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Abstract—Deep Reinforcement Learning (DRL) has shown
great potential in enabling robots to find certain objects (e.g.,
‘find a bed’) in environments like homes or schools. This task
is known as Object-Goal Navigation (ObjectNav). Although DRL
has shown impressive results, the simulators are key and may be
biased or limited. This creates a profound risk of shortcut learning
i.e., learning a policy tailored to specific visual details of training
environments. Therefore, in this work, we aim to deepen our
understanding of shortcut learning in ObjectNav, its implications
and propose a solution. We design an experiment for inserting
a shortcut bias in the appearance of training environments. As
an example, we associate room types to specific wall colors (e.g.,
bedrooms have green walls), and observe poor generalization of
a SOTA ObjectNav method to environments where this is not
the case (e.g., bedrooms now have blue walls). Further analysis
shows that shortcut learning is the root cause: the agent learns to
navigate to target objects, by simply searching for the associated
wall color of the target object’s room. To solve this, we propose
Language-Based Augmentation (L-B). Our key insight is that we
can leverage the multimodal feature space of a Vision-Language
(V-L) model to augment visual representations directly at the
feature-level, requiring no changes to the simulator, and only an
addition of one layer to the model. Where the SOTA ObjectNav
method’s success rate drops 69%, our proposal has only a drop
of 23%.

Index Terms—Reinforcement learning, Visual navigation,
Vision-Language models, Shortcut learning, Augmentation

I. INTRODUCTION

Autonomously inspecting an industrial site or rapidly re-
trieving a victim from a disaster area would require a robot
to skillfully move through complex three-dimensional (3D)
environments. Therefore, the topic of visual navigation in the
computer vision community aims at enabling robotic agents
to navigate in unseen environments i.e., no ground truth
information such as a global geometric map is given, using
only visual input from cameras.

Inspired by the success of Deep Reinforcement Learning
(DRL) in a variety of Atari games [1], [2], researchers have
made great strides in visual navigation by learning embodied
agents (or ‘virtual robot’) to navigate in unseen environments
using DRL [3]–[5]. Learning navigation policies requires the
use of simulated environments as DRL relies on gathering
experience over millions (or billions) of iterations, making
it impossible to learn in real-world environments. Contrary,
Embodied AI (E-AI) simulators, such as AI2-THOR [6], can
leverage parallelization to speed up training, and allow for
reproducing experimental setups at low cost. These simulators

are accompanied with (near) photo-realistic 3D scene datasets
e.g., Gibson [7] and Matterport-3D [8].

Object-goal navigation (ObjectNav) is a visual navigation
task where agents are initialized at a random starting pose in an
unseen environment and are tasked to navigate to an instance
of an object category e.g., ‘find a fridge’ [9], [10]. ObjectNav
not only requires navigation skills such as obstacle avoidance
but also semantic reasoning about the environment e.g., ‘where
is a fridge most likely located?’. Despite good progress over
the last few years, state-of-the-art (SOTA) methods continue
to generalize poorly to unseen environments [5], [11]–[14].
This poor generalization ability is due, in large part, to limited
training data and inflexible E-AI simulators [5], [13].

E-AI simulators tend to be limited by (1) the number
of scenes they contain, especially when compared to recent
advances in other computer vision tasks [15]–[17], and (2) due
to limitations in data collection or rendering. The latter might
cause dataset biases: a certain room- or object category might
only occur in a single (or few) specific appearance(s). For
instance, all kitchens in training scenes might have a certain
floor material (e.g., a wooden floor). Consequently, training in
E-AI simulators creates a profound risk of shortcut learning
[18]: learning a simple, non-essential policy, tailored to spe-
cific visual details of the simulated environment, rather than
learning any semantic reasoning or task-related skills. Efficient
object-goal navigation involves learning useful semantic priors
such as object-room (e.g., a fridge is in the kitchen) and object-
object relations (e.g., chairs are near tables), however can
easily lead to unintended shortcuts (e.g., fridge is located near
wooden floor) and poor generalization to visually different
scenes, where the shortcuts are no longer valid.

In this work, we introduce an out-of-distribution (o.o.d.)
generalization test for ObjectNav agents to deepen our under-
standing of shortcut learning in DRL and its implications. In
particular, we design a procedure for inserting a dataset bias
in the visual appearance of training scenes, which offers the
agent a shortcut pathway for finding a given target object. As
an example of such a shortcut bias, we associate every room
type to a unique wall color i.e., all kitchens have red walls,
bedrooms have green walls and so forth.

How well does a SOTA ObjectNav method [19] generalize
to scenes with different wall colors and to what extend do
shortcuts affect the o.o.d. generalization ability? Using our
procedure, we are able to evaluate generalization to scenes
with a range of specific wall color changes, where the agents
can no longer rely on the inserted shortcut bias. We posit the
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target room i.e., the room in which the target object is located,
is key. Therefore, we propose to alter the walls of the target
room first and incrementally change more rooms. To shed light
on the implications of shortcut learning, we differentiate wall
color changes of non-target rooms (rooms other than the target
room) into two types: deceptive vs nondeceptive. By moving
the wall color associated with the target room to a non-target
room, deceptive changes mislead a navigation model to search
for the target object in the wrong room. Instead, nondeceptive
changes only change the wall color of non-target rooms to a
different color than the one associated with the target room.
As a result, we find that (1) changing wall colors in testing
scenes decreases performance significantly, and (2) shortcut
learning plays an important role in the o.o.d. generalization
ability of the SOTA ObjectNav method [19]. The agent learns
to navigate towards target objects by simply searching for the
wall color associated with the target room.

Why does the agent learn such a shortcut strategy? By
further analyzing the agent’s visual representations, we find
that wall color serves as an unintended shortcut predictor for
room type. We perform an experiment by training a simple
neural classifier on visual representations from sampled frames
(RGB observations), outside of the Reinforcement Learning
(RL) framework, using supervised learning. We observe the
classifier’s predictions on held-out combinations of room type–
wall color and find it is heavily biased towards wall color.

Beyond observing these shortcuts, we subsequently aim
to increase domain generalization without modifying training
data or the E-AI simulator, as these can be inflexible and
difficult to modify. Augmentation methods e.g., randomizing
textures, colors and shapes of objects or environments are
commonly used to transfer policies in DRL [13], [20], [21].
However, these methods specifically require modifications to
the simulator. While more sophisticated methods for partially
editing individual frames during training exist (e.g., text-to-
image models [22], [23]), they are slow, computationally
expensive and error-prone. Instead, we take a different ap-
proach and propose Language-Based (L-B) augmentation (see
Fig. 1). We augment directly at feature-level, without editing
individual frames or requiring any changes to the simulator.

We build upon promising results from [19], where visual
representation within the agent’s architecture are based on a
Vision-Language (V-L) model. They use the image encoder
of the Contrastive Language Image Pretraining (CLIP) [15]
network to encode RGB observations. CLIP jointly trains
an image and text encoder, such that both produce similar
representations for visual concepts in images or their names
in natural language. Hence, by describing variations of the
dataset bias, in natural language, we are able to augment
visual representations at feature-level. If the learning algorithm
is provided with enough variation during training, the model
cannot rely on shortcuts anymore. Similar analysis of visual
representations shows increased robustness to changing wall
colors. The simple neural classifier is able to classify room
types better when trained on our augmented visual represen-
tations.

Does the improved room classification, and thus more robust
visual representations, also lead to better generalization in
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Fig. 1: We propose Language-Based (L-B) augmentation
to generalize better to scenes with different wall colors. In
this example, we interchange the wall color of the bedroom
and living room, causing the SOTA objectNav method [19]
to look for the sofa in the blue bedroom (wrong). With our
augmentations, this is solved.

ObjectNav? By an elegant modification to a SOTA architecture
[19], with only one additional layer, we generalize better to
scenes with different wall colors in ObjectNav.

In summary, our contributions are:

1) An o.o.d. generalization test for ObjectNav to evaluate
(1) how well a SOTA ObjectNav method is able to
generalize to scenes with different wall colors and (2)
the influence of shortcut learning on the generalization
ability.

2) An o.o.d. analysis of the agent’s visual representations.
By training a simple neural classifier on CLIP visual
representations, we show wall color serves as a shortcut
predictor for room type.

3) L-B augmentation: using our o.o.d. generalization test,
we show we are able to mitigate shortcut bias to a
large degree without any changes to the E-AI simulator.
When only changing wall colors of the target room,
the SOTA ObjectNav method’s [19] success rate drops
69%. Instead, when integrating L-B augmentations, we
observe only 23% relative drop.
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II. RELATED WORK

A. DRL for visual navigation

There has been a significant amount of research on several
visual navigation tasks in recent years, which can be divided
according to their target type. For instance, Point-goal Nav-
igation (PointNav), where agents must navigate to a given
target coordinate [3], [19], Room-goal Navigation (RoomNav)
[24], [25] or more complicated tasks such as Vision-and-
Language Navigation (VLN), where an agents must follow
a given instruction such as ‘turn right and exit the bathroom
into the bedroom’ [26], [27]. In this work, we focus on the
ObjectNav task using DRL [5], [11]–[14], [19], [28]–[31],
as this shows the most potential towards enabling agents to
navigate to target objects.

E-AI agent architectures consisting of general-purpose neu-
ral components such as convolutional neural networks (CNN),
recurrent neural networks (RNN) and fully connected layers
are a common approach for a variety of visual navigation tasks
[3]–[5], [12], [13], [19], [32], [33]. A visual representation
is obtained by encoding RGB egocentric observations i.e.,
first-person camera views of the agent, using a CNN. These
representations are then fed into a RNN to provide episodic
memory. A linear layer maps the hidden state of the RNN to
a probability distribution over a discrete set of actions. We
will refer to these as generic architectures as they are easily
applicable across a range of visual navigation tasks and are
easy to modify. In [19], authors explore the effectiveness of
CLIP’s [15] visual encoder in such a generic architecture.
They build simple baselines, named EmbCLIP [19], and
show CLIP’s visual representations encode useful navigation
primitives such as reachability and object localization. They set
new SOTA results on several visual navigation tasks, including
ObjectNav. We adopt the generic architecture of EmbCLIP as a
baseline, given its strong performance on a variety of settings.
Our focus is on the challenge of learning a model that can
better generalize to changing environments.

B. Embodied AI simulators and scene datasets

Many simulators have been developed for Embodied AI
[6], [34]–[39], along with several photo-realistic 3D indoor
scene datasets [7], [8], [13], [40], [41]. Scenes can be ei-
ther reconstructed from 3D scans of real-world houses e.g.,
Habitat [34] and iGibson [38], or synthetically composed from
artist created 3D assets e.g., AI2-THOR [6] (The House Of
inteRactions) and variants (RoboTHOR [35], ManipulaTHOR
[36]). Both methods have a crucial disadvantage. Namely, they
are extremely costly to collect. Reconstructing scenes from
3D scans involves stitching images from specialized cameras
whilst manually composing synthetic scenes involves carefully
configuring lighting, object placement or textures. ProcTHOR
recognizes this fact and instead obtains thousands of training
scenes by a procedural generation process [13]. Scenes are
interactive, diverse, realistic and as they are procedurally
generated, the dataset can be scaled up to an arbitrary amount
of scenes. Using this huge dataset, they set new SOTA results
on six visual navigation tasks, including ObjectNav, in AI2-
THOR, Habitat and RoboTHOR, by pre-training on a gener-

ated set of 10,000 houses (dubbed ProcTHOR-10k). In this
work, we take advantage of the ProcTHOR-10k scene dataset.
The appearance of these scenes can be fully customized by
altering the appearance of individual objects and room surfaces
such as walls, floors and ceilings. For instance, a red sofa can
be replaced with a black one. This allows for (1) inserting a
shortcut dataset bias in the appearance of training scenes and
(2) creating a range of specific appearance differences between
training and testing scenes to evaluate o.o.d. generalization.
To ensure we only test for generalization to different wall
colors, we deliberately set the appearances of training scenes
identical to each other and alter only the color of specific
walls in testing scenes. In this way, we can guarantee only wall
color differences are influencing the performance of the agent.
ProcTHOR-10k is currently the only dataset which allows for
such interventions.

C. Shortcut learning

Shortcut learning is emerging as a key impediment in
the generalization ability of deep neural networks (DNNs)
[18]. Shortcuts are decision rules often learned by DNNs
which help to perform well on a particular dataset but do
not match with the human-intended ones. Accordingly, they
typically fail when tested in only slightly different conditions.
Prior work in shortcut learning is predominantly concerned
with supervised learning [42]–[44]. In [43], authors show
that ImageNet-trained CNNs exhibit a strong bias towards
texture based recognition, unlike humans, which mostly rely
on object shape. DNNs even exploit implicit shortcuts, which
are visually not always observable, such as textures consisting
of specific frequencies [44]. Similar to our work, [42] designs
a procedure to observe whether DNNs prefer to adopt e.g.,
color, shape or size shortcuts under fair conditions, and find
DNNs naturally prefer certain shortcuts. In contrast, we study
the shortcut learning phenomenon in the context of DRL.

In DRL, agents might learn shortcuts due to shortcut biases
in the visual appearance of training environments. A common
implication is observed in transferring policies from simulation
to real-world environments [18], [20], [45]. Most policies
trained in simulated environments do not generalize well
to the real-world due to the so-called ‘reality gap’. Agents
adapt to specific visual details of the simulated environment.
Prior works cope with the reality gap through randomizing
appearances within training environments [20], [21]. Similar
data augmentation methods are applied to ObjectNav. Proc-
THOR scenes offer a large visual diversity by augmenting
e.g., textures and colors of walls, floors, ceilings, and objects
[13]. While ProcTHOR shows incredibly powerful results,
such augmentations might not be available for all simulators,
and more often than not, simulators are more limited than
ProcTHOR. Thus, motivating our investigation into augmenta-
tions which can be applied post-hoc and not within the training
data itself. Moreover, we propose augmentations beyond the
already proposed ones, where we use targeted randomization
of specific visual biases in environments, in our case, wall
color. V-L models e.g., CLIP [15] allows us to augment at
feature-level based on prior knowledge of the environment.
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III. PRELIMINARIES

A. ObjectNav task definition
The goal for the agent is to navigate through the unseen

environment and find the target object within a certain time
budget. At the start of an episode, the agent is initialized at
a random navigable location within the scene and is given a
target object label (e.g. ‘Bed’) from a predefined set of possible
objects. At each time step t, the agent receives an image from
the RGB forward-facing camera and can take one of 6 possible
actions. We do not utilize any depth sensor readings and a full
description of the discrete action space is shown in Table II
(Appendix). An episode terminates after 500 timesteps (T =
500) or when the agent issues the special DONE action.

B. ObjectNav evaluation metrics
Following standard procedure for ObjectNav [9], [10], an

episode is considered successful if (1) the agent executes
the DONE action; (2) The target object is within a certain
distance threshold, set to 1 meter; and (3) The target object is
considered visible i.e., within the camera’s field of view and
not fully obstructed

We report two primary performance metrics: Success and
Success weighted by (normalized inverse) Path Length (SPL).
Success is the average success rate over all N evaluation
episodes and SPL is a measure for path efficiency [9], [10]:

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(1)

Si is a binary indicator denoting success of episode i; li
is the shortest path length from starting position to the target
object and pi is the length of the path the agent travelled.
SPL is bounded by [0 : 1], where 1 is optimal performance.
The shortest path length li is defined directly until the target
object, including the distance threshold. So if the agent acts
optimally and stops for example 0.5m before the target object,
then li > pi. To ensure SPL< 1, the denominator computes
max(pi, li). It should be noted that SPL is a stringent measure.
Achieving an SPL of 1 is infeasible (even for humans) without
knowing the target object location a priori.

Additionally, we report two more evaluation measures
which give more insight into agent behaviour: Distance To
Target (DTT) and Episode Length. DTT is the remaining path
length (in meters) of the shortest path to visibly see the target
object. This indicates whether the agent close to succeeding
in failed episodes and is 0 for successful episodes.

C. ProcTHOR
ProcTHOR enables E-AI to scale by procedurally generat-

ing simulated environments. Given a room specification (e.g.
a house with 1 bedroom and 1 bathroom), ProcTHOR can
produce a large variety of floor plans, populates each floor
plan by sampling from a library of 3D assets, and supports
randomization of lighting, colors and textures. In this work,
we leverage ProcTHOR-10k, as these scenes can be fully cus-
tomized. This customization and our proposed interventions,
allow for inserting a shortcut bias in the appearance of training
scenes and test for o.o.d. generalization.

IV. METHOD

A. Interventions on ProcTHOR-10k

In order to evaluate o.o.d. generalization, we need to (1)
insert a shortcut bias and (2) create a range of specific wall
color differences between training and testing scenes. By
selecting a more uniform subset of scenes and setting identical
appearances, we guarantee to only evaluate generalization to
different wall colors, without other aspects (object appear-
ances, room types, number of rooms, etc.) influencing the
performance. Our procedure is detailed in the next subsections.

1) Scene and target object selection: We start by selecting a
more uniform subset of scenes from ProcTHOR-10k. First, we
select only houses with 3 rooms, which all consists of 3 room
types: kitchen, bedroom and living room. For each room type,
we select 3 target object categories which are semantically
related (e.g. fridge in kitchen). Table III (Appendix) shows an
overview of the selected target object categories. Although the
selected target object categories are semantically related to a
room type, some might occur in multiple room types (e.g. sofa
occurs in living room and bedroom). Also, some selected target
object categories might have multiple instances in each scene
(e.g. 2 televisions in the living room and 1 in the bedroom). We
restrict ourselves to scenes which contain exactly one instance
of each target object category in the associated target room
e.g., every house contains 1 television and is it positioned in
the living room. We ensure this restriction by (1) selecting
scenes which contain at least one instance of each target
object category in the associated room type and (2) manually
removing any double (or more) instances of target objects. Fig.
2 shows an example scene where we removed double instances
of target objects.

2) Setting identical appearances: After the above selection,
object types still might occur in different 3D assets and
room surfaces (walls, floors and ceilings) still appear in many
different colors and textures. For our o.o.d. generalization test,
we need a set of visually identical houses. To this end, we
1) set the same appearance for each object category e.g., all
fridges appear exactly alike, and 2) set equal appearances
of room surfaces for each room type e.g., all kitchens have
identically colored surfaces. We set the object appearances
identical by assigning one 3D asset from the ProcTHOR
library to each object type. We set all room surfaces identical
by setting the same materials from the ProcTHOR library.
Lastly, we set identical appearances of doors, and remove
windows and wall decoration.

3) o.o.d. generalization test: In Fig. 3 we show an illustra-
tion of how we propose to evaluate generalization to scenes
with different wall colors. The train set consists of visually
identical houses, where each object type appears exactly alike,
and where living rooms have blue walls, kitchen have red
walls and bedrooms have green walls. For our test sets, we
use houses with a different layout such that agents cannot
simply memorize object locations, and permute wall colors.
The 0-room test set serves as a reference. To solely evaluate
generalization to different wall colors, we use the same layouts
in each test set and compare performance to the reference 0-
room test set.
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Kitchen

Living room Bedroom

Fig. 2: Example 3-room house. Here, we show a 3-room
house selected from the ProcTHOR 10k train split, where we
select 3 target object categories per room type e.g., a sofa and
television in the living room, a bed and dresser in the bed
room, and a kettle and fridge in the kitchen.

First, we change the wall color of the target object’s room
as this is the most simple bias (1 wall color change). Next,
we change another room’s wall color (2 wall color changes).
Finally, we change the wall colors of all three rooms (3 wall
color changes). For instance, if the target object is a fridge,
we start by altering the wall color of the kitchen e.g., from red
to green, whereas if the target object is a sofa, we start with
changing the wall color of the living room e.g., from blue to
red. Fig. 3 shows an example change from red to blue wall
colors when changing the target room for 2 different layouts.
We consider changing to all possible permutations (e.g. to blue
and green wall color in test set 1-room) with repetition i.e.,
multiple room types can have the same wall color. See Section
VI-D (Appendix) for an overview of all possible permutations.

We expect that moving the wall color of the target room
to another room i.e., a non-target room, will have a high
impact, because the agent may look in that latter, wrong room.
It might look in this room because it has the learned color
i.e., the color associated with the target room. We refer to
this wall color change as ‘deceptive’. For instance, a fridge is
now erroneously searched in the living room with a red wall,
instead of the kitchen which had a red wall during training but
is now blue. We expect that this wall color change degrades
the performance significantly. Examples of deceptive changes
are shown in the bottom row (test set 2- and 3-room). Here,
the learned wall color (red) is moved to a non-target room,

which we expect will mislead the agent. Instead, when none
of the rooms has the learned color, we expect less performance
degradation, because it is not misled. We refer to such a wall
color change as ‘nondeceptive’.

B. Language-based augmentation

We intent to increase domain generalization by augment-
ing agent’s visual representations, such that these are more
invariant to changing environments. We integrate our L-B
augmentation method in EmbCLIP [19], where agent’s visual
representation are based on a Vision-Language (V-L) model
(Fig. 4 shows an overview). At each time step t, a visual
representation or image embedding ItItIt is obtained by encoding
a RGB observation using CLIP’s [15] visual encoder (CLIPv).
CLIP learns to associate text strings e.g., ‘blue wall’ or ‘red
wall’, with their visual concepts in images. Our key insight
is that we can represent domain specific knowledge, regard-
ing the changes in environment appearances, using natural
language. By encoding text descriptions of variations of the
dataset bias (e.g. ‘a blue wall’), using CLIP’s text encoder
(CLIPT ), we are able to vary visual representations without
actually having seen images containing these variations (e.g.
an image of a blue wall). This allows us to augment directly
at feature-level.

For encoding the text descriptions we use the default text
prompt template recommended by [15]: ‘a photo of a {label}’.
We insert descriptions of variations of the dataset bias (e.g.
‘red wall’). We obtain our augmented embeddings ILB

tI
LB
tI
LB
t by

computing differences between n encoded text descriptions
of variations of the dataset bias T1,...,nT1,...,nT1,...,n, and adding to visual
representation ItItIt:

ILB
tI
LB
tI
LB
t = ItItIt + α ·∆(TTT ), (2)

∆(TTT ) =


∆1∆1∆1

∆2∆2∆2

...
∆n(n−1)∆n(n−1)∆n(n−1)

 =


T1T1T1 − T2T2T2

T1T1T1 − T3T3T3

...
TnTnTn − T1T1T1

 (3)

where, α controls the degree of augmentation and ∆ com-
putes differences of all permutations of length 2 of text de-
scriptions TTT . By randomly sampling an augmented embedding
from ILB

tI
LB
tI
LB
t at each time step, we aim to provide the RL model

(RNN) with an embedding which resembles the same room
type (e.g., a living room in Fig. 4), but with a different wall
color (e.g., red and blue instead of green walls in Fig. 4).

We empirically find α = 50 to work well by tuning for
our specific dataset and shortcut bias (see Appendix, Section
VI-C). We standardize features before feeding into the RNN
to ensure stability during training (as some features might
dominate the loss function due to large norms). In our case,
we insert three (n = 3) text descriptions of variations of the
dataset bias: ‘blue wall’, ‘red wall’ and ‘green wall’. This
results in 6 augmented embeddings ItItIt +∆n(n−1)∆n(n−1)∆n(n−1) per visual
representation ItItIt.
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Fig. 3: Procedure for our o.o.d. generalization test. In this example, the target room is the kitchen (red walls in test set
0-room). We apply wall color changes to the target room first (test set 1-room) and incrementally alter more rooms (test set
2/3-room). The bottom row shows two examples of deceptive changes, where the wall color associated with the target room
(red wall color) is moved to a different room type. The top row only shows nondeceptive wall color changes.
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Fig. 4: Illustration of Language-Based (L-B) augmentation via a vision-language (V-L) space. Our key insight is that we
can augment visual representations (It), using differences (∆) between encoded text descriptions of variations of the dataset
bias (T1,...,n). The idea is to augment the CLIP embedding of e.g. ‘A living room with green walls’ in such a way that the
embedding resembles a ‘living room with red or blue walls’. By providing the RL model with enough variation during training,
using random sampling, we ensure the RL model is not able to use a shortcut strategy (Living rooms always have green walls).

V. EXPERIMENTS

We perform four experiments, where we aim to: (1) evaluate
generalization of EmbCLIP [19] to scenes with specific wall
color changes and study to what extend shortcuts influence
this generalization ability; (2) bring more insight into why
the agent learns shortcuts by analysing visual representations
within EmbCLIP; (3) show, using similar o.o.d. analysis, that
our L-B augmented representations mitigate shortcut bias and
finally; (4) validate L-B augmentation can increase domain
generalization in ObjectNav by integrating within the archi-
tecture of EmbCLIP.

A. Experimental setup
1) ObjectNav dataset details: We train ObjectNav agent

on 20 visually identical but biased scenes, generated using

our proposed procedure (Section IV-A). See Fig. 13 and 14
(Appendix) for an overview. During training, we randomly
sample 1 of 9 target objects. We analyze o.o.d. performance
on a set of 5 disjoint scene layouts. We evenly distribute
evaluation episodes over the 5 layouts, wall color permutations
and target objects. See Section VI-E (Appendix) for more
details.

2) Agent architecture and configuration: For our experi-
ments, we use the CLIP-based method EmbCLIP [19]. There
are two different variations of the ObjectNav EmbCLIP ar-
chitecture: a closed-world architecture, which assumes known
target objects, and a zero-shot variant. See Section VI-F
(Appendix) for a description of both agents. Both are generic
architectures, which obtain a visual representation by encoding
RGB egocentric views using a frozen CLIP image encoder,
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employing a ResNet-50 backbone. However, the closed-world
variant first obtains a goal-conditioned embedding before
feeding into the RNN, which involves removing the final
pooling and fully connected layers from CLIP, whereas the
zero-shot variant feeds the CLIP 1024-dimensional visual
embedding directly. For our o.o.d. generalization test, we
adopt EmbCLIP’s closed-world architecture as this variant
has better performance in a traditional ObjectNav setting [9].
We integrate our L-B augmentation method in the zero-shot
variant, as this architecture feeds the 1024-dimensional CLIP
visual embedding directly into the RNN, which allows for
substituting this visual embedding with a L-B augmented
embedding using random sampling.

Following typical setup for ObjectNav [13], [30], [46], the
embodied agent approximately matches a LoCoBot1. This
robot has a height of 0.88m, radius of 0.18m and its RGB
sensor is placed 0.88m from the ground. We set the horizontal
camera field of view to 90°. The robot uses a step size of
0.25m and a turning angle of 30°.

3) Reward setting: At each time step t, the reward rt is:

rt = max(0,min∆0:t−1 −∆t) + rslack + rsucc (4)

where:
• min∆0:t−1 is the minimal path length from the agent to

the target object that the agent has previously observed
during the episode, so during time steps {0, ..., t− 1}.

• ∆t is the current path length from the agent to the target.
• rslack is the slack penalty. It is set to −0.01.
• rsucc is a large reward for successful episodes. If the

agent issues the DONE action and the episode is consid-
ered successful, rsucc = 10, otherwise it is 0.

The reward is shaped to optimize path efficiency and,
therefore, SPL. The agent is encouraged to reach target objects
using as few actions as possible, due to the slack penalty.
Note that, moving towards the target object is encouraged by
a reward of maximally the step size and moving away from
the target object is not discouraged. The latter is to ensure
exploration is not discouraged.

4) Implementation details: We train ObjectNav agents us-
ing the Allenact framework [47] and render frames at 224×224
resolution. To parallelize training, we use DD-PPO [3] with 2
workers on 2 Nvidia GeForce GTX 3080 Ti graphic cards (1
worker per GPU). Each worker collects in total 3840 frames
of experience from 20 agents in 20 environment instances, all
running in parallel. After each rollout (3840 frames), the model
is updated using 4 epochs of PPO [48] in a single global batch
size of 7680. We perform validation every 200,000 frames
and report results of the checkpoint with the highest SPL. See
Appendix (SectionVI-G) for additional training details.

B. ObjectNav o.o.d. generalization test

How well does a SOTA ObjectNav method generalize to
scenes with different wall colors and to what extend do
shortcuts affect the o.o.d. generalization ability? We seek
answers by training EmbCLIP [19] for 20M frames (60 GPU-
hours) on the 20 visually identical but biased scenes. We

1http://www.locobot.org/

hypothesise the performance drop coheres with the number
of wall color changes. Moreover, we posit a deceptive change
will lead to more performance degradation than a nondeceptive
change as the agent will be misled to search for the target
object in the wrong room. In Fig. 5 we report quantitative
results of our o.o.d. generalization test. Results for each target
object are shown in the Appendix (Fig. 12). Next, we describe
our findings.

First of all, we observe that changing the wall colors of
only the target room already leads to a large decrease in
performance. On average (blue mean bar), we observe a 67%
relative drop in SPL (0.39 → 0.13) and 56% in success rate
(68% → 30%) going from 0 wall color changes to 1 wall
color change, with even lower mean performance for more
wall color changes. Indeed, we find that EmbCLIP generalizes
poorly to scenes with different wall colors when using limited
training data.

Secondly, the Success, SPL and DTT metrics indicate
deceptive changes cause lower performance than nondepective
changes for both 2 and 3 wall color changes. Interestingly,
however, we observe shorter episode lengths for deceptive
changes. We conjecture that due to deceptive changes, the
agent directly navigates towards the learned color of the target
room, which is now placed in a non-target room, without
exploring any other rooms. The agent will erroneously search
this non-target room, but can not find the target object, and
terminates the episode. In contrast, an agent will explore
the entire scene when wall colors have only been changed
nondeceptively, leading to higher success rate but longer
episodes. We show a qualitative example of this behaviour
in Fig. 6. In this example, the target object is a bed, though
the agent is deceived by the living room, which now has a
green wall color, and terminates the episode when it sees the
sofa. This leads to a much shorter episode length than in the
nondeceptive example, where the agent explores large parts of
the scene.

Thirdly, we observe that the drop in mean performance
coheres with the number of wall color changes. However,
somewhat surprisingly, we also find that altering the wall
colors of non-target rooms (2/3 wall color changes) only has an
impact on performance depending on the type of color change
(deceptive/nondeceptive). Notice how performance remains
constant when making only nondeceptive changes, irrelevant
of the number of changes (SPL and success of nondeceptive
changes is approximately equal to 1 wall color change).
Instead, deceptive changes cause lower performance than only
altering the target room’s walls (1 wall color change). The
underlying reason for the decrease in mean performance is
a growing share of deceptive changes within all evaluation
episodes (50% → 75% going from 2 to 3 changes). As such,
increasing the number of rooms affected by wall color changes
does not necessarily decrease performance, but making a
deceptive change does.

Evidently, the agent has learned a shortcut strategy i.e.,
simply navigating towards the wall color of the target room to
find objects. Hence, we find shortcut learning plays a crucial
role in our ObjectNav o.o.d. generalization test.

http://www.locobot.org/
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Fig. 5: Results out-of-distribution (o.o.d.) generalization test. Here, we report the performance of EmbCLIP [19] to scenes
with different wall colors. We report the mean over all episodes, the mean over episodes with deceptive wall color changes
and the mean of episodes with nondeceptive changes. We also show standard error of the mean for each. When only changing
the wall color of the target object’s room (1 wall color change), we already observe a large decrease in performance in all
metrics.

Instruction: “Find a bed”

Nondeceptive

Deceptive

No wall color change

Starting point A Starting point B

Fig. 6: Errors and shortcuts by the SOTA ObjectNav
method. We show example trajectories from 2 different start-
ing position (left vs right column). The top row shows 2
successful episodes in scenes without any wall color changes.
Longer episodes are indicated by a brighter pink color in
the path line segments. Notice how nondeceptive episodes
(middle) are much longer than deceptive episodes (bottom),
whilst both are unsuccessful. Also note the absolute lack of
search in the bedroom when changing wall colors deceptively.

C. Analysis of agent’s visual representations

Though our o.o.d. generalization test shows shortcut learn-
ing is the root cause of poor generalization of EmbCLIP [19]
to scenes with different wall colors, it does not explain why
the agent learns a shortcut strategy. In this second experiment,
we wish to bring more insight into why the agent learns to
simply navigate towards the wall color associated with the
target room. We aim to understand if we can trace this issue
to the visual encoder (CLIPv). Specifically, we posit wall
color serves as an unintended shortcut predictor for room
type in CLIP visual embeddings. To this end, we perform an
experiment outside of the RL framework, using supervised
learning. We train a simple neural classifier to predict room
type from CLIP visual embeddings, extracted from sampled
frames. The training set consists of frames where the bedroom
has green walls, the kitchen has red walls and the living room
has blue walls. We evaluate if the classifier adopts wall color
as a shortcut predictor by observing its predictions on held-out
room type-wall color combinations.

To enable the above evaluation, we generate a small dataset
of sampled frames (RGB observations). Specifically, we select
1 house layout from our test split, permute wall colors, and
sample 200 frames for every room type–wall color combina-
tion. Ground truth data for room type is determined by the
position where the frame is sampled. Furthermore, we split
our dataset into two types: ‘context’ vs ‘contextless’. We refer
to ‘context’ frames as frames which contain objects, which
provide semantic information (or ‘context’) pertaining to room
type (e.g. a sofa is in the living room). Instead, ‘contextless’
frames do not contain any useful information (i.e. walls, floors
and ceilings). We create this split as we expect the classifier’s
prediction to be worse on contextless frames. If a frame only
shows a wall, the classifier can only use the biased wall
color to classify room type, leading to erroneous classification.
See Appendix (Section VI-H) for more details on the dataset
generation.

For each frame in our dataset, we extract the 1024-
dimensional CLIP embeddings using the CLIP visual encoder
employing a ResNet-50 backbone. We train a multi-layer per-
ceptron (MLP) to predict room type from these embeddings.
We use a MLP with 1 hidden layer (100 neurons wide), ReLu
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activation, a batch size of 200, a learning rate of 0.0001, an
adam optimizer and supervise using the generated ground truth
data. Lastly, we standardize individual features using mean
removal and scaling to unit variance before training the MLP.

Fig. 7 shows confusion matrices for (a) context and (b)
contextless frames. The color of the labels indicates the wall
color. Predicted label colors indicate the room type–wall color
combinations which we trained on. In Fig. 7a we see that
e.g., 94.2% of frames showing a kitchen with green walls,
are classified as a bedroom since the classifier has only seen
bedrooms with green walls during training. The majority of
context frames are being classified directly according to their
wall color, leading to classification accuracy of 16.8%, worse
than random. In the contextless set (Fig. 7b), we see all rooms
being classified according to their wall color leading to an
overall classification accuracy of 0%. Clearly, we observe a
large confusion of room types, which is caused by the biased
wall color.

D. Analysis of L-B augmented visual representations

In the previous experiment we showed that CLIP visual
representations encode shortcuts where wall color serves as
an unintended shortcut predictor for room type. We find the
classifier to predict room type mostly based on wall color of
the biased training data, leading to poor classification accuracy
on held-out room type–wall color combinations. We posit that
improved room type classification will lead to more capable
ObjectNav agents in our o.o.d. generalization test. Therefore,
in the following experiment, we study the impact of augment-
ing CLIP visual representations, using the L-B augmentation
from Section IV-B, on the room type classification accuracy.

Though the agent can not base its recognition of room
type on wall color, it can base its recognition on object-
room relations. Therefore, using L-B augmentation, we aim
to improve classification accuracy on context frames i.e.,
frames which contain objects. In contrast, when no context is
provided, the agent should not recognize the room type. Hence,
we aim to achieve unbiased confusion on contextless frames
i.e., a confusion matrix CCC where each element Ci,j = 0.33
(for nclasses = 3). To measure unbiased confusion, we define
the Absolute Difference With Random (ADWR):

ADWR =
1

N

∑
i,j

|Ci,j − 0.33| (5)

where, N is the number of elements in the confusion matrix
CCC. Ideally, ADWR = 0, where the classifier assigns equal
probability (0.33) to each room type for all test sets. Contrary,
when prediction is completely biased i.e., predicting all test
samples as a single room type, ADWR = 0.44. Note that
ADWR ∈ [0, 0.44].

We use an identical experiment setup as in the previous
experiment, where we analysed CLIP visual representations
(Section V-C). Specifically, we use the same frames dataset
and an identical MLP with the same hyperparameters. How-
ever, now we first use L-B augmentation to augment the 600
original CLIP embeddings from our train set. As detailed in
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Fig. 7: Room type confusion using CLIP embeddings.
Confusion matrices reporting classifier accuracy for a classifier
trained on CLIP embeddings of sampled frames. The colors
of the labels indicate the wall color of the rooms, where the
predicted label colors indicate the training data.

Section IV-B, we insert n = 3 variations of the dataset bias
(e.g. ‘red wall’) in the default prompt template: ‘a photo of
a {label}’, encode using the CLIP text encoder and augment
according to Equation 2 and 3. This results in 3600 augmented
embeddings (6 for each original embedding). For each original
embedding, we randomly sample 1 augmented embedding to
obtain 600 augmented embeddings for our new train set. We
test on the original CLIP embeddings of our test set, where
we split in context and contextless frames.

In Fig. 8 we report confusion matrices. Using our L-B
augmentations, we observe improved classification of room
type in frames containing context (Fig. 8a). Although the bias
is still significantly influencing the room type prediction, we
see, for instance, 23.1% of green kitchen frames now being
classified as their true room type, opposed to only 5.8% in
Fig. 7a. This improvement results from varying CLIP features
which encode wall color. By varying features which encode
wall color, due to our L-B augmentations, the classifier cannot
base its prediction solely on wall color.

Surprisingly, instead of unbiased confusion, we see a shift
towards predicting all contextless frames as a kitchen type
in Fig. 8b. We posit this is due to optimizing classification
accuracy during training using log-loss, which indicates how
far predictions are from ground truth. There is no incentive
to classify rooms randomly, with a low probability, over
classifying all test samples as a single class. Both result in low
classification accuracy. Hence, there seems to be a mismatch
between what we optimize for and what we aim to achieve.

In Table I, we compare results between a classifier trained
on original CLIP embeddings vs after L-B augmentions. Using
our method, we observe significantly increased classification
accuracy on the context frames (17% → 50%), as desired.
Furthermore, we see decreased ADWR on contextless frames
(0.44 → 0.37), as desired. Overall, using L-B augmentation
we are able to suppress the use of wall color serving as a
shortcut predictor for room type.
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Fig. 8: Room type confusion after L-B augmentations.
Confusion matrices reporting classifier accuracy for a classifier
trained on L-B augmented embeddings of frames. The colors
of the labels indicate the wall color of the rooms, where the
predicted label colors indicate the wall color of the rooms the
classifier was trained on.

E. Language-Based (L-B) augmentation in ObjectNav

Our L-B augmentations offer visual representations which
are more domain invariant in the case of biased wall color and
room type. Now we are curious if this also offers improved
generalization in ObjectNav, when an agent needs to deal with
such biases. We study if the increased room classification
indeed also produces more capable ObjectNav agents.

To this end, we integrate our L-B augmentation method
within the EmbCLIP architecture as detailed in Section IV-B.
As our method operates in CLIP embedding space, we use
the zero-shot architecture variant of EmbCLIP as this variant
directly feeds the 1024-dimensional CLIP visual representa-
tion into the RNN. This allows for easily substituting this
CLIP embedding with an augmented embedding, without fur-
ther interventions on the EmbCLIP architecture. Notably, this
architecture variant has lower base performance as it operates
completely on CLIP representations. This includes encoding
the target object label using CLIP’s text encoder. Therefore, we
compare performance against EmbCLIP’s zero-shot variant. In
Allenact [47], frames of each worker are processed in a batch.
Each time step, we randomly sample a possible augmentation
∆1∆1∆1, ...,∆n(n−1)∆n(n−1)∆n(n−1) for each batch. Specifically, as we have 2
workers, this means that we choose a new augmentation
each time step for both workers. We only change the model
architecture in the experimental setup, all other parameters
remain the same. We train both the zero-shot EmbCLIP variant
(88 GPU-hours) and a L-B augmented variant (90 GPU-hours)
for 30M frames on the set of visually identical training scenes.

Fig. 9 shows a comparison of the zero-shot variant of
EmbCLIP and when we integrate our L-B augmentations. We
observe similar agent behaviour for the zero-shot EmbCLIP
variant as for the closed-world variant in Fig. 5. Performance
already degrades significantly after changing the wall colors
of the target room (1 wall color change). We observe 69%
relative drop in success rate (45% → 14%) and 82% drop in
SPL (0.22 → 0.04). In contrast, our method shows improved

TABLE I: Original CLIP visual representation vs after
Language-Based augmentations. Table shows a comparison
between a classifier trained on original CLIP embeddings vs
after L-B augmentations. We report accuracy on the context
frames and ADWR (see text) on the contextless frames.

Accuracy (↑)
(Context)

ADWR (↓)
(Contextless)

Original CLIP 0.17 0.44
Language-based augmentation (ours) 0.500.500.50 0.37

domain generalization. When changing the wall colors of the
target room (1 wall color change), our method incurs only 23%
relative drop in success rate (39% → 30%) and 29% drop in
SPL (0.17 → 0.12). We observe less performance degradation
with increasing number of wall color changes than EmbCLIP.
These results demonstrate L-B augmentation is able to mitigate
dataset bias to a large degree in our o.o.d. generalization test.

VI. CONCLUSION AND LIMITATIONS

DRL and the use of E-AI simulators shows promising
results for ObjectNav. However, bias in the appearance of
simulated training environments might cause agents to learn
shortcuts, which hamper o.o.d. generalization. Therefore, in
this work, we evaluated how well a SOTA ObjectNav method
generalizes to scenes with different wall colors, and studied
to what extend shortcut learning influences this o.o.d. gener-
alization. We found that, when deliberately limiting training
data, only changing wall colors in testing scenes decreases
performance significantly. Moreover, we showed that shortcut
learning is the root cause by making deceptive wall color
changes, which demonstrate the agent learned to simply search
for the wall color associated with the target room.

Subsequently, we introduced Language-Based (L-B) aug-
mentation to address this issue. By encoding text descriptions
of variations of the dataset bias, and leveraging the multimodal
embedding space of CLIP, we were able to augment agent’s vi-
sual representation directly at feature-level. Analysis of agent’s
visual representations showed improvement when probed for
room type classification. Finally, experiments showed that our
L-B augmentation method is able to improve domain gener-
alization to scenes with different wall colors in ObjectNav.
When changing the target object’s room, our method incurs
23% relative drop in success rate whilst the SOTA ObjectNav
method’s success rate drops 69%.

To demonstrate the usefulness of our approach, we consider
an extreme case of dataset bias, where every instance of each
room type is associated to a specific wall color. However,
biases in training data might occur with some variation e.g.,
10% of room types might occur with an unbiased wall color.
In future work, it would be interesting to see the effect of
introducing some variations on shortcut learning.

Instead of visual biases, agents may still learn shortcuts
pertaining to semantic biases e.g., fridge is in the kitchen. Ef-
ficient ObjectNav requires agents to leverage useful semantic
priors about the environment, such as object-object or object-
room relations. This allows agents to decide which regions
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Fig. 9: EmbCLIP [19] vs EmbCLIP with L-B augmentations. We report results of our o.o.d. generalization test for the
zero-shot variant of EmbCLIP and when integrating our L-B augmentations. Using our L-B augmentations we generalize better
to scenes with different wall colors. Note, for instance, our method’s success rate drops 23% (0.39 → 0.30) when changing
the target room (1 wall color change), whilst we observe 69% relative drop for EmbCLIP (0.45 → 0.14).

to explore next and to decide where the target objects is most
likely located. However, by relying on these priors, agents may
struggle in environments which offer more unusual situations.
For instance, when the fridge is placed in the living room.
Future work might explore how to use natural language to
guide the exploration of agents in such situations.
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APPENDIX

A. Action space description

Table II shows a description of the 6 actions the agent can
take. Also, we simulate actuation noise to better resemble
actuation in the real-world.

B. Scene and target selection

We select 3 target objects per room type. The selection
is based on the object’s overall frequency of occurrence in
ProcTHOR-10k and if they have a clear semantic relation with
one of the room types. We select different sized objects for
each room type. See table III for an overview of all the target
objects selected.

C. Tuning degree (α)

The degree of augmentation α controls the amount of
variation to add to the visual representations. Essentially,
α scales the norm of the differences of the encoded CLIP
text embeddings ∆(TTT ), which we add to the CLIP visual
embedding ItItIt (see Equation 2). We standardize the result-
ing embeddings to ensure more stability during training by
removing the mean of each individual feature and scaling to
unit variance.

We empirically tune α by iteratively training classifiers on
our L-B augmented embeddings for varying α. As detailed
in Section IV-B, we use three (n = 3) text descriptions
of variations of the dataset bias: ‘blue wall’, ‘red wall’ and
‘green wall’. We insert each description in the default prompt
template [15]: ‘a photo of a {label}’ and encode using CLIP’s
text encoder. We augment according to Equation 2 and 3. We
use the generated dataset of sampled frames (Section VI-H
Appendix) to select an optimal α. Specifically, we augment
CLIP embeddings of 600 frames which show a bedroom
with green walls (200), a kitchen with red walls (200) and
a living room with blue walls (200). Our train set is formed
by the resulting 3600 augmented embeddings (6 for each
original embedding). Note that we do not implement random
sampling here. We test on the original CLIP embeddings
extracted from the context and contextless frames. We tune
α based on accuracy on context frames and ADWR (Equation
5) on the contextless split. Finally, the classifier architecture
is an identical MLP as used in our analysis of agent’s visual
representations, Section V-C and V-D.

Fig. 10 shows the result of this tuning. Note that accuracy
(context) for α = 50 is better than in Table I as we have
6 times as many training samples due to not implementing
random sampling. We observe an optimal accuracy on context
frames at α ≈ 50 and a steep drop-off at α ≈ 80. We
posit the drop-off is caused by the optimizer converging to a
different minimum in the loss function. As detailed in Section
V-D, it unfortunately seems impossible to vary CLIP visual
representation in such a way that we improve classification
on context frames, whilst making classification on contextless
frames close to random. Therefore, we choose α = 50.

TABLE II: Action space description. We use a 6-action
discrete action space.

Action Description

MOVEAHEAD

Moves the agent forward (if possible) by sampling
from N (µ = 0.25m,σ = 0.005m).

If it is not possible to move the agent due to
a collision, the action fails and the position

remains the same.

ROTATELEFT
ROTATERIGHT

Rotates the agent left or right by sampling from
N (µ = 30°, σ = 0.5°)

LOOKUP
LOOKDOWN

Tilt the camera of the agent upward or
downward by 30°

DONE Special action of the agent to terminate the episode.

TABLE III: Target objects selected for each room type.

Room type Target object category

Kitchen
Fridge
Kettle
Apple

Living room
Sofa

Television
Newspaper

Bedroom
Bed

Dresser
Alarm clock
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Fig. 10: Tuning alpha. The figure reports classifier accuracy
on context frames (blue) and ADWR (Equation 5) on context-
less frames (orange) for varying degree α.

D. Wall color permutations

For our o.o.d. generalization test, we permute wall colors
in testing scenes. We only consider changes to red, green and
blue walls and do not consider different colors. Basically, we
consider all possible permutations with repetition i.e. multiple
room types can have the same wall color. Table IV shows an
overview of all possible wall colors changes.
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TABLE IV: Possible wall color changes. 0 represents blue wall color, 1 represents red wall color and 2 a green wall color.
As we start with altering the target room first, the possible wall color changes differ per target room.

Set Target room Living room Kitchen Bedroom
Train-set All 0 1 2
Test set 0-room 0 1 2
Test set 1-room Kitchen 0 0 2

0 2 2
Bedroom 0 1 0

0 1 1
Living room 1 1 2

2 1 2
Test set 2-room Kitchen/Bedroom 0 0 0

0 0 1
0 2 0
0 2 1

Living room/Kitchen 1 0 2
1 2 2
2 0 2
2 2 2

Living room/Bedroom 1 1 0
1 1 1
2 1 0
2 1 1

Test set 3-room ALL 1 0 0
1 0 1
1 2 0
1 2 1
2 0 0
2 0 1
2 2 0
2 2 1

E. Evaluation episodes split

This section details how we distribute evaluation episodes
in our o.o.d. generalization test. Basically, we evenly distribute
episodes over the 9 target objects (see Table III), 5 scene
layouts and possible wall color permutations (see Table IV).
As there are more possible permutations for increasing number
of wall color changes, the number of episodes per unique scene
(combination of layout and wall color permutation) decreases.
For example, only 5 unique scenes are possible for the 0-room
test set as only 1 wall color permutation is possible (no wall
color changes w.r.t. training set), while 10 unique scenes per
target room are possible for the 1-room test set as we can alter
the target room to 2 different wall colors. We run in total 1080
evaluation episodes per test set. Table V shows an overview.

F. Agent descriptions

1) Closed-world EmbCLIP architecture [19]: This variant
assumes known target objects i.e., target object are drawn
from a closed predetermined set of object categories. At each
time step the agent receives a 3× 224× 224 egocentric RGB
observation. This image is processed into a 2048×7×7 visual
representation VVV t, using a frozen CLIP visual encoder with a
ResNet-50 backbone whose final pooling and fully connected
layers have been removed. A 2-layer CNN compresses the
representation to obtain a 32 × 7 × 7 tensor VVV ′

t. An integer
g ∈ {0, ..., 9} is used to indicate 1 of the 9 possible target
object labels. g is used to index a trainable embedding matrix
to obtain a 32-dimensional goal vector. This vector is resized

and tiled to 32 × 7 × 7 (copied 7 × 7 times) to obtain our
target object embedding GGGt. We concatenate VVV ′

t and GGGt to a
64×7×7 shape, compress using a 2-layer CNN to 32×7×7
and flatten to form a 1568-dimensional goal-conditioned visual
embedding ZZZt. Next, ZZZt is concatenated with a 6-dimensional
embedding vector a′t−1a′t−1a′t−1 representing the previous action. This
1574-dimensional vector is passed into a 1-layer GRU, along
with the previous hidden belief state. The GRU has 512 hidden
units and its output feeds into two linear layers forming the
actor and critic heads. The actor head maps the hidden state
to a 6-dimensional vector which, after a softmax function,
produces the probability distribution over the 6 discrete actions
i.e. the agent’s policy π. Each time step t, the agent executes
the action at with the highest probability from π. Lastly, the
critic head maps the hidden state to a scalar to estimate the
value of the current state i.e. the expected total accumulated
reward for following policy π in the current state.

2) Zero-shot EmbCLIP architecture [19]: This variant does
not assume known target object categories and, therefore,
operates entirely on CLIP representations. Basically, this vari-
ant does not remove the pooling and fully connected layers
from the CLIP visual encoder. Instead, it feeds the 1024-
dimensional CLIP embedding IIIt directly into a 1-layer GRU
with 1024 hidden units. Also, the target object label is inserted
into a text prompt: ‘Navigate to label’ and encoded using
CLIP’s text encoder to obtain a text embeddings TtTtTt. The output
of the GRU ototot is added to IIIt and element-wise multiplied with
the text embedding of the target object label i.e., (ototot+IIIt)∗TtTtTt.
Finally, this vector is passed into actor and critic heads, which
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TABLE V: Distribution of episodes overview. We run 1080 evaluation episodes per test set and evenly distribute episodes
over the possible unique scenes (combination of layout and wall color permutation) and 9 target objects in each set.

Test set 0-room Test set 1-room Test set 2-room Test set 3-room
No. of wall color permutations per target room (Table IV) 1 2 8 8
No. of unique scenes per target room 5 10 40 40
Episodes per unique scene 216 108 27 27
Episodes per target object per unique scene 24 12 3 3
Total 1080 1080 1080 1080

formulate the agent’s policy π and estimate the value of the
current state respectively.

G. Additional training details

We use the Allenact framework [47] to train ObjectNav
agents. Table VI details the hyperparameters we set for all of
our training runs. We use DD-PPO [3] to train agents. Also,
we employ Generalized Advantage Estimation (GAE) [48],
parameterized by λ = 0.95.

H. Dataset of sampled frames

1) Sampling frames: For our o.o.d. analysis of agent’s
visual representations, we generate a small dataset of sampled
frames (RGB observations). For this dataset, we sample 200
frames for every room type-wall color combination (3 room
types, 3 wall colors) by initializing agents with a random
position in a certain room, and sampling its RGB frame.
Ground truth data for room type is determined by the agent’s
position. For instance, if the agent is positioned in e.g., the
kitchen, the frame encodes a kitchen room type. To ensure the
agent is not initialized in e.g., the kitchen but looking towards
the bedroom, we limit the possible orientations the agent is
initialized at. We limit the orientations such that the agent is
not looking into other rooms than the one it is positioned in.
This results in 9 sets of frames (200 each), each belonging to
a certain room type and wall color combination (e.g. kitchen
with red walls). The training set consists of frames showing a
bedroom with green walls, a kitchen with red walls and a living
room with blue walls. We test on the held-out combinations
of room type and wall color, which we split into ‘context’ vs
‘contextless’.

2) Splitting into context/contextless: This section describes
how we split the test set of held-out frames into ‘context’ vs
‘contextless’. First, we cherry pick 6 sampled frames, which
we define as ground truth context or contextless. We pick
one for each wall color. The frames are shown in Fig. 11.
Next we extract the 1024-dimensional CLIP embeddings for
all frames in our dataset. To form our split, we select the
150 most similar frames to each of the 3 contextless ground
truth samples, and 200 most similar frames to each of the
3 context ground truth samples. The similarity is based on
cosine score of their encoded CLIP representations. We use
the CLIP visual encoder, employing a ResNet-50 backbone.
Some of the frames are similar to multiple of the cherry picked
frames and are, thereby, duplicate in either the contextless or
context split. We remove any duplicates. This results in 195
contextless frames and 576 frames with context. Finally, our

TABLE VI: Training hyperparameters. We set these param-
eters for all ObjectNav experiments.

Hyperparameter Value
No. of GPUs 2
No. environments per GPU 20
Rollout length 192
No. mini-batches per rollout 1
PPO epochs 4
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Value loss coefficient 0.5
Entropy loss coefficient 0.01
PPO clip parameter (ϵ) 0.1
Gradient clip norm 0.5
Optimizer Adam
Learning rate 3e-4

test set is formed by the intersection of frames not seen during
training (held-out combinations of room type and wall color)
and which are either in the context or contextless split.
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(a) (b) (c)

(d) (e) (f)

Fig. 11: Ground truth for contextless (top) vs contextl (bottom) frames. The figure shows the cherry picked samples for
splitting our dataset into contextless (a-c) vs context (d-f). The split is based on cosine similarity of the CLIP representations
of these ground truth frames.
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Fig. 12: Additional results o.o.d. generalization test (Section V-B). Here, we provide additional results. We show performance
for each target object, separated by difficulty. We use the closed-world variant of EmbCLIP [19] for these results.
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Fig. 13: Original scenes from ProcTHOR-10k. Top-down views of the 25 original scenes from the ProcTHOR-10k dataset
we use. See Fig. 14 for top-down views of the houses after our proposed interventions, as described in Section IV-A.
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Fig. 14: 3D scene dataset for ObjectNav experiments. Top-down images of the 25 scenes used for our ObjectNav experiments.
Notice how all the houses are visually identical i.e., each room category has the same unique wall color and each object category
appears in the same 3D asset from the ProcTHOR asset library (e.g. the sofa is always the same red sofa asset). We split in
20 training scenes and 5 testing scenes. The figure only shows houses where bedrooms have green walls, kitchens have red
walls and living rooms have blue walls. For our o.o.d. generalization test, we permute wall colors of testing scenes.
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