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Abstract

Correctness of software is becoming an increasingly important subject in today’s age where software
becomes more and more ubiquitous. As opposed to software testing where software is executed to
test correct behaviour in only a limited number of scenarios, we apply deductive verification - a
technique which allows us to prove with certainty that the software is programmed correctly for
all possible scenarios. In this thesis we zoom in on a Strongly Connected Components algorithm
that is used inside model checkers. We formally verify a set of correctness properties that should
be satisfied by the algorithm. To achieve this we use the deductive verifier VerCors which is able
to statically verify assertions formulated using first-order logic formulas. We discuss our approach
and proofs, and reflect on the limitations and issues that were encountered in the process. We also
discuss how these issues could be addressed. Lastly, we briefly touch on how our approach would
need to be adjusted to verify the parallel version of this algorithm.
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1. Introduction
1.1 Motivation

Strongly Connected Components (SCCs) are a well-established topic in computer science, with algo-
rithms for computing them existing already since the 1970s. There are path-based SCC algorithms
such as Tarjan’s algorithm [25], Munro’s algorithm [17] or Gabow’s algorithm[8]. Other types of SCC
algorithms are forward-backward algorithms and nested depth-first search. Strongly Connected Com-
ponents, also known as transitive closures are subsets of vertices in a graph that are all connected
to each other via a path. For a more formal definition, please refer to Section 2.2.

SCCs often find their use as an intermediate step in a larger calculation. For example the
importance of web pages for web search results can be determined in a distributed setting using
SCCs of web pages that link to each other [5]. Another use case is LTL Model Checking where SCCs
are used to compute subsets of a labeled transition systems with accepting cycles, explained in more
detail in Section 2.3. Because the model checker itself is used to verify safety properties for models,
it is of utmost importance that the model checker itself is correct. This gives reason to formally
verify the SCC algorithm that is used inside of it.

In this thesis we will be verifying the sequential SCC algorithm presented in the PhD thesis of
Vincent Bloemen [2], this is a path-based SCC algorithm. To verify correctness properties of the
algorithm, we will make use of the deductive verification tool VerCors, developed at the University
of Twente [3].

1.2 Problem statement & Goals

Bloemen presents in his PhD thesis both a sequential SCC algorithm, as well as a multi-core SCC
algorithm. The sequential SCC algorithm uses concepts already well-established from literature and
Bloemen presents an informal proof for the correctness. The parallel SCC algorithm (UFSCC ) is his
own invention where he uses a new concurrent union-find (Section 3.1) datastructure that is efficient
for checking whether two vertices are part of the same partition, and for iterating over vertices
that are not yet completely explored. Bloemen also presents a correctness intuition for the parallel
algorithm. Because the algorithm is used inside the LTSmin [16] model checking toolset, we want to
be absolutely sure about the correctness, which gives reason to machine-check the correctness proof.
As a start we want to formally verify correctness properties of the sequential algorithm. Formalising
and verifying the parallel algorithm is left as future research.

1.3 Preliminary work

We build or proofs for the correctness of the sequential SCC algorithm on the work of Johannes P.
Hollander [11]. His work presents an encoding of the Bloemen’s pseudo code into PVL, one of the
programming languages supported by VerCors. In his work he already verifies all data structures
of the algorithm, including the union-find data structure that he implements using a sequence. He
also verifies properties that state which vertices are present in the data structures, and suggests
PVL-definitions for other (unverified) correctness properties. Later on in his thesis, he compares
VerCors to other deductive verification tools, and gives recommendations to the VerCors team to
make VerCors more suitable for the verification of graph algorithms.
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1.4 Contribution

We continue Hollander’s work by proving two additional properties of the algorithm:

• We fill one of the holes left in Hollander’s formalisation; at one point in the algorithm Hollan-
ders assumes that the parameter v is present in the Live set - but never verifies this assumption.
We present a proof for this assumption in Section 3.4.4 and verify it using VerCors.

• Additionally, we verify the fact that this SCC algorithm correctly produces fitting strongly-
connected components (Definition 2) in Section 3.4.5.

Ultimately, there is still extra work required to verify that algorithm produces maximal SCCs (Def-
inition 3), but we are certain that this property is also satisfied. All source code and verification
code from this thesis is available online at https://github.com/Jankoekenpan/VerCors. The SCC
algorithm code is located in the examples/scc directory.

1.5 Research questions

This thesis will answer the following research questions:

RQ1. What are the techniques needed to verify the correctness of a high level graph algorithm?

RQ2. What are the obstacles when verifying a high level graph algorithm?

1.6 Thesis structure

This thesis is organised as follows:

• Chapter 2 contains background information on deductive verification, VerCors’ architecture
and LTL model checking, and all formalities involved. Additionally three types of SCCs are
introduced.

• Chapter 3 discusses the details of the SCC algorithm. It also discusses the approach to proving
correctness. A multitude of properties and invariants are discussed, as well as their formalisa-
tions.

• Chapter 4 contains the results of our verification work. A dependency graph of properties is
presented, and verification times are discussed.

• In Chapter 6 we interpret the verification results and draw conclusions. We also reflect on the
verification experience of VerCors, and give some tips & tricks.

• Chapter 7 describes where to go next using these results.

• Chapter 5 describes how our work compares to other work that has been done in the field.

5
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2. Background
In this chapter we discuss the required background information. We will discus the background
theory for deductive verification (Section 2.1) and Strongly Connected Components (SCCs) (Section
2.2). We also discuss how SCCs are used in LTL model checking (Section 2.3).

2.1 Deductive verification

Deductive verification is the art of proving properties about programs using a deductive logic. This
section discusses the theoretical background for this. In Section 2.1.2 we discuss how VerCors takes
these concepts from theory to practice.

2.1.1 Floyd-Hoare logic

The concept of deducing new facts after execution of some program statements was formalised by
Tony Hoare [9] and separately by Robert Floyd [7]. Hoare introduces so-called Hoare triples. Whilst
Hoare initially wrote them as P{Q}R, we use the updated notation {P}S{R}. In this notation S
represents a statement (or: command) from a programming language. P represents the set of facts
that are true before S is executed (precondition). R is the set of facts that are true after S finished
executing (postcondition). This is often referred to as partial correctness, meaning we cannot make
any guarantees when S does not terminate.

Rules

Hoare defined multiple rules for different types of statements in an Algol-like programming language.
The rules allow us to reason about programs by stating facts that are true before and after execution
of a command. By applying the rules using a proof tree we can verify a program consisting of multiple
statements.

• Assignment axiom

Ass
⊢ {P0}x := f{P}

Here x is a variable identifier, f is an expression, P is a predicate that is satisfied after the
assignment, and P0 is obtained from P by substituting all occurrences of x by f . Consequently
we obtain P0(f) = P (x): f in environment P0 is equal to x in environment P .

• Composition rule:

⊢ {P}S1{Q} ⊢ {Q}S2{R}
Comp

⊢ {P}S1;S2{R}

Here S1 and S2 denote two programs, and S1;S2 denotes the sequential composition of these
programs: ‘S1 followed by S2’. When P holds before S1 and Q after S1, and when Q holds
before S2 and R after S2, then we can conclude that the composed programs guarantees that
R holds afterwards, given P beforehand. One can intuitively explain this using the following
informal notation: {P}S1{Q}S2{R}.
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• Consequence rules:

⊢ {P}S{Q} ⊢ Q → R
Cons1⊢ {P}S{R}

⊢ {Q}S{R} ⊢ P → Q
Cons2⊢ {P}S{R}

The consequence rules formalise the notion of postcondition weakening and precondition
strengthening. Rule (1) means: ‘If program S has precondition P and postcondition Q, then
any (weaker) proposition R that is logically implied by Q is also a postcondition of S.’ Simi-
larly for (2), if Q is a precondition of S, then any (stronger) proposition P that implies Q is
also a precondition of S.

• Iteration rule:

⊢ {P ∧B}S{P}
Iter

⊢ {P}while B do S{¬B ∧ P}

In this example we call P the loop invariant ; it holds both before and after the loop. B is the
loop condition. If a statement S requires B and preserves P , then this rule allows us to prove
that P still holds after executing S repeatedly. After the loop is finished we can assume ¬B
because at that point the loop condition must be false.
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Using these rules we verify the following example program:

1 int i = 0;
2 while (i < 10) {
3 i = i + 1;
4 }
5 assert i == 10;

This can be formalised using the following Hoare triple:

{true}i := 0;while i < u do i := i+ 1{i = 10}

.
The complete proof tree is written on the right hand side of the page.
We read the proof from bottom to top.

1. First we apply the composition rule (Comp) in order to split the
statements i := 0 and while i < 10 do i := i + 1. The left
hand side then then trivially proven using the assignment axiom
(Ass), but the right hand-side requires more work still.

2. Using the second consequence rule (Cons2) we massage the pre-
condition into a weaker form (0 ≤ i ≤ 10), that will serve as our
loop invariant.

3. Next up, we also write our postcondition in terms of the loop in-
variant and the inverse of the loop condition (loop invariant: 0 ≤
i ≤ 10).

4. Then we apply the iteration rule (Iter) which leaves us with just
having to prove preservation of the loop invariant.

5. This is trivially proven by applying the first consequence rule
(Cons1) for postcondition weakening, and then applying the as-
signment axiom (Ass) for the remaining triple.
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2.1.2 VerCors architecture

In this section we take a look at the VerCors tool set [3], its architecture, and its frond-end for
verification engineers.

Overview

VerCors is a static verifier and can be conceptualised as one big tree transformer. Figure 2.1 shows
its high-level architecture. VerCors accepts input languages Java, OpenCL, OpenMP and PVL.
PVL stands for Prototypical Verification Language and is specifically designed for VerCors. PVL
is an object oriented language much like Java, but without advanced concepts such as inheritance.
PVL also natively supports the axiomatic data types of VerCors [21] such as set, sequence and
map. Programs written in these input languages can be annotated with formal specifications. These
specifications come in the form of assert statements, loop invariants, and contracts and they will be
further explained in Subsection 2.1.2.

Java

OpenCL

OpenMP

PVL
COL

Transformation passes

VerCors Viper

Silver

Silicon

Carbon Boogie

Z3

Figure 2.1: VerCors’ high level architecture

VerCors parses input programs into COL, Common Object Language, the intermediate repre-
sentation used by VerCors. From there, additional passes are applied to the COL tree until it is
transformed into a tree in the Silver language. Silver is the input language for Viper, the back-end of
VerCors. Viper is developed at ETH in Zürich and the team there maintains two verifiers that can
verify a Silver program [24]. These are Silicon [23] and Carbon [6]. Silicon makes use of symbolic
execution whereas Carbon uses verification condition generation and then calls into Boogie [4]. Both
Silicon and Carbon (eventually) translate the Silver tree into an SMT problem (Satisfiability Modulo
Theories), which is then checked by the Z3 theorem prover [27]. Both Boogie and Z3 are developed
by Microsoft Research. In this thesis we will be using the Silicon/Z3 combination for verification.
Once verification is complete, VerCors will output either of the following results:

• Pass - The program code was verified to adhere to the formal specifications.

• Fail - The program could not be verified. (At least) one of the specifications could not be
proven to hold. In this situation VerCors will always output which specification could not be
verified.

For now we will neglect the third option which is: VerCors does not terminate within a reasonable
amount of time. Possible solutions for this issue are discussed in Section 6.1.

VerCors specification language

The VerCors specification language is inspired by JML [13] which follows the Design By Contract
philosophy. In this chapter we will discuss the specifications used in this case study. We start out
with two examples, in Listing 2.1 and 2.2. In Listing 2.1 at line 3 an integer is declared with value
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5. VerCors can verify this fact, using the assertion at line 4. VerCors also understands addition;
when 2 is added to x, then at line 6 VerCors can verify that the value of x is then 7.

Listing 2.1: AddAssignJava.java example

1 class AddAssignJava {
2 void test() {
3 int x = 5;
4 //@ assert x == 5;
5 x += 2;
6 //@ assert x == 7;
7 }
8 }

Listing 2.2: Loop.pvl example

1 class Counter {
2 int x;
3 }
4
5 class Loop {
6 requires c != null ** Perm(c.x,1);
7 requires y >= 0;
8 ensures c != null ** Perm(c.x,1);
9 ensures c.x == \old(c.x) + y;

10 void incr(Counter c, int y) {
11 int i = 0; l
12 loop_invariant 0 <= i && i <= y;
13 loop_invariant c != null ** Perm(c.x, 1);
14 loop_invariant c.x == \old(c.x) + i;
15 while (i < y) {
16 c.x = c.x + 1;
17 i = i + 1;
18 }
19 }
20 }

The Loop.pvl example is more involved, it shows the usage of contracts and loop invariants,
as well as permissions. We shall explain these concepts line by line and explain some important
keywords.

Lines Explanation
Lines 1-3 This is a data carrier class containing an integer. It will be used in the method

incr in the Loop class.
Lines 6-7 These are the preconditions of the incrmethod. The Counter argument passed

to c must not be null, and the caller must have write access to the field x of
c. Additionally the argument passed to y must be non-negative. A caller must
satisfy these conditions before incr can be called. The preconditions are then
assumed to be true at the start of the body (line 11).

10



Lines 8-9 These are the postconditions. These statements are guaranteed by the method,
so the programmer must ensure that these statements hold at every exit point
of the method. This method contains no return statements, so there is only
one exit point (line 18). In this case the method guarantees that c is still non-
null, and c.x has been incremented by y amount. The caller also gets full write
permission to c.x. A caller can assume that these statements are true after incr
returns.

Lines 12-14 These are the loop invariants. Loop invariants are used to prove that some prop-
erties hold throughout the entire loop. VerCors checks that the loop invariants
hold before the loop starts (establishment), and also at the end of the loop body
(preservation). Note that line 12 contains i ≤ y, but the while condition only
specifies i < y. A loop invariant of i < y would not be valid here, since at line
17 in the last iteration i becomes the same value as y.

Keyword Explanation

** This is the ‘separating conjunction’ operator. One can think of it as similar
to &&, but it differs in the fact that ** imposes that no aliasing takes place
(i.e. variables used in operands refer to different memory locations). Whilst this
intuition is not completely correct, it suffices for the purposes for this research.
Further details on separating conjunction can be found in [20]. We pronounce
‘a ** b’ as ‘a and separately b’.

Perm Perm(location, fraction) means that the routine requires permission to read
or write to a variable. The fraction is a value in range [0..1] and it written as
numerator\denominator. The value ‘1’ means that the routine has full write
permission, whereas a value between 0 and 1 indicates a read-only permission.
The value ‘0’ itself indicates ‘no access’.

\old \old(location) refers to the value of location before the method start. It is most
useful in postconditions and loop invariants.

Listing 2.2 shows a naive addition algorithm. It adds the value of y to c.x, by incrementing c.x
repeatedly by 1 (y many times). The loop invariant at line 14 states that before and after every
iteration the value of c.x equals the sum of the old value of c.x and i. When the loop terminates
VerCors knows that 0 ≤ i∧ i ≤ y ∧¬(i < y) hence it can conclude i = y, and thus the postcondition
c.x = \old(c.x) + y can be proven by taking the loop invariant and substituting i for y. Below are
some more keywords listed which will be used later in this research.

• \result: Can be used in postconditions. Refers to the return value of a method or function.

• context: This is a combination of requires and ensures. ‘requires a’ and ‘ensures
a’ can be replaced by ‘context a’.

• context everywhere: Copies the provided boolean expression to requires, ensures
and loop invariant clauses.

• \forall: (\forall declaration; condition; expression) allows us to specify that some ex-
pression is true for some range of values. For example: (\forall int i; 0 <= i && i
< arr.length; arr[i] >= 0) states that all elements in the array arr are non-negative.

11



The type of both the condition and the expression must be boolean. This concept is otherwise
known as ‘universal quantification’.

• \exists: (\exists declaration; condition; expression) Rather than stating some property
holds ‘for all’ values, this states that there must ‘exist’ some value, satisfying the condition
and expression. This is otherwise known as ‘existential quantification’.

• ==> denotes implication: ‘a ==> b’ has the same meaning as a → b. The expression only
evaluates to true when b is true, or a and b have the same value.

• pure: Modifier for methods and functions (but concrete functions are implicitly pure already).
pure means that the method has no side-effects, i.e. it does not assign to fields.

• inline: inline is a function modifier as well. Inline functions are not called, but instead
their body is inserted at the call site in one of the transformation passes of VerCors. The
inline keyword serves as a useful technique to assign names to invariants.

• given: given is used in contracts. It provides a way to add extra (ghost) parameters that
are needed for verification of methods.

• yields: yields is the dual of given. It provides a way to add extra (ghost) return values
to methods. One can also think of them as out-parameters.

• static: static has the same meaning as static in Java. When a method or function is
declared as static, it is not dependent on the instance object; instead there is no dynamic
dispatch and the method only depends on the class.

• assume: The statement assume a causes the verifier to assume that a holds at that point in
the program. Expressions that are assumed in this manner are not verified, hence it is possible
to introduce knowledge that contradicts pre-existing knowledge, leading to unsoundness. The
assume keyword should therefore only used in parts of the program that have yet to be
verified.

• Triggers: function calls in quantified expressions can be surrounded with extra colons and
curly braces to guide VerCors to the completion of the proof. For example, if one can as-
sert (\forall int i; {:f(i):}; g(i)) and then asserts f(5), the trigger would get
instantiated and g(5) is added to the knowledge base. More information about triggers can
be found on the VerCors wiki [29].

This is not a complete list, but it provides a nice basis for understanding our formalised proofs
later on in Section 3.4.
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2.2 Strongly Connected Components

In this section we discuss the theory around Strongly Connected Components (SCCs). Bloemen
describes three types of SCCs [2]. In a graph G = (V,E) we say that v → v′ ∈ E is an edge. A
path is a sequence of vertices v1 · . . . · vN where all subsequent pairs of vertices . . . · vi · vi+1 · . . . are
connected by an edge: (vi, vi+1) ∈ E. A path from x to y consisting of multiple edges is denoted as
x →∗ y. We write x ↔ y iff x →∗ y ∧ y →∗ x and call x and y strongly connected. Then we use the
following definitions:

Definition 1. A Partial Strongly Connected Component (PSCC) is a set of vertices C ⊆ V for
which all pairs of nodes are strongly connected, i.e.

PSCC(C) ≜ ∀x, y ∈ C. x ↔ y

Definition 2. A Fitting Strongly Connected Component (FSCC) is a PSCC with the additional
requirement that at least one of the paths has all vertices contained within C. i.e.

FSCC(C) ≜ PSCC(C) ∧ ∃p s.t. p[0] ∈ C ∧ p[|p| − 1] ∈ C. ∀i ∈ 0 . . . |p|. p[i] ∈ C

Definition 3. A maximal Strongly Connected Component (SCC) is an FSCC with the additional
requirement that there exists no other vertex z /∈ C that is strongly connected to some vertex in C.
i.e.

SCC(C) ≜ FSCC(C) ∧ ¬∃z ∈ V ∧ z /∈ C. ∃x ∈ C. x ↔ z

.

Figure 2.2 examplifies these definitions. In Figure 2.2a {v0, v1, v2} is a PSCC because v0 ↔
v1 ∧ v0 ↔ v2 ∧ v1 ↔ v2. Note that for PSCCs it is not required that the paths are completely inside
of the marked region. In Figure 2.2b {v0, v1, v4} is an FSCC because all pairs of vertices in the
region are connected by a path that is completely inside of the region. For FSCCs is it not required
that every vertex that ‘could be added while still retaining strong connectivity’ is part of the set.
The green region in Figure 2.2c is an SCC because it is an FSCC which has no outgoing paths that
reaches back into it.

v0 v1 v2

v3v4

(a) PSCC

v0 v1 v2

v3v4

(b) FSCC

v0 v1 v2

v3v4

(c) SCC

Figure 2.2: Three types of SCCs
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2.3 LTL model checking

Model checking is the art of modelling a complex system as a transition system, and then specifying
correctness properties using a formal logic. A model checking tool then checks whether the model
adheres to the specification. The result can be either Pass (in which case the model satisfies the
specification), or Fail (in which case the model checker always provides a counterexample for the
specification that was violated). Several flavours of formal logics exists, but we focus on linear-time
temporal logic (LTL) since it presents itself as a nice application for SCCs (Section 2.2) [18]. LTL
formulas [14] enable us to specify correctness properties over possibly infinitely long running systems.
We make the distinction between safety and liveness properties:

• Safety: ‘something bad never occurs’

• Liveness: ‘something good will eventually happen’

Examples of safety properties are: ‘The railway barriers are never open when a train passes’, or (in
the context of computer programs) ‘Variable x is never null’. Examples of liveness properties are:
‘The sun will eventually rise’ or ‘The program will eventually terminate’. A model checker answers
the question: ‘Does model M satisfy property ϕ?’ Formally we write this as M |= ϕ where M
is the model, and ϕ is the (LTL) formula. To produce an answer, the model checker performs the
following (high level) steps (also shown in Figure 2.3):

1. Generate state-space of model (AM), negate the LTL formula and convert to Büchi automaton
(A¬ϕ).

2. Synchronise the two automata into a product.

3. Check whether the language of the product is empty. (This is where SCCs are involved, see
Paragraphs 2.3.1)

4. If so, then M |= ϕ.

5. If not, then the model checker finds a word that is accepted by both AM and A¬ϕ. This run
is the counterexample of ϕ.

In the following subsections we will discuss each step and explain the definitions.

2.3.1 Kripke Structures & Büchi Automata

In LTL model checking, Kripke Structures are used to model complex systems. Kripke Structures
can be generated from the model description. We refer to these Kripke Structures as the ‘Model
Automata’. Some model checkers employ an optimisation where they do not need to generate the
entire state space up-front, instead they lazily generate only the parts that are required for the LTL
formula. We call this ‘on-the-fly’ model checking [1].

Whereas the models are transformed into Kripke Structures, the LTL formulas get negated and
then transformed into Büchi Automata [1]. Büchi automata are essentially a special type of Kripke
Structures that are labeled with accepting marks. These marks can be positioned either at the
states, or at the transitions. Typical for Büchi automata is that they can accept infinite inputs,
where each infinite input string causes the automaton to visit all accepting marks infinitely often. In
order for this to happen, all accepting marks must be present in a cycle that is reachable by a prefix
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Model M LTL formula ϕ

Model automaton
AM

Negated Büchi automaton
A¬ϕ

Synchronised product
AM ⊗A¬ϕ

Emptyness check

L (AM ⊗A¬ϕ)
?
= ∅

M |= ϕ Counterxample

State space generation Negate formula, convert to Büchi automaton

Yes No

Figure 2.3: LTL Model checking process

of the input string. The rest of the input string must be of repeating nature. To find such cycles,
model checkers employ SCC-finding algorithms. The intrigued reader can continue this section to
read more about LTL model checking, but it is not necessary to understand the main contents of
this thesis in Chapter 3.

Kripke Structures

Kripke Structures are graphs whose vertices represent possible states of a system, and whose edges
represent state transitions. Kripke Structures also contain a marking functions which assigns a set
of propositions to each state. Formally we write M = (S, S0, R,AP,L) where:

• S is the set of all states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is the total transition relation. It is guaranteed that ∀s∈S∃t∈SR(s, t).

• AP is the set of atomic propositions.

• L : S → P(AP ) is the labelling function that assigns a set of labels to each state.

Büchi Automata

Büchi Automata (BA) come in four forms: TGBA, SGBA, TBA, SBA: Transition-based Generalised
Büchi Automaton, State-based Generalised Büchi Automaton, Transition-based Büchi Automaton
and State-based Büchi Automaton. All four forms are equivalent in expressiveness, and algorithms
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exist to convert from one form to the others. Barnet et al.[1] define a TGBA as a 5-tuple A =
(Q, ι, δ, n,M) where:

• Q is a finite set of states,

• ι ∈ Q is the initial state,

• δ ⊆ Q× BAP ×Q is a set of transitions,

• n is an integer specifying the number of accepting marks,

• M : δ → P([n]) is a marking function that specifies a subset of marks associated with each
transition. (N.B. [n] denotes the set of non-negative integers until n, i.e. [n] = {0, 1, . . . , n −
2, n− 1}.

A TBA is a specialised TGBA where n = 1. SGBA is defined similarly as TGBA, except that
the marking function M assigns marks to states instead of transitions. For SGBA the type of M is
Q → P([n]). Consequently, an SBA is a Büchi automaton with only one acceptance mark, which is
assigned to just one of the states.

Once the Model Automaton and negated formula BA are combined, then the model checker converts
the combined automaton into a TBA or SBA and starts the search for accepting cycles. Note that
combining the automata can also be done ‘on-the-fly’.

Synchronised product

This paragraph explains the synchronised product of two automata. This is the operation that com-
bines the Model Automaton (AM) and Büchi Automaton (A¬ϕ) into one: AM ⊗A¬ϕ.

Let K = (S1, ι1, R1, AP, L1) be a Kripke structure with one initial state, and A = (Q2, ι2, δ2, n,M2)
a TGBA. The synchronised product K ⊗A is then a TGBA, defined as (Q′, ι′, δ′, n,M ′) where

• Q′ = S1 ×Q2,

• ι′ = (ι1, ι2),

• ((s1, s2), x, (d1, d2)) ∈ δ′ ⇐⇒ (s1, d1) ∈ R1 ∧ L1(s1) = x ∧ (s2, x, d2) ∈ δ2,

• M ′(((s1, s2), x, (d1, d2))) = M((s2, x, d2)).

One way to intuitively think about this product is a parallel composition of the Kripke Structure
and the Büchi automaton:

• The resulting set of states Q′ is the carthesian product of the states from both sources.

• The resulting initial state ι′ is the product of both initial states.

• The resulting set of transitions δ′ features only those transitions that have their source-
destination pairs in R1, as well as in δ2. The labels of the transitions are required to be
present on s1 in K.

• The resulting labeling function M ′ labels transitions when M2 labels the states from Q2.
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The emptiness-check problem

Step 3 specifies that the problem of checking whether a language is empty can be reduced to the
problem of checking for accepting cycles. Namely, a word is only present in the language if all
acceptance marks of the automaton are visited infinitely often. Hence, these acceptance marks are
required to be present in a cycle that is reachable from the initial state. We also say that accepting
runs are lasso-shaped.

Runs, Words and Languages

A run ρ through a Büchi automaton is a sequence of transitions, where the source state of the first
transition is ι, and all the destination states equal the source states of the next transition. Bernat
et. al [1] defines the set of runs accepted by the automaton as:

Runs(A) = { ρ ∈ δω | ρ(0)s = ι ∧ ∀i ≥ 0. ρ(i)d = ρ(i+ 1)s }

. where we denote the source of a transition t as ts, the label as tℓ, and the destination as td. The
ω indicates that the set of runs can contain infinite sequences of transitions.

The set of accepting runs are those runs that visit all accepting marks infinitely often:

Acc(A) = { ρ ∈ Runs(A) | [n] =
⋃

t∈Inf(ρ)

M(t) }

For SGBA we obtain:

Acc(A) = { ρ ∈ Runs(A) | [n] =
⋃

t∈Inf(ρ)

M(ts) }

A word ℓ(ρ) associated with run ρ is defined using ℓ(ρ)(i) = ρ(i)ℓ, i.e. a word is the concatenation
all the labels of the transitions in a run. The language of a Büchi automaton is the set of words
associated with all accepting runs:

L (A) = { ℓ(ρ) | ρ ∈ Acc(A) }

It then follows that the words accepted by K ⊗A are the words accepted by both K and A, i.e.
L (K ⊗ A) = L (K) ∩ L (A). If the model checker finds that L (AM ⊗ A¬ϕ) = ∅, then that means
that no input exists that is accepted through ¬ϕ, hence all possible runs of AM satisfy ϕ!
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3. Set-Based SCC Algorithm
In this chapter we will discuss an algorithm that finds SCCs in directed graphs. The algorithm
was originally invented by Munro [17] and later updated by Bloemen [2]. We will define correctness
properties to verify, and discuss the details of the proofs and formalisations they use.

An example execution of the algorithm can be seen in figure 3.2. When the algorithm terminates,
it has found all the SCCs reachable from the starting node. In this example, it finds both SCCs.

v0

v1

v2

v3

v4

v5

v6

v7

v8

1. SetBased(v0) → v1

v0

v1

v2

v3

v4

v5

v6

v7

v8

2. SetBased(v1) → v2

v0

v1

v2

v3

v4

v5

v6

v7

v8

3. SetBased(v2) → v3

v0

v1

v2

v3

v4

v5

v6

v7

v8

4. SetBased(v3) → v4

v0

v1

v2

v3

v4

v5

v6

v7

v8

5. SetBased(v4) → v5

v0

v1

v2

v3

v4

v5

v6

v7

v8

6. SetBased(v5) → v3
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v4
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v6

v7
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7. SetBased(v5) → v6

v0

v1

v2

v3

v4

v5

v6

v7

v8

8. SetBased(v6) → v7

v0

v1

v2

v3

v4

v5

v6

v7

v8

9. SetBased(v7) → v8

v0

v1

v2

v3

v4

v5

v6

v7

v8

10. SetBased(v8) → v6

v0

v1

v2

v3

v4

v5

v6

v7

v8

11. SetBased(v8) → v2

v0

v1

v2

v3

v4

v5

v6

v7

v8

12. SetBased(v1) → v0

Figure 3.2: Set-based SCC algorithm example execution

In each subfigure a new successor is visited, and the state of the data structures used is updated.
In subfigure (1) we start out at v0 and visit successor v1. In subfigure (2) the algorithm has a
choice, it could first visit v0 again, or it could visit v2. In this example it visits successor v2. Then
in subfigure (3) it goes to v3, to v4 in (4) and v5 in (5). Now in subfigure (6) the algorithm visits
v3 again, meaning that all edges of the cycle have been found. The green areas represent groups of
vertices that are known to be reachable from one another, so the three green circles are collapsed into
one. We call such a group of vertices highlighted in green a partition. This same process happens
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after we visit v6, v7 and v8 in subfigure (10). At step (11) the algorithm finds that v8 reaches v2,
meaning that the previously collapsed partition are now themselves collapsed into one even larger
partition. Lastly, the algorithm backtracks again and finds the last successor of v1, which is v0, and
merges their partitions as well.

Observations

We make the following observations:

1. At its core, the algorithm is a depth-first-search (DFS) algorithm that keeps track of which
vertices have already been seen in order to avoid searching forever.

2. Every vertex starts out in its own partition.

3. There is only one red labelled vertex per partition. The earliest visited red vertex of a partition
always stays red. We call the red vertices representatives of their partitions. When a vertex is
coloured yellow, it means that it is not special in any sense.

4. Throughout execution of the algorithm, all vertices in a partition have a path to all other
vertices in that partition. These paths stay within the partition, thus partitions remain strongly
connected.

5. When the algorithm is terminated, all found partitions are maximal SCCs (with respect to the
set of reachable vertices).

These observations will form the basis for the formalised proof later on in Section 3.4.

3.1 Union-Find

To efficiently store the partitions we use a union-find data structure. Conceptually, a union-find
data structure is a set of sets. Each inner set is a partition, and it is disjoint from all other partitions
in the data structure. Each such partition has one special element: the representative. We represent
the union-find with a forest of trees where the roots point to themselves. Each tree corresponds to
one partition in the union-find, and the root of the tree is the representative. An example union-find
is visualised in Figure 3.3. Since every node must have a parent pointer, the root of the tree points
to itself. We can re-arrange this forest in a linear structure, where nodes are ordered from low to
high.

v0 v3 v5

v2v1 v4

v6 v7 v0 v1 v2 v3 v4 v5 v6 v7

Figure 3.3: Union-Find example visualisations
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From the right arrangement it becomes clear that a union-find forest can be implemented simply
using a sequence of integers, where each value equals the (0-based) index of its parent. For our
example union-find this is shown in Table 3.1. This method of implementing a union-find is described
by Bloemen [2].

0 0 0 3 3 5 2 2

Table 3.1: Union-Find sequence

We denote our union-find value with the letter S. To find the representative of a node, one simply
walks the chain of parents, until a node points to itself. For the representative of v2 we can write
S.rep(v2) = S.rep(v1) = S.rep(v0) = v0. To find the partition set of a node, we collect all other
nodes that share the same representative, i.e. S.part(x) ≜ { vi | i ∈ 0 . . . N ∧ S.rep(i) = S.rep(x) }.
We otherwise write S.part(x) simply as S(x). In this example v0 represents {v0, v1, v2, v6, v7}, v3
represents {v3, v4} and v5 represents only itself. Uniting two partitions a and b can be done by
having the representative of a point to the representative of b. This is a cheap operation since only
one value needs to be updated in the sequence. It is constant-time when the representatives of the
partitions are already known, since then there is no need to traverse the trees in order to find them.
Uniting S(v0) and S(v3) gives us:

v0 v5v3

v2v1 v4

v6 v7

(a) Tree representation

0 0 0 0 3 5 2 2

(b) Sequence representation

Figure 3.4: Union-find with S(v0) united with S(v3).

In this example v0 has become the parent of v3, but it would have worked just as well if v3
became the parent of v0. In both cases, the united partition remains a tree where all nodes are
represented by the same node.

3.2 Pseudo code

The pseudo code is adapted for verification and listed in Listing 3.1. From this listing the constant
and variable declarations are omitted. They are as follows:

Constants:

• G is the graph.

Variables:

• V isited is the set of visited vertices, it grows with every recursive call.
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• Explored is the set of nodes that are visited and also all their descendants are visited. The
Explored set only grows per found SCC.

• S is the union-find structure, starting out with every vertex being its own representative.
Partitions are united as the algorithm finds cycles.

• R is the stack of roots. It supports the push, pop and top operations. It contains only nodes
that are representatives in S. All elements in R are unique.

• O is not part of the original algorithm by Bloemen [2]; it is added for verification of the
algorithm, it is not required for the SCC computation. O represents the encounter order of
nodes. It can be thought of as a sequence that always contains the same elements as the
V isited set. The only difference is that sets are unordered, but elements in O are ordered by
encounter order. Further explanation on how O is used can be found in Section 3.4.4.

• H is an auxiliary variable as well. It is a sequence of vertices and represents the operand stack
of the algorithm as it executes. An element is appended to H with every function call (line 4),
and that same element is removed from H again right before the function returns (line 24).
H contains only unique elements, and all elements in H are also in V isited. R is always a
subsequence of H, which is further explained in Section 3.4.5.

Listing 3.1: Instrumented SCC algorithm

1 function SetBased(v) {
2 V isited := V isited ∪ {v};
3 O := O · v;
4 H := H · v;
5 R.Push(v);
6 for each w ∈ Succ(v) {
7 if (w /∈ Explored) {
8 if (w /∈ V isited) {
9 SetBased(w);

10 } else {
11 while (S(v) ̸= S(w)) {
12 r := R.Pop();
13 S.Unite(r, R.Top());
14 }
15 report FSCC S(v)
16 }
17 }
18 }
19 if (v = R.Top()) {
20 report SCC S(v);
21 Explored := Explored ∪ S(v);
22 R.Pop();
23 }
24 H := init(H);
25 }
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3.2.1 Intuition & Correctness

The algorithm starts its exploration at an initial node v0 and calls the SetBased function which
then represents it as input variable v. At line 2-5 v is added to the V isited set, encounter order
O, call stack H and root stack R. It then loops over all the successors of v. We skip over all the
vertices that are already Explored (line 7). If a successor w is unvisited, the SetBased function
is called recursively in order to explore it (line 8-9) depth-first. By induction, we now have that all
descendants of w are V isited. If the successor w was already visited, we visit the stack collapsing
loop (lines 11-14). Because w is already visited, we know that there must already exist some path
from w to v. (v, w) is thus a back-edge. Since v is reachable from w and w from v, v and w are part
of the same SCC. The loop merges partitions until v and w are in the same partition. Additionally a
root is popped from R in each iteration, ensuring that the new representative of the merged partition
remains on top of the stack. After the loop finishes v and w share the same representative, which
is then the top element of R. This guarantees that after the loop we can assert that the partition
that contains v is an FSCC (line 15). Once the successor loop terminates we check whether v is
the top element of R, and if so, it means that v is its own representative. This also means that the
partition of v was not united with an older partition. We mark the partition of v as a maximal SCC
and add it to the Explored set (lines 20-21). The intuition for S(v) being a maximal SCC is that
there cannot be another node that reaches S(v) and is reachable from S(v) since all the successors
of v have been visited, and thus their partitions have been merged with S(v) if they were part of the
same SCC. Afterwards, v is popped from R (line 22) because it is no longer needed. Then finally,
at line 24, we reassign H to the previous value of H with v removed from the end. When we return
to the caller then H is equal to the call stack of the caller.

3.3 Implementation

Since the algorithm uses sets, sequences and a stack, it is best to choose an input language which
understands these concepts. We choose the input language PVL since it supports operations on
these data types out of the box and it is also the input language used by Hollander [11]. This section
explains the translation of the concepts into PVL. In all of the code listing in this subsection the
contracts are omitted for brevity. We add one global constant N to the program, and it denotes the
number of vertices of the graph: N = |V |. One may note that a multitude of functions takes N as
a parameter, without it being used in the function body. The reason for it being present is its use
in the contracts. Usually its purpose is to indicate that all element in the collection are between 0
(inclusive) and N (exclusive).

Graph

We represent the graph G using an adjacency-matrix encoding (seq<seq<boolean>>). When vertex
a has an edge to vertex b then G[a][b] = true, otherwise false.

Union-Find

We implement the Union-Find as a forest of trees, represented as a sequence of integers. All values
in the sequence are between 0 (inclusive) and N (exclusive). We can follow a path through the
union-find by treating every value as an index that is pointed to. Once a value points to its own
location, then it is a root of a tree; this node is the representative. In PVL we implement the ‘rep’
function as described in Listing 3.2.
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Listing 3.2: The ‘rep’ function

1 static pure int rep(int N, seq<int> S, int v) =
2 S[v] == v ? v : rep(N, S, S[v]);

To unite two partitions, we simply have to update the pointer of one representative to point to the
other representative. In PVL we could write it as in Listing 3.3. This illustrates the concept clearly,
but the implementation used for verification is slightly modified. The reason for that is additional
lemmas were needed to prove the postcondition of the contract. It can be found in Appendix A.

Listing 3.3: Simplified ‘unite’ function

1 static pure seq<int> unite(int N, seq<int> S, int v, int w) =
2 S[rep(N, S, w) -> rep(N, S, v)];

In order to implement the function that collects all vertices of a partition, we can simply select
all elements that are represented by the same representative: part(N,S, x) = { y | y ∈ [0..N) ∧
rep(N,S, y) = rep(N,S, x) }. Since PVL supports set-comprehensions it seems reasonable to use
this feature, but VerCors-1.4.0 contains a bug [10] that prevents this from working when function
parameters are used in the comprehension. Hence we implement it using recursion:

Listing 3.4: The ‘part’ function

1 static pure set<int> part(int N, seq<int> S, int v) =
2 partHelper(N, S, v, 0);
3 static pure set<int> partHelper(int N, seq<int> S, int v,
4 int i) = i < N
5 ? (\let set<int> tailSet = partHelper(N, S, v, i+1);
6 rep(N, S, i) == rep(N, S, v) ? {i} + tailSet : tailSet)
7 : set<int> {};

Stack of roots

We implement the stack functions using PVL’s built-in operations for slicing and indexing into
sequences.

Listing 3.5: Stack functions

1 static pure seq<int> push(int N, seq<int> R, int v) =
2 R ++ v;
3
4 static pure int top(int N, seq<int> R) =
5 R[|R| - 1];
6
7 static pure tuple<seq<int>, int> pop(int N, seq<int> R) =
8 tuple<seq<int>, int> {R[0..|R| - 1], R[|R| - 1]};

We note that that the bottom element of the stack is at position 0, and the top element of the
stack is at the last position in the sequence. We otherwise denote the top element of the stack as
Rtop. We also note that the ‘pop’ function returns a tuple - the first element is the remaining stack,
the second element is the top element that was removed.
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Encounter order

We implement O using a map data structure instead of a sequence. This enables to implement
‘indexOf’ using a simple lookup, instead of a linear search. This provides benefits for verification,
discussed in Section 6.1. Appending an item onto the order is done via a ‘put’ operation. The value
of the key-value pair is the number of vertices that were already encountered before.

Listing 3.6: Encounter order functions

1 static pure map<int, int> append(map<int, int> O, int v) =
2 buildMap(O, v, |O|);
3
4 static pure int indexOf(map<int, int> O, int v) =
5 getFromMap(O, v);

History

The call stack is modelled using a sequence and three operations, ‘addRecent’, ‘init’ and ‘last’.
‘init’ returns the prefix that is one less in length, and ‘last’ returns the element at the last index.
‘addRecent’ appends v to the call stack.

Listing 3.7: History functions

1 static pure seq<int> addRecent(int N, seq<int> H, int v) =
2 H ++ v;
3
4 static pure seq<int> init(seq<int> H) =
5 H[0..|H|-1];
6
7 static pure int last(seq<int> H) =
8 H[|H|-1];

Derived state

We define three derived state variables: the set of all vertices V , the set of unvisited vertices Unseen,
and the set of vertices that are visited but not explored Live. They are used only inside specification
code. Their PVL definition are listed in Listing 3.8.

Listing 3.8: Derived state variables

1 static pure set<int> V(int N) = VHelper(N, 0);
2 static pure set<int> VHelper(int N, int i) =
3 i < N ? {i} + VHelper(N, i+1) : set<int> {};
4
5 inline pure set<int> Unseen() = V(N) - Visited;
6
7 inline pure set<int> Live() = Visited - Explored;
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3.4 Formalising the proofs

In this section we address how the observations mentioned in Subsection 3 can be formalised and
translated into PVL. First we provide formal definitions for correctness criteria, and then we will
prove that these criteria are met.

3.4.1 Predicates

We define predicates that eventually lead us to a formalised definition of an SCC. To reiterate, an
SCC is a set of vertices that all have a path to each other, and the set is also maximal (no other
vertex can be added). We define a path as a sequence of vertices that are connected by edges in the
graph. In Listing 3.9 at line 1 and 2 we define the parameters to the predicate: G is the graph, x is
the first vertex in the path, y is the last vertex in the path, and P stands for the path itself. Line 5
defines that all values in the path should be in range [ 0 . . . N), and line 6 states that all vertices in
the path (except the last one) have an edge to the next vertex.

Listing 3.9: The ‘Path’ predicate

1 static pure boolean Path(int N, seq<seq<boolean>> G,
2 int x, int y, seq<int> P) =
3 0 <= x && x < N && 0 <= y && y < N &&
4 0 < |P| && P[0] == x && P[|P| - 1] == y &&
5 (\forall int j; 0 <= j && j < |P|; 0 <= P[j] && P[j] < N) &&
6 (\forall int j; 0 <= j && j < |P| - 1; G[P[j]][P[j + 1]]);

Next, we introduce a fitting path. That is a path that is contained in some set C. We will use
this indirectly in the formal definition for FSCC.

Listing 3.10: The ‘FittingPath’ predicate

1 static pure boolean FittingPath(int N, seq<seq<boolean>> G,
2 int x, int y, seq<int> P, set<int> C) =
3 Path(N, G, x, y, P) &&
4 (\forall int v; v in P; v in C);

Existentially quantifying over the path variable gives us ‘ExFittingPath’:

Listing 3.11: The ‘ExFittingPath’ predicate

1 static pure boolean ExFittingPath(int N, seq<seq<boolean>> G,
2 int x, int y, int len, set<int> C) =
3 (\exists seq<int> P; len <= |P|; FittingPath(N, G, x, y, P, C));

Then, we obtain the definition for FSCC listed in Listing 3.12. An FSCC is a set of vertices (C)
where for all pairs of vertices (x and y) in C, there exist at least one path from x to y (line 3) and
from y to x (line 4). All paths involved have all their elements contained in C.

Listing 3.12: The FSCC predicate

1 static pure boolean FSCC(int N, seq<seq<boolean>> G, set<int> C) =
2 (\forall int x; x in C; (\forall int y; y in C;
3 ExFittingPath(N, G, x, y, 1, C) &&
4 ExFittingPath(N, G, y, x, 1, C) ));
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We note that singleton partitions are always an FSCC, since path of length 1 satisfy the ExFit-
tingPath predicate, thus there is no need to specify that x ̸= y. To obtain the SCC definition, we
‘simply’ add one more requirement: C is maximal. We encode this in Listing 3.13 by stating that
there is no other FSCC Cp (line 3) which overlaps with C (line 4).

Listing 3.13: The SCC predicate

1 static pure boolean SCC(int N, seq<seq<boolean>> G, set<int> C) =
2 FSCC(N, G, C) &&
3 (\forall set<int> Cp; |Cp| > 0 && FSCC(N, G, Cp) && Cp != C;
4 !(\forall int x; x in C; (x in Cp)));

Since this property is not verified in this thesis, future work may consider alternative formulations
if they are found to be better suited for verification, e.g.:

Listing 3.14: Alternative SCC definition

1 static pure boolean SCC(int N, seq<seq<boolean>> G, set<int> C,
2 set<int> Visited) = FSCC(N, G, C) &&
3 (\forall int x; x in Visited; (\exists int y; y in C;
4 (ExPath(N, G, x, y, 1) && ExPath(N, G, y, x, 1)) ==> (x in C)));

Stated informally: C is an FSCC, and all visited vertices x that have a path from and to any node
y in C are also contained in C. In other words: there cannot be any path from and to C where
one of the vertices in the path (x) is outside C. When all reachable nodes are visited, this implies
maximality of C. The reason I believe this formulation is easier to verify, is that it is an invariant
that stays true throughout execution of the algorithm. It includes the set of V isited vertices in the
definition, meaning unreachable states are modelled explicitly. Hence it is therefore easier to use
inside a universally quantified predicate which quantifies over all partitions (also the unreachable
ones).

3.4.2 Algorithm invariants

In this subsection we will be going over the formalisation of invariants, and how they lead to a
proof that guarantees that partitions in S are FSCCs. To keep verification times managable the
algorithm is split up into four routines: SetBased, MarkVisited, StackCollapse and Mark-
Explored. SetBased corresponds to lines 1-25 in Listing 3.1, MarkVisited corresponds to lines

2-5, StackCollapse corresponds to lines 11-14, and MarkExplored to lines 20-22. Then we
verify a set of properties for each of the subroutines.

Listing 3.15: MarkVisited routine

1 void MARKVISITED(int v) {
2 Visited = Visited + {v};
3 O = append(O, v);
4 R = push(N, R, v);
5 H = addRecent(N, H, v);
6 }
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Listing 3.16: SetBased routine

1 void SETBASED(int v) {
2 MARKVISITED(v);
3
4 int w = 0;
5 while (w < N) {
6 if (!(w in Explored)) {
7 if (!(w in Visited)) {
8 SETBASED(w);
9 } else {

10 STACKCOLLAPSE(v, w);
11 }
12 }
13 w++;
14 }
15
16 if (v == top(N, R)) {
17 MARKEXPLORED(v);
18 }
19
20 H = init(H);
21 }

Listing 3.17: MarkExplored routine

1 void MARKEXPLORED(int v) {
2 Explored = Explored + part(N, S, v);
3 tuple<seq<int>, int> t = pop(N, R);
4 R = getFst(t);
5 }

Listing 3.18: StackCollapse routine

1 void STACKCOLLAPSE(int v) {
2 while (rep(N, S, v) != rep(N, S, w)) {
3 tuple<seq<int>, int> t = pop(N, R);
4 int r = getSnd(t);
5 R = getFst(t);
6 int newRep = top(N, R);
7 S = uniteRoots(N, S, newRep, r);
8 }
9 }

Two minor adjustments were made to the StackCollapse routine compared to Listing 3.1.

• The while condition has changed from part(N, S, v) != part(N, S, w) to rep(N,
S, v) != rep(N, S, w). This substitution is justified since partitions are only ever equal
when their representatives are equal (by definition of the part function).
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• The call to unite has been replaced by uniteRoots. These two methods share the exact
same implementation body - the only change is in the contract: uniteRoots requires that the
provided arguments are their own representatives in S, while unite does not. uniteRoots
can then make one extra guarantee, namely that ‘\result == S[r -> newRep]’.

These two slight modifications improved the verification time significantly.

3.4.3 Basic invariants

First we verify observation 3: All roots in R are representative in S, and all vertices in the Live set
have their representatives in R. Hollander [11] formulates this more strictly: every node v in Live
has a unique representative in R. Mathematically he writes⊎

r∈R

S(r) = Live

and
{S(v) ∩R | v ∈ Live} = {{r} | r ∈ R}

in Section 4.3. We prove this property by first proving that it holds when the algorithm starts,
then we prove that SetBased maintains the property. For this, we are also obligated to prove that
MarkVisited, MarkExplored and StackCollapse all maintain the property as well.

In PVL we formulate the invariant as follows:

Listing 3.19: Invariants for R, Live and Unseen

1 (\forall int x; x in R; x == rep(N, S, x));
2 (\forall int x; x in Live(); rep(N, S, x) in R);
3 (\forall int x; x in Unseen(); part(N, S, x) == {x});

Proof of establishment: Initially both R and Live are empty, automatically proving the invariant
1 and 2. Statement 3 is proven by contradiction. Every vertex is initially in Unseen so we assume
that for an arbitrary x that S(x) ̸= {x}. Since initially every vertex x is its own representative we
have x ∈ S(x). That means there must exist some element y where y ̸= x ∧ y ∈ S(x). But that
means that rep(N,S, y) = x which contradicts our precondition that states rep(N,S, y) = y.

Now we present the proof of preservation of these three properties for each of the algorithm
routines:

• For MarkVisited: v is added to V isited, but Explored remains unchanged, thus v effectively
v is added to Live. And since v was in Unseen before the call, v is its own representative, thus
the representative of v is added to R, preserving the invariants on line 1 and 2. The Unseen
set just shrinks, but no partition changes, so the invariant on line 3 still holds, albeit with one
element less in Unseen.

• For StackCollapse: in the loop the partitions of two roots get merged. The Unseen and
Live sets do not change. This proves statement 3. R decreases by one element, but all the
remaining roots are still their own representatives (the partition of the top root has just grown,
but the representative did not change). This proves statement 1. Statement 2 is proven by
the fact that all element in Live that were represented by r are now represented by newRep,
which is the new top element of R. All other Live elements keep their original representatives.
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• For MarkExplored: Statement 1 is proven following the same reason as for StackCol-
lapse. In MarkExplored the Unseen set shrinks because Explored grows by S(v), but
all remaining Unseen vertices are still in their own singleton partition, proving statement 3.
Statement 2 is proven by the fact that all remaining elements in Live are not represented by
v, and thus their representatives are still in R.

• For SetBased: All three properties are maintained by every subroutine (including the re-
cursive call), thus all three properties can be maintained as a loop invariant and added as
preconditions and postconditions.

All of the proofs discussed until this point were already formalised and verified by Hollander,
but two gaps were left open in that formalisation. These gaps are:

• Hollander’s formalisation contains an assumption in the body of the loop in StackCollapse:
assume v in Live();. If v is really in the Live set at that point, then we should be able
to write it as an assertion and verify that it holds.

• Hollander does not verify the most important postcondition of SetBased, namely that all
partitions in S that were found are in fact SCCs in G.

The next two paragraphs aim to fill these gaps, however we also do not succeed completely. Firstly,
we verify the assumption in the loop body of StackCollapse stating that v ∈ Live. Secondly, we
verify that all partitions in S are FSCCs throughout execution of the algorithm. The maximality
proof is not formalised and not implemented in our PVL code.

3.4.4 Proof of ‘v in Live’

We continue by following Hollander’s recommendation which is proving that Live is monotonic. We
prove that, from the perspective of a single call to SetBased, it can only grow. From there we can
conclude that, once v is added to Live by MarkVisited, it stays in the Live set throughout the
entire successor loop. We obtain the following postcondition for SetBased regarding Live:

Listing 3.20: Postcondition for SetBased regarding Live

1 ensures \old(Live()) <= Live();
2 void SETBASED(int v) { /*implementation*/ }

The proof for this postcondition is as follows: MarkVisited adds v to Live, we denote this as
Live0 = \old(Live) ∪ {v}. Trivially, we have \old(Live) ⊂ Live0. Then we prove Live0 ⊆ Live as
the loop invariant for the outer while-loop at lines 5-14 in Listing 3.16. The proof goes by induction:
initially Live0 = Live which proves the base case. For the induction step we denote ‘Live as observed
after the ith iteration’ as Livei. Our induction hypothesis is Live0 ⊆ Livei. Since the recursive
call at line 8 is the only place where Live gets updated in the loop, and the contract of SetBased
guarantees monotonicity already, we can conclude that ∀k∈[1..#iterations]Livek−1 ⊆ Livek. Using
the induction hypothesis we obtain ∀k∈[1..#iterations]Live0 ⊆ Livek−1 ∧ Livek−1 ⊆ Livek, thus
Live0 ⊆ Livek. Thus after the loop we can conclude Live0 ⊆ Live. Now our only remaining
proof obligation is to prove that MarkExplored also guarantees that \old(Live) ⊆ Live. Since
MarkExplored grows the Explored set, we must therefore prove that at line 2 in Listing 3.17
S(v) and \old(Live) are disjoint.
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Proof of ‘\old(Live) and S(v) are disjoint’

This proof works as follows: We maintain an invariant stating that (1) every vertex encountered
after v cannot be in \old(Live) and (2) every vertex in S(v) is encountered after v (or it is v itself).
Since v /∈ \old(Live), we obtain that S(v) can’t overlap with \old(Live).

We begin by defining three extra invariants, Roots are ordered, Partitions are ordered and old
Visited Before v :

Definition 4. Roots are ordered: every root in R is encountered Before its successor root, one
higher up in the stack.

Definition 5. Partitions are ordered: every representative in S is encountered Before all other
vertices in its partition.

Definition 6. old Visited Before v: every vertex that was already V isited before v is encountered
Before v.

PartitionsAreOrdered will eventually be used in the body of MarkExplored to prove dis-
jointness of \old(Live) and S(v), and RootsAreOrdered is necessary to prove preservation of
PartitionsAreOrdered in StackCollapse.

In PVL we implement:

Listing 3.21: Invariant definitions vor ‘v ∈ Live’ proof

1 static pure boolean RootsAreOrdered(seq<int> R, map<int, int> O) =
2 (\forall int i; 0 <= i && i < (|R| - 1); Before(O, R[i], R[i+1]));
3
4 inline static pure boolean PartitionsAreOrdered(int N, seq<int> S,
5 set<int> Visited, map<int, int> O) =
6 (\forall int x; x in Visited; Before(O, {:rep(N, S, x):}, x));
7
8 static pure boolean Before(map<int, int> O, int x, int y) =
9 indexOf(O, x) <= indexOf(O, y);

10
11 inline static pure boolean OldVisitedBeforeV(map<int, int> O,
12 set<int> oldVisited, int v) =
13 (\forall int x; x in oldVisited; indexOf(O, x) < indexOf(O, v))

We make the following three observations:

• The predicates are partially defined - they are only defined for elements which are already
encountered (and thus present in the key set of the map).

• Before is both reflexive and transitive, i.e. Before(O, x, x) is true for any visited x, and
(Before(O, x, y) ∧Before(O, y, z)) → Before(O, x, z).

We now prove RootsAreOrdered (Definition 4) for every subroutine of the algorithm:

• At the start of the algorithm R is empty, so the universal quantifier evaluates to true.

• ForMarkVisited, RootsAreOrdered is trivially maintained, since indexOf(v) equals |V isited|
which is more than the index of the previous root because all other elements in O have an
index lower than |V isited|. Unless R was empty, we know that Rtop is present in O because
R is a subset of V isited.
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• For StackCollapse, the root stack gets popped in a loop, so every iteration there is one root
less, but the order still stays preserved since R stays a prefix of \old(R).

• For MarkExplored: Idem.

• For SetBased the invariant holds trivially since it is maintained by all subroutines.

Proof of PartitionsAreOrdered (Definition 5) for every subroutine of the algorithm:

• Initially S contains only singleton partitions, so PartitionsAreOrdered is established by
Before being reflexive.

• MarkVisited and MarkExplored does not change S, so PartitionsAreOrdered is trivially
preserved from the precondition.

• StackCollapse preserves PartitionsAreOrdered since in the loop the new representative
of the merged partition is the ‘oldest’ root (of the two). Let us denote the state of S after
the ith iteration as Si. We then obtain Si(newRep) = Si−1(newRep) ∪ Si−1(r). To prove
∀x ∈ Si(newRep). Before(O,newRep, x) we make a case distinction:

1. x ∈ Si−1(newRep): We already know that Before(O,newRep, x) holds from Partition-
sAreOrdered from the loop invariant.

2. x ∈ Si−1(r): We know that Before(O, r, x) from PartitionsAreOrdered from the loop
invariant. From RootsAreOrdered we know that Before(O,newRep, r), thus applying
transitivity yields Before(O,newRep, x).

• SetBased preserves the invariant as well since MarkVisited, MarkExplored, Stack-
Collapse and the recursive call preserve it. Like RootsAreOrdered, PartitionsAreOrdered
can simply be added as a loop invariant.

Trivially OldV isitedBeforeV (O, \old(V isited), v) also holds in the outer loop of SetBased, since
it can be maintained as a loop invariant.

Now that PartitionsAreOrdered is proven, we use it to prove disjointness of oldLive and S(v).
Namely, by OldV isitedBeforeV , we obtain ∀x ∈ oldLive. indexOf(O, x) < indexOf(O, v), and
∀x ∈ S(v). indexOf(O, v) ≤ indexOf(O, x) by PartitionsAreOrdered. Thus v acts as a pivot ele-
ment in O. Because O contains only unique elements, we conclude that there is no overlap between
oldLive and S(v), thus \old(Live) ⊆ Live stays preserved after line 2 in MarkExplored □.

3.4.5 Proof of ‘FSCC’

In this section we prove that every partitions remains strongly connected throughout execution of
the algorithm. We begin with the following insight: If there is a vertex that can reach every other
vertex in a partition, and this vertex can also be reached from every other vertex in the partition,
then, by path concatenation, every vertex can reach every other vertex in said partition. Then,
we use the representative of a partition as the connection point for every path concatenation. We
can extend this concept to Fitting Paths (Listing 3.10) as well. We will introduce the following
shorthand notation for fitting paths: ExFittingPath(N,G, a, b, 1, C) ≡ a −→

C

∗ b. In PVL we prove

that the following statement holds:

x −−→
C1

∗ y ∧ y −−→
C2

∗ z ∧ (C1 ∪ C2) ⊆ C3 =⇒ x −−→
C3

∗ z
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The proof can be found in Appendix B. We use fitting paths (instead of regular paths) since those
are used by the definition of an FSCC (see Definition 2).

We will introduce another piece of notation: rep(N,S, x) ≡ SN [x]. Then, we prove that
∀x∈[0...N) x −−−→

S(x)

∗ SN [x] ∧ SN [x] −−−→
S(x)

∗ x holds at every point in the algorithm. In PVL we

implement:

Listing 3.22: ‘ConnectedPartitions’ definition

1 static pure boolean ConnectedPartitions(int N, seq<seq<boolean>> G,
2 seq<int> S) =
3 (\forall int x; 0 <= x && x < N; CP(N, G, S, x));
4
5 static pure boolean CP(int N, seq<seq<boolean>> G,
6 seq<int> S, int x) =
7 ExPathToRep(N, G, S, x) && ExPathFromRep(N, G, S, x);
8
9 static pure boolean ExPathToRep(int N, seq<seq<boolean>> G, seq<int> S,

10 int x) =
11 ExFittingPath(N, G, x, rep(N, S, x), 1, part(N, S, x));
12
13 static pure boolean ExPathFromRep(int N, seq<seq<boolean>> G,
14 seq<int> S, int x) =
15 ExFittingPath(N, G, rep(N, S, x), x, 1, part(N, S, x));

• ConnectedPartitions states that CP holds for all vertices.

• CP states that there exists a path from x to its representative and there exists a path from
x’s representative to x.

Once we prove ConnectedPartitions(N,G, S), we can then claim that every partition is an FSCC
(by path concatenation, explained earlier). The proof follows the same structure as earlier proofs:
We prove that the condition holds at the start of the algorithm, and then prove preservation for the
SetBased routine.

To prove the ConnectedPartitions invariant, we define two more invariants first:

Definition 7. The root path is the path that the algorithm finds by traversing the graph depth-first.
Informally: There exists a path from every root to the ‘next’ root in R. These paths are contained
within the set that is the partition of the first root unioned with the second root.

RootPath(N,G,R, S) ≜ ∀i∈[0...|R|−1) R[i] −−−−−−−−−−−−→
S(R[i])∪{R[i+1]}

∗ R[i+ 1]

Definition 8. HistoryRepresentedByRoots: R is a subsequence of H and all elements in H have
their representatives in R, in the same order.

From this definition of HistoryRepresentedByRoots it follows that last(H) = v and SN [v] =
Rtop. Together, these two definitions assist in proving that for every partition and for every vertex
in the partition there exists paths from and to the representative.

In PVL we write:
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Listing 3.23: ‘RootPath’ definition

1 static pure boolean RootPath(int N, seq<seq<boolean>> G, seq<int> R,
2 seq<int> S) =
3 (\forall int i; 0 <= i && i < (|R|-1);
4 (\let set<int> C = part(N, S, R[i]) + {R[i+1]};
5 ExFittingPath(N, G, R[i], R[i+1], 1, C)));

Listing 3.24: ‘HistoryRepresentedByRoots’ definition

1 static pure boolean HistoryRepresentedByRoots(int N, seq<int> H,
2 seq<int> R, seq<int> S) =
3 (|H| == 0 && |R| == 0)
4 ||
5 (|H| > 0 && |R| > 0 &&
6 HistoryRepresentedByRoots_NonEmpty(N, H, R, S));
7
8 static pure boolean HistoryRepresentedByRoots_NonEmpty(int N,
9 seq<int> H, seq<int> R, seq<int> S) =

10 (\let int v = last(H); rep(N, S, v) == top(N, R) && (
11 v == rep(N, S, v)
12 ? ((|R| >= 2 && HistoryRepresentedByRoots_NonEmpty(N,
13 init(H), getFst(pop(N, R)), S)) || (H == [v] && R == [v]))
14 : (|H| > |R| && (\let seq<int> initH = init(H);
15 rep(N, S, v) == rep(N, S, last(initH)) &&
16 HistoryRepresentedByRoots_NonEmpty(N, initH, R, S))))
17 );

Whilst the PVL encoding of ‘RootPath’ is a rather direct translation of the mathematical defini-
tion, the encoding of ‘HistoryRepresentedByRoots’ is not. It is best explained using a picture, shown
in Figure 3.5. It is an inductive definition, starting at the last elements of H and R. It states that
the currently considered last element of H is equal to Rtop, and then all preceding element of H are
represented by the preceding elements of R. If not, then the last two elements of H have the same
representative, which is still Rtop. The function is called recursively with init(H) and R to check
that the preceding elements of H are represented by R. The recursion stops when H = R = [v0]. A
special case is defined for H = [] ∧R = [].

Proof of RootPath

• When the algorithm starts |R| = 0, so there are no roots that can have a path. The universal
quantifier evaluates to true.

• MarkVisited preserves the invariant since we push v on top of R. There is an edge from
v’s predecessor u: u → v, and since by ConnectedPartitions we know that SN [u] −−−→

S(u)

∗ u,

we concatenate the edge u → v to this path to obtain SN [u] −−−−−−→
S(u)∪{v}

∗ v. From HistoryRep-

resentedByRoots (Definition 8) we know that before MarkVisited we had SN [u] = Rtop,
so we can substitute SN [u] and S(u) for SN [\old(Rtop)] and S(\old(Rtop)). For all the
preceding roots we re-use the invariant from the precondition, which means we can now
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unify: ∀i∈[0...|R|−2) R[i] −−−−−−−−−−−−→
S(R[i])∪{R[i+1]}

∗ R[i+ 1] ∧ R[|R| − 2] −−−−−−−−−−−−−−→
S(R[|R|−2])∪{Rtop}

∗ Rtop =⇒

∀i∈[0...|R|−1) R[i] −−−−−−−−−−−−→
S(R[i])∪{R[i+1]}

∗ R[i+ 1] which then re-establishes RootPath(N,G,R, S).

• StackCollapse preserves the RootPath invariant trivially, since in every iteration the top
element of R is popped, all previously established paths of the predecessors still exist. Only
the partition of the top root is changed, but this partition is not involved in any of the existing
fitting paths of all previous roots (just the top root itself is).

• MarkExplored preserves RootPath for the same reason that StackCollapse preserves it.

• SetBased trivially preserves RootPath(N,G,R, S) since MarkVisited, StackCollapse
and MarkExplored all preserve it.

We will now prove that HistoryRepresentedByRoots(N,H,R, S) holds for all subroutines of the
algorithm:

H :

“represented by”

R :

[ v0 · v1 · v2 · v3 · v4 · v5 · v6 ]

[ v0 · v3 · v5 ]

Figure 3.5: HistoryRepresentedByRoots example visualisation

Proof of HistoryRepresentedByRoots

• In the beginning |R| = 0 ∧ |H| = 0, establishing the invariant trivially.

• MarkVisited: v is added to both R and H, preserving the invariant by folding the predicate
once. We make the following case distinction:

1. If \old(H) = [] ∧ \old(R) = [] then now H = R = [v]. In this case v = v0. Trivially, we
establish HistoryRepresentedByRoots NonEmpty(N, [v], [v], S).

2. Otherwise, we establishHistoryRepresentedByRoots NonEmpty(N, \old(H)·v, \old(R)·
v, S) using |R| ≥ 2 ∧ v = SN [v] = Rtop = last(H) ∧
HistoryRepresentedByRoots NonEmpty(N, old(H), \old(R), S).

• SetBased: the statement is added as a loop invariant because the invariant is preserved by
both StackCollapse and by the recursive call. After the loop at line 14 in Listing 3.16 we
obtain another case distinction - either (1) v was its own representative (and thus popped from
R), or (2) it was not. Although in both cases the proof obligation is
HistoryRepresentedByRoots(N, init(H), R, S) the proofs are different.

1. MarkExplored pops v from R, allowing us the unfold the definition of
HistoryRepresentedByRoots NonEmpty once, and re-establishing the invariant from
the recursive call (1st branch in if-then-else at line 11).
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2. v is not its own representative, so v now has the same representative as its predeces-
sor. Hence we unfold the definition of HistoryRepresententedByRoots NonEmpty once
again, but we use the second branch of the if-then-else expression to re-establish the invari-
ant (line 14, Listing 3.24). Note that we gain HistoryRepresentedByRoots NonEmpty(N,
init(H), R, S) as knowledge, which will correspond toHistoryRepresentedByRoots NonEmpty(N,
H, R, S) when the method returns (line 20, Listing 3.16).

• StackCollapse continuously pops from R, but it also makes all vertices that were represented
by the old Rtop now represented by the new Rtop. The relation between H and R thus stays
preserved. Figure 3.6 shows the relationship between H and R of the example (figure 3.5)
after one call to uniteRoots. The PVL proof can be found in Appendix C.

H :

“represented by”

R :

[ v0 · v1 · v2 · v3 · v4 · v5 · v6 ]

[ v0 · v3 ]

Figure 3.6: HistoryRepresentedByRoots example, after one ‘unite’

• MarkExplored: v is the top element of both H and R, so we can establish
HistoryRepresentedByRoots NonEmpty(N, init(H), getFst(pop(N,R)), S) afterwards (by un-
folding line 13), or
HistoryRepresentedByRoots(N, [], [], S) in case H and R are now empty.

Now that RootPath and HistoryRepresentedByRoots (and especially SN [v] = Rtop) have been
shown to hold throughout the entire algorithm, we can tie them together and prove
ConnectedPartitions (Listing 3.22).

Proof of ConnectedPartitions

• At the beginning, the invariant is proven by every vertex being its own representative in its
own singleton partition. Since we define paths as sequences of vertices, the fitting paths in
question are just paths of length 1.

• MarkVisited and MarkExplored: S is unchanged, so the invariant is proven from the
precondition.

• StackCollapse: ConnectedPartitions is broken during the loop, but re-established again
afterwards (line 8. We split the proof for all x. 0 ≤ x < N in two cases: SN [x] −−−→

S(x)

∗ x and

x −−−→
S(x)

∗ SN [x].

1. ‘From’: (SN [x] −−−→
S(x)

∗ x) is maintained by the loop: If during the while-body in Stack-

Collapse x gets a new representative, then the fitting path from that representative to x
can be established by concatenating R[|R| − 2] −−−−−−−−−−−−−−→

S(R[|R|−2])∪{Rtop}
∗ Rtop (by RootPath)
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and Rtop −−−−−→
S(Rtop)

∗ x (by ExPathFromRep), which obtains: R[|R| − 2] −−−−−−−−→
S(R[|R|−2])

∗ x.

After the stack is popped, we can substitute:
Rtop −−−−−→

S(Rtop)

∗ x. Since Rtop = SN [x] by (HistoryRepresentedByRoots) we can substi-

tute again: SN [x] −−−−−−→
S(SN [x])

∗ x and again: SN [x] −−−→
S(x)

∗ x.

Otherwise, if during the while-loop x does not get a new representative, then the pre-
existing path SN [x] −−−→

S(x)

∗ x stays of course maintained.

2. ‘To’: (x −−−→
S(x)

∗ SN [x]) is not maintained by the loop. Instead, for x that are members

of the united partition, we prove that this path exists again after loop by performing 4
path concatenations and 2 substitutions. We know that v and w now share the same
representative, which is Rtop. In the following table we list the sub-paths and the reasons
why we can prove they exist:

Path: Proof for its existence:
x −−−−−−−→

\old(S(x))

∗ \old(SN [x]) ConnectedPartitions precondition (specifi-
cally: ExPathToRep).

\old(SN [x]) −−−−−→
S(Rtop)

∗ \old(SN [v]) RootPath precondition: since every root has
a fitting path to the next root, by concate-
nation every root as a path to the top root
(which fits in the union of all their individual
partitions).

\old(SN [v]) −−−−−−→
\old(S(v))

∗ v ConnectedPartitions precondition (specifi-
cally: ExPathFromRep).

v −−−−→
{v,w}

∗ w v → w is a direct edge.

w −−−−−−−→
\old(S(w))

∗ \old(SN [w]) ConnectedPartitions precondition (specifi-
cally: ExPathToRep)

We prove that S(Rtop) subsumes all the sets containing these paths by definition:

S(Rtop) =
⋃

indexOf(\old(R),\old(SN [w]))<= i < |\old(R)|

\old(S(R[i]))

We can now prove that the concatenation of these 5 paths is also completely contained
in S(Rtop) and end up with x −−−−−→

S(Rtop)

∗ \old(SN [w]). Since the representative of w is

not changed during the loop we know \old(SN [w]) = SN [w] = SN [v] = SN [x] = Rtop.
Substituting gives us x −−−→

S(x)

∗ SN [x].

Vertices x that are not a member of the united partition simply retain their paths to their
representatives.

Now that we have established the paths between x and SN [x] in both directions for all x. 0 ≤
x < N , we can re-establish CP (N,G, S, x) (Listing 3.22, line 5). Thus
ConnectedPartitions(N,G, S) is preserved by StackCollapse. The PVL proof follows the
same idea, and is listed in Appendix D.

• SetBased: Proven from MarkVisited, MarkExplored, StackCollapse and the recur-
sive call to SetBased preserving the invariant.
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With ConnectedPartitions(N,G, S) now proven for every subroutine, we can conclude that all
partitions remain an FSCC throughout the algorithm □.
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4. Results
In this chapter we summarise which properties were formalised and verified using VerCors. We
give an overview of important invariants and how they relate to each other. We also present the
verification times of the finalised PVL programs.

4.1 Verified properties

We started with the work of Hollander as our basis, and verified that the algorithm finds FSCCs
(Definition 2) [11]. To reach this goal, we defined two additional properties: v ∈ Live and Connect-
edPartitions(N, G, S). Multiple extra invariants were defined that eventually build up to these two
properties. Figure 4.1 shows how these properties build up together.

Encounter order OHistory H

All partitions are FSCC

ConnectedPartitions

ExPathFromRep ExPathToRep

RootPath Rtop = SN [v]

v ∈ Live

PartitionsAreOrdered

RootsAreOrdered

OldVisitedBeforeV

HistoryRepresentedByRoots

Work of Hollander

Figure 4.1: Dependency graph of properties and invariants

Invariants are highlighted in orange, data structures are highlighted in green, and other properties
are highlighted in yellow. One can think of them as ‘invariants-light’ since they do hold before and
after every subroutine, but not during the inner loop of the algorithm (in StackCollapse). Note
that ‘Work of Hollander’ is an abstraction for a substantial amount of work. Hollander implemented
the data structures Graph G, Stack R, Union-Find S and their operations (some of which required
extra lemmas). He also verified basic invariants, and verified the invariants in Listing 3.19 partly.
Lastly he defined PVL definitions for paths and the three types of SCCs. This node is essentially a
dependency of all the other nodes in the figure, but we did not draw the corresponding arrows in
order to not clutter the image. We also omitted our own lemmas from this figure.
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4.2 Verification results

To prevent VerCors from hanging indefinitely, we apply techniques to limit the amount of information
it has to reason with. One of these techniques is splitting up the algorithm over multiple subroutines,
each with their own set of contracts, and each verified in their own file. These files are then verified
in isolation. To ensure that the definitions used in these files remain in sync, we wrote them all in
one big template file. A macro-expansion program then generates the files. We used this approach
so that one change in the template file affects all 6 files simultaneously. We think this approach
significantly helps with reproducing results, since it is not required to manually ‘comment out’ code
that is not being verified. Consequently, there is zero chance that a human error occurs when
manually checking whether two files use the same definition of a function. We will now list each
generated file and explain its purpose:

• Basic.pvl: This file contains all the data structure operations and predicate definitions. It
is verified separately so that we can use these definitions in the other files, without verifying
the implementations again.

• Main.pvl: This file contains the main SetBased routine, and a lemma that proves that all
found partitions are FSCCs. All properties mentioned in Section 4.1 are verified in this file,
but just for the SetBased routine. The method bodies of MarkVisited, StackCollapse
and MarkExplored are removed from this file, so that VerCors only needs to reason about
using their contracts.

• MarkVisited.pvl: This file contains the full implementation of MarkVisited. In here all
properties mentioned in Section 4.1 are verified for the MarkVisited routine.

• MarkExplored.pvl: This file contains the full implementation of MarkExplored. In here
all of the mentioned correctness properties are verified for the MarkExplored routine.

• StackCollapse v in Live.pvl: This file contains the full implementation of the program
code of StackCollapse. This file verifies all properties from Basic.pvl as well as the
invariant v ∈ Live for the StackCollapse routine.

• StackCollapse FSCC.pvl: This file contains the full implementation of the program code
of StackCollapse. In here, all properties from Basic.pvl as well as the invariant Con-
nectedPartitions are verified for the StackCollapse routine.
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4.2.1 Measurements

Table 4.1 shows the time that it took to verify each file [26], running on my Intel(R) Core(TM) i7-
5500U CPU @ 2.40 GHz (4 CPUs) laptop with 12288MB of RAM running Windows 10 and Oracle
JDK 17.0.2. 3 runs were conducted per file, and the table shows the average times.

File Average verification time (across 3 runs)
Basic.pvl 34 s
Main.pvl 97 s
MarkVisited.pvl 41 s
MarkExplored.pvl 20 s
StackCollapse v in Live.pvl 28 s
StackCollapse FSCC.pvl 67 s∗

Table 4.1: Verification times

Here we can see that the verification times are still somewhat acceptable for a fast iteration
cycle, allowing future researchers to continue on this work. At the very least any consumer-grade
computer released in the last 5 years should be able to verify these files within a reasonable time
frame.

4.2.2 A note on StackCollapse

Note that StackCollapse has been split in two files, and the latter (StackCollapse FSCC.pvl)
takes 67 seconds to verify on average. This is a slightly misleading number since a handful of lemma
calls in this file were disabled, while the postconditions were assumed at the call site. For all lemmas
we can enable them and assert their postconditions and then verify the file again, one by one for
each lemma. Enabling a lemma easily adds 10 to 20 seconds to the verification time. Unfortunately,
we could not enable all lemmas at once since then VerCors would no longer verify the file - it would
just run seemingly infinitely. One could argue that the same macro-expansion technique could be
used to limit prover knowledge, but we opted against this given that these lemma definitions are
only used in one place.
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5. Related work
In this chapter we discuss other works in which formal methods were applied to verify SCC algo-
rithms.

5.1 Bloemen’s SCC algorithm in Isabelle by Vincent Trélat

In this work, Trélat et al. present a formalisation [28] of the sequential SCC algorithm described by
Bloemen using the Isabelle [12] interactive theorem prover. There are three key differences in their
encoding compared to ours.

1. They use a functional model where we use an imperative model - i.e. the main routine of the
algorithm (which we call SetBased) is a pure function dfs which takes an environment and
a vertex as arguments, and outputs a new environment as a result. The environment (often
referred to as e) contains all the state variables such as the stack R, union-find S and V isited
and Explored sets.

2. They ‘implement’ the union-find S using a function of type ’v → ’v set, i.e. a function that
returns the partition for a given vertex. This is more abstract than the sequence representation
that we inherit from Hollander.

3. A set of found SCCs is accumulated in the environment whilst we do not use an extra variable
in our formalisation - we simply make claims about the existing union-find structure S.

With this encoding, Trélat is able to verify that all found partitions are indeed maximal SCCs.
Interestingly, they do not encode the notion of fittingness. One could argue this is not required
because any maximal SCC is also fitting. The proof by contradiction is left as an exercise to the
reader. The key invariant that leads them to this conclusion is the fact that every path from vertex
m ∈ R to n ∈ R where m is higher in the stack than n has not been followed yet. This property is
named reachable avoiding. When the algorithm finished visiting all successors and v is its own
representative, then that means a path to a representative lower in the stack cannot exist, hence v’s
partition is a maximal SCC.

At a glance it seems possible to use this approach as well in our own encoding since we can
easily check that that m is higher in R then n by comparing indexOf(O,m) > indexOf(O,n) and
conjuncting that with the RootsAreOrdered invariant.

5.2 Gabow’s SCC algorithm using refinement in Isabelle by
Peter Lammich

In this work Lammich presents a formalisation [15] of Gabow’s SCC algorithm [8]. Similar to
Bloemen’s algorithm it is also based on Munro’s original algorithm, hence it makes for a good
candidate for comparison. Gabow’s SCC algorithm is different in the following ways:

• Instead of storing partitions using a union-find, this algorithm uses a custom data structure
designed by Gabow. Partitions of nodes are called cnodes; I like to use the mnemonic collapsed
node, or collection of nodes.

• Gabow’s SCC algorithm does not keep track of a stack of roots (R), instead, the cnodes live
directly on the stack. This stack is referred to as ‘the path’.
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Lammich defines this formalisation using Isabelle/HOL. He verifies that the algorithm computes
maximal SCCs and that found cnodes are topologically ordered. He does this by first verifying the
algorithm using abstract data structures, and then proving that Gabow’s data structure refines the
abstract data structures. Then, he proves one more refinement using efficient data structures such
as arrays and hash tables, and from this encoding he generates Standard ML code.

Maximality of SCCs is proven by the fact that there are no more unvisited outgoing edges from
the latest cnode when it is popped from the path. One invariant used is that the Done set remains
closed under transition, i.e. all nodes in Done only have edges that lead to other vertices that
are also in Done. Note that the Done set in Lammich’s terminology is equivalent to Explored in
Bloemen’s terminology.

5.3 Model checking UFSCC using TLA+ by Jaco van de Pol

In this work Van de Pol presents a case study [19] of using the TLC model checker to check correctness
of the parallel UFSCC algorithm presented by Bloemen. He model checks the algorithm for a number
of small example graphs (at most 4 vertices), and 2 execution threads. Through experimentation and
slight modifications he attempts to gain a better understanding of the algorithm, and its invariants
that lead to correctness. He shows that the algorithm indeed guarantees maximal SCCs for the
example graphs. This of course does not demonstrate that the algorithm behaves according to
specification for any arbitrary graph, hence it is very different from our approach, but as far as we
are aware, this is the first attempt at formally proving correctness of the parallel UFSCC algorithm.
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6. Conclusion
We successfully verified that Bloemen’s sequential SCC algorithm partitions the graph into FSCCs,
meaning the partitions are both strongly connected and fitting. To complete this task, we utilised
nearly every feature that VerCors has to offer for verification of sequential programs. We answer
RQ1 using the following summary of techniques used: We used the axiomatic data types set, seq
and map to implement the data structures used by the algorithm. We wrote custom lemmas to prove
invariants that were otherwise too hard for VerCors to verify. These lemmas mainly revolved around
proving proving preservation of invariants during loops. Especially the invariants HistoryRepresent-
edByRoots and ExPathToRep required many lemmas. Some of our first-order logic formulas contain
triggers to make sure that the back-end prover instantiates universally quantified expressions using
the correct identifier. We split the algorithm up in multiple subroutines, each verifying a defined part
of the algorithm. As it turned out, the StackCollapse routine was especially difficult to verify
since it required many more lemmas than the other subroutines. When they were all implemented
VerCors could not verify the file anymore, so they were verified independently. When disabled, their
postconditions would be assumed at the call site in order to let the verification complete successfully.

6.1 Reflection

Looking back at this project, there were several hurdles to overcome. Some of the learned lessons
are listed below. This list is my answer to RQ2, although this is of course subjective.

1. To start off, to formally verify an algorithm, one needs to understand it at a sufficiently deep
level. Invariants need to be identified, and formulated in first-order logic. Some invariants
are simple, and are easily maintained by the fact that some data structures only grow. Such
invariants can usually be verified by VerCors right away, e.g. ‘v stays in the V isited set.’ Other
invariants require more effort to verify, e.g. ConnectedPartitions. It was necessary to write
extra lemmas to convince VerCors of the existence of certain paths. Especially difficult was
proving the path v →∗ rep(N,S, v) since that invariant is temporarily broken during the inner
loop in StackCollapse. It has to be re-proven again after the loop, using a concatenation
of 5 sub-paths, all of which also required extra loop invariants to prove that they exist. Some
of these loop invariants also required extra lemmas to prove preservation, so it seemed like a
never-ending task. One might say that v →∗ rep(N,S, v) is not an invariant, since it does not
hold ‘all the time’ and I think that is the main takeaway: properties that hold in more than
one place, but do not hold ‘all the time’ are the most difficult to verify.

2. To prove the more difficult invariants, one needs to write extra lemmas that prove preservation
of some invariant in some specific context. Such lemmas can be trivial, or they can call into
other lemmas, or into themselves. This also touches upon another point: with VerCors all the
proof techniques at your disposal are essentially 1. simple constructive proofs, 2. proofs by
contradiction, and 3. proofs by induction. This means that other proof techniques, e.g. pigeon
hole proofs can only be used when decomposed into multiple induction and contradiction
proofs. For example: in StackCollapse to prove that v → w is actually a back-edge, we
need to prove that a path w →∗ v already exists. The pigeon-hole proof for this looks as
follows:

(a) We know that both v ∈ Live and w ∈ Live
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(b) From the invariant ∀x∈Live rep(N,S, x) ∈ R we know that both rep(N,S, v) ∈ R and
rep(N,S,w) ∈ R.

(c) We also know that rep(N,S, v) = Rtop. Since rep(N,S, v) ̸= rep(N,S,w) it follows that
rep(N,S,w) is somewhere lower in the stack (pigeon hole principle).

(d) Therefore, by the RootPath invariant, we know that there exists a path rep(N,S,w) →∗

rep(N,S, v) (because all roots have a path to the top element of R).

(e) From ConnectedPartitions we know that w →∗ rep(N,S,w) and rep(N,S, v) →∗ v
exists.

(f) The old representatives of v and w stay a member of their partitions, hence we can prove
the path w →∗ v exists by concatenating w →∗ \old(rep(N,S,w)) →∗ \old(rep(N,S, v)) →∗

v.

While this manual proof is similar to the mechanised proof described in paragraph 3.4.5 (in
fact, it formed the basis for it), it is also simpler in the sense that we did not have to provide an
explicit witness from the path rep(N,S,w) →∗ rep(N,S, v). We also implicitly assumed that
this path stays within the partition when the partition is finally merged, but this is something
that requires extra effort when formalised using a static verifier. One then needs to prove that
all the sub-paths remain inside the partition while the loop is busy. The takeaway from this is
to be aware of your implicit assumptions, and make them explicit when formalising the proof
for a deductive verifier. Making this formalisation concrete is what causes formal proofs to
take much more time than manual pen-and-paper proofs.

3. When formalising proofs in VerCors, it is required that the data structure operations are also
verified, while in pen-and-paper proofs these are typically assumed to be correct. Thus formal
verification requires extra effort for the verification of the contracts of these data structure
operations. Luckily, I was able to thank Hollander for his effort in this area as he already
implemented most of the data structure operations.

4. From our perspective, SMT solvers are essentially black boxes. They are sound, but in my
experience Z3 has been acting very inconsistently. Sometimes being able to prove some a
certain statement instantly, and sometimes hanging seemingly forever. SMT solvers are also
notorious for struggling with existentially quantified formulas, hence it is usually required to
specify an explicit witness. Often I had to rephrase the formulation entirely using witness values
directly - the map-encoding of the encounter order is an example of this. During development,
I used a PVL sequence before, whilst ‘indexOf’ performed a linear search. Its contract required
that the to-be-found value is in the sequence (x ∈ xs), which is then translated by VerCors into
an existential quantifier (the value ‘exists’ in the sequence). Verification time blew up because
of this. Furthermore, SMT solvers also seem to struggle when their pool of knowledge grows
‘big’, not being able to do inferences anymore that used to work before. One trick for dealing
with this is to factor out parts to separate methods such that they can be verified with just
the knowledge that is strictly required for them, however this approach isn’t always viable.
Other tricks that I have used are: (1) using explicit assert statement to unfold definitions or
draw preliminary conclusions and (2) use triggers to make sure that the proper instantiation
of a universally quantified formula gets added to the pool of knowledge.

5. To stabilise verification times I have customised the build of VerCors, such that it uses only 1
parallel Silicon verifier. One other customisation was to disable trigger generation for quanti-
fied expression (recommended by Hollander). In this case study, the generated triggers from
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VerCors performed worse than the triggers inferred by Silicon/Z3. This feature has also been
removed from VerCors since version 2.0.0, which means that others won’t be running into this
problem again.

6. To prove universally quantified formulas, stating some fact about elements in a range, or
elements in a sequence, lemmas containing loops can be used. This essentially corresponds to
strong induction. To prove ∀x ∈ [0..N).P (x) one writes the loop invariant
(\forall int x; 0 <= x && x < i; P(x)) where i is the loop iterator variable that
loops from 0 to N (inclusive). While to some this is natural, to me it was not always obvious
that this construct should be used in certain places. Until halfway through the project, I was
very much relying on the automatic inference capabilities of Silicon/Z3, rather than to write
lemmas with such explicit loop invariants.

6.1.1 Recommendations

To conclude, I would like to give the following two recommendations to other researchers who use
VerCors:

• Do not try to verify properties that are not invariants right away. Instead, begin with verifying
the obvious invariants, and try to find invariants for properties that can be used inside larger
proofs for the correctness properties.

• Do not hesitate to create auxiliary variables. They can serve as explicit witnesses for the
to-be-proven invariants. This can in turn then help the underlying solver.

• When stuck at the verification of some property, make a proof on paper of why it should hold.
Then encode all the proof steps as explicit assertions in the program. Chances are, one of the
assertions can’t be verified, because some knowledge is missing for the prover. Then, to solve
this, add extra assertions, invariants or lemmas (depending on the context).

• When dealing with long verification times, try to keep Z3’s pool of knowledge as small as
possible. More knowledge lead to longer verification times because for Z3 it becomes harder
to make the desired inferences, i.e. ‘more knowledge’ also means ‘more pollution’. This
applies especially to quantified expressions, since Z3 will have to find instantiations of these
expressions that are then used later on for the next part of the proof. Triggers can also help
here. Sometimes it can be better to formulate a property using an inductive definition that is
unfolded manually, then to encode it using a universal quantifier.
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7. Future work
7.1 Proving maximality

Proving that the algorithm decomposes the graph into maximal SCC is a non-trivial task. This
property is not trivial invariant that stays true the entire time. Hence, one needs to find invariants
and other properties that eventually lead up to the notion of maximality at line 20 in Listing
3.1. Paragraph 3.2.1 already sketched an intuition for the maximality proof, so one would need
to further elaborate on this and formalise this. Listing 3.14 can serve as an inspiration for this.
Additionally, one may want to verify that every reachable node is actually visited (and thus a
member of the Visited set when the algorithm terminates). This property could be formalised as
v0 ∈ V isited ∧ ∀x ∈ V isited. ∀y ∈ succ(x). y ∈ V isited. Additionally one may want to verify
that, after the algorithms successor loop, the set of descendants of v (the successors of v, and their
successors, and their successors, etc) consists of only vertices that are already Explored, or vertices
that are in the same partition as v. Alternatively, future researchers may decide to attempt to use
the solutions for proving maximality from Trélat [28] or Lammich [15] as both their solutions seem
like they can be ported to VerCors/PVL.

If VerCors is used to verify the maximality proof, then it is highly advised to verify the invariants
for maximality separately, and leave the already-proven properties as assumptions. This gives the
best chance on the verifier producing an output, rather than (perceived) non-termination.

7.2 Going concurrent

To verify Bloemen’s parallel UFSCC algorithm [2], additional prerequisites need to be fulfilled.
First, because of global coordination concerns, the union-find’s ‘unite’ operation is no longer guar-
anteed to make the first argument the new representative of the merged partition. Instead, it is left
out as an implementation detail. Bloemen’s implementation uses the vertex with the highest hash
code as the new representative of the merged partitions. The invariants PartitionsAreOrdered, Root-
Path and HistoryRepresentedByRoots need an extra level of indirection to account for this. Their
PVL definitions would change to something much like Listing 7.1.

Listing 7.1: Updated RootPath and PartitionsAreOrdered definitions

1 //changed: ExFittingPath(N, G, R[i], R[i+1], 1, C) --->
2 // ExFittingPath(N, G, rep(N, S, R[i]), rep(N, S, R[i+1]), 1, C)
3 static pure boolean RootPath(int N, seq<seq<boolean>> G, seq<int> R,
4 seq<int> S) =
5 (\forall int i; 0 <= i && i < (|R|-1);
6 (\let set<int> C = part(N, S, R[i]) + {R[i+1]};
7 ExFittingPath(N, G, rep(N, S, R[i]), rep(N, S, R[i+1]), 1, C

)));
8
9 //changed: rep(N, S, x) --->

10 // first(N, S, x)
11 static pure boolean PartitionsAreOrdered(int N, seq<int> S,
12 set<int> Visited, map<int, int> O) =
13 (\forall int x; x in Visited; Before(O, first(N, S, x), x));
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In this example first is a made up function that returns the first encountered vertex in S(x).
The unite operation should then update this property accordingly. RootsAreOrdered does not
require updating since it already contains the first encountered vertices from each Live partition.
ConnectedPartitions may also receive a similar update, now using the ExPathFromFirst and
ExPathToFirst instead of ExPathFromRep and ExPathToRep respectively.

Listing 7.2: Updated HistoryRepresentedByRoots definition

1 static pure boolean HistoryRepresentedByRoots(int N, seq<int> H,
2 seq<int> R, seq<int> S) =
3 (|H| == 0 && |R| == 0)
4 ||
5 (|H| > 0 && |R| > 0 &&
6 HistoryRepresentedByRoots_NonEmpty(N, H, R, S));
7
8 //changed: rep(N, S, v) == top(N, R) --->
9 // rep(N, S, v) == rep(N, S, top(N, R))

10 static pure boolean HistoryRepresentedByRoots_NonEmpty(int N,
11 seq<int> H, seq<int> R, seq<int> S) =
12 (\let int v = last(H); rep(N, S, v) == rep(N, S, top(N, R)) && (
13 v == rep(N, S, v)
14 ? ((|R| >= 2 && HistoryRepresentedByRoots_NonEmpty(N,
15 init(H), getFst(pop(N, R)), S)) || (H == [v] && R == [v]))
16 : (|H| > |R| && (\let seq<int> initH = init(H);
17 rep(N, S, v) == rep(N, S, last(initH)) &&
18 HistoryRepresentedByRoots_NonEmpty(N, initH, R, S))))
19 );

In Listing 7.2 we show the updated definition for HistoryRepresentedByRoots taking this extra level
of indirection into account. Most importantly it now ensures that SN [v] = SN [Rtop].

What is more, in the parallel algorithm the union-find structure S is implemented using a tree
of representatives, as well as a cyclic list per partition. One may want to verify that each vertex in
the list is indeed represented by the same root as the other vertices in the same list:

∀s ∈ list. F ind(list[0]) = Find(s)

Additionally, when a vertex in the cyclic list is Done, then either its partitions is already Explored,
or it has yet to be removed from the list:

∀s. (s.list status = Done) =⇒ (Find(s).uf status = Explored ∨ UF [s].next.list status = Busy)
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A. Uniting partitions
We use the following method to unite two partitions:

Listing A.1: UniteRoots adapted from Hollander [11]

1 requires ru(v, N);
2 requires ru(w, N);
3 requires UnionFind(N, S);
4 requires v == rep(N, S, v);
5 requires w == rep(N, S, w);
6 ensures \result == S[SB.rep(N, S, w) -> SB.rep(N, S, v)];
7 ensures \result == S[w -> v];
8 ensures UnionFind(N, \result);
9 // lemma 7 and lemma 8, resp.:

10 ensures (\forall int i; ru(i, N) && rep(N, S, w) == {:rep(N, S, i):};
rep(N, \result, i) == rep(N, S, v));

11 ensures (\forall int i; ru(i, N) && rep(N, S, w) != {:rep(N, S, i):};
rep(N, \result, i) == rep(N, S, i));

12 static seq<int> uniteRoots(int N, seq<int> S, int v, int w) {
13 seq<int> T = S[SB.rep(N, S, w) -> SB.rep(N, S, v)];
14 if (rep(N, S, w) == rep(N, S, v)) {
15 assert T == S; // Trivial case
16 } else {
17 lemma_7_uf(N, S, T, v, w);
18 lemma_8_uf(N, S, T, v, w);
19 }
20 return T;
21 }

In fact, we use the exact same implementation as Hollander’s original implementation [22], but
added extra clauses to the contract specifying that v and w are representatives themselves already.
This allows VerCors to prove the postcondition on line 7 stating that the result is actually just
S with one value updated. This fact helps the verifier get through the rest of the proof. Below
Hollander’s original implementation is listed:

Listing A.2: Unite operation implemented by Hollander [11]

1 requires ru(v, N);
2 requires ru(w, N);
3 requires UnionFind(N, S);
4 ensures \result == S[SB.rep(N, S, w) -> SB.rep(N, S, v)];
5 ensures UnionFind(N, \result);
6 // lemma 7 and lemma 8, resp.:
7 ensures (\forall int i; ru(i, N) && rep(N, S, w) == {:rep(N, S, i):};
8 rep(N, \result, i) == rep(N, S, v));
9 ensures (\forall int i; ru(i, N) && rep(N, S, w) != {:rep(N, S, i):};

10 rep(N, \result, i) == rep(N, S, i));
11 static seq<int> unite(int N, seq<int> S, int v, int w) {
12 seq<int> T = S[SB.rep(N, S, w) -> SB.rep(N, S, v)];
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13 if (rep(N, S, w) == rep(N, S, v)) {
14 assert T == S; // Trivial case
15 } else {
16 lemma_7_uf(N, S, T, v, w);
17 lemma_8_uf(N, S, T, v, w);
18 }
19 return T;
20 }

Listing A.3: lemma 7 uf by Hollander [11]

1 // Lemma 7 - Given union-find S and sequence T, where T ==
2 S[SB.rep(N, S, w) -> SB.rep(N, S, v)], then
3 // (\forall int i; ru(i, N) && rep(N, S, w) == rep(N, S, i);
4 rep(N, T, i) == rep(N, S, v)).
5 // (Proof by exhaustive contradiction)
6 requires ru(v, N);
7 requires ru(w, N);
8 requires UnionFind(N, S);
9 requires T == S[SB.rep(N, S, w) -> SB.rep(N, S, v)];

10 ensures (\forall int i; ru(i, N) && rep(N, S, w) == rep(N, S, i);
11 rep(N, T, i) == rep(N, S, v));
12 static void lemma_7_uf(int N, seq<int> S, seq<int> T, int v, int w) {
13 int x = 0;
14
15 loop_invariant rui(x, N);
16 loop_invariant (\forall int i; ru(i, x) && rep(N, S, w) == rep(N, S,

i);
17 rep(N, T, i) == rep(N, S, v));
18 while (x < N) {
19 if (rep(N, S, w) == rep(N, S, x)) {
20 if (rep(N, T, x) == rep(N, S, v)) {
21 // OK
22 } else {
23 // rep(N, T, x) != rep(N, S, v)
24 // Assertion: rep(N, T, x) != rep(N, S, v)
25 // Contradiction: rep(N, T, x) == rep(N, S, v)
26
27 int y;
28 seq<int> P;
29
30 lemma_9_uf(N, S, x) with {P = P;};
31 // ExSeqPath(N, S, x, rep(N, S, x), 2) and |P| >= 2
32
33 y = 0;
34 // SeqPath(N, T, x, P[y], P[0..(y + 1)])
35 loop_invariant 0 <= y && y < |P|;
36 loop_invariant (\forall int z; z in P[0..y]; S[z] == T[z
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]);
37 loop_invariant SeqPath(N, T, x, P[y], P[0..(y + 1)]);
38 while (P[y] != rep(N, S, w)) {
39 y++;
40 }
41
42 // because T[rep(N, S, w)] == rep(N, S, v)
43 assert SeqPath(N, T, x, rep(N, S, v), P[0..(y + 1)] +
44 [rep(N, S, v)]); // Explicit witness
45 lemma_10_uf(N, T, x, rep(N, S, v));
46 // rep(N, T, x) == rep(N, S, v)
47
48 assert false;
49 }
50 }
51 x++;
52 }
53 }

Listing A.4: lemma 8 uf by Hollander [11]

1 // Lemma 8 - Given union-find S and sequence T, where T ==
2 S[SB.rep(N, S, w) -> SB.rep(N, S, v)], then
3 // (\forall int i; ru(i, N) && rep(N, S, w) != rep(N, S, i);
4 rep(N, T, i) == rep(N, S, i)).
5 // (Proof by exhaustive contradiction)
6 requires ru(v, N);
7 requires ru(w, N);
8 requires UnionFind(N, S);
9 requires T == S[SB.rep(N, S, w) -> SB.rep(N, S, v)];

10 ensures (\forall int i; ru(i, N) && rep(N, S, w) != rep(N, S, i);
11 rep(N, T, i) == rep(N, S, i));
12 static void lemma_8_uf(int N, seq<int> S, seq<int> T, int v, int w) {
13 int x = 0;
14
15 loop_invariant rui(x, N);
16 loop_invariant (\forall int i; ru(i, x) && rep(N, S, w) != rep(N, S,

i);
17 rep(N, T, i) == rep(N, S, i));
18 while (x < N) {
19 if (rep(N, S, w) != rep(N, S, x)) {
20 if (rep(N, T, x) == rep(N, S, x)) {
21 // OK
22 } else {
23 // rep(N, T, x) != rep(N, S, x)
24 // Assertion: rep(N, T, x) != rep(N, S, x)
25 // Contradiction: rep(N, T, x) == rep(N, S, x)
26
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27 int y;
28 seq<int> P;
29
30 lemma_9_uf(N, S, x) with {P = P;};
31 // ExSeqPath(N, S, x, rep(N, S, x), 2) and |P| >= 2
32 lemma_11_uf(N, S, x, P);
33 // (\forall int i; i in P; rep(N, S, i) == rep(N, S, x))
34 assert (\forall int i; 0 <= i && i < |P|;
35 (\forall int j; j in P[0..i]; j in P));
36 // Explicit assert needed (lemma 9)
37 y = 0;
38 // SeqPath(N, T, x, P[y], P[0..(y + 1)])
39 loop_invariant 0 <= y && y < |P|;
40 loop_invariant (\forall int z; z in P[0..y]; S[z] == T[z

]);
41 loop_invariant SeqPath(N, T, x, P[y], P[0..(y + 1)]);
42 while (P[y] != rep(N, S, x)) {
43 y++;
44 }
45
46 lemma_10_uf(N, T, x, rep(N, S, x));
47 // rep(N, T, x) == rep(N, S, x)
48
49 assert false;
50 }
51 }
52 x++;
53 }
54 }

Listing A.5: lemma 9 uf by Hollander [11]

1 // Lemma 9 - Given a union-find S and a state v, then there exists a
path

2 // from v to the representative of v in S, rep(N, S, v). (Proof by
induction)

3 yields seq<int> P;
4 requires ru(v, N);
5 requires UnionFind(N, S);
6 ensures SeqPath(N, S, v, rep(N, S, v), P) && |P| >= 2;
7 ensures ExSeqPath(N, S, v, rep(N, S, v), 2);
8 static void lemma_9_uf(int N, seq<int> S, int v) {
9 if (S[v] == v) {

10 // Base case: P = [v];
11 P = [v, v];
12 } else {
13 // S[v] != v
14 // Induction hypothesis: ExSeqPath(N, S, S[v], rep(N, S, S[v]),
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1)
15 lemma_9_uf(N, S, S[v]) with {P = P;};
16 P = [v] + P;
17
18 }
19 }

Listing A.6: lemma 10 uf by Hollander [11]

1 // Lemma 10 - Given a sequence S and states v and r, where S[r] == r and
2 // there exists a path from v to r, then the representative of v in S,
3 // rep(N, S, v), is equal to r. (Proof by contradiction)
4 requires ru(v, N) && ru(r, N);
5 requires UnionFind(N, S);
6 requires S[r] == r;
7 requires ExSeqPath(N, S, v, r, 2);
8 ensures rep(N, S, v) == r;
9 static void lemma_10_uf(int N, seq<int> S, int v, int r) {

10 if (rep(N, S, v) == r) {
11 // OK
12 } else {
13 // rep(N, S, v) != r
14 // Assertion: rep(N, S, r) == r
15 // (property of both rep() and UnionFind())
16 // Contradiction: rep(N, S, r) != r
17 // (by deconstructing the path from v to r)
18 int w = v;
19 loop_invariant ru(w, N);
20 loop_invariant rep(N, S, w) != r;
21 while (w != r) { w = S[w]; }
22 assert false;
23 }
24 }

Listing A.7: lemma 11 uf by Hollander [11]

1 // Lemma 11 - Given a union-find S, a state v and a path P from v to
2 // rep(N, S, v), then all states in P also have the representative
3 // of v as representative in S. (Proof by induction)
4 requires ru(v, N);
5 requires UnionFind(N, S);
6 requires SeqPath(N, S, v, rep(N, S, v), P) && |P| >= 2;
7 ensures (\forall int i; i in P; rep(N, S, i) == rep(N, S, v));
8 static void lemma_11_uf(int N, seq<int> S, int v, seq<int> P) {
9 if (|P| == 2) {

10 // Base case: v == rep(N, S, v)
11 } else {
12 // |P| > 2
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13 // Induction hypothesis: (\forall int i; i in tail(P);
14 // rep(N, S, i) == rep(N, S, S[v]))
15 lemma_11_uf(N, S, S[v], tail(P));
16 assert P == [v] + tail(P); // Explicit assert needed
17 }
18 }

56



B. Proving transitivity of ExFittingPath
We provide the following PVL proof to prove that in fact, concatenating two fitting paths (x −−→

C1

∗ y

and y −−→
C2

∗ z results in a fitting path x −−−−−→
CTotal

∗ z. This PVL prove uses ExFittingPath, proving

the existence of the concatenated path. In these lemmas G denotes the graph, and N denotes the
number of vertices of G. C, C1, C2 and CTotal are sets of vertices in which the paths are contained.

Listing B.1: ExFittingPath transitivity lemmas

1 inline static boolean Lemma_ExFittingPath_Transitivity_Pure(int N,
2 seq<seq<boolean>> G, int x, int y, int z, set<int> C) =
3 Lemma_ExFittingPath_Transitivity_Pure2(N, G, x, y, z, C, C, C);
4
5 requires AdjacencyMatrix(N, G);
6 requires ExFittingPath(N, G, x, y, 1, C1);
7 requires ExFittingPath(N, G, y, z, 1, C2);
8 requires C1 <= CTotal && C2 <= CTotal;
9 ensures (\exists seq<int> P; 1 <= |P|;

10 FittingPath(N, G, x, y, P, C1) && (\exists seq<int> Q; 1 <= |Q|;
11 FittingPath(N, G, y, z, Q, C2) &&
12 FittingPath(N, G, x, z, P + tail(Q), CTotal)
13 )
14 );
15 ensures \result == ExFittingPath(N, G, x, z, 1, CTotal);
16 static boolean Lemma_ExFittingPath_Transitivity_Pure2(int N,
17 seq<seq<boolean>> G, int x, int y, int z, set<int> C1, set<int> C2,
18 set<int> CTotal) = true;
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C. Proving HistoryRepresentedByRoots
for StackCollapse
Here we present a lemma for proving that HistoryRepresentedByRoots (Definition 8) still holds
after one call to uniteRoots in StackCollapse (Listing 3.18, line 7). The lemma itself is recursive
and calls into two other lemmas, but we guarantee termination because |H| is decreased with every
lemma call.

Listing C.1: Lemma for proving HistoryRepresentedByRoots NonEmpty(N,H,R, S) still holds
after one uniteRoots.

1 requires History(N, H) && Stack(N, oldR) && Stack(N, newR) && UnionFind(
N, oldS) && UnionFind(N, newS);

2 requires |oldR| >= 2 && |H| >= |oldR|;
3 requires newR == getFst(pop(N, oldR));
4 requires (\forall int r; r in oldR; rep(N, oldS, r) == r);
5 requires newS == oldS[SB.top(N, oldR) -> SB.top(N, newR)];
6 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) == {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, top(N, newR)));
7 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) != {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
8 requires HistoryRepresentedByRoots4_NonEmpty(N, H, oldR, oldS);
9 ensures HistoryRepresentedByRoots4_NonEmpty(N, H, newR, newS);

10 static void Lemma_HistoryRepresentedByRoots4_NonEmpty_StackCollapse(
11 int N, seq<int> H, seq<int> oldR, seq<int> oldS, seq<int> newR, seq<

int> newS) {
12
13 //all roots are still the same as before, and they are still their

own reps.
14 assert (\forall int i; 0 <= i && i < |newR|-1;
15 rep(N, oldS, newR[i]) == rep(N, newS, newR[i]) &&
16 rep(N, newS, newR[i]) == newR[i]
17 );
18
19 int v = last(H);
20 assert rep(N, newS, v) == top(N, newR);
21 assert v != rep(N, newS, v);
22 assert v != top(N, newR);
23
24 // What should the proof look like?
25 // we should recurse over the invariant as long as |R| >= 2
26 // and prove HistoryRepresentedByRoots4_NonEmpty(N, init(H), newR,

newS)
27 // and then combine that with rep(N, newS, v) == top(N, newR) in

order to prove
28 // HistoryRepresentedByRoots4_NonEmpty(N, H, newR, newS).
29
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30 if (|H| > |oldR|) {
31
32 if (HistoryRepresentedByRoots4_NonEmpty(N, init(H), oldR, oldS))

{
33 Lemma_HistoryRepresentedByRoots4_NonEmpty_StackCollapse(N,

init(H), oldR, oldS, newR, newS);
34 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H), newR,

newS);
35 assert |H| > |newR|;
36 assert HistoryRepresentedByRoots4_NonEmpty(N, H, newR, newS)

;
37 } else {
38 assert !HistoryRepresentedByRoots4_NonEmpty(N, init(H), oldR

, oldS);
39
40 if (rep(N, oldS, v) == v) {
41 assert v == top(N, oldR);
42 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H),

getFst(pop(N, oldR)), oldS);
43 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H),

newR, oldS);
44 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_1(N,

init(H), top(N, oldR), top(N, newR), oldS, newS,
newR);

45 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H),
newR, newS);

46 assert HistoryRepresentedByRoots4_NonEmpty(N, H, newR,
newS);

47 } else {
48 assert rep(N, oldS, v) != v;
49 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H),

oldR, oldS); //contradicts !
HistoryRepresentedByRoots4_NonEmpty(N, init(H), oldR
, oldS);

50 assert false;
51 }
52 }
53
54 } else {
55 assert |H| == |oldR|;
56 assert |H| >= 2;
57 assert rep(N, oldS, v) == top(N, oldR);
58
59 if (v == rep(N, oldS, v)) {
60 assert |oldR| >= 2;
61 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H),

getFst(pop(N, oldR)), oldS);
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62 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H), newR,
oldS);

63 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_3(N, init(H)
, top(N, oldR), top(N, newR), oldS, newS, newR);

64 assert HistoryRepresentedByRoots4_NonEmpty(N, init(H), newR,
newS);

65 assert |H| > |newR|;
66 assert rep(N, newS, v) == top(N, newR);
67 assert HistoryRepresentedByRoots4_NonEmpty(N, H, newR, newS)

;
68 } else {
69 assert |H| > |oldR|; //contradicts |H| == |oldR|;
70 assert false;
71 }
72 }
73
74 assert HistoryRepresentedByRoots4_NonEmpty(N, H, newR, newS);
75 }
76
77 requires History(N, iH) && ru(oldTop, N) && ru(newTop, N) && UnionFind(N

, oldS) && UnionFind(N, newS) && Stack(N, theR);
78 requires |iH| > |theR| && |iH| > 0 && |theR| > 0;
79 requires oldTop == rep(N, oldS, oldTop);
80 requires newTop == rep(N, newS, newTop);
81 requires newS == oldS[oldTop -> newTop];
82 requires (\forall int i; ru(i, N) && rep(N, oldS, oldTop) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, newTop));
83 requires (\forall int i; ru(i, N) && rep(N, oldS, oldTop) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
84 requires (\forall int r; r in theR; rep(N, oldS, r) == r);
85 requires (\forall int r; r in theR; rep(N, newS, r) == r);
86 requires HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, oldS);
87 ensures HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
88 static void Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_1
89 (int N, seq<int> iH, int oldTop, int newTop, seq<int> oldS, seq<int>

newS, seq<int> theR) {
90
91 int u = last(iH);
92
93 //why is historyRepresentedByRootsLast3(N, initH, theR, newS) true?
94 // because S still points to the same reps for all possible roots!!
95 // so we just unfold, and perform a recursive call :)
96
97 assert |iH| >= 2;
98
99 if (u == rep(N, oldS, u)) {
100 assert u == top(N, theR);
101 assert |theR| >= 2;
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102 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH), getFst(
pop(N, theR)), oldS);

103 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_1(N, init(iH),
oldTop, newTop, oldS, newS, getFst(pop(N, theR)));

104 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH), getFst(
pop(N, theR)), newS);

105 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
106 } else {
107 assert u != rep(N, oldS, u);
108 assert |iH| > |theR|;
109 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH), theR,

oldS);
110 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_2(N, init(iH),

oldTop, newTop, oldS, newS, theR);
111 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH), theR,

newS);
112 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
113 }
114
115 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
116 }
117
118 requires History(N, iH) && ru(oldTop, N) && ru(newTop, N) && UnionFind(N

, oldS) && UnionFind(N, newS) && Stack(N, theR);
119 requires |iH| >= |theR| && |iH| > 0 && |theR| > 0;
120 requires oldTop == rep(N, oldS, oldTop) && newTop == rep(N, newS, newTop

);
121 requires newS == oldS[oldTop -> newTop];
122 requires (\forall int i; ru(i, N) && rep(N, oldS, oldTop) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, newTop));
123 requires (\forall int i; ru(i, N) && rep(N, oldS, oldTop) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
124 requires (\forall int r; r in theR; rep(N, oldS, r) == r);
125 requires (\forall int r; r in theR; rep(N, newS, r) == r);
126 requires HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, oldS);
127 ensures HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
128 static void Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_2
129 (int N, seq<int> iH, int oldTop, int newTop, seq<int> oldS, seq<int>

newS, seq<int> theR) {
130
131 //why is historyRepresentedByRootsLast3(N, iH, theR, newS) true?
132 // because S still points to the same reps for all possible roots!!
133 // so we just unfold, and perform a recursive call :)
134
135 int u = last(iH);
136
137 //unfold:
138 if (u == top(N, theR)) {
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139 if (|iH| == 1 && |theR| == 1) {
140 assert [u] == iH;
141 assert [u] == theR;
142 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS

);
143 } else {
144 assert |iH| >= 2;
145 assert |theR| >= 2;
146 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH),

getFst(pop(N, theR)), oldS);
147 if (|iH| > |theR|) {
148 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_1(N,

init(iH), oldTop, newTop, oldS, newS, getFst(pop(N,
theR)));

149 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH),
getFst(pop(N, theR)), newS);

150 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR,
newS);

151 } else {
152 assert |iH| == |theR|;
153 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_2(N, iH,

oldTop, newTop, oldS, newS, theR);
154 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR,

newS);
155 }
156 }
157 } else {
158 assert u != top(N, theR);
159 assert |iH| >= 2;
160 assert |iH| > |theR|;
161 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH), theR,

oldS);
162 assert u != rep(N, oldS, u);
163 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_2(N, init(iH),

oldTop, newTop, oldS, newS, theR);
164 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH), theR,

newS);
165 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
166 }
167
168 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
169 }
170
171 requires History(N, iH) && ru(oldTop, N) && ru(newTop, N) && UnionFind(N

, oldS) && UnionFind(N, newS) && Stack(N, theR);
172 requires |iH| == |theR| && |iH| > 0 && |theR| > 0;
173 requires oldTop == rep(N, oldS, oldTop) && newTop == rep(N, newS, newTop

);
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174 requires newS == oldS[oldTop -> newTop];
175 requires (\forall int i; ru(i, N) && rep(N, oldS, oldTop) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, newTop));
176 requires (\forall int i; ru(i, N) && rep(N, oldS, oldTop) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
177 requires (\forall int r; r in theR; rep(N, oldS, r) == r);
178 requires (\forall int r; r in theR; rep(N, newS, r) == r);
179 requires HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, oldS);
180 ensures HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
181 static void Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_3
182 (int N, seq<int> iH, int oldTop, int newTop, seq<int> oldS, seq<int>

newS, seq<int> theR) {
183
184 int v = last(iH);
185 assert rep(N, oldS, v) == top(N, theR);
186 if (|iH| >= 2) {
187 if (v == rep(N, oldS, v)) {
188 assert |theR| >= 2;
189 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH),

getFst(pop(N, theR)), oldS);
190 Lemma_HistoryRepresentedByRoots4_NonEmpty_unite_3(N, init(iH

), oldTop, newTop, oldS, newS, getFst(pop(N, theR)));
191 assert HistoryRepresentedByRoots4_NonEmpty(N, init(iH),

getFst(pop(N, theR)), newS);
192 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS

);
193 } else {
194 assert |iH| > |theR|; //violation of precondition |iH| == |

theR|
195 assert false;
196 }
197 }
198
199 assert HistoryRepresentedByRoots4_NonEmpty(N, iH, theR, newS);
200 }
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D. Proving ConnectedPartitions for
StackCollapse
Here we present a dozen lemmas that were required to prove that StackCollapse preserves
ConnectedPartitions. Apart from Lemma Concatenation (which performs the final concatena-
tion of paths), all these lemmas are called in the body of the while loop, in order to proof preservation
of some loop invariants. These loop invariants correspond to the postconditions of the lemmas.

Listing D.1: Lemmas for proving ConnectedPartitions(N,G,R, S) at StackCollapse

1 requires AdjacencyMatrix(N, G) && UnionFind(N, oldS) && UnionFind(N,
newS) && Stack(N, oldR) && Stack(N, newR) && ru(v, N) && ru(w, N);

2 requires G[v][w];
3 requires |oldR| > 0 && |newR| > 0;
4 requires ConnectedPartitions2(N, G, oldS);
5 requires RootPath2(N, G, oldR, oldS);
6 requires top(N, oldR) == rep(N, oldS, v) && top(N, newR) == rep(N, newS,

v);
7 requires rep(N, oldS, w) == rep(N, newS, w) && rep(N, newS, w) == top(N,

newR);
8 requires (\forall int x; ru(x, N) && rep(N, newS, x) == top(N, newR);

ExFittingPath(N, G, rep(N, oldS, x), top(N, oldR), 1, part(N, newS,
top(N, newR))));

9 requires (\forall int x; ru(x, N) && rep(N, newS, x) == top(N, newR);
part(N, oldS, x) <= part(N, newS, top(N, newR)));

10 ensures (\forall int x; ru(x, N) && rep(N, newS, x) == top(N, newR);
ExPathToRep(N, G, newS, x));

11 static void Lemma_Concatenation(int N, seq<seq<boolean>> G,
12 seq<int> oldS, seq<int> newS,
13 seq<int> oldR, seq<int> newR,
14 int v, int w) {
15
16 loop_invariant rui(i, N);
17 loop_invariant (\forall int j; 0 <= j && j < i && rep(N, newS, j

) == top(N, newR); ExPathToRep(N, G, newS, j));
18 for (int i = 0; i < N; i++) {
19 if (rep(N, newS, i) == top(N, newR)) {
20 //concat:
21 //i ˜> \old(rep(i)) ˜> \old(rep(v)) ˜> v -> w ˜>

\old(rep(w)) = rep(w) = rep(v) = rep(i)
22
23 // i ˜> old(rep(i))
24 assert CP(N, G, oldS, i);
25 assert ExPathToRep(N, G, oldS, i);
26 set<int> C1 = part(N, oldS, i);
27 assert ExFittingPath(N, G, i, rep(N, oldS, i),

1, C1);
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28
29 // old(rep(i)) ˜> old(rep(v))
30 assert ExFittingPath(N, G, rep(N, oldS, i), top(

N, oldR), 1, part(N, newS, top(N, newR)));
//from precondition

31 set<int> C2 = part(N, newS, top(N, newR));
32 assert ExFittingPath(N, G, rep(N, oldS, i), top(

N, oldR), 1, C2); //substitute set
33 assert ExFittingPath(N, G, rep(N, oldS, i), rep(

N, oldS, v), 1, C2); //substitute last
element of the path

34
35 // old(rep(v)) ˜> v
36 assert CP(N, G, oldS, v);
37 assert ExPathFromRep(N, G, oldS, v);
38 set<int> C3 = part(N, oldS, v);
39 assert ExFittingPath(N, G, rep(N, oldS, v), v,

1, C3);
40
41 // v -> w
42 set<int> C4 = {v, w};
43 assert FittingPath(N, G, v, w, [v, w], C4);
44 assert ExFittingPath(N, G, v, w, 1, C4);
45
46 // w ˜> old(rep(w))
47 assert CP(N, G, oldS, w);
48 assert ExPathToRep(N, G, oldS, w);
49 set<int> C5 = part(N, oldS, w);
50 assert ExFittingPath(N, G, w, rep(N, oldS, w),

1, C5);
51
52 //prove subsets!
53 assert C1 <= C2;
54 assert C3 <= C2;
55 assert C4 <= C2;
56 assert C5 <= C2;
57
58 //concat all the paths!
59 assert Lemma_ExFittingPath_Transitivity_Pure2(N,

G, i, rep(N, oldS, i), rep(N, oldS, v), C1,
C2, C2);

60 assert Lemma_ExFittingPath_Transitivity_Pure2(N,
G, i, rep(N, oldS, v), v, C2, C3, C2);

61 assert Lemma_ExFittingPath_Transitivity_Pure2(N,
G, i, v, w, C2, C4, C2);

62 assert Lemma_ExFittingPath_Transitivity_Pure2(N,
G, i, w, rep(N, oldS, w), C2, C5, C2);
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64 //final substitutions!
65 assert part(N, newS, top(N, newR)) == part(N,

newS, i);
66 assert ExFittingPath(N, G, i, rep(N, newS, w),

1, part(N, newS, i));
67 assert ExFittingPath(N, G, i, rep(N, newS, i),

1, part(N, newS, i));
68
69 //conclusion
70 assert ExPathToRep(N, G, newS, i);
71 }
72 }
73 }
74
75 requires UnionFind(N, oldS) && UnionFind(N, newS) && UnionFind(N,

originalS)
76 && Stack(N, oldR) && Stack(N, newR) && Stack(N, originalR)
77 && ru(rRecent, N) && ru(rOld, N);
78 requires rep(N, oldS, rRecent) == rRecent && rep(N, oldS, rOld) == rOld

&& rRecent != rOld; //last proposition is redundant
79 requires newS == oldS[rRecent -> rOld];
80 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, rOld));
81 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
82 requires |oldR| >= 2 && Prefix(oldR, originalR) && newR == getFst(pop(N,

oldR)) && Prefix(newR, originalR); //last proposition is redundant
83 requires rRecent == top(N, oldR) && rOld == top(N, newR);
84 requires (\forall int i; |oldR| - 1 <= i && i < |originalR|; {:part(N,

originalS, originalR[i]):} <= part(N, oldS, rRecent)); // don’t
_need_ this explicit trigger

85 requires part(N, originalS, rOld) == part(N, oldS, rOld);
86 ensures (\forall int i; |newR| - 1 <= i && i < |originalR|; part(N,

originalS, originalR[i]) <= part(N, newS, rOld));
87 static void Lemma_AllUnitedPartsAreSubsetOfPartV_Maintained(int N,
88 seq<int> oldS, seq<int> newS, seq<int> originalS,
89 seq<int> oldR, seq<int> newR, seq<int> originalR,
90 int rRecent, int rOld) {
91
92 set<int> mergedPartition = part(N, newS, rOld);
93 assert mergedPartition == part(N, oldS, rRecent) + part(N, oldS,

rOld);
94
95 assert part(N, oldS, rRecent) <= part(N, newS, rOld);
96
97 loop_invariant |oldR| - 1 <= i && i <= |originalR|;
98 loop_invariant (\forall int j; |oldR| - 1 <= j && j < i; part(N,

originalS, originalR[j]) <= part(N, newS, rOld));
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99 for (int i = |oldR| - 1; i < |originalR|; i++) {
100 assert part(N, originalS, originalR[i]) <= part(N, oldS,

rRecent); //precondition
101 assert part(N, oldS, rRecent) <= part(N, newS, rOld);

//result of ’unite’ (already proven
above)

102 assert part(N, originalS, originalR[i]) <= part(N, newS,
rOld); //transitivity of subset relation

103 }
104
105 assert (\forall int i; |oldR| - 1 <= i && i < |originalR|; part(

N, originalS, originalR[i]) <= part(N, newS, rOld));
106 assert |newR| == |oldR| - 1;
107 assert part(N, originalS, originalR[|newR|-1]) <= part(N, newS,

rOld);
108 assert (\forall int i; |newR| - 1 <= i && i < |originalR|; part(

N, originalS, originalR[i]) <= part(N, newS, rOld));
109 }
110
111 requires UnionFind(N, oldS) && UnionFind(N, newS) && UnionFind(N,

originalS)
112 && Stack(N, oldR) && Stack(N, newR) && Stack(N, originalR)
113 && ru(rRecent, N) && ru(rOld, N);
114 requires rep(N, oldS, rRecent) == rRecent && rep(N, oldS, rOld) == rOld

&& rRecent != rOld; //last proposition is redundant
115 requires newS == oldS[rRecent -> rOld];
116 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, rOld));
117 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
118 requires |oldR| >= 2 && Prefix(oldR, originalR) && newR == getFst(pop(N,

oldR)) && Prefix(newR, originalR); //last proposition is redundant
119 requires rRecent == top(N, oldR) && rOld == top(N, newR);
120 requires (\forall int i; 0 <= i && i < |oldR|; oldR[i] == rep(N, oldS,

oldR[i]));
121 requires (\forall int i; 0 <= i && i < |oldR| - 1; {:part(N, originalS,

originalR[i]):} == part(N, oldS, oldR[i])); // don’t
_need_ this explicit trigger.

122 ensures (\forall int i; 0 <= i && i < |newR| - 1; part(N, originalS,
originalR[i]) == part(N, newS, newR[i]));

123 static void Lemma_AllUnunitedPartsRemainTheSame(int N,
124 seq<int> oldS, seq<int> newS, seq<int> originalS,
125 seq<int> oldR, seq<int> newR, seq<int> originalR,
126 int rRecent, int rOld) {
127
128 assert (\forall int i; 0 <= i && i < |newR|;
129 rep(N, oldS, newR[i]) == rep(N, newS, newR[i]) &&
130 rep(N, newS, newR[i]) == newR[i]
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131 );
132
133 int i = 0;
134
135 loop_invariant 0 <= i && i <= |newR| - 1;
136 loop_invariant (\forall int j; 0 <= j && j < i; part(N,

originalS, originalR[j]) == part(N, newS, newR[j]));
137 while (i < |newR| - 1) {
138 int r = newR[i];
139 assert r == originalR[i] && r == oldR[i];
140 assert r != rRecent && r != rOld;
141
142 assert rep(N, newS, r) == rep(N, oldS, r);

//precondition (all
elements in R are their own rep)

143 assert part(N, originalS, r) == part(N, oldS, r);
//precondition (instantiate \

forall, substitute originalR[i] with r, and oldR[i]
with r)

144 assert part(N, oldS, r) == part(N, newS, r);
//by ’unite’

145 assert part(N, originalS, r) == part(N, newS, r);
//by transitivity of ’==’

146 assert part(N, originalS, originalR[i]) == part(N, newS,
newR[i]); //substitute r for originalR[i] and

newR[i].
147 assert (\forall int j; 0 <= j && j <= i; part(N,

originalS, originalR[j]) == part(N, newS, newR[j]));
//unify //does work in this file!

148 i++;
149 assert (\forall int j; 0 <= j && j < i; part(N,

originalS, originalR[j]) == part(N, newS, newR[j]));
150 }
151
152 assert (\forall int i; 0 <= i && i < |newR| - 1; part(N,

originalS, originalR[i]) == part(N, newS, newR[i]));
153 }
154
155 requires AdjacencyMatrix(N, G);
156 requires UnionFind(N, oldS);
157 requires UnionFind(N, newS);
158 requires ru(rRecent, N);
159 requires ru(rOld, N);
160 requires newS == oldS[rRecent -> rOld];
161 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, rOld));
162 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
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163 requires rep(N, oldS, rRecent) == rRecent;
164 requires rep(N, oldS, rOld) == rOld;
165 requires (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent; {:CP(N,

G, oldS, x):});
166 ensures (\forall int x; ru(x, N) && rep(N, newS, x) != rOld; {:CP(N, G,

newS, x):});
167 static void Lemma_CP_x_not_in_part_V(int N, seq<seq<boolean>> G, seq<int

> oldS, seq<int> newS, int rRecent, int rOld) {
168
169 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;

part(N, oldS, x) <= part(N, newS, x));
170
171 //reps are still the same!
172 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;

rep(N, oldS, x) == rep(N, newS, x));
173 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;

!(x in part(N, oldS, rRecent)));
174
175 //if x is not in v’s partition now, it also wasn’t before.
176 assert (\forall int x; ru(x, N) && !(x in part(N, newS, rOld));

!(x in part(N, oldS, rRecent)));
177 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;

rep(N, oldS, x) == rep(N, newS, x));
178
179 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;
180 Lemma_CP_Maintained_Pure(N, G, oldS, newS, x)
181 );
182
183 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;

{:CP(N, G, newS, x):});
184
185 assert (\forall int x; ru(x, N) && rep(N, newS, x) != rOld; {:CP

(N, G, newS, x):});
186 }
187
188 requires AdjacencyMatrix(N, G) && UnionFind(N, oldS) && UnionFind(N,

newS) && ru(rRecent, N) && ru(rOld, N);
189 requires rep(N, oldS, rRecent) == rRecent && rep(N, oldS, rOld) == rOld

&& rRecent != rOld;
190 requires newS == oldS[rRecent -> rOld];
191 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, rOld));
192 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
193 requires ExFittingPath(N, G, rOld, rRecent, 1, part(N, oldS, rOld) + {

rRecent}); //by RootPath // change to "RootPath2(N, G
, oldR, oldS)" maybe?
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194 requires (\forall int x; ru(x, N) && rep(N, oldS, x) == rRecent;
ExPathFromRep(N, G, oldS, x)); //by CP

195 requires (\forall int x; ru(x, N) && rep(N, oldS, x) == rOld; CP(N, G,
oldS, x)); //by CP // change to "rep(N, oldS, x) !=
rRecent" maybe?

196 ensures (\forall int x; ru(x, N) && rep(N, newS, x) == rOld;
ExPathFromRep(N, G, newS, x));

197 static void Lemma_RepXToX_Maintained(int N, seq<seq<boolean>> G, seq<int
> oldS, seq<int> newS, int rRecent, int rOld) {

198 assert (\forall int i; ru(i, N) && {:rep(N, oldS, i):} == rOld;
rep(N, newS, i) == rOld);

199
200 set<int> newPartV = part(N, oldS, rRecent) + part(N, oldS, rOld)

;
201 assert part(N, newS, rOld) == newPartV;
202
203 assert ExFittingPath(N, G, rOld, rRecent, 1, part(N, oldS, rOld)

+ {rRecent});
204
205 int i = 0;
206 loop_invariant rui(i, N);
207 loop_invariant (\forall int x; ru(x, i) && rep(N, newS, x) ==

rOld; ExPathFromRep(N, G, newS, x));
208 while (i < N) {
209 if (rep(N, newS, i) == rOld) {
210 assert rep(N, oldS, i) == rRecent || rep(N, oldS

, i) == rOld;
211 if (rep(N, oldS, i) == rOld) {
212 //old rep of i is rOld. Re-use existing

path "rOld ˜> i".
213 assert rep(N, newS, i) == rep(N, oldS, i

);
214 assert rep(N, newS, i) == rOld;
215 assert CP(N, G, oldS, i);

//from precondition
216 assert ExPathFromRep(N, G, oldS, i);

//part of definition of CP
217 assert Lemma_PathFromRep_Maintained_Pure

(N, G, oldS, newS, i);
218 assert ExPathFromRep(N, G, newS, i);
219 } else {
220 //old rep of i is rRecent. So we concat

the paths "rOld ˜> rRecent" and "
rRecent ˜> i".

221 assert rep(N, oldS, i) == rRecent;
222 assert

Lemma_ExFittingPath_Transitivity_Pure2
(N, G, rOld, rRecent, i, part(N,
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oldS, rOld) + {rRecent}, part(N,
oldS, rRecent), newPartV);

223 assert ExFittingPath(N, G, rOld, i, 1,
newPartV);

224 assert ExPathFromRep(N, G, newS, i);
225 }
226 assert ExPathFromRep(N, G, newS, i);
227 }
228 i++;
229 }
230 }
231
232 requires AdjacencyMatrix(N, G) && Stack(N, oldR) && UnionFind(N, oldS)

&& Stack(N, newR) && UnionFind(N, newS);
233 requires |oldR| >= 2;
234 requires newR == getFst(pop(N, oldR));
235 requires ru(rRecent, N) && ru(rOld, N);
236 requires newS == oldS[rRecent -> rOld];
237 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) == {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, rOld));
238 requires (\forall int i; ru(i, N) && rep(N, oldS, rRecent) != {:rep(N,

oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
239 requires rep(N, oldS, rRecent) == rRecent && rep(N, oldS, rOld) == rOld;
240 requires rRecent == top(N, oldR) && rOld == top(N, newR);
241 requires RootPath2(N, G, oldR, oldS);
242 ensures RootPath2(N, G, newR, newS);
243 static void Lemma_RootPath_Maintained(int N, seq<seq<boolean>> G, seq<

int> oldR, seq<int> oldS, seq<int> newR, seq<int> newS, int rRecent,
int rOld) {

244
245 assert (\forall int x; ru(x, N); part(N, oldS, x) <= part(N,

newS, x));
246 assert (\forall int x; ru(x, N) && rep(N, oldS, x) != rRecent;

rep(N, oldS, x) == rep(N, newS, x));
247
248 assert RootPath2(N, G, oldR[0..|oldR|-1], oldS);
249 assert RootPath2(N, G, newR, oldS);
250 assert (\forall int i; ru(i, |newR|-1);

Lemma_RootPathPart_Maintained_Pure(N, G, oldS, newS, newR[i
], newR[i+1]));

251 assert RootPath2(N, G, newR, newS);
252 }
253
254 // Proves that for every node x where x is not represented by the new

top of the stack,
255 // the partition of x is in the original union-find is equal to x’s

current partition.
256 //
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257 requires AdjacencyMatrix(N, G) && Stack(N, newR) && Stack(N, oldR);
258 requires UnionFind(N, newS) && UnionFind(N, oldS) && UnionFind(N,

originalS);
259 requires |newR| > 0 && |oldR| > 0;
260 //
261 requires newR == getFst(pop(N, oldR));
262 requires newS == oldS[SB.top(N, oldR) -> SB.top(N, newR)];
263 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) == {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, top(N, newR)));
264 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) != {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
265 //
266 requires (\forall int i; ru(i, |oldR|); rep(N, oldS, oldR[i]) == oldR[i

]);
267 requires (\forall int i; ru(i, |newR|); rep(N, newS, newR[i]) == newR[i

]);
268 requires rep(N, oldS, top(N, oldR)) != rep(N, oldS, top(N, newR));
269 //
270 requires (\forall int x; ru(x, N) && rep(N, oldS, x) != top(N, oldR);

part(N, originalS, x) == part(N, oldS, x));
271 //
272 ensures (\forall int x; ru(x, N) && rep(N, newS, x) != top(N, newR);

part(N, originalS, x) == part(N, newS, x));
273 //
274 static void Lemma_repIsNotTop_implies_oldPartIsSame(int N, seq<seq<

boolean>> G,
275 seq<int> newS, seq<int> oldS, seq<int> originalS,
276 seq<int> newR, seq<int> oldR) {
277
278 int rOld = top(N, newR);
279 int rRecent = top(N, oldR);
280
281 loop_invariant rui(i, N);
282 loop_invariant (\forall int j; ru(j, i) && rep(N, newS, j) !=

rOld; part(N, originalS, j) == part(N, newS, j));
283 for (int i = 0; i < N; i++) {
284 int theRep = rep(N, newS, i);
285 if (theRep != rOld) {
286 assert theRep != rOld && theRep != rRecent;
287 assert rep(N, oldS, i) != rRecent;
288
289 assert rep(N, oldS, i) == rep(N, newS, i);
290 assert part(N, oldS, i) == part(N, newS, i);
291
292 assert part(N, originalS, i) == part(N, oldS, i)

;
293 assert part(N, originalS, i) == part(N, newS, i)

;
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294 }
295 }
296
297 assert (\forall int x; ru(x, N) && rep(N, newS, x) != top(N,

newR); part(N, originalS, x) == part(N, newS, x));
298 }
299
300 // Proves that for every node x where x is represented by the new top of

the stack,
301 // the partition of x is in the original union-find is a subset of

x’s current partition.
302 //
303 requires AdjacencyMatrix(N, G) && Stack(N, newR) && Stack(N, oldR);
304 requires UnionFind(N, newS) && UnionFind(N, oldS) && UnionFind(N,

originalS);
305 requires |newR| > 0 && |oldR| > 0;
306 //
307 requires newR == getFst(pop(N, oldR));
308 requires newS == oldS[SB.top(N, oldR) -> SB.top(N, newR)];
309 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) == {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, top(N, newR)));
310 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) != {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
311 //
312 requires (\forall int i; ru(i, |oldR|); rep(N, oldS, oldR[i]) == oldR[i

]);
313 requires (\forall int i; ru(i, |newR|); rep(N, newS, newR[i]) == newR[i

]);
314 requires rep(N, oldS, top(N, oldR)) != rep(N, oldS, top(N, newR));
315 //
316 requires (\forall int x; ru(x, N) && rep(N, oldS, x) != top(N, oldR);

part(N, originalS, x) == part(N, oldS, x));
317 requires (\forall int x; ru(x, N) && rep(N, oldS, x) == top(N, oldR);

part(N, originalS, x) <= part(N, oldS, top(N, oldR)));
318 //
319 ensures (\forall int x; ru(x, N) && rep(N, newS, x) == top(N, newR);

part(N, originalS, x) <= part(N, newS, top(N, newR)));
320 //
321 static void Lemma_repIsTop_implies_oldPartIsSubset(int N, seq<seq<

boolean>> G,
322 seq<int> newS, seq<int> oldS, seq<int> originalS,
323 seq<int> newR, seq<int> oldR) {
324
325 int rOld = top(N, newR);
326 int rRecent = top(N, oldR);
327
328 set<int> newPartV = part(N, newS, rOld);
329 assert newPartV == part(N, oldS, rRecent) + part(N, oldS, rOld);
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330
331 loop_invariant rui(i, N);
332 loop_invariant (\forall int j; ru(j, i) && rep(N, newS, j) ==

top(N, newR); part(N, originalS, j) <= part(N, newS, rOld));
333 for (int i = 0; i < N; i++) {
334 if (rep(N, newS, i) == rOld) {
335 assert rep(N, oldS, i) == rRecent || rep(N, oldS

, i) == rOld;
336
337 if (rep(N, oldS, i) == rOld) {
338 //old rep of i is rOld.
339
340 assert part(N, oldS, i) == part(N, oldS,

rOld);
341 assert part(N, originalS, i) == part(N,

oldS, i);
342 assert part(N, originalS, i) == part(N,

oldS, rOld);
343
344 assert part(N, originalS, i) <= newPartV

;
345 } else {
346 //old rep of i is rRecent.
347 assert rep(N, oldS, i) == rRecent;
348
349 assert part(N, oldS, i) == part(N, oldS,

rRecent);
350
351 assert part(N, originalS, i) <= part(N,

oldS, i);
352 assert part(N, oldS, i) <= newPartV;
353 assert part(N, originalS, i) <= newPartV

;
354 }
355
356 assert part(N, originalS, i) <= newPartV;
357 }
358 }
359
360 assert (\forall int x; ru(x, N) && rep(N, newS, x) == top(N,

newR); part(N, originalS, x) <= part(N, newS, top(N, newR)))
;

361 }
362
363 // Proves that for every node x that has as its new rep the top of the

stack,
364 // there exists a path from rep(N, \old(S), x) to top(N, \old(R))

contained within part(N, S, top(N, R)).
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365 //
366 requires AdjacencyMatrix(N, G);
367 requires Stack(N, originalR) && Stack(N, oldR) && Stack(N, newR);
368 requires UnionFind(N, originalS) && UnionFind(N, oldS) && UnionFind(N,

newS);
369 requires |originalR| > 0 && |oldR| > 0 && |newR| > 0;
370 //
371 requires newR == getFst(pop(N, oldR));
372 requires Prefix(oldR, originalR);
373 requires newS == oldS[SB.top(N, oldR) -> SB.top(N, newR)];
374 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) == {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, top(N, newR)));
375 requires (\forall int i; ru(i, N) && rep(N, oldS, top(N, oldR)) != {:rep

(N, oldS, i):}; rep(N, newS, i) == rep(N, oldS, i));
376 //
377 requires (\forall int i; ru(i, |originalR|); rep(N, originalS, originalR

[i]) == originalR[i]);
378 requires (\forall int i; ru(i, |oldR|); rep(N, oldS, oldR[i]) == oldR[i

]);
379 requires (\forall int i; ru(i, |newR|); rep(N, newS, newR[i]) == newR[i

]);
380 requires rep(N, oldS, top(N, oldR)) != rep(N, oldS, top(N, newR));
381 requires ExFittingPath(N, G, top(N, newR), top(N, oldR), 1, part(N, oldS

, top(N, newR)) + {top(N, oldR)});
382 //
383 requires (\forall int i; |newR| - 1 <= i && i < |originalR|; part(N,

originalS, originalR[i]) <= part(N, newS, top(N, newR)));
384 requires (\forall int i; |newR| - 1 <= i && i < |originalR|; rep(N, newS

, originalR[i]) == top(N, newR));
385 requires RootPath2(N, G, originalR, originalS);
386 requires (\forall int x; ru(x, N) && rep(N, oldS, x) != top(N, oldR);

rep(N, oldS, x) == rep(N, originalS, x));
387 requires (\forall int x; ru(x, N) && rep(N, oldS, x) == top(N, oldR);
388 ExFittingPath(N, G, rep(N, originalS, x), top(N, originalR), 1,

part(N, oldS, top(N, oldR))));
389 //
390 ensures (\forall int x; ru(x, N) && rep(N, newS, x) == top(N, newR);
391 ExFittingPath(N, G, rep(N, originalS, x), top(N, originalR), 1,

part(N, newS, top(N, newR))));
392 //
393 static void Lemma_PathToOldRepV(int N, seq<seq<boolean>> G,
394 seq<int> originalR, seq<int> oldR, seq<int> newR,
395 seq<int> originalS, seq<int> oldS, seq<int> newS) {
396
397 int rRecent = top(N, oldR);
398 int rOld = top(N, newR);
399
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400 set<int> newPartV = part(N, oldS, rRecent) + part(N, oldS, rOld)
;

401 assert part(N, newS, rOld) == newPartV;
402
403 int i = 0;
404 loop_invariant rui(i, N);
405 loop_invariant (\forall int x; ru(x, i) && rep(N, newS, x) ==

rOld;
406 ExFittingPath(N, G, rep(N, originalS, x), top(N,

originalR), 1, part(N, newS, rOld)));
407 while (i < N) {
408 if (rep(N, newS, i) == rOld) {
409 assert rep(N, oldS, i) == rRecent || rep(N, oldS

, i) == rOld;
410 if (rep(N, oldS, i) == rOld) {
411 //old rep of i is rOld. So we concat the

paths "rOld ˜> rRecent" and "
rRecent ˜> originalTop".

412 assert rep(N, originalS, i) == rOld;
413 assert RootPath2(N, G, originalR,

originalS);
414
415 Lemma_RootPathToTop_All(N, G, originalR,

originalS, newPartV, |newR|-1);
416 assert (\forall int j; |newR|-1 <= j &&

j < |originalR|; ExFittingPath(N, G,
originalR[j], top(N, originalR), 1,
newPartV));

417 assert ExFittingPath(N, G, rRecent, top(
N, originalR), 1, newPartV);

418 assert
Lemma_ExFittingPath_Transitivity_Pure2
(N, G, rOld, rRecent, top(N,
originalR), part(N, oldS, top(N,
newR)) + {top(N, oldR)}, newPartV,
newPartV);

419 assert ExFittingPath(N, G, rOld, top(N,
originalR), 1, newPartV);

420
421 assert ExFittingPath(N, G, rep(N,

originalS, i), top(N, originalR), 1,
newPartV);

422 } else {
423 //old rep of i is rRecent. So we re-use

the existing path "rRecent ˜>
originalTop"

424 assert rep(N, oldS, i) == rRecent;
425
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426 assert ExFittingPath(N, G, rep(N,
originalS, i), top(N, originalR), 1,
part(N, oldS, top(N, oldR))); //
precondition

427 assert ExFittingPath(N, G, rep(N,
originalS, i), top(N, originalR), 1,
part(N, oldS, rRecent)); //
substitute

428
429 assert part(N, oldS, rRecent) <=

newPartV;
430 assert (\exists seq<int> P; 1 <= |P|;
431 FittingPath(N, G, rep(N,

originalS, i), top(N,
originalR), P, part(N, oldS,
rRecent)) ==>

432 FittingPath(N, G, rep(N,
originalS, i), top(N,
originalR), P, newPartV));

433
434 assert ExFittingPath(N, G, rep(N,

originalS, i), top(N, originalR), 1,
newPartV);

435 }
436
437 assert ExFittingPath(N, G, rep(N, originalS, i),

top(N, originalR), 1, newPartV);
438 }
439 i++;
440 }
441
442 assert (\forall int x; ru(x, N) && rep(N, newS, x) == top(N,

newR);
443 ExFittingPath(N, G, rep(N, originalS, x), top(N,

originalR), 1, part(N, newS, top(N, newR))));
444 }
445
446 requires AdjacencyMatrix(N, G);
447 requires UnionFind(N, oldS);
448 requires UnionFind(N, newS);
449 requires ru(x, N);
450 requires part(N, oldS, x) <= part(N, newS, x);
451 requires rep(N, oldS, x) == rep(N, newS, x);
452 requires CP(N, G, oldS, x);
453 ensures ExPathToRep(N, G, oldS, x) && ExPathFromRep(N, G, oldS, x);
454 ensures (\exists seq<int> P; 1 <= |P|;
455 FittingPath(N, G, x, rep(N, oldS, x), P, part(N, oldS, x)) ==>
456 FittingPath(N, G, x, rep(N, newS, x), P, part(N, newS, x)));
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457 ensures (\exists seq<int> P; 1 <= |P|;
458 FittingPath(N, G, rep(N, oldS, x), x, P, part(N, oldS, x)) ==>
459 FittingPath(N, G, rep(N, newS, x), x, P, part(N, newS, x)));
460 ensures \result == CP(N, G, newS, x);
461 static pure boolean Lemma_CP_Maintained_Pure(int N, seq<seq<boolean>> G,

seq<int> oldS, seq<int> newS, int x) = true;
462
463 requires AdjacencyMatrix(N, G) && UnionFind(N, oldS) && UnionFind(N,

newS) && ru(x, N);
464 requires part(N, oldS, x) <= part(N, newS, x) && rep(N, oldS, x) == rep(

N, newS, x);
465 requires ExPathFromRep(N, G, oldS, x);
466 ensures (\exists seq<int> P; 1 <= |P|;
467 FittingPath(N, G, rep(N, oldS, x), x, P, part(N, oldS, x)) ==>
468 FittingPath(N, G, rep(N, newS, x), x, P, part(N, newS, x)));
469 ensures ExPathFromRep(N, G, newS, x);
470 static pure boolean Lemma_PathFromRep_Maintained_Pure(int N, seq<seq<

boolean>> G, seq<int> oldS, seq<int> newS, int x) = true;
471
472 requires AdjacencyMatrix(N, G);
473 requires UnionFind(N, oldS);
474 requires UnionFind(N, newS);
475 requires ru(start, N);
476 requires ru(end, N);
477 requires part(N, oldS, start) <= part(N, newS, start); //in reality they

are always equal, but that is harder to prove.
478 requires ExFittingPath(N, G, start, end, 1, part(N, oldS, start) + {end

});
479 ensures (\exists seq<int> P; 1 <= |P|;
480 FittingPath(N, G, start, end, P, part(N, oldS, start) + {end})

==>
481 FittingPath(N, G, start, end, P, part(N, newS, start) + {end}));
482 ensures ExFittingPath(N, G, start, end, 1, part(N, newS, start) + {end})

;
483 static pure boolean Lemma_RootPathPart_Maintained_Pure(int N, seq<seq<

boolean>> G, seq<int> oldS, seq<int> newS, int start, int end) =
true;

484
485 // Proves that there exists a path in the graph from R[i] to top(N, R),

fitting in CTotal.
486 //
487 requires AdjacencyMatrix(N, G) && Stack(N, R) && UnionFind(N, S) && ru(r

, N);
488 requires |R| > 0 && RootPath2(N, G, R, S);
489 requires 0 <= i && i < |R|;
490 requires (\forall int j; 0 <= j && j < |R|; rep(N, S, R[j]) == R[j]);
491 requires R[i] == r; // && r == rep(N, S, r);
492 requires (\forall int j; i <= j && j < |R|; part(N, S, R[j]) <= CTotal);
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493 ensures ExFittingPath(N, G, r, top(N, R), 1, CTotal);
494 static void Lemma_RootPathToTop(int N, seq<seq<boolean>> G, seq<int> R,

seq<int> S, int r, int i, set<int> CTotal) {
495 assert part(N, S, r) <= CTotal;
496 assert r in CTotal;
497
498 if (i == |R| - 1) {
499 assert r == top(N, R);

// base case:
500 assert FittingPath(N, G, r, r, [r], CTotal);
501 assert ExFittingPath(N, G, r, r, 1, CTotal);
502 assert ExFittingPath(N, G, r, top(N, R), 1, CTotal);

// top can always reach itself, path = [top(N
, R)]

503 } else {
504 int nextRoot = R[i+1];

// inductive
case:

505 set<int> subset = part(N, S, r) + {nextRoot};
506 assert ExFittingPath(N, G, r, nextRoot, 1, subset);

// head segment - from RootPath2
precondition

507
508 Lemma_RootPathToTop(N, G, R, S, nextRoot, i+1, CTotal);

// recurse!
509 assert ExFittingPath(N, G, nextRoot, top(N, R), 1,

CTotal); // tail segments
510
511 assert Lemma_ExFittingPath_Transitivity_Pure2(N, G, r,

nextRoot, top(N, R), subset, CTotal, CTotal); //
concat head and tail segments

512 assert ExFittingPath(N, G, r, top(N, R), 1, CTotal);
// conclusion!

513 }
514
515 assert ExFittingPath(N, G, r, top(N, R), 1, CTotal);
516 }
517
518 //’for all indices after the splitPoint’:
519 requires AdjacencyMatrix(N, G) && Stack(N, R) && UnionFind(N, S) && ru(

splitPoint, |R|);
520 requires |R| > 0 && RootPath2(N, G, R, S);
521 requires (\forall int j; 0 <= j && j < |R|; rep(N, S, R[j]) == R[j]);
522 requires (\forall int j; splitPoint <= j && j < |R|; part(N, S, R[j]) <=

CTotal);
523 ensures (\forall int i; splitPoint <= i && i < |R|; ExFittingPath(N, G,

R[i], top(N, R), 1, CTotal));
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524 static void Lemma_RootPathToTop_All(int N, seq<seq<boolean>> G, seq<int>
R, seq<int> S, set<int> CTotal, int splitPoint) {

525
526 loop_invariant splitPoint <= idx && idx <= |R|;
527 loop_invariant (\forall int k; splitPoint <= k && k < idx;

ExFittingPath(N, G, R[k], top(N, R), 1, CTotal));
528 for (int idx = splitPoint; idx < |R|; idx++) {
529 int r = R[idx];
530 Lemma_RootPathToTop(N, G, R, S, r, idx, CTotal);
531 }
532
533 assert (\forall int i; splitPoint <= i && i < |R|; ExFittingPath

(N, G, R[i], top(N, R), 1, CTotal));
534 }
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