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Abstract

Barrier coasts are characterised by a chain of barrier islands, separated by tidal inlets
that connect the outer sea to the basin. Improving our understanding of these is cru-
cial in managing these areas, which are often subject to conflicting interests between
ecology, economy and coastal safety. This study focuses on cross-sectional stability
(whether the system returns to equilibrium after a perturbation) and connectivity
(to which extent perturbations at one inlet lead to cross-sectional changes of other
inlets) of double and triple inlet systems. For this purpose, an idealised process-based
model based in the Escoffier (1940) principle is developed, that allows for basins with
plan view shape like the sector of a circle and for a tidal divide to be present along a
constant radial coordinate. It is investigated how tidal inlet stability and connectiv-
ity are influenced by 1) changing to this sectoral basin geometry; 2) changing from a
double to a triple inlet system; 3) including a tidal divide circumventing the middle
inlet. The results, obtained for symmetric systems, indicate that the basin area is a
key factor in inlet stability and connectivity and that including such a tidal divide
reduces the connectivity between all inlets. Furthermore, a direct correlation between
asymmetry in the cross-sectional area of the inlets and asymmetry in the inlet con-
nectivity is found, independent of the presence of the tidal divide but dependent on
the basin area, resulting from the competition between the bottom friction in and
pressure-gradient over the inlets.

Keywords: Barrier coast, tidal inlet stability, connectivity, tidal divide.

Samenvatting

Barrière kusten worden gekenmerkt door een rij van barrière eilanden, gescheiden
door zeegaten die de zee verbinden met de binnenzee. Voor het succesvol beheren
van dit soort gebieden is fundamenteel begrip van deze gebieden van essentieel be-
lang, aangezien dit soort gebieden vaak onderhevig zijn aan verschillende belangen
op het gebied van ecologie, economie en kustonderhoud. Deze studie focust op de
stabiliteit van de dwarsdoorsnede (of het systeem terugkeert naar equilibrium als het
verstoord wordt) en connectiviteit (in hoeverre een verstoring van één zeegat leidt tot
grootte-veranderingen van de andere zeegaten) in systemen met twee en drie zeegaten.
Daartoe is een gëıdealiseerd model ontwikkeld, gebasseerd op het principe van Es-
coffier (1940), waarin binnenzeeën met een bovenaanzicht als een sector van een cirkel
gemodelleerd worden en waarin een wantij langs een constante radiale coordinaat kan
worden aangebracht. Hiermee wordt onderzocht hoe de stabiliteit en connectiviteit
van de zeegaten bëınvloed wordt door 1) het modelleren van de binnenzee als een
sector van een cirkel; 2) het uitbreiden van het systeem van twee naar drie zeegaten;
3) en het meenemen van een wantij rondom het middelste zeegat. De resultaten voor
symmetrische systemen laten zien dat de oppervlakte van de binnenzee van groot be-
lang is op de stabiliteit en connectiviteit en dat het meenemen van het wantij leidt tot
een lagere connectiviteit tussen alle zeegaten. Daarnaast is er een directe correlatie
gevonden tussen asymmetrie in de oppervlakte van de zeegaten en de asymmetrie in
de connectiviteit. Dit is onafhankelijk van de aanwezigheid van het wantij en het
gevolg van de bodemfrictie in en het drukverschil over de zeegaten.
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1 Introduction

W
orldwide, roughly 40 per cent of the world pop-
ulation lives close to the coast. Furthermore,
10 to 15% of the worldwide coastline is classi-

fied as a so-called barrier coast (De Swart & Zimmerman,
2009). As this type of coast is generally used for many
different activities, ranging from fishery and navigation to
wildlife excursions, these areas can be subject to conflict-
ing interests between ecology, economy and coastal safety
(Brouwer et al., 2013). Furthermore, research has shown
that local interventions can result in large-scale changes
in these areas (e.g. Reef et al., 2020), yielding the need
for a detailed understanding of the dynamics in barrier
coasts. Key questions to answer are, for instance, whether
a barrier coast will persist in its current shape on large
timescales and to what extent small local perturbations
lead to changes elsewhere in the system.

A barrier coast (see Figure 1a for an example) is char-
acterised by the presence of one or more barrier island(s),
separating the sea from a back-barrier basin. The basin
and sea are connected by one or more tidal inlets, allow-
ing the tidal motion to propagate into the basin (De Swart
& Zimmerman, 2009). Due to wind waves and tidal cur-
rents, a sediment flow (littoral drift) along the seaward
shore of the barrier islands exists. Upon reaching the in-
lets, part of this sediment will be transported into the
inlet by the tidal current, allowing sedimentation of the
inlet to occur (De Swart & Zimmerman, 2009). Contrast-
ingly, strong inlet flow can lead to inlet erosion, adding
sediment to the long-shore transport. As such, the tidal
flow through the inlets can lead to morphodynamic devel-
opment of the inlets, which, in turn, can influence the inlet
flows via depth-dependent bottom friction and a smaller
cross-sectional inlet area available to transport the tidal
prism. Hence, a strong feedback is potentially present in
the system.

In this study, we specifically focus on the Western
Wadden Sea (the Netherlands), one of the world’s most
prominent mesotidal barrier coasts and acknowledged as
UNESCO World Heritage due to its ecological value (UN-
ESCO World Heritage Centre, 2009). In Figure 1a, a
satellite view of this area is given, showing that the sys-
tem consists of three inlets, with a tidal divide (white
lines) separating the middle inlet (Eierlandse Gat) from
the other two inlets (the Texel and Vlie inlets). Another
tidal divide separates the basin between the Texel and Vlie
inlets.

One of the key properties of the behaviour of a barrier
coast is whether one or multiple inlets will close on a mor-
phodynamic timescale (order of decades to centuries), as it
is known that tidal inlets can close as a result of sedimen-
tation (De Swart & Zimmerman, 2009). Mathematically,
this can be quantified by the concept of the cross-sectional
stability of tidal inlets following the principle of Escoffier
(1940). This principle is graphically illustrated in Fig-
ure 2a, where the inlet flow velocity amplitude is plotted
against the cross-sectional inlet area. An equilibrium state
(denoted with A and B in the figure) is reached in case the
velocity amplitude equals the equilibrium velocity ampli-

Figure 1: (a) Satellite image of the Western Wadden Sea
with tidal divides in white, courtesy to Elias et al.
(2012). (b) Impression of the schematisation of the

Western Wadden Sea in this study (Elias et al., 2012,
adapted). (c) Definition sketch of the schematic system

with dashed tidal divides for θb = 180◦.
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Figure 2: Visualisation of the Escoffier (1940) closure
curve to assess tidal inlet stability in a single inlet system

(top), and the flow-charts for assessing double inlet
stability (bottom). In the latter, plotted are dA1/dt = 0
(green), dA2/dt = 0 (red), and stable (pink circles) and

unstable (pink dots) equilibria.

tude: at both points, the cross-sectional area of the inlet
will not change. However, these two equilibria respond
differently to a perturbation of the cross-sectional area,
as denoted by the arrows in Figure 2a. Equilibrium B is
called stable, as it, “after having been perturbed, will re-
turn to that equilibrium.” (van de Kreeke et al., 2008).
On the contrary, equilibrium A is called unstable, as the
inlet will not return to this equilibrium upon perturba-
tion: when reducing its size, the inlet flow velocity reduces,
yielding sedimentation and a further reduction of the in-
let size until it has closed; conversely, increasing its size
leads an increase in the flow velocity, yielding erosion and
a further increase of the inlet area, until equilibrium B has
been reached. This concept is relatively easily expanded
to a multiple inlet system by applying the Escoffier princi-
ple to each inlet individually, yielding flowcharts with one
axis for the cross-sectional area of each inlet. The vectors
then show how the area of each inlet will change for a
given combination of inlet areas (see Figure 2b).

Multiple authors have already investigated tidal in-
let stability, for instance with empirical data (see e.g.

Kragtwijk et al., 2004; Stive et al., 1998), detailed nu-
merical models for hydrodynamics and morphology (e.g.
Salles et al., 2005) and exploratory modelling approaches
(e.g. Roos et al., 2013; van de Kreeke et al., 2008). Each
of these methods has its advantages and disadvantages,
but this study aims to acquire a fundamental, system-level
understanding of a triple inlet system with a tidal divide
separating the middle inlet from the outer two. For such
an objective, exploratory modelling approaches are best
suited as these only include the most essential processes
and leave out site-specific details (Murray, 2003). Hence,
such models can be applied with low-computational de-
mand and allow for distinct investigation of the effect of
various processes on the results.

Using such an exploratory model, Roos et al. (2013)
have shown that including water level variations in the
basin is sufficient to simulate stable equilibrium configu-
rations with multiple open inlets. Multiple authors have
further expanded this model, showing that water level
variations in the ocean (realised by including radiative
damping) can also lead to stable equilibria (Brouwer et
al., 2013). Others investigated the influence of inlet en-
trance and exit losses (Brouwer et al., 2012) and basin
geometry (Reef et al., 2020). In Roos & Schuttelaars (to
be published) and van de Kreeke et al. (2008), the pres-
ence of a tidal divide is also investigated, but both models
do not allow for separating the middle inlet from the outer
two. As the basin in both studies is chosen as a rectangu-
lar basin with the tidal divides perpendicular to the coast,
introducing a divide over the complete (cross-shore) basin
width between inlets one and two would also affect the
exchange between inlets one and three. Furthermore, the
entire solution method collapses in case one decides to
place the divides as a box around the middle inlet. The
model by Reef et al. (2020) leaves some more freedom in
the choice of the basin shape but does not accommodate
the presence of tidal divides in the system. Furthermore,
this method is depending to a relatively large degree on
numerical solving, which is not preferable if one manages
to find a model formulation that is to a larger degree an-
alytically solvable. Additionally, in the current modelling
studies (see e.g. Roos et al., 2013; van de Kreeke, 1990;
van de Kreeke et al., 2008, Roos & Schuttelaars, to be
published), the Western Wadden Sea system was always
modelled as a double inlet system consisting of the Texel
and Vlie inlets. The Eierlandse Gat was omitted as a re-
sult of the low water exchange over the present tidal divide
(Zimmerman, 1976). Hence, the effect of a tidal divide has
only been studied for the same double inlet system (Roos
& Schuttelaars, to be published).

This study, therefore, aims to investigate the be-
haviour of the Western Wadden Sea more thoroughly by
developing a model that contains three inlets and a cir-
cular tidal divide in the basin, employing the solution
method by Roos et al. (2013) and Roos & Schuttelaars
(to be published) but applied to a geometry with a sector-
shaped basin, as shown in Figure 1b (red lines). This
choice still allows for a similar solution procedure as ap-
plied in a.o. Roos et al. (2013), but does accommodate for
isolation of the middle inlet by introducing a tidal divide
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along a constant radial coordinate (Fig. 1b, yellow line).
Introducing an axial tidal divide (Fig. 1b, solid green
line) would, however, be more problematic as it would no
longer allow for an analytical solution method. As the so-
lution method is based on the separation of variables, the
axial divide can only be included if it can be described
independently of the radial coordinate. Hence, it must
stretch from the origin to the boundary of the basin (Fig.
1b, solid and dashed green line), which is unrealistic and
would introduce a very shallow area where the two divides
intersect. Hence, this tidal divide is omitted in this study
to enable an analytical mathematical solution technique,
allowing for a thorough investigation of the system prop-
erties within the available computational power.

Furthermore, the concept of cross-sectional stability
is not satisfactory in describing the system’s behaviour af-
ter a perturbation at an inlet. After all, it only describes
whether the system will return to equilibrium, but to what
extent an intervention at one inlet will influence the mor-
phodynamics at the other inlets remains unclear. To this
end, Roos & Schuttelaars (to be published) introduced the
connectivity quotient, a measure of “the extent to which
changes in the geometry of one inlet lead to changes in the
geometry of another inlet.” (Roos & Schuttelaars, to be
published). Not only does this concept yield more insight
into the behaviour of the system, but it also allows for
quantifying the effect of a tidal divide: as a tidal divide
hinders the exchange of water between inlets, one would
expect this to be reflected in the connectivity quotient as
well.

The innovation in this paper is threefold: first, the
known modelling technique by Roos et al. (2013) is refor-
mulated for a circular-sector-shaped basin geometry. Sec-
ondly, the analysis is extended from a double to a triple
inlet system. Thirdly, the basin geometry enables the pres-
ence of a radial tidal divide. For all three steps, this study
aims to investigate the tidal inlet stability and connectiv-
ity properties of the system.

This report is organised as follows: in Section 2, the
model is formulated for a sector-shaped basin geometry
with a tidal divide. The solution strategy and analysis
methods employed are described in resp. Sections 3 and
4. In Section 5, the solutions are presented, followed by the
discussion (Sec. 6) and the conclusions (Sec. 7).

2 Model Formulation

2.1 Geometry of System

For this study, we consider a strongly schematised triple
inlet system, consisting of a tidally forced ocean domain
and a sector-shaped basin, connected by three inlets (see
Figure 1c). In the basin, we introduce polar coordinates
r and θ, such that 0 ≤ r ≤ Rb with Rb the radius of the
basin, and 0 ≤ θ ≤ θb with θb the angle of the basin. The
vertical coordinate z is introduced, defined such that z = η
equals the free surface elevation with zero spatial average,
and z = −hb is the topography. Within the domain, two
radial topographic steps are present, such that the bottom

depth hb with respect to the horizontal datum is given
by

hb(r) =


hab for 0 < r < Ra,

hbb for Ra < r < Rb,

hcb for Rb < r < Rb,

(1)

where Ra, Rb denote the radial coordinates of the topo-
graphic steps, and superscripts a, b, c are used to denote
the three different compartments of the basin. Conse-
quently, the topography is uniform in each compartment,
and the height of the tidal divide is given by Hdiv =
hab − hbb = hcb − hbb.

The inlets are centered around radial inlet coordinate
r = Rj on the boundaries θj = 0 or θj = θb, and have
a rectangular cross-section of width bj and height hj and
length l. We require that the inlet positions do not overlap
with each other, nor with one of the tidal steps in the
domain, nor may the inlet exceed the radius of the basin.
Generally, the inlet may also not continue over the origin;
this is only allowed if θb = π. In line with Roos et al.
(2013), it is assumed that the depth-to-width ratio of each
inlet is constant, i.e.

γ2 =
hj
bj
, (hj , bj) = (γ, γ−1)

√
Aj , (2)

with shape factor γ and cross-sectional area Aj =
hjbj .

2.2 Tidal Inlet Morphodynamics

The evolution of the cross-sectional area of the tidal in-
lets is governed by the Escoffier (1940) principle based
on a sediment balance for each inlet. It is assumed that
the wave-dominated sediment import Msed is a constant
for all inlets, and independent of the inlet area. On the
other hand, the tide-dominated sediment export is mod-
elled with a cubic dependence on the tidal velocity ampli-
tude Uj in the inlet, yielding Xsedj = αU3

j , with coefficient
α. Setting up the sediment balance then yields

l
dAj
dt

= Xsedj −Msed =Msed

(
U3
j

U3
eq

− 1

)
, (3)

with Ueq the equilibrium velocity amplitude satisfying
Msed = αU3

eq. A hydrodynamic model is then required
to find the velocity amplitudes Uj for each inlet j, which
will be presented in the following two sections.

2.3 Inlet Hydrodynamics

The tidal oscillation in the sea is represented by a
monochromatic tide, such that we can write for each inlet
j

ηoj = Z cos(ω(t− tj)) = ℜ{η̂oj exp(iωt)} , (4)

with Z the tidal amplitude, ω the angular frequency of
the tide and tj the time shift of said tide, also contained
in the complex amplitude η̂oj . Consequently, the flow ve-
locity in the inlets uj (positive from ocean to basin) can be
represented by the single scalar complex amplitude ûj , fol-
lowing uj = ℜ{ûj exp(iωt)}. Under the assumption that
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the tidal inlets are narrow and short with respect to the
tidal wavelength, the inlet flow can be modelled as spa-
tially uniform, hence as one-dimensional in the direction
of the inlet. This yields a linearly varying water level in
the inlet, allowing the pressure gradient in the inlet to be
expressed directly in terms of ⟨ηo⟩j and ⟨ηb⟩j , denoting
the water level averaged over, respectively, the ocean and
basin end of the inlet. This average is defined as

⟨η⟩j =
1

bj

ˆ Rj+
bj
2

Rj−
bj
2

η(r, θj)dr. (5)

Noting that the Froude number Fr = Uj/
√
ghj ≪ 1,

the inlet flow satisfies the linearised shallow water equa-
tions

∂uj
∂t

+
rjuj
hj

= −g ⟨ηb⟩j − ⟨ηo⟩j
l

, (6)

with the second term the Lorentz (1922) linearisation for
bottom friction in terms of friction coefficient rj . Substi-
tuting the definitions of uj and ηj in terms of their complex
amplitudes (Equation 4) yields

iωûj +
rj ûj
hj

= −g
l
(⟨η̂b⟩j − ⟨η̂o⟩j) . (7)

Coupling the water motion in the basin to that in the inlet
will yield an expression for ⟨η̂b⟩j , allowing to solve for ûj .
The bottom friction coefficient is found following

rj = 8cdUj/3π, (8)

where the drag coefficient equals cd = 2.5 · 10−3 and the
characteristic velocity is chosen equal to the equilibrium
velocity.

2.4 Basin Hydrodynamics

Analogous to the inlet hydrodynamics, the basin hydrody-
namics is governed by the linearised depth-averaged shal-
low water equations, which, expressed in terms of the com-
plex amplitudes of the basin elevation η̂b and flow velocity
ûb = (ûbr, ûbθ), read

iωη̂b +∇ · (hbûb) = 0, iωûb +
rbûb
hb

= −g∇η̂b, (9)

explicitly allowing for spatially varying water elevation
and flow velocities in the basin. The friction coefficient
is found using Equation (8), again taking the equilibrium

velocity as characteristic velocity. Equation (9) is supple-
mented with the boundary conditions

ûb · n = 0
hb⟨ûb · n⟩j = −hj ûj

at ∂Ωcl,
at ∂Ωj ,

(10)

denoting a no-flow boundary condition at the closed
boundaries ∂Ωcl, and a mass-continuity condition at the
locations of all inlets. Here, n denotes the unit outward
normal vector at the boundary. Finally, continuity of ele-
vation and mass transport is demanded at the topographic
steps, such that

η̂ab = η̂bb , hab û
a
br = hbbû

b
br, at r = Ra, (11)

η̂bb = η̂cb , hbbû
b
br = hcbû

c
br, at r = Rb, (12)

with the superscripts denoting the depths and solutions in
the different compartments in the radial direction.

3 Solution Procedure

The solution procedure is aimed to allow for the visuali-
sation and analysis of the 3D vector field of the inlet evo-
lution

dA

dt
=

(
dA1

dt
,
dA2

dt
,
dA3

dt

)⊤

, (13)

in the three-dimensional (A1, A2, A3)-space, for which the
analysis procedure is discussed in the next section. In this
section, the model equations for the basin and inlets are
reformulated to allow solving for ûj , based on which the
vector field can be computed using Escoffier’s principle.
This step introduces a strong nonlinearity in the solution,
as the hydrodynamic model is linear but the inlet evolution
is not.

The solution method is based on the linearity of the
hydrodynamic model, allowing to express the basin ele-
vation amplitude η̂b as a sum of the contributions of all
(source) inlets q. Averaging over an (action) inlet j then
yields

⟨η̂b⟩j =
∑
q

⟨η̂bq⟩j . (14)

In line with Roos et al. (2013) and Reef et al. (2020),
the basin impedances Zjq are introduced, in an ef-
fort to express ⟨η̂bq⟩j = ZjqAqûq, allowing the inlet
momentum equations (Eqn. (9)) for a double inlet
system to be expressed as the system of linear equations


iωl
g µ1 + Z11A1 Z12A2 Z13A3

Z21A1
iωl
g µ2 + Z22A2 Z23A3

Z31A1 Z32A2
iωl
g µ3 + Z33A3


︸ ︷︷ ︸

N

û1û2
û3

 =

η̂o1η̂o2
η̂o3

 , (15)

Here µj = 1 − irjh
−1
j ω−1 is introduced as a complex

frictional correction factor. Provided that the basin
impedances are all known, this system can be solved for

ûj . To find these impedances, the Green’s function for
a point-source flow is first integrated over (source) inlet
q, and consecutively averaged over (action) inlet j. To
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achieve this, the equations governing the basin hydrody-
namics (Equation (9)) are rewritten into

∇ ·
(
hb
µb

∇η̂b
)
+
ω2

g
η̂b = 0, ûb =

gi

µbω
∇η̂b. (16)

Assuming that the basin elevation amplitude can be ex-
pressed in terms of the normalised eigenfunctions ψmn
with corresponding eigenvalues λmn, which are derived in
Appendix A, the response to delta-peak forcing can be
written as the Green’s function

Gb(r, θ; r
′, θ′) =

∑
m,n

hb(r
′)

µb(r′)

ψmn(r, θ)ψmn(r
′, θ′)

λmn
, (17)

where a laterally uniform flow profile over the inlet mouth
is assumed. Integration of Gb over inlet q then yields the
basin elevation caused by said inlet:

η̂bq =

ˆ Rq+
bq
2

Rq−
bq
2

⟨∇η̂b · n⟩qGb(r, θ; r′, θq)dr. (18)

The width averaged basin elevation gradient can be ex-
pressed in terms of the inlet flow velocity amplitude
by consecutively applying Equations (16) and (10) to
find

⟨∇η̂b · n⟩q =
µbω

gi
⟨ûb · n⟩q = −µbωhq

gihb
ûq. (19)

Upon substitution, combined with applying the definition
of the width integration, one then obtains

η̂bq(r, θ) =

[
ωi

g

∑
m,n

ψmn(r, θ)⟨ψmn⟩q
λmn

]
Aqûq. (20)

Averaging this result over inlet j, one then finally ob-
tains

⟨η̂bq⟩j =

[
ωi

g

∑
m,n

⟨ψmn⟩j⟨ψmn⟩q
λmn

]
Aqûq = ZjqAqûq, (21)

yielding the final expression for the basin impedances Zjq.
For practical application, the summation is truncated to
m = 0, 1, ...,M and n = 1, 2, ..., N with suitably chosen
truncation numbers M and N .

4 Analysis Procedure

The solution procedure presented in Section 3 can be ap-
plied to produce a vector field, displaying the rate of
change of the inlet areas dA/dt as a function of the in-
let areas A. An example of such a vector field is shown in
Figure 3 for a double inlet system, where the lines visu-
alise dA1/dt = 0 (green) and dA2/dt = 0 (red). Equilibria
can be found at the intersections of these lines, allowing
for stable equilibria (pink circles) and unstable equilibria
(pink dots). The yellow and brown lines visualise the con-
cept of inlet connectivity, which will be introduced later
in this section. For systems with more inlets, the vector
field also becomes increasingly complicated, as each inlet
introduces one axis; hence, a triple inlet system will yield
a three-dimensional vector field.

Figure 3: Visualisation of a flowchart for a double inlet
system, displaying stable (pink circles) and unstable
(pink dots) equilibria, laying on the lines dA1/dt = 0

(green) and dA2/dt = 0 (red). The concept of
connectivity is illustrated with the brown (perturbing

inlet 1) and yellow (perturbing inlet 2) lines.

Finding these equilibria, however, turns out to be a
difficult task, in particular for triple inlet systems as there
is one more dimension to be considered. To find the equi-
libria, a numerical search algorithm is designed that di-
vides the vector space into a number of different boxes. In
case the signs of all components of dA/dt change within
the box, it can potentially contain an equilibrium and the
box is refined. The procedure is then repeated until the
equilibrium is known with sufficient accuracy. However,
this approach introduces two complications, the first re-
sulting from the fact that the Escoffier principle breaks
down on planes where Aj = 0 for one j, or axes where
Aj = 0 for two j. This is a consequence of the assumption
that Msed is constant regardless of the inlet area. Conse-
quently, a sediment import remains present also if the inlet
closes, hence the equilibrium tracking algorithm needs to
be restricted to these planes/axes in order to find the cor-
rect equilibria located on them. Secondly, the equilibrium
tracking algorithm is not guaranteed to find all equilib-
ria. For example, when equilibria are located close to one
another, it goes easily unnoticed as no sign-change is de-
tected within a box. This is an important limitation to be
kept in mind when interpreting the results.

Once the equilibria are found, their stability can be
analysed by linearising the vector field in the vicinity of
said inlet following

dA′

dt
= JA′, (22)

with J the Jacobi matrix of the vector field (found in Ap-
pendix C) and A′ = A −Aeq the difference between the
cross-sectional inlet area and the cross-sectional inlet area
in equilibrium (Aeq). Computing the eigenvalues Λi and
eigenvectors vi then yields an insight into the stability of
the equilibrium, as it is considered stable if ℜ{Λi} < 0 ∀
i. Additionally, these eigenvalues and eigenvectors can be
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(a) Section 5.2. (b) Section 5.3. (c) Section 5.4. (d) Section 5.5.

Figure 4: Visualisation of the different simulations performed in this study. Top row indicates double inlet systems,
bottom row triple inlet systems. Included parameters denote the parameters varied in that simulation. In Figure 4b,

also the distance parameter d is included.

used to write any trajectory A′(t) in the vicinity of the
equilibrium as

A′(t) =
∑
i

civi exp(Λit),
∑
i

civi = A′
0, (23)

where A′
0 = A′(0). Given this expression for the trajec-

tory, the connectivity is easily computed following the def-
inition by Roos & Schuttelaars (to be published) as

Cjq =
A′
j(t

∗)

∆Aq
, (24)

with ∆Aq denoting the initial perturbation of inlet q and
A′
j(t) denoting the trajectory of the disturbance of inlet j,

where solely inlet q is perturbed and all others are not. An
example of these trajectories is given in Figure 3, where
the brown line displays the trajectory after perturbing in-
let 1, whilst the yellow line displays the trajectory upon
perturbing inlet 2. Furthermore, t∗ is defined such that
|A′
j(t

∗)| is maximal. This connectivity quotient expresses
the perturbation of inlet j relative to an initial perturba-
tion of inlet q. We note that this definition only applies
to stable equilibria, i.e. equilibria for which all eigenvalues
are negative. Furthermore, the connectivity is symmet-
ric in case Cjq = Cqj , and asymmetric if this is not the
case.

In the visualisations that follow, the inlet areas are
normalised against a reference inlet area, being the inlet
area in a single inlet system without tidal amplification
and bottom friction and under the assumptions that the
tidal forcing is applied directly at the boundary of the
domain and that there is no spatial variation in the water
level elevation in the basin (‘pumping mode’). Under these
assumptions, Equation (15) reduces to

ωi

g

⟨ψ01⟩21
λ01

A1û1 = Z, (25)

where it is easily found that

⟨ψ01⟩21 =
2

R2
bθbhb

, λ01 = − ω2

ghb
. (26)

Upon substitution Equation (26) in (25), multiplying the
result with its complex conjugate and using the definition
that, in equilibrium, |û1| = Ueq, one finds that

Aref =
θbR

2
bZω

2Ueq
. (27)

5 Results

In this section, the influences of different parameter varia-
tions on the model results are explored. We systematically
explore the effect of the basin dimensions in a sectoral-
shaped geometry by varying the basin angle θb for a dou-
ble inlet system and the basin-radius Rb for a triple inlet
system. These analyses are combined with symmetrically
varying the inlet location, i.e. varying R1 = R2 for a dou-
ble inlet system and R1 = R3 for a triple inlet system. In
a triple inlet system, the restriction to a symmetric case
implies that inlet two must be centered around the origin
of the coordinate system, thus also restricting the basin
angle to θb = 180◦, as shown in Figure 1c. Additionally,
for both a double and triple inlet system, symmetry in the
forcing conditions of the inlets is demanded. The restric-
tion to a symmetric system is chosen to reduce the com-
putational demand of the equilibrium tracking algorithms,
whilst still allowing for the complex behaviour of the sys-
tem to be explored. The effect of the transition from a
double to a triple inlet system is further highlighted by
solely varying the symmetric inlet location. Finally, the
effect of the tidal divide is explored by varying the tidal
divide height in combination with the symmetric inlet lo-
cation for a double and triple inlet system. A visualisation
of all the different simulations is given in Figure 4.

All results are obtained with the same default pa-
rameters, chosen to highlight key features of the system’s
behaviour, which are only varied in case the effect of the
parameter is explored. This was the main motivation be-
hind selecting these values, although they do exhibit some
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Table 1: Default parameter values. In case Hdiv = 0, the location of the topographic steps Ra,b have no physical
meaning. The symmetry of the system becomes apparent by choosing Ri symmetrically, and ri, Z, ti the same for all

inlets.

Rb Basin radius 14 km l Inlet length 5 km
θb Basin angle 180 ◦ γ2 Inlet shape factor 0.005 -
hb Basin depth 5 m Ri Radial inlet coordinates (10, 0, 10) km
Hdiv Tidal divide height 0 m θi Axial inlet coordinates (0, 0, θb) rad
Ra,b Radial coordinates topographic steps 5, 6 km ri Friction coefficient in inlets 0.0021 m s−1

rb Bottom friction coefficient in basin 0.0021 m s−1 ti Tidal time shift (all inlets) 0 s
Z Tidal amplitude in ocean 1 m M Axial truncation number 10 -
Ueq Equilibrium flow velocity amplitude 1 m s−1 N Radial truncation number 10 -

similarities with the Western Wadden Sea system. The pa-
rameter values are given in Table 1 and yield a reference
area of the inlets of Aref = 4.33·104 m2, although it should
be noted that this varies for some simulations due to vary-
ing values of Rb or θb. The connectivity quotient is anal-
ysed for the unique non-trivial equilibrium state in which
all inlets are open. As a consequence of the symmetric,
the connectivity quotients satisfy C12 = C13, C21 = C31

and C23 = C21 for a triple inlet system.

5.1 Existence of Equilibria

The first key result of this study is that there exists a
stable equilibrium with all three inlets open for a large
number of parameter settings. The effect of the different
parameters is explored in Sections 5.2 till 5.5; in this sec-
tion, an example of such a system is provided and used
to illustrate how the results in the following sections are
obtained.

In Figure 5, an example of a three-dimensional vec-
tor field is provided but plotted on logarithmic scales.
For readability, the vectors are omitted. The isoplanes
dA1/dt = 0 (green), dA2/dt = 0 (red) and dA3/dt = 0
(blue) are plotted, but only where they intersect the planes
where one Ai = 0, again to foster readability of the figure.
At the intersection of all three isoplanes, the equilibria can
be found, which are either stable (pink circles) or unsta-
ble (pink dots). From this figure, it can be concluded that
a total of 27 equilibria is present in the system, of which
eight are stable: one with all inlets closed, three where one
inlet is opened (one for each inlet), three where two inlets
are opened (for all combinations of inlets), and one where
three inlets are opened. The complete behaviour of the
system is, however, quite difficult to visualise, as visualis-
ing three-dimensional vector fields is challenging in itself.
Furthermore, this figure also illustrates the difficulty in
finding all equilibria: if equilibria are located close to one
another, they easily go unnoticed.

For the analysis of the key system behaviour, this
study therefore focuses on the unique non-trivial equilib-
rium state for which all inlets in the double or triple in-
let system are open. In the next sections, we investigate
the influence of various parameter variations on the cross-
sectional areas of the inlets in this particular state, as well
as the connectivity quotients in case this equilibrium is
stable. These areas and connectivity quotients can con-

Figure 5: Visualisation of all the equilibria in a 3D flow
field. On the planes where one Ai = 0, the projections of
the planes dA1/dt = 0 (green), dA2/dt = 0 (red) and
dA3/dt = 0 (blue) are shown. On the intersects, stable

(pink circles) and unstable (pink dots) are found.

sequently be visualised as a surface plot to visualise the
influence of the parameters, as done in for instance Fig-
ures 6, 8, 10 and 11. It should thus be highlighted that
each point corresponds to a vector field like the one in
Figure 5, yet with different locations and properties of the
equilibria.

5.2 Effect of Basin Radius

First, the influence of the basin radius on inlet connec-
tivity is explored for a triple inlet system, in combination
with the effect of symmetrically varying the inlet loca-
tion. The results of this analysis are presented in Figure
6, where no connectivity values exist in the white space
(where the equilibrium is unstable) and in the hatched re-
gions (where inlets either overlap or extend beyond the
domain boundary). In Figure 6d till 6f, it is seen that
the dimensionless cross-sectional inlet area Ai/Aref stays
roughly constant for varying Rb, indicating that the inlet
areas are directly dependent on the basin area. Logically,
the cross-sectional area of the middle inlet A2 (Fig. 6e)
decreases in area when the other two inlets are located
closer and grows when the inlets are located further away,
shown by the strong horizontal variation of the inlet area
in the figure. This results from the fact that less (more)
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Figure 6: Effect of varying basin radius Rb and symmetric inlet location R1,3 on the connectivity (top row) and inlet
size (bottom row) in a triple inlet system. Red dots in Figure 6b denote a positive connectivity quotient.

water is drained via the middle inlet when other inlets are
located closer (farther). Conversely, the other two inlets
decrease in area with increasing inter-inlet distance (Fig.
6d and 6f, also the horizontal variation).

Furthermore, Figures 6a till 6c show that, when in-
creasing the radial coordinate of the outer two inlets (hori-
zontal axis), all connectivity quotients increase. Hence, an
increasing inter-inlet distance logically yields a less nega-
tive connectivity quotient, hence decreasing inlet connec-
tivity. It can also be observed that an increasing basin
radius (vertical axis), hence increasing basin size, yields
reduced inlet connectivity. Finally, all panels in Figure 6
show that, for a larger basin radius and thus basin area,
the inlets can be located closer to one another, without
causing the system to become unstable. This is shown by
the fact that the boundary between coloured and white
space in the figures, i.e. the boundary between resp. sta-
ble and unstable equilibria, is located at lower values of
R1,3 for increasing Rb. It should, however, be noted that
the exact location of this boundary is not completely cer-
tain, as the used equilibrium tracing algorithm can have
some difficulty in case equilibria are close to one another or
very close to becoming unstable. This explains the rather
ragged shape of the boundary between stable and unsta-
ble and of the hatched area, and the occurrence of a small
stable “island” for small Rb.

An interesting observation is that, for the combina-
tion of Rb = 25 km and R1,3 = 4.5 km, the inlet con-
nectivity C13 = C31 suddenly turns positive, a behaviour
shared by a few other parameter combinations appearing
and shown as red dots at the boundary of stability in Fig-
ure 6b. This behaviour is further explored in Figure 7,
showing that the trajectory of inlet 1 (or 3) upon per-
turbing inlet 3 (or 1) displays two bends, of which the

positive extremum is larger than the negative. Conse-
quently, the connectivity becomes positive, and the value
changes abruptly in Figure 6b: as the connectivity is de-
fined as the maximal value, the positive extremum can be
present in other parts of Figure 6b as well, but goes un-
noticed as it is smaller than the negative extremum. As
such, the observed behaviour is a correct model result, but
the current definition of connectivity does not detect this
behaviour.

5.3 Effect of Basin Angle

The effect of transitioning to a radial coordinate system
is further explored by varying the basin angle θb. As this
parameter variation introduces a kink in the coastline at
the origin, it does not allow for an inlet centered around
this point, hence this analysis is performed for a double
inlet system in which the inlet locations are symmetri-
cally varied (illustrated in Figure 4b). In Figure 8, the
inlet connectivity (Fig. 8b) and the cross-sectional inlet
area (Fig. 8a) are displayed for varying inlet locations
and basin angles, revealing that the smaller the basin an-
gle (vertical axis), the larger the radial coordinate of both
inlets (horizontal axis) needs to be before a stable situa-
tion is reached, again visualised by the transition from a
coloured to white plane. In a stable situation, the inlet
area turns out to be directly correlated to the basin angle
and hence the basin area, whilst only minimally varying
as a result of the inlet location. However, a large influence
of the basin area on inlet connectivity can be observed,
which is not surprising as both variables influence the lin-
ear distance between both inlets. This behaviour is further
explored in Figure 8c, showing the inlet connectivity as a
function of basin area (horizontal axis) and the linear dis-
tance d = 2R1,2 sin(θb/2) between the inlets (see Figure
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Figure 7: Display of the trajectory back to the equilibrium when perturbing A3 for Rb = 25 km, R1,3 = 4.5 km. In
the middle (b) a three-dimensional visualisation, with projections on the A2-plane (panel a) and A1-plane (panel c).

4b) on the vertical axis. From Figure 8c, it becomes ap-
parent that the inlet area and inter-inlet distance indepen-
dently influence the inlet connectivity: both larger inlet
distancing and larger basins lead to a less negative con-
nectivity quotient, hence reducing the connectivity. This
is in line with the conclusions from the previous section,
where increasing the basin area (realised by varying Rb)
and the inter-inlet distance (realised by only varying R1,3)
also reduced the inlet connectivity, albeit for a triple inlet
system. It also becomes apparent that the maximal value
of the connectivity quotient equals |Cjq| ≤ 1

2 , an upper
bound also found for double inlets with a square basin by
Roos & Schuttelaars (to be published).

5.4 Double to Triple Inlet System

To investigate the influence of the basin angle θb while
maintaining symmetry, it was required to change the num-
ber of inlets in the system. In this section, we highlight
the effect of reducing the number of inlets from three to
two by showing how the inlet connectivity changes as a
function of the symmetric inlet location R1,2 (double inlet
system) and R1,3 (triple inlet system). Both analyses are
applied for a basin angle of θb = 180◦, where the middle
inlet in the triple inlet system is centered around the ori-
gin. From Figure 9, it becomes apparent that the general
behaviour of the system does not change when transition-
ing from a double (top) to a triple (bottom) inlet sys-
tem: the connectivity quotient (blue axis) between inlets
becomes less negative with increasing inlet distance (hor-
izontal axis), hence the connectivity between the inlets
reduces. For a triple inlet system, it becomes clear that
the closest inlets are most strongly connected (dashed and
dotted blue lines), while combinations of inlets which are
not directly adjacent (solid blue line) are less connected.
However, there are a few key differences between a double
and triple inlet system, the first being that the theoret-
ical upper bound of |Cjq| < 1

2 , which is approximated
for a double inlet system, is no longer approximated for
a triple inlet system. It should, however, be noted that
this behaviour is exhibited by the system when it is on
the verge of stability, a situation in which the equilibria
are located close to one another and hence the tracking al-
gorithm has large difficulty finding the stable equilibrium.
Secondly, the connectivity between the closest two inlets
(one and two, and two and three) has become asymmet-
rical for a triple inlet system. This is readily explained

by the fact that inlets one and two are not symmetrically
located, hence a symmetrical connectivity quotient should
not be expected. The inlets that are located symmetri-
cally (one and three in a triple inlet system) also display
a symmetrical connectivity quotient (C13 = C31), as ex-
pected. Additionally, the figure reveals that the inlets in
a double inlet system can be located much closer than in
a triple inlet system, an observation that can logically be
explained by the fact that the basin area for both inlets is
the same. Hence, each inlet drains a much larger area in
a double inlet system compared to a triple inlet system.
This is in line with the results from Figures 6 and 8, where
it is also shown that larger basin areas can enable inlets
to be located closer to one another.

In terms of inlet areas, Figure 9a reveals that the
inlet location in a double inlet system barely has any in-
fluence on the size of the inlets (nearly horizontal orange
line). However, this drastically changes for a triple inlet
system, where locating the inlets further outward reduces
the size of the outer two inlets (solid orange line, Figure
9a) and increases the size of the inner inlet (dashed orange
line). This is quite logical as the water will generally be
drained by the closest inlet; locating the symmetrical in-
lets further outwards will decrease the area they can drain
(as they lose area in the middle of the system), hence re-
ducing the size of the two inlets. Conversely, the middle
inlet grows to still accommodate the draining of the full
basin. Also for varying basin radius (and thus basin size),
this behaviour is displayed by the system. The results
(not shown here) show that, irrespective of the basin ra-
dius, the middle inlet will be larger than the outer two
if R1,3/Rb ⪅ 0.67; elsewhere, the outer two inlets will be
larger. However, the exact difference between the cross-
sectional areas is strongly depending on the basin radius
and inlet location.

5.5 Effect of a Tidal Divide

Finally, the effect of the presence of a circular tidal di-
vide around the origin is investigated for a double (Figure
10) and triple (Figure 11) inlet system. Before presenting
and interpreting these results, it must be noted that for
relatively high tidal divides (Hdiv/hb > 0.75, not shown
here), the error in the normalisation of the eigenfunctions,
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Figure 8: Effect of varying basin angle θb and symmetric inlet location R1,2 on the inlet area (left, a) and
connectivity (middle, b) in a double inlet system. On the right (c) a visualisation of the connectivity as a function of

basin area and inlet distance.

Figure 9: The inlet connectivity (left, blue axes) and
inlet size (right, orange axes) as a function of the inlet

location for a symmetric double (top panel, a) and triple
(bottom panel, b) inlet system. Where no curve is
plotted, no stable equilibrium exists (small R1,2 and

R1,3), or the inlets extend beyond the domain boundary
(large R1,2 and R1,3).

defined as

E = max
m,n1,n2

[ˆ
rhb(r)

µb(r)
ψmn1ψmn2dΩ

]
, (28)

increases with increasing tidal divide height, as shown in
Figure 10c. There is machine precision error present when
the tidal divide is absent, but increasing the tidal divide
height also yields a significant increase in the error. As
such, the results presented here should be interpreted with
this development of the error in mind: the higher the tidal
divide, the more uncertainty whether the results represent
physical reality, or are introduced by this error. With
this in mind, we can make some statements about the
behaviour for, roughly, Hdiv/hb < 0.4.

For a double inlet system, Figure 10a shows that both
the inlet location (horizontal axis) and the presence of a
tidal divide (vertical axis) barely influence the size of both
inlets. The former is in line with earlier conclusions, but
the latter comes as a surprise as one would expect that the
presence of a tidal divide limits the basin area that can be
drained by both inlets. After all, a very high divide prac-
tically reduces the basin to solely the outer ring. Such
behaviour is gently shown in Figure 10a by the slightly
reducing inlet area in the vertical direction, yet this only
becomes more pronounced for larger tidal divide heights.
As this coincides with an increasing error in the orthonor-
malisation of the eigenfunctions, it is difficult to draw con-
clusions about whether the observed behaviour is caused
by the aforementioned physical phenomenon or a result of
the increasing error. However, seeing the plausible physi-
cal explanation and the gentle reduction of inlet area for
small tidal divides, the observed reduction of inlet area
could very well be the result of mentioned physical phe-
nomenon.

In terms of inlet connectivity, both increased inlet dis-
tance (horizontal axis) and increased tidal divide height
(vertical axis) yield a less negative connectivity quotient,
hence a reduction in the connectivity of the two inlets.
The former is in line with earlier conclusions, the latter
can logically be explained by the fact that the increased
tidal divide height will also increase the effect of bottom
friction and reduce the water depth available for exchang-
ing water over the tidal divide. Both mechanisms limit the
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Figure 10: Effect of varying the tidal divide height Hdiv and symmetric inlet location R1,2 on the inlet size (left
panel, a) and inlet connectivity (middle panel, b). On the right (c) the maximal error in the orthonormality.

exchange of water over the tidal divide and hence reduce
the connectivity between the inlets at either side of the
divide.

For the triple inlet system (Figure 11), the radial lo-
cation of the two outer inlets has a significant influence
on the connectivity and inlet areas as also concluded ear-
lier. Based on the results, it is concluded that the presence
of a tidal divide generally limits the portion of the basin
drained by the central inlet (2), as an increased tidal di-
vide reduces the inlet area A2 in all cases (Fig. 11e),
whilst increasing the cross-sectional area of the outer two
inlets (Fig. 11d and 11f). It is, however, anticipated that
the radial location of the tidal divide has a strong influ-
ence on this, as simulating a divide with a larger radius
will increase the area that will be drained by inlet two.
This hypothesis, however, cannot be substantiated with
the presented data and requires further research. In the
figure, however, it is seen that locating the outer two inlets
further away, will again increase the cross-sectional area of
the middle inlet (the horizontal variation in Figure 11e),
implying that the middle inlet in these cases drains water
over the tidal divide. As such, it is concluded that the
increase of the tidal divide height gradually reduces the
amount of water exchanged over the tidal divide, in this
case limiting the discharge through the middle inlet and
hence its cross-sectional area.

In terms of inlet connectivity, it is seen that the in-
crease of the tidal divide height has an asymmetrical effect
on the connectivity between the middle and the outer two
inlets. By comparing results in the vertical direction, Fig-
ure 11a shows that the inlet connectivity C12 = C32 (inlet
2 is perturbed) is barely changing when increasing the
tidal divide height, whereas the connectivity C23 = C21

(inlet 1 or 3 is perturbed) is influenced much more (Fig-
ure 11c). The physical mechanism behind this is further
discussed in Section 6.1.

Additionally, it is observed that the connectivity quo-
tient between the outer two inlets (Figure 11b), which was
already close to zero, becomes less negative when increas-
ing the tidal divide height. This can logically be explained
by the fact that the tidal divide forms a barrier forcing the
exchange of water to take place more around the barrier
rather than over the barrier. This increases the distance
the water travels, hence reducing the connectivity. Con-

sequently, it is not anticipated that the inlet connectivity
tends to zero as the tidal divide height approximates the
water depth; after all, the water can still (freely) travel
around the divide, although the longer distance that is to
be covered will reduce the inlet connectivity.

6 Discussion

6.1 Physical Mechanisms

In the previous sections, two important results were pre-
sented: with increasing basin area, be it by increasing
Rb for a triple inlet system (Sec. 5.2) or by increasing
θb for a double inlet system (Sec. 5.3), the connectivity
between all inlets decreases. Secondly, the triple inlet sys-
tem allows for asymmetrical connectivity between inlets
(i.e. C12 ̸= C21), even with a tidal divide present (see Fig.
11a and 11c). This is also observed in Figure 9b, where
it is even observed that the asymmetry in the connectiv-
ity switches when the inlets are located further outward
as the blue dashed and dotted lines intersect. This seems
to coincide with the intersection of the orange solid and
dashed lines, hence suggesting that the asymmetry in the
inlet areas is the determinant of the asymmetry in the in-
let connectivity. This is supported by Figure 12a, where
the fraction C12/C21, a measure of asymmetry in the con-
nectivity responses, is plotted against A1/A2, a measure
of asymmetry in inlet sizes. From this figure, it appears
that Cij > Cji if Ai > Aj , which should physically be
interpreted as the smallest of the two inlets having a more
significant influence on the larger inlet than the larger in-
let has on the smallest. As this figure includes the data for
various tidal divide heights and inlet locations, it can also
be concluded that the tidal divide height or inlet location
barely has an influence on this conclusion.

However, it turns out that the basin size has a signif-
icant influence on this relation, see Figure 12b. Here, the
data for various basin radii (Sec. 5.2) is also scattered,
again confirming a direct relationship between asymmetry
in tidal inlet size and asymmetry in connectivity. However,
this relationship can be different depending on basin area:
for smaller basins, the smallest inlet is connected more
strongly to the larger inlet than vice versa: Cij > Cji if
Ai > Aj . This is also the relation as displayed in Figure
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Figure 11: Effect of varying the tidal divide height Hdiv and symmetric inlet location R1,3 on the connectivity (top
row) and inlet size (bottom row) in a triple inlet system.

12a, which is generated with a small basin. However, for
larger basins, the smallest inlet is connected weaker to the
largest inlet than vice versa: Cij > Cji if Ai < Aj . The
explanation for this can be found in the two mechanisms
presented by Roos et al. (2013).

For smaller basins, inlets will generally be smaller and
thus shallower, hence the effect of bottom friction in the
inlets will be large. As the bottom friction in the inlets is
inversely proportional to the inlet depth, a change in the
inlet area will result in a larger change in bottom friction
in shallower inlets. This then leads to a change in inlet
flow velocity, which in turn leads to a change in the basin
elevation amplitude, which then influences the other in-
lets. It can thus be concluded that the inlet that causes
the largest change in basin elevation will have the largest
connectivity, which is the shallowest and thus smallest in-
let in a system with a small basin.

On the other hand, if the basin is much larger, the
inlets will be much larger and bottom friction in the inlets
will play much less of an influence. Instead, the response of
the system can be explained with the changes in pressure
gradient: in the largest inlet, the bottom friction will play
the smallest role, hence the pressure gradient will change
most as a result of changing the inlet areas. This will foster
a change in inlet flow velocity, which in turn changes the
basin elevation amplitude. Hence, the largest inlet will
display the strongest connectivity.

It should be noted here that only the asymmetry in
connectivity C12/C21 has been considered so far. The ef-
fect of the basin area on the connectivity in absolute sense
is also investigated and visualised in Figure 12c, where
it can clearly be observed that the connectivity overall
reduces with increasing basin area, as was already high-

lighted in Sections 5.2 and 5.3 for respectively a triple-
and double inlet system. This is direct consequence of
the first mechanism: the larger the inlets, the lower the
effect of bottom friction in the inlets. Consequently, a
change in inlet area will simply lead to slightly increased
flow velocities in that inlet, limiting the change of tidal
prism and thus the change in basin elevation amplitude.
As a consequence, the basin elevation at the other inlets
will not change much, reducing the connectivity in the
system.

Hence, it is concluded that the inlet connectivity is a
result of a complex interaction between inlets and basin,
where basin area and the presence of tidal divides each
play their role. However, it can also be concluded that the
asymmetry in inlet connectivity is almost entirely a conse-
quence of asymmetry in cross-sectional inlet area, and that
the basin only plays a role in this via the asymmetry of
the inlets. It should, finally, be noted that this asymmetry
need not be limited to asymmetric location; also asymmet-
ric forcing and shaping of the inlets can have these effects.
This conclusion would, however, suggest that choosing a
combination of these factors, such that the inlet location
is asymmetric but the inlet cross-sectional areas are the
same, would yield symmetric connectivity again. This is,
however, to be researched further.

6.2 Wadden Sea

It should be noted that the parameters used in this study
to some extent represent the Western Wadden Sea sys-
tem (for instance in basin depth and tidal amplitude) but
that a few drastic simplifications were made in this study:
a symmetric system is assumed, forcing a basin angle of
180◦, and the used basin radius is much smaller than in
reality. As such, the basin area in reality will be much
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Figure 12: Scattering C12/C21 against A1/A2 for various
tidal divide heights (top (a), data from Figure 11) and
for various basin radii (bottom two (b,c), data from
Figure 9). We highlight the different meanings of the

color bars here.

larger and allows the inlets to be located much farther
apart. Hence, it is recommended to further investigate
the influence of asymmetry on the stability and connec-
tivity properties of a triple inlet system, after which also
the influence of the basin angle can be investigated. The
presented results, however, do allow for some qualitative
conclusions about the Western Wadden Sea system.

The present study confirms that systems like the
Western Wadden Sea, with a similar circular geometry,
can be in equilibrium with three open inlets. The pre-
sented model results show that the larger the basin, the
more robust the system becomes as inlets can be located
closer to one another (Fig. 6). As the Western Wadden
Sea has a larger basin and has the inlets located farther
apart, it can safely be concluded that the model will also
predict that a stable equilibrium with all three inlets open
is possible in the Western Wadden Sea. Extrapolating the
results from Figure 6 would then also imply that all the
connectivity quotients will be close to zero, as a result of
the larger basin and the larger inter-inlet distance. The
model results would thus suggest that the inlet system of
the Western Wadden Sea is rather robust, where short-
term perturbations of one of the inlets will not yield large
disturbances of the other inlets. The presented results,
therefore, suggest that the Western Wadden Sea is rela-
tively resilient to local perturbations of the inlets.

Additionally, the results shown in Figure 11 display
the effect of the tidal divide present around the Eier-
landse Gat inlet, displaying reduced connectivity with
the other inlets for increasing tidal divide height. This
is moderately in line with the conclusions from Zimmer-
man (1976), suggesting a limited exchange of water over
the divide. However, the presented results still suggest a
significant connectivity quotient for larger divide heights
(Hdiv/hb ≈ 0.4), implying there still is a significant ex-
change of water over the divide. This can either be caused
by the introduced normalisation error in the model (Fig.
10c), but can also be a consequence of the chosen dimen-
sions to parameterize the tidal divide. After all, increasing
the radial location of the divide will reduce the amount of
water being forced over the divide, whereas increasing the
tidal divide width will increase the effect of bottom fric-
tion, hence reducing the tidal prism over the divide. The
effect of these two parameters should therefore be further
investigated.

Furthermore, the symmetric configuration of the in-
lets in the presented simulations forced a basin angle of
180◦ to be used, whereas the Western Wadden Sea can
better be approximated with an angle of roughly 130◦ (see
Fig. 1b). This shift will reduce the direct distance between
the outer two inlets as also explained in Section 5.3. As
such, the inlet connectivity between the outer two inlets
will change relatively a lot as a consequence of this transi-
tion, although this connectivity quotient will still be rela-
tively low due to the large basin and inter-inlet distances.
This is, however, to be further investigated.

Finally, the chosen solution strategy does not allow
for an axial tidal divide to be present in the system (green
in Figure 1b). This is a major simplification compared
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to the Western Wadden Sea system. However, the re-
sults in Figure 11b display a very weak connection between
the outer two inlets, even in absence of this tidal divide.
This suggests that including an axial tidal divide will not
change the connectivity between these two inlets, but this
statement cannot be further investigated with these results
and this model.

6.3 Limitations

The omission of the axial tidal divide mentioned in the
Introduction and Section 6.2 is an important physical lim-
itation of the model applied. More generally, the system
of interest was strongly schematised and only the essential
processes were included in the process-based model, lead-
ing to the omission of for instance the interaction between
the ocean and inlets, the linearisation of the bottom fric-
tion and the demand for symmetry (in both the forcing
and the inlet locations) in the model. However, despite
these assumptions, the developed model is able to capture
key processes of the barrier coast and allows to simulate
stable equilibria with multiple inlets open, which is in line
with the conclusions from Roos et al. (2013). Besides, it
allowed for the interpretation of the presented results in
terms of the key physical mechanisms that were included
in the model.

An important numerical limitation to all the pre-
sented results is the truncation of the infinite sums in Eqn.
(21), leading to a trade-off between accuracy and compu-
tational speed when choosing the values forM and N . For
the smaller basins, a convergence analysis has shown that
the chosen values are appropriate, but this may become
less when the basin size increases. It is therefore expected
that the wave-like pattern in Figure 12b is caused by the
limited number of radial modes N included in the sim-
ulation. Practically, it was not possible to increase the
number of modes for this simulation due to the computa-
tional power available, but this may be worth considering
if more computational power is available.

The simulations containing a tidal divide in the sys-
tem (Sec. 5.5) also contain a different error, being the
error in the orthonormalisation of the eigenfunctions as
shown in Figure 10c: the higher the tidal divide, the
larger the error in the orthonormalisation. Hence, the re-
sults including a tidal divide should be interpreted with
this error in mind, although the error is believed to be
small enough to allow for qualitative conclusions about
the behaviour of the system, particularly for smaller di-
vides (Hdiv/hb < 0.4). It is, however, recommended to
repeat this study with a correct (orthonormal) implemen-
tation of the eigenfunctions to confirm the correctness of
the presented results for all tidal divide heights.

A final important limitation is the used equilibrium
tracking algorithm, which is not able to find the stable
equilibrium in case unstable equilibria are located close
to it. This occurs in particular close to boundaries where
the system transitions from stable to unstable, hence the
location of these boundaries is only indicative and cannot
be determined with absolute certainty. However, analysis
of the eigenvalues close to the boundaries has shown that

the tracking algorithm has come sufficiently close to the
boundary. A new study with a more advanced and ac-
curate equilibrium tracking algorithm is therefore recom-
mended. In this study, an attempt was made to construct
such a tracker based on a bifurcation analysis: finding all
equilibria for a set of parameters which appropriately sim-
plify the problem, after which the parameters can be step-
wise adjusted to their desired values whilst tracking the
known equilibria and checking for any bifurcations. Al-
though this approach did not succeed, it seems a promis-
ing method to find equilibria more accurately and with
more certainty that truly all existing equilibria are found.
In Appendix D, some more details about this approach
and the encountered complications are given.

7 Conclusion

This study has provided new information about tidal inlet
stability in barrier coasts and the effect of small tempo-
rary perturbations on the inlets in a double and triple inlet
system, as well as the effect of a tidal divide surrounding
the middle inlet on the stability and connectivity of in-
lets. A process-based model based on the Escoffier (1940)
principle that allows for a circular sector geometry was
successfully implemented, allowing for the placement of a
circular tidal divide circumventing the middle inlet whilst
preserving the strengths of the solution method as intro-
duced by Roos et al. (2013). Model results show that
a barrier coast in this configuration can accommodate a
stable equilibrium configuration with all three inlets open,
even in absence of the tidal divide. When interpreting the
results in terms of inlet connectivity, it has been shown
that the size of the basin is negatively correlated with
inlet connectivity: the larger the basin, the smaller the
connectivity quotient. When applying this to the Western
Wadden Sea system, it is concluded that this system can
be in a stable configuration with all three inlets open and
that the connectivity between all inlets is relatively low as
a consequence of the large basin area.

The triple inlet system also allows for asymmetric
connectivity, where the asymmetry in the inlet cross-
sectional area has been shown to be decisive in the asym-
metry in the connectivity quotient. Hence, it is concluded
that the basin geometry and inlet location directly govern
to what extent two inlets are connected. However, these
parameters are only indirectly influencing the asymmetry
in the inlet connectivity; these parameters directly lead to
an asymmetry in the cross-sectional inlet area, which in
turn leads to an asymmetry in inlet connectivity. Further-
more, the results show that the inclusion of a tidal divide
does influence the connectivity between two inlets, but
does not directly cause changes in connectivity asymme-
try; these changes are only indirectly caused as the tidal
divide changes the inlet areas, which correlates with the
asymmetry in connectivity.

Additionally, the results have shown that the transi-
tion from a double to a triple inlet system allows for com-
plicated dynamics in which positive connectivity quotients
are sometimes encountered, although temporary positive
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responses may be more common but overwhelmed by the
negative responses. This behaviour seems impossible in a
double inlet system but is allowed in a triple inlet system.
Finally, all aforementioned results have been generated
and explained in terms of two processes, being the bottom-
friction and pressure-gradient in the tidal inlet (Roos et
al., 2013). Combined with spatial water level variations
in the basin, these processes introduce more complicated
dynamics that capture the essential dynamics in barrier
coast systems like the Western Wadden Sea.
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A Eigenfunction Derivation

Following Equation (16), the eigenfunctions for the closed
basin water elevation should satisfy

∇ ·
(
hb
µb

∇ψ
)
+
ω2

g
ψ + λ

hb
µb
ψ = 0 in Ω, (29)

with λ the eigenvalue and hb/µb the (complex) weight
function. For readability, subscripts m and n have been
omitted. Furthermore, the problem satisfies the boundary
conditions ∇ψ · n = 0 on dΩ, as well as |ψ| < ∞ if r = 0.
At the locations of the discontinuities in the bottom eleva-
tion R = Ra, Rb, ..., we demand that continuity of water
elevation and mass conservation, such that

ψL = ψR,
hLb
µLb

∂ψL

∂r
=
hRb
µRb

∂ψR

∂r
at r = Ra,b, (30)

where superscripts L and R denote the left and right of
the discontinuity location, respectively. Note that, within
each compartment, the topography is uniform, such that
Equation (29) can be rewritten to

∇2ψ + k2bµbψ + λψ = 0, (31)

with k2b = ω2h−1
b g−1 the basin wave number.

The eigenfunction ψ is now easily solved by separation
of variables, yielding

ψ = R(r)Θ(θ), (32)

where the solution for Θ(θ) is well known and read-
ing

Θ(θ) = Dm cos

(
mπθ

θb

)
= Dm cos (νmθ) , (33)

with νm = mπ/θb the eigenvalue and Dm the normalisa-
tion coefficient, equating to D2

0 = θ−1
b and D2

m = 2θ−1
b

for m = 1, 2, .... Substitution of Equation (32) in Equa-
tion (29), combined with the aforementioned definition of
Θ(θ), then yields the differential problem for R(r), read-
ing

r2
d2R

dr2
+ r

dR

dr
+
[
β2r2 − ν2m

]
R = 0, β2 = µbk

2
b +λ, (34)

where we explicitly note that β is allowed to be complex
as µb is a complex number (Roos & Schuttelaars, to be
published). This equation takes the shape of Bessel’s dif-
ferential equation of order νm, such that the solutions for
R are to be sought in the Bessel functions. It is indeed
easily verified that

R(r) = C1Jνm(βr) + C2Zνm(βr), (35)

where

Za(βr) =

{
Ya(βr) if νm = 0, 1, 2, ...

J−a(βr) otherwise,
(36)

solve our differential equation. We note here, however,
that the value for β is depending on the compartment of
the basin, as well as the coefficients C1 and C2, which we
still need to solve for.

Solving these is achieved by reviewing the conti-
nuity conditions at the interfaces and substituting the
equation found for ψ. Evaluating both constraints then
yields

CL1 J
L
i + CL2 Z

L
i = CR1 J

R
i + CR2 Z

R
i ,

hLb β
L

µLb

[
CL1 J

L
i
′ + CL2 Z

L
i
′] = hRb β

R

µRb

[
CR1 J

R
i

′ + CR2 Z
R
i

′] ,
where we introduced the shorthand notation JL,Ri =
Jνm(βL,RRi) and similarly for Z; furthermore, primes are
used to denote derivatives with respect to r. Superscripts
denote the radial compartment of the basin, with L and
R denoting either side of the topographic step, explicitly
showing the dependence of β and the coefficients C on
the basin compartment. In our implementation, the re-
currence relations for Bessel functions have been used to
reformulate the derivative terms. Additionally, the bound-
ary conditions are applied as additional constraints to the
constants C1 and C2, which are written into a linear sys-
tem of equations. For a system with two discontinuities (at
Ra and Rb), separating the basin in three compartments
(denoted with superscripts a, b, c from origin to Rb), we
then obtain Mc = 0, where

M =


Ja1 −Jb1 −Zb1 0 0
ξaJa1

′ −ξbJb1 ′ −ξbZb1 ′ 0 0
0 Jb2 Zb2 −Jc2 −Zc2
0 ξbJb2

′ ξbZb2
′ −ξcJc2 ′ −ξcZc2 ′

0 0 0 Jcb
′ Zcb

′

 ,
c = (Ca1 , C

b
1, C

b
2, C

c
1, C

c
2)

⊤ (37)

where the condition Ca2 = 0 has already been applied and
ξ = hb/µb for a specific compartment. As we demand a
non-trivial solution to exist, we are interested in a solu-
tion for which the aforementioned system yields non-zero
constants, requiring that det(M) = 0.

With this constraint, the values for β can be solved,
as these are all a function of the unknown λ. The de-
terminant of matrix M is numerically minimised (visu-
alised in Figure 13) by tracing the branches in the com-
plex plane of βa where ℑ(det(M)) = 0 (red lines), after
which the branch is followed until finding a point where
ℜ(det(M)) = 0 (blue lines). At this point, a local minimi-
sation algorithm is applied to further reduce |det(M)|. Af-
ter finding λ, the constants can be solved based on Equa-
tion (37), where we additionally demand that Ca1 = 1 to
come to a solvable system. This is afterwards corrected
by demanding orthonormality of the eigenfunctions, i.e.
demanding that

ˆ Rb

0

hb
µb
rR2(r)dr = 1, (38)

which is practically implemented by numerically comput-
ing this integral for known constants c, and dividing all
constants by the result of this integral.
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Figure 13: Visualisation of the |det(M)| as a function of
the real and imaginary part of βa. Blue lines are isolines

where ℜ(det(M)) = 0, red where ℑ(det(M)) = 0.

B Width-Averaging over Inlet
Mouth

Width-averaging the eigenfunctions over the inlet mouth is
required to find the expressions for the basin-impedances.
In this procedure, it is assumed that the inlet is not fac-
ing a topographic step in the basin. As such, the width
average of the inlet can be formulated as

⟨ψ⟩j =
1

bj

ˆ Rj+
bj
2

Rj−
bj
2

ψ(θj , r)dr. (39)

However, as there are different formulations for eigenfunc-
tions (depending whether or not νm is an integer), also dif-
ferent expressions for the integrals. The aim is to reduce
all integrals to a direct expression or an infinite summation
series, allowing for accurate inclusion in Matlab. An ad-
ditional constraint to these equations is that they should
not become infinite summation series where the terms are
not converging to zero in a sufficiently fast pace. This be-
cause the Matlab implementation of such series becomes
inaccurate.

B.1 Averaging BesselJ-functions

Integrating Jνm over the inlet mouth can be relatively di-
rectly be done using the expression

ˆ
Ja(br)dr =

2

b

∞∑
k=0

Ja+2k+1(br), (40)

which holds for all values of a. This is easily applied for
the first term of ψ, as well as to Z if νm is integer.

B.2 Averaging BesselY-function

Averaging Yνm over the inlet mouth is a little more in-
volved, as two different expressions exist for cases with
νm being even or odd. In case νm is odd, the integration

rule

ˆ
Yνm(br)dr = −1

b
Y0(br)−

2

b

νm/2−1/2∑
k=0

Y2k(br) (41)

can be applied. The situation is a little more involved for
even νm, for which we can use the integration rule

ˆ
Yνm(br)dr = −2

b

νm/2∑
k=1

Y2k+1(br)

+
π

2
r [Y0(br)H−1(br) + Y1(br)H0(br)] , (42)

where H denotes the Struve function. To avoid inefficient
converging behaviour, we avoid the power series and in-
stead express H in terms of of Bessel functions. For this,
we rewrite the recurrence relation for the Struve function
to find

H−1(x) = −H1(x) +
1

√
πΓ
(
3
2

) , (43)

after which the expansions

H0(z) =
4

π

∞∑
k=0

J2k+1(z)

2k + 1
, (44)

H1(z) =
2

π
(1− J0(z)) +

4

π

∞∑
k=1

J2k(z)

4k2 − 1
, (45)

complete the integral formulation.

B.3 Averaging over the Origin

In the case that θb = π, we wish to allow the inlets to
stretch over the origin, enabling the simulation of a per-
fectly symmetric system. For this case, we need to split
the integral over the two parts of the boundary, yield-
ing

⟨ψ⟩j =
ˆ 0

Rj−
bj
2

ψ(|θj−θb|, r)dr+
ˆ Rj+

bj
2

0

ψ(θj , r)dr, (46)

where the integrals can be computed by the afore-
mentioned expressions. Here, we do note that, in the first
compartment, Ca2 = 0, limiting the eigenfunction to the
Jνm-term.

B.4 Exception β = 0

An important exception is to be included for m = 0, n = 1
where the value of β will equate to zero in the outer part of
the domain (and possibly other parts with the same water
depth). For all inlets located in these parts of the domain,
the average equals to

⟨ψ⟩j =
√
2R2

bθbh
j
b, (47)

with hjb the water depth of the compartment of the domain
that inlet j faces.
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C Analytical Jacobi Matrix

For analysis of the stability of the equilibria, an expression
for the Jacobi matrix is required which, with some writing,
is relatively easily found analytically. For convenience,
we write f = dA/dt, after which taking the derivative
of the Escoffier equation (Eqn. (3)) with respect to Aj
yields

∂fi
∂Aj

=
3Msed

lU3
eq

|ûi|2
∂|ûi|
∂Aj

=
3Msed

2lU3
eq

|ûi|
[
ûi
∂û∗i
∂Aj

+ û∗i
∂ûi
∂Aj

]
, (48)

where ∗ denotes taking the complex conjugate, and where
we note that dû∗/dA = (dû/dA)∗. Recall that the Equa-
tion (15) were written as Nû = F where F ̸= F(A), such
that taking the derivative with respect to Aj at both sides
yields

∂

∂Aj
[Nû] = 0, such that

∂û

∂Aj
= −N−1 ∂N

∂Aj
û. (49)

Taking the derivatives of the matrix N is also relatively
easily done, although one needs to distinguish three dif-
ferent cases, yielding

∂Npq

∂Aj
=



ωi
g

∑
m,n

⟨ψ⟩qAq

λ
∂⟨ψ⟩p
∂Aj

p = j, q ̸= j,

ωi
g

∑
m,n

⟨ψ⟩p
λ

[
⟨ψ⟩q + ∂⟨ψ⟩q

∂Aj
Aq

]
p ̸= j, q = j,

ωi
g

∑
m,n

[
⟨ψ⟩p
λ

[
⟨ψ⟩q + 2Aq

∂⟨ψ⟩q
∂Aj

]]
+

iωlj
g

∂µj

∂Aj
p = q = j,

0 otherwise.

(50)

It is easily computed that

∂µj
∂Aj

= − rj
2iωγj

A
− 3

2
j . (51)

The derivatives of the width-averaged eigenfunctions are
easily found by applying Leibniz’ integration rule to
find

∂⟨ψ⟩j
∂Aj

= − 1

2Aj
⟨ψ⟩j +

1

4Aj

[
ψ
(
R+
j

)
+ ψ

(
R−
j

)]
, (52)

with R±
j = Rj±bj/2, completing the analytical expression

for the Jacobi matrix. It should be appreciated that this
expression is not depending on the form of ψ, yielding a
general result that may also be applied to other geome-
tries.

D Bifurcation Analysis

For reliably tracking all the present equilibria in a 3D
vector-field, the use of a bifurcation analysis seems a fea-
sible option. In this study, the implementation of such
a tracker was not successful, but this appendix should
give some more details and thoughts about this, hope-
fully contributing to a successful implementation in the
future.

The idea behind the use of a bifurcation analysis as
equilibrium tracking tool is to choose an independent bi-
furcation parameter (for instance the basin water depth)
which is systematically varied. This parameter should sat-
isfy two important conditions: 1) in the default situation,
one should be able to analytically compute the equilib-
ria, or to numerically compute them and proof that all
equilibria are found; 2) during the systematic parameter
variation, all new equilibria should emerge from existing
equilibria, and no new branches should come to existence.
If these two conditions are met, the use of a bifurcation

analysis as equilibrium tracking algorithm seems promis-
ing, as it would allow for relatively cheap and reliable
tracking of all equilibria without having to compute the
full vector field first. Furthermore, such a tracking algo-
rithm can reliably locate equilibria that are located close
to one another, whilst the algorithm from this study has
large difficulty with such situations.

In the process to develop such an algorithm, two main
difficulties were encountered, the first being the choice of
an appropriate bifurcation parameter. This because the
two conditions posed are essentially contradicting: condi-
tion 1) demands the system to be as simple as possible,
whilst condition 2) demands that sufficient equilibria are
already present in the system. Furthermore, in case a tidal
divide is present in the system, bifurcation parameter is
preferred such that the eigenfunctions are independent of
the parameter. This because it is impossible to find ana-
lytical derivatives for the eigenvalues with respect to the
independent parameters; hence, one should resort to nu-
merical computation, which is undesirable as algorithm for
tracking the eigenvalues is computationally demanding in
itself. One could also think of introducing a special bifur-
cation parameter, for instance by splitting the impedance
matrix in Equation 15 in two parts; Z̃, containing the in-
let friction and the first mode of the basin impedances
Zjq (m = 0, n = 1); and Z̄, containing all the remaining
modes. One could then introduce a bifurcation parameter
p which is varied from 0 to 1 and write

(Z̃+ pZ̄)û = η̂. (53)

Obviously, many more different choices could be
made.

The second difficulty arising was in building a robust
algorithm for the numerical continuation, as the matrices
from the continuation algorithm turned out to be singu-
lar too often for successful implementation. A particular
problem is that a triple inlet system is mathematically
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not in equilibrium if one inlet is closed, as a consequence
of the assumption that sediment import Msed is indepen-
dent of the inlet size, also in case that inlet is closed. As
a consequence of this, the matrix becomes singular when
imposing an inlet area to equate to zero, complicating the
analysis. A solution could be to adapt the equations such
that the derivative ∂Ai/∂t = 0 if Ai = 0.

The reward, however, in case one manages to suc-
cessfully implement such an algorithm may be vast. Af-
ter all, this analysis method is easily extended for multi-
dimensional systems (more than three inlets) with a rel-
atively low increase in computational demand. Further-
more, one should be able to proof that one found all equi-
libria in the system by using some symmetry-properties
of the impedance matrix in Equation 15. After all, when
writing the equation (but now for a double inlet system)
as [

iωl
g µ1 + Z11 Z12

Z21
iωl
g µ2 + Z22

](
A1û1
A2û2

)
=

(
η̂o1
η̂o2

)
, (54)

the matrix on the left-hand-side has become symmetric
due to the symmetric definition of the basin impedances
(see Eqn. 21). If one chooses the bifurcation parameter
appropriately, one may even be able to make this matrix
consisting of imaginary numbers only, and the (combina-
tion of) these properties can potentially be exploited to
show that all equilibria are found.

Based on these considerations, it can be concluded
that the use of a bifurcation analysis as method to track
the equilibria can be a reliable and cheap solution to find
the equilibria, also allowing for easy extension to systems
with more than three inlets. Although this study did not
succeed in developing such an algorithm, it is hoped that
the insights from this appendix can contribute to the im-
plementation eventually.
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