier from the Sci-kit learn library, and was set up as follows:

• The amount of decision trees per random forest: 100. A random forest consists
of multiple randomized decision trees. These trees all get an input to predict, and a
majority vote is taken to determine the prediction of the random forest.

• The number of random features to be considered during the determination
of a best split: the square root of the total amount of features. During the training
of a decision tree, a feature and a threshold for that feature are determined to split
the current (sub)set of data on. To determine the best split, every threshold for a
feature in a randomly selected subset of features is compared to each other with a
scoring formula. The size of this subset of features is set to be the square root of the
total amount of features.

• The scoring formula to determine the best split with: The Gini impurity.
When selecting the best split during training of a decision tree, the features are
compared to each other via a certain scoring mechanism. This mechanism uses the
Gini impurity. The scoring mechanism works as follows:

Definition 3 (Gini impurity). Let C be a set of classes and let D be a set of samples
belonging to a class c ∈ C. Define nD to be the total number of samples in D, and
define nD,c to be the number of samples in D belonging to class c. Then the Gini
impurity of dataset D is defined as

G(D) = 1−
∑
c∈C

(
nD,c

nD
)2.

Suppose the dataset D is split in two sets, D1 and D2, then the Gini impurity of that
split is defined as the weighted average of the two split datasets:

Gsplit(D1, D2) =
nD1

nD
G(D1) +

nD2

nD
G(D2).

The split that provides the lowest Gini impurity is set as the best split.

• The number of samples a node can have to be automatically considered
as a leaf node: 2. This determines when to categorize a node as a leaf node. A
node can also be set as a leaf node when all samples are of the same class during
training.

• The amount of samples to take when creating a bootstrapped dataset: The
total amount of samples in the original dataset. When creating the decision trees
during training, each tree is trained on a randomly sampled dataset from the original

8

dataset, with replacement. This sampled dataset is called a bootstrapped dataset.
The amount of samples to take is set to the same amount of samples the original
dataset has.

2.7 Performance evaluation

For every sensor combination created, we will compare the performance of the algorithm
with smoothed data against non-smoothed data in terms of accuracy. Accuracy is the
amount of correctly predicted states divided by the total amount of predicted states during
training, (see definition 4).

Definition 4 (Accuracy). Let D be a dataset with N entries, each having a class associated
with it. If a classification algorithm predicts the class of each entry, then the accuracy of
that algorithm is defined by

ACC =
#(correctly predicted entries)

N

For every combination of smoothing parameters, we will compare the performance in terms
of accuracy using a specialized hypothesis test, called the 5x2 cross validation test as
proposed by Dietterich [8].

2.7.1 5x2 cross validation

This test is meant to compare two different machine learning algorithms against each other,
trained on the same dataset. However, we want to compare the same algorithm against
itself trained on two different datasets. We can reason that, in our case, this test is still
applicable if we consider the data processing procedure, including the smoothing step, to be
part of the algorithm. This way, the dataset we start with is identical, and the algorithms
are different. We will test the difference between the smoothed and non-smoothed versions
using the following hypothesis test:

Hypothesis.
H0: The average accuracy of the algorithm using smoothed data is the same as the average
accuracy of the algorithm using non-smoothed data.
H1: The average accuracy of the algorithm using smoothed data is different from the
average accuracy of the algorithm using non-smoothed data.
α: 0.05

The null hypothesis for each of these tests is that the accuracy of both algorithms are
the same, while the alternative hypothesis is that they are not. We will accept the null
hypothesis if the 5x2 cross validation t-test produces a p-value above 0.05, and we will
reject the null hypothesis if the p-value is below 0.05. Let us first define the original test,
taken from Dietterich [8], and then propose the alterations that we want to make to use
for our case.

1. Definition: Let D be the dataset that the machine learning algorithms need to
be tested on, let A and B be the two algorithms you want to compare, and let
k ∈ {1, 2, 3, 4, 5}.

2. Split: For every k, randomly partition the dataset D into two equally sized sets,
D

(1)
k and D

(2)
k .

9

3. 2 Fold cross validation: These two partitions will be used as folds in a two fold
cross validation. This gives us 4 accuracy scores for every k, a

(1)
k (A) and a

(1)
k (B)

(accuracy of A and B trained on set D
(1)
k), and a

(2)
k (A) and a

(2)
k (B) (accuracy of A

and B trained on set D
(2)
k).

4. Difference: Now the difference between scores on a partition for every k can be
calculated: a

(1)
k = a

(1)
k (A)− a

(1)
k (B) and a

(2)
k = a

(2)
k (A)− a

(2)
k (B).

5. Mean and variance: Using these variables, we can compute a mean:
āk = (a

(2)
k + a

(1)
k)/2, and a variance: s2k = (a

(1)
k − āk)

2 + (a
(2)
k − āk)

2.

6. T statistic: From these we can define a t statistic to test on:

t =
a
(1)
1√

1
5

∑5
k=1 s

2
k

(1)

Under the null hypothesis, that is, the mean accuracy of both algorithms is identical,
this t is approximately distributed like a Student’s t distribution with 5 degrees of free-
dom [8]. To get the final accuracy of the algorithm, we take the average of all the means āk.

Since we have two versions of a dataset and one algorithm, we need to change the
definition of some of these variables. we can switch D for an algorithm and A and B for
datasets, while the rest stays the same. The changes are as follows:

1. Definition: Let A and B be similar but differently smoothed datasets and let D be
a machine learning algorithm.

2. Split: Define A(1)
k and A

(2)
k to be the two equally sized partitions for every k, similarly

for B.

3. 2 Fold cross validation: Then, using those partitions in a two fold cross validation,
the four accuracy scores are a

(1)
k (A) and a

(2)
k (A) (accuracy of D trained on set A

(1)
k

and A
(2)
k) and a

(1)
k (B) and a

(2)
k (B) (accuracy of D trained on set B

(1)
k and B

(2)
k).

4. Difference: With these we can calculate the difference in scores with the same
formula as the original: a

(1)
k = a

(1)
k (A)− a

(1)
k (B) and a

(2)
k = a

(2)
k (A)− a

(2)
k (B).

The rest of the definitions stays the same.

2.7.2 t-test

Using the t calculated as in (1), we can perform a two-tailed Student’s t-test with 5 degrees
of freedom. The null hypothesis states that the accuracy of both methods are identical,
while the alternative hypothesis states they are not identical. We will use an alpha of 0.05.
The probability density can be viewed in Figure 9.

10

Figure 9: The probability density function of a Student’s t-test with 5 degrees of
freedom, highlighting the critical values of t when the alpha is set to 0.05.

The p-value was calculated by p = 2
(
1− Ft(|t|)

)
, where Ft is the cumulative distribution

function of t. Using these p-values, we can see which differences are significant and which
are not. This can show if there is a difference, and if so, where it is most important.

3 Results

For every set of sensors determined earlier, we created a set of tables. Each table is made
with the cutoff frequency of the smoothing filter as columns, and the order as rows. This
way, each cell represents a random forest, trained on data with the respective smoothing
applied.

For every subsequent type of table, we will only show the tables for the left upper
leg sensor, the table for the two upper leg sensors together and the table with all sensors
combined. The other sensor combinations are deferred to the appendix for the sake of a
clear presentation of the results.

3.1 Accuracy

The tables shown in Figure 10 below show the accuracy values of the random forests for
each smoothing configuration. The accuracy of the random forest with the non-smoothed
data is listed on top of each table as reference. These values were collected from the 10
tests during the 5x2 cross validation described in the methods. Notice that an overall
increase in accuracy can be recognized when using more sensors, which indicates that
using more sensors provides better performance overall. We can also observe a band in
the cutoff frequency where the accuracy is higher than outside on the lower sensor tables,
with the exception to the pelvis and both feet. This indicates that there might be a
correlation between the cutoff frequency of the filter and the performance of the random
forest. However, the band is different for each sensor, so no direct link can be made,
proving interesting for further research.

11

(a)

(b)

(c)

Figure 10: The accuracy scores of the random forests trained on data with differ-
ently configured Butterworth low-pass filters using different combinations of sensors.
(a) Using the sensor on the left upper leg, (b) Using the sensors on both upper legs
combined, (c) Using all sensors.

3.2 Difference in accuracy

The tables shown in Figure 11 show the difference in accuracy of the random forests for
each smoothing configuration and the random forest trained on the non-smoothed data. A
positive value means that the algorithm with smoothed data performs better than without
smoothing. Positive values are shown in green, whereas negative values are shown in red.
In a similar way as before, we can observe a band in the cutoff frequency where the accuracy
difference is positive in all tables, except for the left foot (see Figure B.6 in the appendix).
However, the difference seems to shrink the more sensors are used. This indicates that the

12

smoothing has less of an impact on the performance if more sensors are used, and that
there might indeed be a correlation between cutoff frequency.

(a)

(b)

(c)

Figure 11: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using different combinations of sensors. (a) Using
the sensor on the left upper leg, (b) Using the sensors on both upper legs combined,
(c) Using all sensors.

3.3 P-Value

These tables show the calculated p-value for each comparison between smoothed and non-
smoothed data. A p-value below our α value, 0.05, is considered significant, and is thus
colored green here. With this α, we need to expect a total of 5 false positives, but clear
regions of significant values can be seen throughout. Notice also that the number of cells

13

with a significant p-value decreases with more sensors used. This suggests a decrease in
importance of the smoothing with more sensors.

(a)

(b)

(c)

Figure 12: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using different combinations of sen-
sors. (a) Using the sensor on the left upper leg, (b) Using the sensors on both upper
legs combined, (c) Using all sensors.

3.4 Masked difference

These tables show the difference in accuracy again, but only the differences that are sig-
nificant enough are shown. That is, only the difference is shown when the p-value for the
corresponding cell is below our α value of 0.05. We observe negative regions on lower and
higher cutoff frequencies, and positive regions in the middle, but only in the tables using

14

few sensors. This suggests that there is a correlation between the cutoff frequency and the
performance. However, since the regions are shifted for each sensor, further research needs
to be done to find the causation.

(a)

(b)

(c)

Figure 13: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of be-
low our α of 0.05 using different combinations of sensors. (a) Using the sensor on
the left upper leg, (b) Using the sensors on both upper legs combined, (c) Using all
sensors.

4 Discussion

First, we will look at the accuracy tables.

15

Observation 1. The accuracy increases overall when we use more sensors.
The table showing the results using all sensors has the best accuracy scores.

This is not to be unexpected, since there is more information to base a prediction
on. The more data we use, the better the basis of the predictions can be. However,
providing the algorithm with too much data increases the risk of providing data that is
not relevant to the classification. The algorithm will try to find a correlation where there
is none. Therefore, it is important to know what data to provide to the machine learning
algorithm.

Secondly, we will look at the other three types of tables. Since these tables are closely
related to each other, we will discuss them together.

Observation 2. The differences between the smoothed and non-smoothed versions, and
their significance, decreases with increasing number of sensors.
The cutoff frequency and order have little to no influence on the performance when enough
data is used. Also, the p-values of the differences get smaller the more sensors are used, and
the difference in performance that is significant, is negative in all smoothing configurations.

This implies that the smoothing setup is less important and decreases the performance
as well when using more sensors.

Observation 3. The cutoff frequency and order do have a high influence on how well the
algorithm performs when using just a few sensors.
The setup of the cutoff frequency and order in some tables can mean a difference in perfor-
mance of more than 30%, for example in the left upper leg. Therefore, the configuration of
the cutoff frequency and order for smoothing is highly important when using single sensors.
This complements our observations on the tables with a high sensor count.

However, it must be noted that the configuration of the smoothing influences the ac-
curacy differently for every sensor. The areas with a positive difference in for example the
left lower leg are a negative difference in the right upper leg when we look at the signifi-
cant differences. There is general configuration of the cutoff frequency and the order that
provides a performance increase for all sensors.

This means that the setup of the smoothing, when using a low sensor count, is depen-
dent on the placement of the sensor, and it implies that the algorithm, is prone to small
errors in the setup of the experiment. This is an important observation, since the use of
fewer sensors is gaining more popularity [13].

Observation 4. There seems to be a tendency for a middle band of cutoff frequencies to
appear in most sensors where the performance increases. For example, there is a general
negative difference in performance when using a low cutoff frequency. Nearly all tables
have a negative difference in performance in the lower frequency zone. A lower cutoff
frequency means that more data is removed, and the signal might get reduced too much
by the filter.

This suggests there might be a systematic pattern for the optimization of the smoothing
setup.

5 Conclusions

The smoothing, done by a Butterworth low-pass filter, of raw sensor data has a differ-
ent importance when detecting fatigue with a random forest classifier, depending on the
amount of sensors you use.

16

First of all, the accuracy increases the more sensors are used. The smoothing has little
to no significant influence on the performance of the machine learning algorithm when
using multiple sensors on different places on the body.

However, the smoothing configuration plays a crucial role in the performance of the
algorithm when only a few or single sensors are used. Since there is little data to work
with, the algorithm is prone to small errors, and thus the smoothing needs to be setup
correctly. The configuration of the cutoff frequency and order for the low-pass filter can
create a difference in accuracy of at least 30%.

No apparent optimal way of configuring the cutoff frequency and order for every sin-
gle sensor is found in this experiment, but the results suggest that there is a systematic
pattern in the way the cutoff frequency influences the performance. These patterns are an
interesting topic for further analysis, and the methods used in this paper can be helpful in
comparing and determining them.

6 Limitations and directions for further research

The different resulting tables for each single sensor is unexplained by this paper. It might
be due to an unseen correlation or random interference. Since the usage of less sensors is
gaining popularity in research and the world of business [13], growing our understanding
about these results, and their differences, is essential.

The results of this study suggest there is a systematic pattern in the optimization of the
smoothing when using few sensors. For each individual sensor, there seems to be a range in
the cutoff frequencies where there is a significant performance increase when smoothing is
applied. The lower cutoff frequencies have a general negative impact on the performance.
Our conjecture is that the low cutoff frequency reduces the signal too much, removing too
much real data compared to noise. Our method of comparing the performance of an algo-
rithm based on different datasets is not limited to smoothed versus non-smoothed datasets,
and might be useful in comparing two differently smoothed datasets as well.

Our next step would be to see if a systematic pattern can be found in the optimization
of the smoothing parameters when using individual sensors, but with a different smooth-
ing algorithm. We choose the Butterworth low-pass filter for this experiment due to its
popularity in the field of bio-mechanics, but it is not the only smoothing technique. Some
examples are local regression and a moving average. A moving average might be a good
option to use when analyzing the analytical effects of smoothing due to its simple struc-
ture. This might prove easier to use when investigating the systematic patterns. Research
towards the effects of other smoothing methods on machine learning performance might
give more insight in the actual role of smoothing itself.

A similar argument can be given for the type of machine learning. Another algorithm
that is prominent in the bio-mechanics field is the Support vector machine [10]. The way
this algorithm reacts to smoothing might be different from a random forest, and further
research needs to be done to understand how. However, given the high values of accuracy
that our random forests achieved, we conclude that using a random forest is a viable option
to detect fatigue nonetheless.

The detection of fatigue in this experiment was done with the magnitude of the ac-
celeration of each sensor. However, there are countless other measures in bio-mechanics
to detect fatigue with, for example the knee angle. But these measures require deeper
understanding of the human body. A vast amount of research can be done if finding the

17

optimal measurement for detecting fatigue. Additionally, the goal of this paper was to find
the effects of smoothing on the performance of machine learning algorithms, not to find the
optimal way of detecting fatigue. Finding an optimal measurement to detect fatigue did
not fit the scope of this paper. Moreover, we wanted to keep the data as unprocessed as
possible. Combining the acceleration from all three directions provides us with a measure
for acceleration again. Also, Wang et al. used the same measure in their paper "Fatigue
Detection in Running with Inertial Measurement Unit and Machine Learning" [18]. We
therefore choose the magnitude of the acceleration of each sensor as our measurement
signal.

Similarly, the choice of features can be further researched in the same way. This pa-
per extracted four features from the strides, the minimum value, the maximum value, the
difference between those two and the area under the curve. As represented by Figure 8,
a visual representation of the features can give an indication to relevant features, which
directed us in using the chosen features. A set of features were extracted from the sensors,
and features were removed from the set if their removal did not reduce the accuracy greatly.

In this paper, the smoothing was applied directly on the raw sensor data. This is gen-
erally done this way, and it seemed logical to keep this up for this experiment. However,
one could argue that the smoothing needs to be applied after the calculation of the mag-
nitude of the acceleration, since that is supposed to be a smooth continuous signal as well.
The placement of the application of smoothing might be a good subject for further research.

The machine learning algorithm used in this experiment was provided by the sci-kit
learn library for python. However, a custom random forest classifier was made from scratch.
We could influence every aspect of this classifier and know exactly what is going on. This
algorithm was used initially, but was not fully optimized due to the time constraints and it
not being our highest priority. This caused the custom algorithm to be drastically slower
than the library version. Since our experiment required use to train a random forest at
least 12000 times (12 sensor combinations, 20 cutoff frequencies and 5 orders per combi-
nation, 10 trainings for each 5x2 cross validation t-test for each smoothing configuration),
we could not afford to use our custom algorithm and thus opted for the use of a library.
The codebase for this project has ben published online1.

Finally, we used data from a single run from one subject. We justify this by the fact
that we focused on the effects of smoothing on the performance, not the overall perfor-
mance of the algorithm. To find the differences, we need to use the same data, and thus
the same run and subject. However, the results might be unique to the subject. It might
be possible that the measurement signals or the features used for this experiment are not
sufficient to use on a different subject on a different run. Therefore, extending the experi-
ment to a bigger pool of datasets is an interesting direction for further research.

References

[1] V. Abolins, K. Nesenbergs, and E. Bernans. On improving gait analysis data: heel
induced force plate noise removal and cut-off frequency selection for Butterworth filter.
In Proceedings of the 9th International Conference on Signal Processing Systems, pages
215–219, Nov. 2017.

1https://gitlab.utwente.nl/s2364727/bachelor-project

18

https://gitlab.utwente.nl/s2364727/bachelor-project

[2] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct. 2001.

[3] C. Buckley, M. O’Reilly, D. Whelan, A. V. Farrell, L. Clark, V. Longo, M. Gilchrist,
and B. Caulfield. Binary classification of running fatigue using a single inertial mea-
surement unit. In 2017 IEEE 14th International Conference on Wearable and Im-
plantable Body Sensor Networks (BSN), pages 197–201, May 2017.

[4] I. Buist, S. W. Bredeweg, K. A. P. M. Lemmink, W. van Mechelen, and R. L. Diercks.
Predictors of running-related injuries in novice runners enrolled in a systematic train-
ing program: A prospective cohort study. The American Journal of Sports Medicine,
38(2):273–280, Feb. 2010.

[5] S. Butterworth. On the theory of filter amplifiers. Wireless Engineer, 7(6):536–541,
1930.

[6] G. Christodoulakis, K. Busawon, N. Caplan, and S. Stewart. On the filtering and
smoothing of biomechanical data. In 2010 7th International Symposium on Com-
munication Systems, Networks & Digital Signal Processing (CSNDSP 2010), pages
512–516, July 2010.

[7] T. A. Dierks, I. S. Davis, and J. Hamill. The effects of running in an exerted state on
lower extremity kinematics and joint timing. Journal of Biomechanics, 43(15):2993–
2998, Nov. 2010.

[8] T. G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classifica-
tion Learning Algorithms. Neural Computation, 10(7):1895–1923, Sept. 1998.

[9] P. Gulde and J. Hermsdörfer. A Comparison of Smoothing and Filtering Approaches
Using Simulated Kinematic Data of Human Movements. In Proceedings of the 11th
International Symposium on Computer Science in Sport (IACSS 2017), pages 97–102,
01 2018.

[10] E. Halilaj, A. Rajagopal, M. Fiterau, J. L. Hicks, T. J. Hastie, and S. L. Delp. Machine
learning in human movement biomechanics: Best practices, common pitfalls, and new
opportunities. Journal of Biomechanics, 81:1–11, Nov. 2018.

[11] Y. Halkiadakis, H. M. Alzakerin, and K. D. Morgan. Classification Model for Discrimi-
nating Trunk Fatigue During Running. In 2021 43rd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 4546–4549,
Nov. 2021.

[12] Y. Hutabarat, D. Owaki, and M. Hayashibe. Seamless Temporal Gait Evaluation dur-
ing Walking and Running Using Two IMU Sensors. In 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages
6835–6840, Nov. 2021.

[13] L. Marotta, J. H. Buurke, B.-J. F. van Beijnum, and J. Reenalda. Towards Machine
Learning-Based Detection of Running-Induced Fatigue in Real-World Scenarios: Eval-
uation of IMU Sensor Configurations to Reduce Intrusiveness. Sensors, 21(10):3451,
Jan. 2021.

[14] K. J. O’Donovan, B. R. Greene, D. McGrath, R. O’Neill, A. Burns, and B. Caulfield.
SHIMMER: A new tool for temporal gait analysis. In 2009 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages 3826–
3829, Sept. 2009.

19

[15] J. Scheerder, K. Breedveld, and J. Borgers. Who Is Doing a Run with the Running
Boom? In Running across Europe: The Rise and Size of One of the Largest Sport
Markets, pages 1–27. Palgrave Macmillan UK, London, 2015.

[16] C. Strohrmann, H. Harms, C. Kappeler-Setz, and G. Troster. Monitoring Kinematic
Changes With Fatigue in Running Using Body-Worn Sensors. IEEE Transactions on
Information Technology in Biomedicine, 16(5):983–990, Sept. 2012.

[17] N. Tam, D. R. Coetzee, S. Ahmed, R. P. Lamberts, Y. Albertus-Kajee, and R. Tucker.
Acute fatigue negatively affects risk factors for injury in trained but not well-trained
habitually shod runners when running barefoot. European Journal of Sport Science,
17(9):1220–1229, Oct. 2017.

[18] G. Wang, X. Mao, Q. Zhang, and A. Lu. Fatigue Detection in Running with Inertial
Measurement Unit and Machine Learning. In 2022 10th International Conference on
Bioinformatics and Computational Biology (ICBCB), pages 85–90, May 2022.

20

A Accuracy tables

Figure A.1: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the pelvis.

Figure A.2: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the left upper
leg.

Figure A.3: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the right
upper leg.

21

Figure A.4: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the left lower
leg.

Figure A.5: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the right
lower leg.

Figure A.6: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the left foot.

22

Figure A.7: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensor on the right
foot.

Figure A.8: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensors on both the
upper legs.

Figure A.9: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensors on both the
lower legs.

23

Figure A.10: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the sensors on both feet.

Figure A.11: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using the 4 sensors on both upper
and lower legs.

Figure A.12: The accuracy scores of the random forests trained on data with
differently configured Butterworth low-pass filters using all sensors.

24

B Accuracy difference tables

Figure B.1: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the pelvis.

Figure B.2: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the left upper leg.

Figure B.3: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the right upper leg.

25

Figure B.4: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the left lower leg.

Figure B.5: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the right lower leg.

Figure B.6: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the left foot.

26

Figure B.7: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensor on the right foot.

Figure B.8: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensors on both the upper legs.

Figure B.9: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensors on both the lower legs.

27

Figure B.10: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the sensors on both feet.

Figure B.11: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using the 4 sensors on both upper and lower
legs.

Figure B.12: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data using all sensors.

28

C P-Value tables

Figure C.1: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the pelvis.

Figure C.2: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the left upper leg.

Figure C.3: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the right upper
leg.

29

Figure C.4: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the left lower leg.

Figure C.5: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the right lower
leg.

Figure C.6: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the left foot.

30

Figure C.7: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensor on the right foot.

Figure C.8: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensors on both the upper
legs.

Figure C.9: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensors on both the lower
legs.

31

Figure C.10: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the sensors on both feet.

Figure C.11: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using the 4 sensors on both upper and
lower legs.

Figure C.12: The p-value of the 5x2 cross validation t-test between random forests
trained on smoothed and non-smoothed data using all sensors.

32

D Masked accuracy difference tables

Figure D.1: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the pelvis.

Figure D.2: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the left upper leg.

Figure D.3: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the right upper leg.

33

Figure D.4: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the left lower leg.

Figure D.5: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the right lower leg.

Figure D.6: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the left foot.

34

Figure D.7: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensor on the right foot.

Figure D.8: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensors on both the upper legs.

Figure D.9: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensors on both the lower legs.

35

Figure D.10: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the sensors on both feet.

Figure D.11: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using the 4 sensors on both upper and lower legs.

Figure D.12: The difference in accuracy scores between the random forests on
smoothed and non-smoothed data but masked by the significant p-values of below
our alpha of 0.05 using all sensors.

36

	Introduction
	Methods
	Data
	Smoothing
	Data processing
	Stride segmentation
	Feature extraction
	Random forest training
	Performance evaluation
	5x2 cross validation
	t-test

	Results
	Accuracy
	Difference in accuracy
	P-Value
	Masked difference

	Discussion
	Conclusions
	Limitations and directions for further research
	Accuracy tables
	Accuracy difference tables
	P-Value tables
	Masked accuracy difference tables

