
Household Electricity Load Forecasting for Demand

Side Management Applications

Matthijs Ruben Kok

February 27, 2023
Matthijs Ruben Kok

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Computer Architecture for Embedded Systems (CAES) group

Master’s Thesis, M-CS

Household Electricity Load Forecasting for
Demand Side Management Applications

Matthijs Ruben Kok

Chair Dr.ir. M.E.T. Gerards
EEMCS, CAES
University of Twente

Supervisor Prof.dr. J.L. Hurink
EEMCS, MOR
University of Twente

External Dr. E. Mocanu
EEMCS, DMB
University of Twente

Company Supervisor R. Binnendijk
CGI

February 27, 2023

Matthijs Ruben Kok

Household Electricity Load Forecasting for Demand Side Management Applications

Master’s Thesis, M-CS, February 27, 2023

Supervising Committee: Dr.ir. M.E.T. Gerards, Prof.dr. J.L. Hurink, Dr. E. Mocanu, and R.

Binnendijk

University of Twente

Computer Architecture for Embedded Systems (CAES) group

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

Drienerlolaan 5, 7522 NB, Enschede, The Netherlands

iv

Abstract
As part of the energy transition, many residents have installed rooftop solar panels
and started using more electrical appliances, such as electric vehicles (EVs) and
heat pumps. This decentralized production and consumption puts pressure on
the current electricity grid. To flatten load peaks and prevent overloading of grid
components, demand side management (DSM) techniques can be employed to match
electricity supply and demand. Some DSM techniques require house load predictions.
However, there are challenges regarding the application of load predictions, the
variation between household loads, and the volatility of a load within a single
household. To overcome these challenges, this thesis proposes an online “rolling
horizon” forecasting model that is continuously being trained on the smart meter
data of a single household. It can therefore autonomously adapt to the load profile
behaviour of that household and to structural changes in electricity consumption
over time.

Based on two correlation analyses, relevant feature variables are selected as input
for the proposed forecasting model. First, the house load series exhibits a clear daily
seasonality. Second, several weather variables are shown to highly correlate with the
house load, but only in case the house has rooftop solar panels installed. The rolling
horizon of the forecasting model is explained with a black-box paradigm, and is
simulated using discrete time (15-minute) intervals. The proposed forecasting model
uses artificial neural networks (ANNs) to make day ahead predictions of the house
load with a 15-minute granularity. The hyperparameters of the ANNs are chosen
based on a grid search, and are shown to have an influence on the length of the
startup period of the forecasting model, as well as its sensitivity towards feedback.
Four different forecasting model architectures are compared (on neighbourhood- and
house-level) that apply ANNs in a different way. Out of the discussed architectures,
the hybrid architecture performs the best overall. Furthermore, prediction errors
differ significantly per house load and the results indicate a linear relationship
between the house load standard deviation and prediction error. Over time, the
proposed forecasting model error is higher during late spring and early summer
suggesting that load predictions are worse when there is a lot of PV production.
Finally, the impact of updating predictions is evaluated in two DSM scenarios. This
thesis shows that predictions with a specific forecast window property are more
suitable to be updated each time step.

v

Dankwoord

Voor mijn afstudeerscriptie was ik overal in Nederland: Soms thuis in Enschede of bij de
Energy Group op de Universiteit in Twente, maar soms ook bij mijn ouders in Winsum of op
kantoor bij CGI in Rotterdam of Arnhem. In totaal heb ik denk ik net zo veel uren gewerkt
in de trein als achter een bureau. Gelukkig was er niet alleen overal een bureau voor mij
beschikbaar, maar ook ontzettend fijne mensen die mij hebben geholpen met mijn onderzoek.
Graag wil deze mensen hierbij bedanken.

Marco en Johann, bedankt voor jullie inzet en hulp tijdens het begeleiden van mijn afs-
tudeeronderzoek. Onze twee-wekelijkse meetings waren altijd erg interessant en ik zat na
elke meeting weer vol nieuwe ideeën voor mijn onderzoek. Ook al was jullie handschrift niet
altijd even goed te lezen, bedankt voor jullie gedetailleerde feedback. Hier heb ik ontzettend
veel aan gehad tijdens het schrijven van mijn scriptie. Furthermore I would like to thank
Elena, who was only later asked to be my external supervisor, but nevertheless showed a
huge interest in me and my project.

Daarnaast bedank ik graag Raymond voor mijn begeleiding en introductie binnen CGI. Onze
meetings vond ik altijd gezellig en effectief. In het begin was ik helemaal nieuw en onbekend
binnen het bedrijf, maar door jouw hulp heb ik heel snel een hele hoop mensen leren kennen,
waaronder Robert, die elke maandag- en woensdagmiddag de stand-ups heeft geleid. Robert,
het blijft zeker niet onopgemerkt hoeveel energie je steekt in studenten die afstuderen bij
CGI, waarvoor mijn enorme waardering. Daarnaast wil ik Camera bedanken voor de hulp
bij mijn vragen over Engelse grammatica. Ook alle andere CGI interns, dankjulliewel voor
de gezellige koffiepauzes, lunches, en uitstapjes. Ondanks dat ik niet van jenever hou, houd
ik me zeker aanbevolen voor een volgende proeverij!

Verder bedank ik graag iedereen van de Energy Group, en met name van het energie-hok,
voor de gezellige pauzes en lunchwalks die we hebben gehad en natuurlijk alle keren dat
ik jullie passen mocht lenen voor gratis kopjes koffie. In het bijzonder wil ik Victor graag
bedanken voor het beantwoorden van al mijn vragen over de GridFlex data set, Ivo voor
het prachtige template waarin dit verslag geschreven is, en Gerwin voor de uitleg van
driefasespanning en het asynchronous event-driven profile steering algoritme.

Als laatste wil ik graag papa, mama, en Selinde bedanken voor hun steun tijdens mijn
afstuderen. Het was altijd fijn om in het weekend weer naar thuisthuis te gaan om ‘s avonds
gezellig te gaan borrelen en de Harry Potter marathon te hervatten. Maar ook inhoudelijk
heb ik met jullie vele discussies kunnen voeren over mijn afstudeeronderwerp. Zonder jullie
support was dit verslag nooit wat geworden.

vii

Contents

1 Introduction 1

1.1 Energy Transition . 1

1.2 Problem Statement And Contribution 3

1.2.1 Forecasting For A DSM Algorithm 4

1.2.2 Variation Between Houses . 4

1.2.3 Volatility Within Household Load Profile 7

1.2.4 Objective . 7

1.3 Research Questions . 8

1.4 Thesis Structure . 9

2 Forecasting 11

2.1 Introduction . 11

2.2 Electricity Consumption Forecasting 11

2.2.1 Seasonality And Trends . 12

2.2.2 Scale And Aggregation . 12

2.2.3 Exogenous Variables . 15

2.2.4 Forecasting Horizon . 17

2.3 Time Series Forecasting Models . 17

2.4 Artificial Neural Networks (ANN) . 19

2.4.1 Introduction . 19

2.4.2 Background . 19

2.4.2.1 Definition . 20

2.4.2.2 Hyperparameters . 21

2.4.3 ANN Architectures In Energy Context 22

2.4.3.1 Input Configuration 22

2.4.3.2 Output Configuration 23

2.5 Evaluation Metrics . 24

3 Demand Side Management 27

3.1 Introduction . 27

3.2 Introduction To DSM . 28

3.2.1 EV Example . 28

3.2.2 Vehicle To Grid (V2G) . 29

3.2.3 Different Flexible Devices . 30

viii

3.2.4 Forecasting . 30
3.3 Smart Grids . 30
3.4 Energy Management Systems (EMS) 31
3.5 Optimization Strategies . 31
3.6 Control Versus Planning . 32
3.7 The EV Charging Problem . 33

3.7.1 Valley-Filling Using A Fill-Level 34
3.7.2 Fleet Planning . 34

3.8 Profile Steering . 35
3.8.1 The Profile Steering Algorithm 35
3.8.2 Asynchronous Event-Driven Profile Steering 36

4 Model Input 37
4.1 Introduction . 37
4.2 GridFlex Data . 37
4.3 Data Cleaning . 38

4.3.1 Missing Values . 38
4.3.2 NaN Values . 39
4.3.3 Imputation Strategy . 41
4.3.4 Time Frequency Conversion 41
4.3.5 Detecting And Handling Outliers 42

4.4 Feature Engineering . 44
4.4.1 Weather Data Correlation Analysis 45
4.4.2 Historic Data Correlation Analysis 47

4.4.2.1 Lag Variables . 49
4.4.2.2 Window Variables 52
4.4.2.3 Trend Variables . 53

4.4.3 Time Data . 53
4.4.4 Overview Of Forecasting Model Input Variables 54

5 Prediction Model Structure 55
5.1 Introduction . 55
5.2 Rolling Horizon . 56
5.3 Forecasting Model Architecture . 59
5.4 ANN Design Choices . 63

5.4.1 Cross Validation . 63
5.4.2 Hyperparameter Choices . 64

5.5 Predictions For Profile Steering . 69
5.5.1 Battery Scenario . 69
5.5.2 Realistic Neighbourhood Scenario 71

6 Results and Discussion 73
6.1 Introduction . 73

ix

6.2 Forecasting Performance . 74
6.2.1 Comparison Of ANN Architectures For Different Households . 74
6.2.2 Performance Convergence . 78
6.2.3 Forecasting Horizon . 79
6.2.4 Aggregation . 84

6.3 Profile Steering Simulation . 86
6.3.1 Battery Scenario . 88
6.3.2 Realistic Neighbourhood Scenario 93

7 Conclusions And Future Work 99
7.1 Introduction . 99
7.2 Conclusions . 100
7.3 Recommendations For Future Work 104

7.3.1 Historic Electric Consumption Data Selection 104
7.3.2 Different Forecasting Model Architectures 104
7.3.3 Other Machine Learning Algorithms 105
7.3.4 Dynamic Hyperparameters . 105
7.3.5 The Fill-Level . 105
7.3.6 Load Volume And Upcoming Interval 106
7.3.7 Separate PV Predictor And Operational Control 106

Bibliography 107

x

1Introduction

Chapter Objective: This chapter introduces the thesis and states the research ques-
tions.

Chapter Contents

• Energy Transition (1.1)

• Problem Statement And Contribution (1.2)

• Research Questions (1.3)

• Thesis Structure (1.4)

1.1 Energy Transition

The energy transition involves the transition from an energy system based on fossil
energy sources to an energy system based on renewable energy sources (RES). With
the Paris Agreement in 2015, the global community agreed to try to limit global
warming to a temperature rise of 1.5◦C above pre-industrial levels. With the 2030
Climate Target Plan, the European Commission proposed to reduce greenhouse gas
emissions to at least 55% below 1990 levels by 2030 [1], in line with the Paris
Agreement and the goal to make the EU climate neutral by 2050. In order to do
this, the EU 2030 climate & energy framework includes targets to increase the share
of renewable energy to 32% and improve energy efficiency by 32.5% [2]. Climate
Action Network (CAN) Europe developed the Paris Agreement Compatible (PAC)
scenario, suggesting targets that mean a phase-out of of coal by 2030, fossil gas by
2035, and fossil oil by 2040 [3]. According to these plans, more RES such as solar
parks and wind farms are built and connected to the grid to replace existing fossil
energy production plants [4], [5]. Also, an increasing number of household residents
are installing solar panels on the roof of their house. For example, in houses, districts
and neighbourhoods in the Netherlands, there were 960248 installations with a
capacity of 3236417kW in 2019 [6] and 1267651 installations with a capacity of
4488623kW in 2020 [7]. This is an increase of 32,0% and 38,7% respectively.
Because these ‘prosumers’ are now locally generating electricity, the energy system

1

has to deal with a distributed production of energy. However, the electricity grid
was originally not designed for this. In line with the supply side, the demand side is
undergoing an electrification trend. Consumers are using more and more electricity,
partly as a result of the increasing use of electric vehicles (EVs) and heat pumps [8],
[9].

Hence, there is an increase in distributed demand and supply of electricity. However,
the amount of local energy consumption and production are generally not equal at
all times. Figure 1.1 displays a so-called “Duck curve”, showing the timing imbalance
between peak demand and production. This curve is typical for households that
have rooftop solar panels installed.

00:00 04:00 08:00 12:00 16:00 20:00 00:00

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Figure 1.1: Average day load profile for the “average” household (average over all houses
in the GridFlex data set [10])

Solar panels produce most electricity when the sun shines, roughly in the middle
of the day. Residents consume most electricity in the morning and mostly in the
evening. As a result, “peaks” arise on the grid, of both electricity consumption
and production. If these peaks are too large and reach the capacity of the grid,
congestion can occur, causing the components in the grid to become overloaded. In

2 Chapter 1 Introduction

many regions in the Netherlands, there is already a shortage in transmission capacity
on the electricity grid, causing the need for congestion management [11].

To prevent overloading, these peaks should be addressed. A possible solution may be
to upgrade grid components, such as the physical grid itself, intermediate stations,
and transformers. However, this is very expensive and takes a very long time. A
cheaper and faster solution may be to first “flatten” these peaks as much as possible.
In order to flatten peaks, one can change the time and amount of electricity supply
and that of electricity demand. Unfortunately, the electricity yield of many RES
is weather dependent, and therefore intermittent and hard to control. In order to
match supply and demand, more control is required on the demand side of the
energy grid: demand side management (DSM). DSM is explained in more detail in
Chapter 3.

1.2 Problem Statement And Contribution

Some DSM techniques rely heavily on forecasts. Instead of purely focusing on making
accurate predictions by itself, finding out how predictions influence the performance
of these DSM techniques and how different DSM techniques currently make use of
available predictions, potentially provides insights for making predictions that are
more meaningful in this context. However, there are a few challenges regarding
household electricity consumption forecasting. Achieving a good forecasting perfor-
mance in the residential sector proves to be difficult, because there are many aspects
that need to be considered when forecasting household electricity consumption, such
as seasonality, scale, exogenous variables, and the forecasting horizon. These are
all explained in more detail in Section 2.2. To this end, many different forecasting
models have been proposed, often applying machine learning. A review of several
forecasting models is given in Section 2.3.

However, there are three main problems with forecasting models for the electrical
load of a household. First, many existing forecasting models strive for a high accu-
racy, but do not take into account the application of the predictions (Section 1.2.1).
Furthermore, there are two main challenges inherent to forecasting household power
consumption. Namely, (1) the large load variation between multiple households (Sec-
tion 1.2.2), and (2) the large load volatility within a single household (Section 1.2.3).
To solve these challenges, a novel forecasting model is proposed in Section 1.2.4.

1.2 Problem Statement And Contribution 3

1.2.1 Forecasting For A DSM Algorithm

Although the purpose (e.g. an energy management system for a particular building)
of the prediction is often defined, the performance of the applied DSM (scheduling)
algorithm is rarely considered when making a prediction [12]–[15]. For example,
typically DSM algorithms require short-term horizon (see Section 2.2.4 for more
information) load predictions, but many existing forecasting models predict for
longer horizons ahead. Furthermore, a lot of research focuses on making the best
predictions of electricity consumption. However, since predictions cannot be perfect,
prediction errors will always occur. Therefore, it is important to consider how to
deal with electricity forecasting errors when the forecasts are used as input for a
DSM algorithm. Section 3.2 discusses this topic in more detail.

1.2.2 Variation Between Houses

One of the characteristics of household load profiles is that they are very different
for different households. This is shown in both Figure 1.2 and Figure 1.3. Figure 1.2
displays all measured data points over a two years time period from six households
that were randomly picked from the GridFlex data set [10], with the total power
consumption (kW) on the y-axis and the time on the x-axis. Note that some house-
holds have a negative total power consumption, which indicates that the household
is supplying electricity back to the grid.

(a) Household 8 (b) Household 26

(c) Household 28 (d) Household 51

(e) Household 52 (f) Household 29

Figure 1.2: Household total power consumption over a two years period: from 2018-08-01
to 2020-08-31, for six households from the GridFlex data set [10]

4 Chapter 1 Introduction

The houses that were selected are summarized in Table 1.1. Some of the houses have
solar panels or an electric battery. Figure 1.2 shows that the load of the households
with solar panels have a distinctive seasonal pattern compared to the households
without solar panels.

House Solar Battery
8 - -
26 - -
28 V -
51 V -
52 - V
29 V V

Table 1.1: Six houses, randomly picked from the GridFlex data set [10]. For each house,
the table indicates whether it has solar panels or a battery

Figure 1.3 displays the average daily load profile of these six households. Each
profile is displayed as a red line with the total power consumption (kW) on the
y-axis and the time on the x-axis. Note that the scale of the y-axes for the graphs
in Figure 1.3 differ. In order to compare the graphs, the average daily load profile
of the average household (from Figure 1.1) is displayed in the background using
a grey line, which is the same for each graph in Figure 1.3. Figure 1.3 shows that
the average daily load profile can be very different for different households. What
is immediately clear from the graphs, is that the households with solar panels (PV)
have a negative peak during the middle of the day (House 28, 51, and 29), which is
not apparent for the houses without solar panels (House 8, 26, and 52). Apart from
the solar production peak during the middle of the day, there are more differences
between the chosen average profiles in Figure 1.3. The visualizations of household
profiles from the work by Ziekow et al. [16] confirm that such differences are
very common for load profiles of households. These differences may be caused by
exogenous variables, which are further explained in Section 2.2.3.

The problem with the large variation in load between different houses, is that
developing a forecasting model that makes accurate load predictions for different
households becomes very difficult. In order to reduce peaks on the LV grid or at
transformer level, sufficient forecasts of household base loads need to be available.
Therefore, a forecasting model needs to be able to predict the load for several
households in the neighbourhood (or even larger area). However, the performance
of such a forecasting model may be negatively impacted by the differences between
the load characteristics of every household. When a forecasting model is trained
using a training data set, this training data set must accommodate sufficient variety
to create a forecasting model that is applicable to many households. A forecasting
model might not generalize well to household loads that it has not trained for
(outside of training data). In other words, the load forecasting model may not make

1.2 Problem Statement And Contribution 5

00:00 04:00 08:00 12:00 16:00 20:00 00:00

0

0.5

1

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Average House House 8

00:00 04:00 08:00 12:00 16:00 20:00 00:00

0

0.5

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Average House House 26

00:00 04:00 08:00 12:00 16:00 20:00 00:00

−1

0

1

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Average House House 28

00:00 04:00 08:00 12:00 16:00 20:00 00:00

−0.5

0

0.5

1

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Average House House 29

00:00 04:00 08:00 12:00 16:00 20:00 00:00

0

0.5

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Average House House 51

00:00 04:00 08:00 12:00 16:00 20:00 00:00

0

0.5

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Average House House 52

Figure 1.3: Household average daily consumption

accurate load predictions for a new household, if the training data set (that contains
the loads of several known households) is not sufficiently representative of the actual
variation between houses. For example, a model that was trained using a small
data set including only a few buildings, may not work well when it is applied to
buildings with different occupant behaviour, physical characteristics, and weather
conditions [13]. However, acquiring a very large representative data set might not
immediately solve the problem either. A very general forecasting model trained on
a huge data set with many different types of households might still not perform
well on a specific household, due to the substantial influence of the large number
of “common” households. The load profile of a single, possibly typical, household
might be very different from the “common” load profiles, causing the predictions

6 Chapter 1 Introduction

of the forecasting model to always be inaccurate. Some researchers suggest that it
is necessary to create forecasting models that take into account the decisions and
preferences of the building occupants, which are different for different buildings
[14]. Ideally, there would be one general forecasting model that is able to accurately
predict the electricity consumption for all households, but unfortunately there exists
no such generic forecasting model [13].

1.2.3 Volatility Within Household Load Profile

The load volatility of a single house load profile is much higher than the volatility of a
profile at a larger scale. This is discussed in more detail in Section 2.2.2. Additionally,
new smart meter data is continuously generated and new patterns might arise in this
data. Due to this, existing energy consumption patterns might become outdated and
possibly contradict earlier observed patterns. In many applications, a forecasting
model would be trained once and then applied in the real world. For example,
Molderink et al. [17] consider that characteristics of a house are static for their
prediction model. However, such a model would not be able to take into account
future structural changes in electricity consumption or human behaviour. Every time
that a structural change in energy consumption arises, a new model would have to
be trained, since each structural consumption change causes predictions based on
the old model to deviate too much from the actual electricity consumption of the
household [18]. Especially in the long run, domestic consumption patterns are likely
to change, e.g. a new appliance or EV might be bought, an old highly consuming
device is replaced by a more energy efficient one, a new family moves in, a child is
born or moves out. In each of the cases, the consumption patterns of the household
may change drastically.

1.2.4 Objective

In summary, there are challenges regarding the application of power consumption
predictions, the variation between household loads, and the volatility of a load
within a single household. First, many forecasting models strive for the best accuracy
but do not take prediction errors into account for the application or train based
on the performance of the DSM algorithm where the predictions are going to be
used. Second, the variation between households causes challenges with finding a
representative training data set. Also, creating a general forecasting model that
performs well for all types of households is hard, due to the differences between
households caused by solar panels, number of residents, geographical factors, etc.
Third, the challenges regarding volatility within a household are that a household
load profile is not smooth due to its small scale, more irregular than that of a

1.2 Problem Statement And Contribution 7

commercial or industrial building, and that it can change over time due to the
purchase of new devices or a change in household occupants.

Therefore, this research proposes an online “rolling horizon” forecasting model that
is continuously being trained on the smart meter data of a single household. It can
therefore adapt to the load profile behaviour of that household and to structural
changes in electricity consumption over time. Such a forecasting model overcomes
the variation problem as it adapts its predictions to the load consumption behaviour
of a single household, by only training on the data of that household. This also
resolves the problem of acquiring a representative data set. Furthermore, the
forecasting model takes into account the volatility problem by adapting its predictions
to structural changes in electricity consumption over time. For this purpose, artificial
neural networks (ANN) are used as they are very well suited for continuous training
(see Section 2.3 for a motivation). ANNs are explained in more detail in Section 2.4.
We aim for a forecasting model that runs autonomously. Considering the fact that
prediction errors will always exist, we propose to dynamically update the predictions
that are provided to the DSM algorithm, so that the DSM algorithm can take into
account these errors and possibly adapt its schedule.

1.3 Research Questions

This section presents the research questions for this research. For each question, a
small description is provided.

RQ 1 What input data correlates the most with the residential electricity con-
sumption that needs to be predicted?
The goal of this question is to define the input to the proposed forecasting model.
This includes defining what (exogenous) variables can be used to predict the house-
hold electricity consumption, and what subset of the historical house electricity
consumption should be used to make a prediction.

RQ 2 How can an online short-term forecasting model be determined to predict
household electricity consumption?
The goal of this question is to define exactly how the proposed forecasting model is
used to make a prediction. Some variations of the proposed forecasting model can
be tested and their prediction errors can be compared to find the best performing
version.

RQ 3 How to make meaningful predictions of household electricity consumption
that can be used as input to a DSM scheduling algorithm?

8 Chapter 1 Introduction

The goal of this question is to define a relationship between the predictions of the
proposed forecating model and the performance of a DSM scheduling algorithm.
Predictions should be made with the application in mind, meaning that predictions
and scheduling algorithms should not be treated as separate problems.

1.4 Thesis Structure

For the remaining part of this thesis, Chapter 2 discusses literature that is related
to electricity load forecasting in general and methods and techniques that are used
to predict household electricity consumption. In this chapter, Section 2.2 discusses
characteristics of electricity load forecasting that need to be taken into account. Sec-
tion 2.3 reviews several forecasting techniques and motivates why ANNs are chosen
to be used in the proposed prediction model. Section 2.4 provides a background
of ANNs and how they can be used in energy context, and Section 2.5 discusses
how they can be evaluated. Chapter 3 discusses literature related to DSM. In this
chapter, Section 3.2 introduces DSM through an example. Section 3.3 explains smart
grids and Section 3.4 explains energy management systems (EMS). Section 3.5
and Section 3.6 present two different categorizations of DSM techniques. Finally,
Section 3.7 and Section 3.8 explain two specific DSM techniques in more detail.
Chapter 4 describes input data used for the proposed forecasting model. In this
chapter, Section 4.2 describes the GridFlex [10] data set, which is the main data set
used in this research. Section 4.3 describes how the data was cleaned and Section 4.4
describes what features are extracted and selected to be used as input to the pro-
posed forecasting model. Chapter 5 explains the proposed forecasting model itself.
In this chapter, Section 5.2 explains how the rolling horizon is implemented. Sec-
tion 5.3 explains and compares the various ANN architectures. Section 5.4 explains
the design choices that were made for the ANN architectures. Finally, Section 5.5
discusses how the predictions of the proposed forecasting model can be used as input
to a DSM technique, using two scenarios. Chapter 6 shows and discusses the results
of applying the proposed forecasting model. In this chapter, Section 6.2 discusses
the performance of the different architectures of the proposed forecasting model.
This section compares the performance for different households, evaluates the per-
formance convergence and performance over time, and the impact of the forecasting
horizon by evaluating the performance of individual components of the forecast
window. Furthermore, a simulation where predictions of all forecasting models
(corresponding to all houses) are aggregated, is evaluated to give an indication of
the performance on neighbourhood level. Section 6.3 discusses the two scenarios
(from Section 5.5) where the performance of a specific DSM algorithm is evaluated,
when it uses the predictions of the proposed forecasting model. Finally, Chapter 7
answers the research questions from Section 1.3 and concludes this thesis.

1.4 Thesis Structure 9

2Forecasting

Chapter Objective: This chapter presents challenges of forecasting electricity con-
sumption and reviews several forecasting models.

Chapter Contents

• Introduction (2.1)

• Electricity Consumption Forecasting (2.2)

• Time Series Forecasting Models (2.3)

• Artificial Neural Networks (ANN) (2.4)

• Evaluation Metrics (2.5)

2.1 Introduction

This chapter describes related work that is used to develop the proposed forecasting
model that is explained in Chapter 5. First, Section 2.2 discusses some characteristics
specific to electricity consumption forecasting. Then, Section 2.3 reviews several
time series forecasting models that are used for predicting electricity consumption
and provides a motivation for ANNs in particular. Subsequently, Section 2.4 provides
a brief background on ANNs and how they can be used in energy context. Finally,
Section 2.5 discusses how forecasting models can be evaluated when working with
electricity consumption data.

2.2 Electricity Consumption Forecasting

There are a few things specific to forecasting electric load, as opposed to forecasting
any other type of time series. These include seasonality and trends, the effects of
the scale and aggregation of the electric loads, how different exogenous variables
may influence the load, and how forecasts with different forecasting horizons have
different applications in practice. When choosing and developing a forecasting
model to predict electric load, these things should be taken into account.

11

2.2.1 Seasonality And Trends

Hippert et al. [19] stated that an electricity load series exhibits seasonality, because
it is strongly auto-correlated. In other words, the load at a given hour depends on
itself at previous moment in time (a historic load observation). Such historic load
observations are also called lagged load observations, or “lags” for short. There is
currently no standard way to determine what and how many lags (or, equivalently,
what and how much history) are needed to accurately predict the future [20].
However, several methods are suggested to determine what lagged load values
should be used as inputs to the forecasting model. When working with hourly data,
the current load value especially depends on the load at the previous hour, on the
load on the previous day at exactly the same hour, and also on the load on the
same day of the previous week at the same hour [19]. To formalize this, Yuan et
al. [21] showed using a scatterplot that the load on the next day is roughly linearly
correlated with the load on the current day (regardless of week- or weekend-days).
Therefore, they decided to select lagged load values based on a simple correlation
measure. Some other authors [19], [20] used the Box-Jenkins [22] method and
selected the most useful lags using the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) [23]. The downside of these methods is that they
only focus on the linear correlation between the lag and the current load. Hence,
using this method, lags that are only nonlinearly correlated to the current load will
not be selected. Therefore, some studies use nonlinear tests [19], [20]. Next to
seasonality, trends are present in an electricity load series. In order to capture those
trends, Humeau et al. [24] added the first and second derivatives of the historical
load as input to their forecasting model, to give an indication of the evolution of the
electricity consumption.

2.2.2 Scale And Aggregation

When making predictions of the electricity load, the scale (amount of aggregation)
of the load is important. The lowest level of scale describes the load of a single
device (device-level). The load at a household level, is simply the aggregation of
all appliances and devices within a household. Hierarchically, one can increase the
load scale. The load at transformer level or neighbourhood level, is the aggregation
of all the households connected to the transformer or within a neighbourhood,
respectively. Continuing this way, the scale can be increased and smaller loads
can be aggregated to ultimately arrive at the load at regional or national level.
However, the load profile at a different scale has a different shape. As already briefly
mentioned in Section 1.2.3, the load shape is often more predictable at larger scale
than at a small scale. The reason for this is that the power consumption at a large
scale (e.g. a neighbourhood) is less capricious and more “smooth” compared to

12 Chapter 2 Forecasting

the power consumption at a small scale (e.g. a household). This is also shown
in Figure 2.1, where the aggregated load of all households is compared to the
load of four single (randomly selected) households, of the GridFlex data set [10]
at a randomly selected day. The aggregated load profile is essentially the load at

00:00 04:00 08:00 12:00 16:00 20:00 00:00

−2

0

2

4

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Load of house 23

00:00 04:00 08:00 12:00 16:00 20:00 00:00

0

2

4

6

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Load of house 41

00:00 04:00 08:00 12:00 16:00 20:00 00:00

−4

−2

0

2

4

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Load of house 43

00:00 04:00 08:00 12:00 16:00 20:00 00:00

0

1

2

3

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Load of house 62

00:00 04:00 08:00 12:00 16:00 20:00 00:00

−100

−50

0

50

Time (HH:mm)

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Aggregated Load of all (76) houses

Figure 2.1: Load profile of a randomly selected day (2020-04-10) of the aggregation of all
households versus four randomly selected single households (23, 41, 43, 62),
of the GridFlex data set [10]

transformer (or neighbourhood) level, so the law of large numbers applies [25] as
extremes of individual loads are canceled out. Furthermore, the variance within
individual household load profiles is generally larger than the load variance in
profiles of commercial or industrial buildings [26]. One of the reasons for this is
that there is more uncertainty in the energy demand of households compared to the
energy demand of commercial or industrial buildings. Household occupants could

2.2 Electricity Consumption Forecasting 13

be at home any time of the day, and their behaviour (which appliances they use at
what times) is very unpredictable, resulting in an unpredictable power consumption
too. Commercial buildings tend to have opening and closing times, and employees
often have more predictable and periodic working hours. Industrial buildings or
factories often use power for specific repeatedly used processes. Another reason
for the high variance of a household, is that a household has a relatively small
base load, compared to a larger building [27]. Yildiz et al. [26] showed a positive
correlation between the performance error of several forecasting models and the
standard deviation of household load profiles. Their research indicates that more
volatile load profiles are more difficult to predict for the forecasting models that
were tested. Javed et al. [28] found that the volatility of a single house load is
two orders of magnitude larger than the volatility of a regional load. This can
make forecasting at a small scale much more difficult than forecasting at a larger
scale. Sevlian et al. [29] introduce a scaling law that describes the effect of
aggregation on load forecasting accuracy, and found that the aggregation of loads
can reduce this volatility and make the load more smooth and predictable up to
a certain point. In other words, aggregated loads are less random, fluctuating,
and chaotic than a household load curve. Often regular patterns in a load profile
are more easily found in aggregated load profiles. Tidemann et al. [30] also

Figure 2.2: Prediction Error (RMSE) for different levels of aggregation, from [30]

investigated the effects of scale on load prediction algorithms and plotted how the
prediction error changes for a different number of aggregated meters, in Figure 2.2.
They found that different algorithms are suitable at different scales. Humeau et
al. [24] try to improve consumption forecasting by using the statistical relation
between household electricity consumption series. They also try to determine which
forecasting technique, out of support vector regression (SVR) and linear regression,
is best adapted to which scale. When the loads of more than 32 houses were
aggregated (district scale), SVR outperforms linear regression. At a household scale
(32 houses or less), they found that linear regression is the better alternative.

In order to predict electricity consumption at neighbourhood level for reducing peaks
on the grid, different strategies can be used. Wijaya et al. [31] explained three
strategies:

14 Chapter 2 Forecasting

1. A top-down approach, where the load profile of all households is summed into
one single aggregate load profile. Subsequently, this aggregate load profile can
be forecasted.

2. A bottom-up approach, where the load profile of each household is forecasted
separately. Then the forecasts are aggregated.

3. A hybrid approach, where the households are segmented into k clusters and
in each cluster the household energy consumption is aggregated. Then the
aggregate consumption of each cluster is forecasted separately. Finally, the k

forecasts are aggregated into one aggregate forecast.

A potential risk of the bottom-up approach is that household prediction errors could
accumulate if the forecasts are aggregated [32], which happens if the household
prediction errors correlate. However, the top-down approach will not have any
forecast information about the individual households, and predictions of individual
house loads, as opposed to the aggregated load of all houses on neighbourhood level,
are required for many (decentralized) DSM techniques (e.g. [17], [33]). Predictions
of the individual house load profiles are used by decentralized DSM to ensure local
flatness of load profiles. Keeping individual house profiles as flat as possible has
several advantages [32]. Firstly, self-consumption is increased. Self-consumption
means consuming the energy that was produced on-site. For example, a household
with a rooftop solar PV system may try to maximize self-consumption by scheduling
appliances at times when there is PV generation. This is very beneficial for the
utility as it lowers the load on the local grid. However, Gerards et al. [34] mention
that there are conflicting objectives between a network operator (DSO) and the
households, regarding self-consumption. The second reason for local flat individual
house profiles is that it improves power quality and helps keeping voltage levels
within bounds, which is important because the NEN-normatives require that the
voltage on the low voltage (LV) grid in the Netherlands does not deviate more
than 10% from the standard 230V [35]. Finally, local flat individual house profiles
decrease losses and avoids overloading [32].

2.2.3 Exogenous Variables

Different exogenous variables affect the load profile, depending on the scale of the
load profile. The load of an appliance depends on device specific properties and can
be turned on and off by a user. The load of a household depends on the properties of
the house, the number of household occupants, when and how much time they spend
at home, the number an type of owned appliances, and the type of house [28]. The
load in a neighbourhood depends on geographical location of the neighbourhood
and the type of buildings located there. The load profiles of households displayed

2.2 Electricity Consumption Forecasting 15

in Figure 1.3 are all from the village Heeten, in the Netherlands [10]. The load on
national level may even depend on national electricity price changes [36].

The most used exogenous variables are weather and social variables [19]. An often
used weather variable is the air temperature which is nonlinearly correlated to
the electricity load of a household, as electricity demand increases on either very
hot or very cold days, through the use of (electric) air conditioning and heating
appliances. Other often used variables are the relative humidity and wind speed.
These influence how a person perceives the weather, which also results in using
previously mentioned devices. Lastly, most studies make use of the current weather
variables instead of weather forecast variables, because forecast errors may be
propagated in the performance of the ANN [19]. When determining the most
relevant variables for prediction models, some researchers choose the ones with
the highest correlation with the forecasted electricity consumption [14], [24], [26],
[28], [31], [37], [38]. Furthermore, data can be transformed before using it as input
for the prediction model [13], [30], [38], [39].

Javed et al. [28] found that the use of anthropological aspects and structural variants
as variables, has a positive effect on the performance of their forecasting model.
Here anthropological aspects are characteristics of the house occupant, such as the
number of occupants, the age of the occupants, the owned devices, the level of
education, and other demographic information. Structural variants refer to physical
characteristics of the house such as the type of house, how many windows it has,
the type of walls, ventilation, how well the house is insulated, and the size of living
space. In order to collect data, they distributed a survey with questions to the
household occupants. Examples of information that was asked in the survey were
the average indoor temperature, a list of household appliances, building year of the
property, etc. Their initial results, however, showed that the correlation between the
house load and these variables is weak. They found that the strongest influence on
demand is weather. They created one forecasting model that is able to differentiate
the output (the predictions) for each household, based on the input variables. They
found that using this information can greatly enhance forecasting of an individual
household load, when the forecasting model has to differentiate between households.
The downside of this approach is that a survey including a large amount of privacy-
sensitive data has to be completed by the household occupants of each house, before
the forecasting model can be used. Furthermore, some of this information such as
building information is fixed or static information. Bakker et al. [40], [41] argue
against using fixed or static inputs to their forecasting model (ANN), because they
expect that their forecasting model will learn the characteristics of the home.

16 Chapter 2 Forecasting

2.2.4 Forecasting Horizon

The forecasting horizon for energy consumption forecasting is traditionally classified
into Long-term (LTLF), Medium-term (MTLF), and Short-term load forecasting
(STLF). Sometimes, a subcategory of STLF is considered, called Very short-term load
forecasting (VSTLF). The categories are summarized in Table 2.1 [12]–[15], [18],
[42].

Name Time Horizon Applications

LTLF A year to 10-20 years ahead.

Applied in territorial or national power
utilization whereby demand is often in-
fluenced by economic factors. Applica-
tions include strategic planning decisions
involving energy supply or the installation
and improvement of storage systems, ca-
pacity expansion planning, investment de-
cisions, and purchasing new energy gen-
erating infrastructure.

MTLF
Few weeks to few months
(or quarterly) ahead.

Applied in system maintenance, security,
energy purchasing policies, price settle-
ment, and ensuring balance between sup-
ply and demand.

STLF

Sub-hourly, hourly, to one
day ahead or a week. The
range from seconds to min-
utes to several hours is often
called Very STLF (VSTLF), a
subcategory of STLF.

Weather variables have a significant in-
fluence on STLF. STLF aims at improving
load dispatching, DSM, and (operational)
control strategies, such as scheduling and
allocation.

Table 2.1: Forecasting Horizons and their applications

This thesis focuses on forecasting models with a short-term horizon as these are also
most often used for DSM techniques [42] (see also Chapter 3).

2.3 Time Series Forecasting Models

This section provides a review of different (V)STLF techniques that are used in
literature. In particular, a comparison between several regression techniques and
artificial neural networks (ANNs) is discussed as well as their respective advantages
and disadvantages. Fumo et al. [43] review several types of regression techniques
and indicate that, compared to other methods, linear regression has a reasonable
accuracy, needs little computing power, and has a relatively simple implementation.
They also advocate to apply linear regression to forecast the load of individual
households, as an increasing number of people owns a smart meter. Some authors
consider regression techniques useful to explain the relationship between input- and

2.3 Time Series Forecasting Models 17

output variables [12], [42], [44], but not useful enough to apply in a forecasting
model in practice [42]. There exist many variants of regression techniques. An
example is the autoregressive integrated moving average (ARIMA) model. Barua
et al. [42] argue that an ARIMA model makes reliable predictions, but is not good
at LTLF. In contrast, Wei et al. found that regression techniques are most often
applied on a long-term horizon and on a relatively large scale. Gajowniczek et
al. [37] agree with this and argue that regression techniques such as ARIMA are
not suitable for highly volatile data and are therefore not useful for STLF of an
individual household load. For example, Kapoor et al. [45] found that ARIMA is
least accurate when comparing ARIMA, Multiple Linear Regression (MLR), Recursive
Partitioning and Regression Trees (RPART), Conditional Inference Trees (CTREE)
with Bootstrap Aggregating (BAGGING), and Random Forest (RF) models. Because
regression techniques like ARIMA are not suitable for very volatile data, Gajowniczek
et al. [37] prefer machine learning techniques such as support vector machines
(SVM) or ANNs for this type of application, because they can make better predictions
with noisy data. Note however that if there exist only linear relationships within the
data, an ANN may not be better than a linear method [20].

Hippert et al. [19] have done an extensive review of ANNs used in STLF applications.
According to them, a large number of forecasting models that make use of ANNs are
successful, but there still exists skepticism because there is not much hard evidence
that ANNs are better than other forecasting methods in general. For example,
Marinescu et al. [39] did not find substantial differences in performance when
comparing autoregressive (AR), ARMA, and ARIMA models with fuzzy logic (FL),
ANNs, and wavelet neural networks (WNN). WNNs combine wavelet functions with
ANNs such that frequency, phase, space and time are also taken into account [20].
In their comparison, the regression approaches (AR, ARMA, and ARIMA) even had
the overall best performance on average. On the other hand, ANNs, WNNs, and FL
were better at predicting peaks during the morning and evening. Marinescu et al.
[39] suggest to use a combination that uses the advantages of each method they
reviewed.

The downsides of ANNs are that they require a lot of historical data [44], that
they are hard to interpret (hard to explain relationship between input- and output
variables) [20], and that they suffer from overfitting because of the large number of
parameters (complexity) and are thus hard to generalise [20], [42]. Deeper neural
networks such as convolutional neural networks (CNN) and long short-term memory
(LSTM) networks are even more complex. Yan et al. [46] proposed to combine
an ensemble of LSTMs with the Stationary Wavelet Transform (SWT) technique.
Some authors propose to combine CNNs and LSTMs [47], [48]. But others argue
that CNNs are more suitable for images or that LSTMs are unsuitable for short-
term predictions [42]. Because CNNs and LSTMs are more complex than standard

18 Chapter 2 Forecasting

ANNs, they are computationally slower. However, a forecasting model should not
be computationally heavy or slow, especially when applied on a simple local house
controller in an online setting.

ANNs have many parameters and therefore may be computationally slower than
simple regression techniques, but they are often computationally faster than deeper
networks such as CNN and LSTMs [42]. Furthermore, their prediction accuracy
is often better than regression techniques such as ARIMA [13] due to their ability
to deal with nonlinear complex problems [12], [38], [47] and to approximate any
(nonlinear) continuous function numerically [19], [20]. Therefore, they are often
applied on a short-term horizon and on a relatively small scale [12]. Alfares et al.
[49] compared nine different forecasting techniques and found that the most active
research area, at the time of writing, was forecasting based on ANNs. Liu et al. [50]
made a comparison of three VSTLF techniques: FL, ANN, and AR models. Before
evaluating their performances, they used a low-pass filter to remove high-frequency
noise components from the data. Their study shows that it is even feasible to develop
a simple ANN or FL model to predict very short-term load in an online approach.
Especially when applying STLF at a local controller on a small scale such as the
electricity load of an individual household, the benefits of a standard ANN outweigh
the benefits of deeper networks (e.g. CNNs or LSTMs) or other regression techniques
(e.g. ARIMA). Therefore, in this research we focus on using ANNs when forecasting
the load of households.

2.4 Artificial Neural Networks (ANN)

2.4.1 Introduction

Because ANNs are used in the forecasting models proposed in this research, a small
background on ANNs is provided in Section 2.4.2, including a definition of an
ANN (Section 2.4.2.1) and a brief discussion on hyperparameters (Section 2.4.2.2).
ANNs can be used for many applications, but in this research they are used for
household energy consumption prediction. Therefore, different ANN architectures
used for energy consumption are considered in Section 2.4.3, especially their input
configuration (Section 2.4.3.1) and output configuration (Section 2.4.3.2).

2.4.2 Background

2.4 Artificial Neural Networks (ANN) 19

2.4.2.1 Definition

An Artificial Neural Network (ANN) is a computational model, originally inspired
by a biological neural network of the brain, that is typically used for (supervised)
machine learning applications, such as classification and regression. An ANN can
be described as a structured collection of nodes connected by edges. Each node
represents a neuron and each edge represents the connection between two neurons.
The neurons are ordered in layers. The input neurons are located in the first (input-)
layer, the output neurons in the last (output-) layer, and in between these layers
exist the hidden layer(s). The input to the ANN is a vector of numerical values, of
which each value corresponds to an input neuron. The output of the network is also
a vector of numerical values. An example of an ANNs is shown in Figure 2.3. The

Figure 2.3: Example feed-forward ANN with two neurons in the input layer, three neurons
in the hidden layer, and two neurons in the output layer, from [51]

output of a single neuron, called the activation of that neuron, is (except for the
neurons in the input layer) a function of the sum of all the inputs (output activations
of neurons in a previous layer), weighted by the weights of the connections to these
inputs. Typically, a constant term, a bias, is added to this sum. This complete
weighted sum is passed to an activation function and forms the output activation of
the neuron. This output can then, in turn, be used as input to a neuron in the next
layer. The neuron computes its output activation as follows (from [51])

al
j = σ

[∑
i

(al−1
i wl

ji) + bl
j

]
. (2.1)

Here, al
j and bl

j denote the activation and bias, resp., of neuron j in layer l. wl
ji

denotes the weight corresponding to the connection between neuron j in layer l

and neuron i in layer l − 1. σ denotes the activation function, which is typically
a bounded, monotonically increasing, nonlinear, continuous, and differentiable
function. Examples of activation functions are the sigmoid (logistic) function, the

20 Chapter 2 Forecasting

hyperbolic tangent (tanh) function, the sine or cosine function. As example, the
sigmoid activation function is given by

σ(z) = 1
1 + e−z

. (2.2)

When the input layer of the the network is provided with an input vector, all neurons
in subsequent layers can compute an output in a layer by layer fashion, until the last
layer has computed a final output. This is called a feed-forward pass or prediction
of the network. When the network has made a prediction, its output vector can be
compared to a target output. Typically, this is done by using a cost function that
computes an error metric indicating how close the output of the network was to the
target output. An example of a cost function (the sum of squares) is

C(w, b) =
∑

j

(aL
j − yj)2. (2.3)

Here, aL
j is the activation of neuron j in the output layer L and yj is the target

value for neuron j. The vector y is also called the target or label. Note that the cost
function C(w, b) is parameterized by all weights w and biases b in the network, since
the activation of the output layer aL is a composite function of these parameters. A
typical approach to train the network consists of updating the values of the weights
and biases using gradient descent, to find a minimum of the cost function. The
amount that each value is changed, depends on the step of the update. The update
step of a weight is the partial derivative of that weight with respect to the cost
function, multiplied by a learning rate. The learning rate is a hyperparameter of
the ANN that can be chosen to change the size of the update step. The process of
updating all weights and biases in the network (estimating the ANNs parameters), is
called training the ANN [51]–[53].

2.4.2.2 Hyperparameters

Apart from the number of neurons in the input and output layers of an ANN, there
are hyperparameters that can be modified that have an effect on the training process
of the ANN. Different from weights and biases, hyperparameters are parameters
that cannot be learned from training an ANN. They are used to control the training
process. Examples of hyperparameters are the learning rate, the number of hidden
layers, and the number of neurons in the hidden layer(s). There are also choices
that can be made regarding the type of activation function, stopping criteria, the
type of optimization, and regularization. Regularization techniques are techniques
that help prevent overfitting.

Determining the number of hidden layers and neurons in each hidden layer is less
straightforward than for the input layer and output layer of the ANN. One hidden

2.4 Artificial Neural Networks (ANN) 21

layer is sufficient to approximate any (continuous) function, but most studies use
either one or two hidden layers [19], [28]. There is no generally accepted method
that can be applied to determine the correct number of neurons in a hidden layer,
but the effects of small variations are often not significant. However, if the number
of hidden neurons is insufficient, the ANN is not flexible enough and will not be
able to make good predictions. Too many hidden neurons makes the model very
complex, computationally slower, and might cause overfitting. Most studies choose
the number of hidden neurons by trial and error [19].

Another choice that affects the behaviour of the ANN is the activation function.
Most researchers use the sigmoid or the hyperbolic tangent function, but there is
no general agreement on the “best” activation function [19], [20]. Also the type of
optimization has an effect on the ANN. Typically, an ANN is trained using gradient
descent with back-propagation, but there are several extensions to this method. For
example, gradient descent with momentum can reduce oscillation effects in the cost
space during training [20], [52].

Another way to deal with this is dropout [52]. Dropout is a regularization technique
where some hidden neurons are randomly removed during the the training process.
By ignoring different sets of hidden neurons during training, overfitting can be
reduced. The effect of dropout is similar to that of ensemble learning. A related
concept is sparsity, but most ANNs are fully connected when used for prediction
[20]. Zhang et al. [20] even argue that adding extra direct connections between
input and output neurons help model the linear relationships and therefore improve
the accuracy of the ANN.

2.4.3 ANN Architectures In Energy Context

When using an ANN to predict the electricity load of a household, various ANN
architectures may be used. Especially the input and the output of the network is
important for the application. There are many ways to apply neural networks for
short-term load forecasting. Especially, there are different ways to select the number
of neurons in the input and output layer of an ANN when predicting electricity
load.

2.4.3.1 Input Configuration

Zhang et al. [20] found that many studies create a new input neuron for each lag
(see Section 2.2.1). In other words, the number of lags corresponds to the number
of neurons in the input layer of an ANN. However, this would result in a very large
input layer of the ANN. Only creating neurons for lags with a strong auto-correlation

22 Chapter 2 Forecasting

(see Section 2.2.1) would alleviate this problem. Zhang et al. [20] argue that a small
number of essential input neurons is required, enough to discover the underlying
pattern. Either too many or too few input neurons could negatively impact the
prediction or training effectiveness of the ANN. However in their review, they found
that most studies use arbitrary experiments or intuitive ideas to select the number of
input neurons.

Another approach is to classify input (load and weather) data, before load forecasting
[19]. For example, it is often argued that week day profiles are not similar to weekend
day profiles. Hence, the input data would need to be classified into two classes: week
days and weekend days. Another classification is one class for each day of the week,
resulting in seven classes (this is done in [40], [41]). This way, one can come up with
several classifications. Combining multiple classes might be difficult. For example,
some researchers classify holidays as weekend days [19]. There are three different
ways that such classifications can be handled when designing the architecture of
an ANN. The first way is to create a binary variable for the class (holiday or no
holiday), and create a new input neuron for each class. This means that as many
input neurons should be added to the input layer of the ANN as there are classes.
Alternatively, a classification can be numbered (e.g. 0-6 for Monday-Sunday) and
creating a new input neuron for each classification. The difference is that now only
one input neuron is needed to model all classes (0-6) of the classification. The last
way is to build a separate ANN for each class (e.g. a separate ANN for each day of
the week). The downside of this approach is that there may not be enough data for
each separate ANN to be trained sufficiently well.

2.4.3.2 Output Configuration

Most studies do not predict a load value at a single value (snapshot) in the future,
but rather forecast a load profile: a window that includes e.g. the load of all values
of the next day. If the data has an hourly granularity, the load profile of the next day
consists of 24 values. For this case, Hippert et al. [19] classified three types of ANN
architectures:

1. Iterative forecasting (one-step)
This ANN architecture has a single neuron in its output layer. The ANN makes
a prediction of the load of one hour in the future, and then uses this prediction
as input for the forecast of the load of the hour after that. This process is
repeated iteratively until 24 forecasts (the complete load profile of the next
day) is predicted. This can be seen as a recursive process, as the output of the
network is used as input for the next iteration. Each prediction of the ANN
represents a prediction of a single time step (hour) in the future (one-step),
which is repeated 24 times.

2.4 Artificial Neural Networks (ANN) 23

2. Multivariate forecasting (multi-step)
This ANN architecture has 24 neurons in its output layer, making it a bit larger
and more complex. The ANN makes one prediction of the load of all the 24
hours in the future (the complete load profile of the next day). Thus, each
prediction of the ANN represents a prediction of all 24 time steps (hours) in
the future at once (multi-step). This architecture was used by most of the
researchers [19].

3. Multi-model forecasting
In this architecture, 24 ANNs are used in parallel. Each single ANN has only
one neuron in its output layer. To predict the complete load profile of the
next day (24 values), each single ANN predicts the load of a particular hour
of the day. The advantage of this architecture is that the individual ANNs are
relatively small and only receive a part of the data, so they are less likely to be
overfitted. The disadvantage is that each individual ANN may not be trained
sufficiently, as each ANN receives only part of the data

Zhang et al. [20] report that there is no consensus in literature about which method
is preferred, but their opinion is that the multivariate forecasting architecture may
be better.

2.5 Evaluation Metrics

Error metrics measure the difference between the predicted value (model output)
and the actual value (real observation), and are used to measure the performance of
forecasting models [13], [38]. Javed et al. [28] evaluate the performance of their
forecasting model according to three measures: precision, accuracy, and stability.
Here, precision is represented by such an error metric indicating how close the
forecast is to the actual load. Accuracy represents the number of “correct” forecasts
that the forecasting model makes. Lastly, stability means how consistent the size of
the errors of the forecasting model are, which is represented by the variance in the
error.

To measure precision, there are several widely used performance metrics for time
series forecasting [12], [13], [38], [42]. Most error metrics can be categorized
as either scale-dependent errors, percentage based errors, or relative errors [54].
An often used (percentage-based) error in time series forecasting is the the Mean
Absolute Percentage Error (MAPE):

1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣× 100%. (2.4)

24 Chapter 2 Forecasting

Here, n is the number of datapoints, yi is the real observation at point i, ŷi is the
predicted/forecasted model output at point i. Although MAPE is very often used
in time series forecasting, a big problem with MAPE is that it can heavily penalize
relatively small errors when the actual load yi is very small, and even become infinite
when yi = 0. Additionally, MAPE suffers from symmetry problems: the MAPE value
is larger for positive errors (over-forecasts) compared to negative errors (under-
forecasts) [54], [55]. This is why many authors point out its inconvenience [24],
[38], [54], [55], and some argue that squared errors are preferred because they do
not suffer from these issues and penalize large errors more [19], which is useful for
training an ANN. An example is the Root Mean Squared Error (RMSE):√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2.5)

Hyndman et al. [54] recommend to use (scale-based) errors, such as Equation (2.5),
when comparing different methods on a single data set.

Unfortunately, many error metrics can attain contradictory values, especially for
volatile and irregular data such as household loads [27]. For example, Haben et
al. [56] explain the “double penalty effect” of point-wise metrics, such as MAPE
and RMSE, when a peakload is predicted slightly before or after an actual peak
occurs. When exact timing is less important, their proposed adjusted error, may be
used. Furthermore, tailored error metrics are devised that try to improve overall
well-performing metrics that fail on load spikes [26], [28] and try to treat forecasting
and control as a combined problem [55].

Another issue with error metrics is their inconsistency among different studies.
Hyndman et al. [54] argue that the Mean Absolute Error (MAE)

1
n

n∑
i=1
|ŷi − yi| (2.6)

is preferred when all data is on the same scale, because the MAE is simple to explain.
However, the performance of a forecasting model using an error metric such as
the MAE, may be completely different for two sets of households with a different
load profile variability. For example, an error metric often scores worse for a set
of load profiles with a higher load variance than for a set of load profiles with a
small load variance. In order to make different studies more comparable, their
error metrics should first be normalized according to the volatility (e.g. dividing by
the standard deviation) of the data [24], [54]. As the load changes over time, the
distribution of errors over time could also provide interesting insights [19]. Finally,
when evaluating a model, some researchers argue that its performance should be

2.5 Evaluation Metrics 25

compared to that of a naïve or well-accepted method, regardless of the error metric
that was used.

26 Chapter 2 Forecasting

3Demand Side Management

Chapter Objective: This chapter introduces demand side management (DSM) and
reviews several DSM techniques.

Chapter Contents

• Introduction (3.1)

• Introduction To DSM (3.2)

• Smart Grids (3.3)

• Energy Management Systems (EMS) (3.4)

• Optimization Strategies (3.5)

• Control Versus Planning (3.6)

• The EV Charging Problem (3.7)

• Profile Steering (3.8)

3.1 Introduction

As stated in Section 1.2, some DSM techniques rely heavily on predictions and
finding out how predictions influence the performance of these DSM techniques
and how different DSM techniques currently make use of available predictions, can
potentially provide insights for making predictions that are more meaningful and
useful in this context. Section 3.2 therefore introduces the concept of Demand Side
Management (DSM) and explains how DSM leverages flexible devices. To see how
DSM is implemented in practice on a neighbourhood level, Section 3.3 looks into
smart grids. A smart grid makes use of one or more energy management systems,
which are explained in Section 3.4. Before, looking into how predictions are used
by DSM techniques, it is important to have a good overview of different types of
DSM technologies. Therefore, DSM techniques are categorized by the optimization
strategy that is used (Section 3.5) and a distinction between control-based and
planning-based DSM is discussed (Section 3.6). Next, two specific DSM methods are
discussed in more detail: the EV charging problem is presented in Section 3.7 and
the profile steering algorithm is explained in Section 3.8. Finally, it is explained how

27

the predictions of the forecasting model proposed in this document could be used
as input for these DSM techniques, such that the schedule of appliances and their
energy consumption can be optimized in order to reduce peaks on the electricity
grid.

3.2 Introduction To DSM

The goal of DSM is to incentivise consumers (household residents) to decrease the
electricity consumption during peak hours or to shift the electricity consumption
to a time where there is less overall energy demand. DSM is typically applied in
a residential area, such as in a house or a neighbourhood. DSM techniques may
provide very promising solutions to flatten load peaks. DSM techniques leverage
flexible devices. Flexible devices are devices that have a load that can be easily
shifted in time, without affecting user comfort too much. Typically, these devices
have a relatively large load, so that scheduling or controlling them has an actual
impact on the grid. Examples are an electric heat pump (with heat storage) and
an EV. Devices with a relatively smaller load can also provide flexibility, such as a
washing machine. Many DSM techniques schedule or control such flexible load.

3.2.1 EV Example

Instead of charging a car (with a fuel engine) at a gas station, residents with an EV
can often charge at home, using a home charging point. An EV charged at home
consumes roughly 7.2 kW [57], but this can vary depending on the type of EV, the
charge rate and type of charger. This is a large amount of power compared to the av-
erage household consumption. Note that the average household consumption varies
depending on the type of house and the number of household occupants. Table 3.1
shows the average electricity consumption in kWh for a house in the Netherlands
[58]. Although houses get more appliances, note that the average power consump-
tion in the Netherlands is decreasing. This may suggest appliances are becoming
more efficient, but the main reason for the decrease in recent years is the result of
rooftop solar panels [59]. A prognosis of the overall average electricity consumption
of a Dutch household is 2479 kWh [59], which is roughly 0.3 kW on average at
all times (much less than 7.2kW). Of course this number varies very frequently
over time in practice, between approximately 17.25kW and -17.25kW for newer
households with a 3× 25A connection (negative number indicates that the house
can supply electricity to the grid, e.g. when it has solar panels) [60]–[62]. Since EV
users typically arrive at home in the evening, EVs in a neighbourhood are connected
to their home charging points at roughly the same time. In a neighbourhood with
many EV users, this may cause a huge peak of consumption in the evening when

28 Chapter 3 Demand Side Management

Type of house Built in (year) Size (m2) Number of residents 2018 (kWh) 2019 (kWh) 2020 (kWh)
Apartment ≤ 1992 < 100 1 1580 1550 1550
Apartment > 1992 < 100 1 1640 1610 1580
Terraced* ≤ 1992 < 100 1 1730 1690 1680
Terraced* ≤ 1992 100−150 1 2050 2000 1990
Apartment ≤ 1992 < 100 >1 2280 2220 2270
Terraced* ≤ 1992 < 100 >1 2860 2780 2790
Terraced* ≤ 1992 100−150 >1 3290 3190 3200
Terraced* > 1992 100−150 >1 3340 3260 3260
Terraced* ≤ 1992 ≥ 150 >1 3950 3860 3900
Detached ≤ 1992 ≥ 150 >1 4490 4450 4530

Table 3.1: Data from CBS [58]. Average power consumption per year (kWh).
*A terraced house also includes corner houses or semi-detached houses. Also, only houses with a gas connection are considered

electricity demand is already high [32]. However, EVs are commonly connected to
the home charging point for a longer period of time than is needed to fully charge
the EV. For example, an EV user may arrive at home in the evening, connect the EV
to the charging point, and leave the EV to charge over night. In this case, the EV
may be fully charged much sooner than the end of the night. Therefore, a smarter
approach would be to schedule the EVs in the neighbourhood to charge at different
times, instead of charging them simultaneously in the evening. For example, when
the charging windows of the EVs are distributed over the night, a peak on the grid
in the evening may be prevented. From the point of view of an EV user, it does not
matter when the EV is charged, as long as it is charged enough at the time that the
user wants to leave. By taking into account the arrival and end time between which
each EV needs to be charged and how much each EV still needs to be charged, the
charging windows and rate of charge of these EVs can be adjusted without affecting
the user too much.

3.2.2 Vehicle To Grid (V2G)

When a battery of an EV is used to supply electricity back to the grid, this is called
vehicle-to-grid (V2G). V2G can provide even more flexibility as the battery of the EV
can also discharge energy when there is a lot of demand. However, there currently
only exist pilots using DC V2G with cars such as the Nissan Leaf, but most cars do not
yet support this technology [63]. In practice, V2G is not applied at home charging
points yet, because most houses have AC home charging points [63]. In contrast,
home electric batteries are already used in practice. A home electric battery can be
scheduled to be charged at times when there is most electricity production (to flatten
production peaks) and discharge when there is a lot of demand. For example, when
charging the battery at a time when there is a lot of solar supply in the afternoon,
and discharging the battery when there is a lot of demand in the evening, the size
of peaks (in supply and demand) could ultimately be reduced. The advantage of a
home battery over V2G, is that can be used at all times whereas the battery an EV is
unavailable when the EV is used.

3.2 Introduction To DSM 29

3.2.3 Different Flexible Devices

Next to EVs or batteries, there are other appliances that can provide flexibility.
Molderink et al. [64] categorize different types of appliances such as a consuming,
producing, or buffering devices. For example, an electric heat pump with heat
storage may be scheduled to consume energy when overall demand on the grid is
low, similar to an EV. The heat that is produced by the electricity consumption can
be stored and used later to heat the house at a time that the heat is actually needed.
A washing machine or tumble dryer can also be shifted in time. However different
from an EV, these devices prove to be less flexible, because once started they should
not be interrupted (e.g. a user wants their washing program to run completely).

3.2.4 Forecasting

By adjusting the loads of several flexible devices to each other, the peaks of a total
household power profile can be reduced. Applying a DSM technique to multiple
households could significantly reduce the peaks on the LV grid. However, some DSM
techniques rely heavily on forecasts, especially of loads that cannot be controlled.
In order to create a good schedule for flexible devices, inflexible loads (loads that
cannot be scheduled in time) are often predicted beforehand. Examples of such
inflexible loads are the power used by the lights in a house, a television, or a fridge.
The user either wants to use these appliances immediately or they should be powered
constantly, and therefore they cannot be scheduled or adjusted in a flexible way.
At transformer level, the total household electricity consumption is often called a
base load and consists of the aggregation of the inflexible appliance loads within
the house. These household base loads cannot be adjusted flexibly, but should be
considered for scheduling or control in a DSM technique, as they ultimately do have
an influence on the peaks on the grid. Having accurate predictions of household
base loads is therefore really important for a DSM technique to work effectively.

3.3 Smart Grids

As the number of flexible devices (such as EVs) is expected to grow, it is important
that DSM techniques are designed to be scalable. To achieve scalability, a smart grid
is required. A smart grid is an ICT system that monitors electricity transmission,
consumption and/or production of connections to a part of the physical electricity
grid (typically a neighbourhood), and can make use of information and coordinate
electricity demand by using communication between one or more controllers or
flexible devices [64], [65]. In a smart grid, there is often a global central controller,

30 Chapter 3 Demand Side Management

also called an energy management system (EMS), that optimizes an objective and
sends resulting steering signals to the houses connected to the smart grid. The
house residents can act upon these steering signals by adapting their electricity
consumption manually, or install a local (house) controller that does this for them.
Such a local controller is also called a home energy management system (HEMS)
[32], [66].

3.4 Energy Management Systems (EMS)

A (H)EMS is a system that can be installed in a smart grid, building or household
and that helps to manage its electricity demand. The goal of the EMS is typically
to optimize (maximize or minimize) an objective, subject to a set of constraints. A
HEMS commonly considers a few objectives (e.g. maximize user comfort, minimize
peak demand) simultaneously, introducing trade-offs between objectives [38]. This
is called “multi-objective optimization” [67] and is most commonly implemented by a
weighted sum of the objectives. In order to do that, a HEMS may use household load
data, appliance data, forecasts, occupancy preferences, and/or electricity price/tariff
information [38]. The output of a HEMS could either be an optimal overall load
profile, or an optimal appliance schedule, including heating, ventilation, and air-
conditioning (HVAC), electric vehicles (EV), and batteries [67]. However, note
that most devices cannot be controlled without limits. User preferences and device
constraints form restrictions on the flexibility of the device. These restrictions are
called flexibility constraints [33], and should be taken into account in the HEMS.
In order to shave peaks on the complete house load (the the aggregation of all
appliances), a HEMS may regard some non-flexible appliances (or base loads) as
fixed input when scheduling flexible appliance loads [68].

3.5 Optimization Strategies

Most DSM methodologies use a form of optimization with a function that takes into
account the flexibility constraints. Such a function is often called a utility function,
bidding function, or cost function. In practice, an energy price can be determined
by solving a cost optimization problem that is subject to some constraints. The
cost function together with the energy price results in a dispatch for each device.
Molderink et al. [64] split the optimization strategies into three groups:

• Auction based optimization
When an auction based optimization strategy is used, both electricity con-
sumers and producers can place bids for the energy price. Together, they form

3.4 Energy Management Systems (EMS) 31

cost functions that help to determine the market clearing price, see Figure 3.1
[64].

Figure 3.1: Determining the market clearing price, from [64]

• Game Theory based optimization
Mohsenian-Rad et al. [69] formulate an energy consumption scheduling game.
The users represent the players of the game and the daily load schedules of
the devices in their houses represent the players’ strategies. The assumption
is that by changing the electricity price, user energy consumption can be
changed. They found that the total amount of electricity costs is minimized
at the Nash equilibrium of the formulated scheduling game. This means that
each player simply applies it best response strategy to the current electricity
price. Their results show that load peaks are reduced, as well as individual
and total electricity costs of the players. Tang et al. [70] optimized dynamic
pricing and daily building electricity demand using the Stackelberg game.

• Other mathematical optimization strategies
Van der Klauw et al. [71] state that the problem of finding optimal load
schedules based on steering signals received from centralized controllers, can
be categorized as a resource allocation problem (RAP). There exist many
efficient methods that can solve this problem (see [64] for an overview), but
most of them use a form of mathematical programming.

Comparing different DSM approaches is difficult, because differences in results
depend partly on the definition of the cost or objective functions. For a good
comparison between two methodologies, identical cost or objective functions should
be used [64].

3.6 Control Versus Planning

Some of the DSM techniques use operational control, focusing on the optimization
at the current moment. Other DSM techniques optimize for a longer period, based
on a planning. This sections discusses a comparison between control-based and
planning-based techniques. Control-based DSM looks ahead one interval and risks

32 Chapter 3 Demand Side Management

using available flexibility too soon while a large problem may occur later. On
the other hand, planning-based DSM looks further ahead to make trade-offs, most
commonly to one or two days (24h-48h) using a 15 minute data resolution. However,
the accuracy of forecasts may significantly affect the quality of the planning-based
optimization techniques. For example, when the predictions are poor, planning-based
DSM approaches might establish a low quality (or invalid) planning [32].

In practice, it appears to be more effective to use planning-based DSM, as it shown
by Molderink et al. [64]. They compared two operational control methodologies:
one based on auction and one based on Integer Linear Programming (ILP). Their
simulation shows that making decisions based on purely historical data leads to
worse results, but combining these methodologies (auction and ILP) with a planning
leads to better results. Here, predictions are made on device level and the overall
planning is made on global level. They found that the auction method is better at
dealing with prediction errors. Therefore, they argue that the best solution is a good
planning algorithm combined with auction as operational control, in order to reach
a desired consumption profile for a large group of houses.

3.7 The EV Charging Problem

Since EVs offer great flexibility potential for DSM [66], this section describes the
EV charging problem using the notation and ideas of Schoot Uiterkamp et al. and
Gerards et al. [32], [72]. When an EV charges, it has a charging window t ∈
{1, ..., T} of T time intervals. Let xt, pt, and dt denote the electricity charged by
the EV, the uncontrollable house power consumption (base load), and the desired
total (house load and EV load together) load, respectively, during time interval t.
Then, the charging profile, the base load profile, and the desired profile are denoted
by x⃗ = [x1, ..., xT], p⃗ = [p1, ..., pT], d⃗ = [d1, ..., dT]. Furthermore, the total amount of
energy that needs to be charged in the charging window is denoted by C and the
maximum charging power for each time interval is denoted by x̄. The goal is to find
a charging profile x⃗ such that the sum of the base load profile and charging profile
p⃗ + x⃗ is closest to the desired profile d⃗. This results in optimization problem (3.1):

min
x⃗

√√√√ T∑
t=1

((pt + xt)− dt)2

s.t.
T∑

t=1
xt = C,

0 ≤ xt ≤ x̄, t = 1, ..., T

(3.1)

3.7 The EV Charging Problem 33

The objective is to obtain a profile which is as flat as possible. This can be done by
choosing d⃗ to be a constant vector (e.g. the zero vector d⃗ = 0⃗). Van der Klauw et al.
[66] extend Problem (3.1) and show that they can calculate an optimal schedule
using an efficient algorithm.

3.7.1 Valley-Filling Using A Fill-Level

An often used DSM technique to solve the EV charging problem, is called valley-
filling. Valley-filling is a technique that uses EV charging (positive load peaks) to
“fill” the valleys (e.g. negative peaks created by PV electricity production) of a
load profile, in order to realize a flat load profile. A parameter of this method is
the fill-level Z, which is the level up to which the valley of the load profile must
be filled. In a perfect situation where all information is known beforehand, an
optimal value of the fill-level can be chosen (depending on p⃗ and C [32]). Schoot
Uiterkamp et al. [72] present a method to predict this optimal value of Z. Using
an empirically created distribution of the optimal fill-level Z, they can sample an
estimate Ẑ. For this, they use a risk parameter α that represents a preference for
either an under- or over-prediction of this optimal value Z. They found that over-
predicting is generally preferred, and show that the larger the amount that needs
to be charged within the charging window C, the less significant is the base load
profile p⃗. Additionally, given this prediction of the optimal fill-level Z, they can
determine the required (optimal) charge of the EV in each time interval xt using a
decision rule xt = max(0, min(Z − pt, x̄)). Provided with an estimate of the optimal
fill-level Ẑ, they do not need a prediction of the base load profile p⃗ at multiple
intervals in the future, but only of the base load of the upcoming time interval pt

and the sum of complete total energy consumption (over all later intervals) [34],
to make a schedule for an EV that is close to optimal. For instance, when using a
battery, it is more important to know how much of the battery capacity needs to be
reserved to absorb peaks that might occur later, than to know when exactly these
peaks will occur [34]. To make up for earlier made errors and since the prediction
of the upcoming interval will be more accurate than the prediction of later intervals,
Gerards et al. [32] chose to make a decision (of the amount of charging to be done)
only one interval in advance. In other words, both the size and timing of load peaks
do not have a significant effect on the method of Schoot Uiterkamp et al [72].

3.7.2 Fleet Planning

Solving the EV problem for a fleet of EVs is often done with the objective of the
grid operator in mind [66]. On a neighbourhood level (as opposed to a single EV),
Schoot Uiterkamp et al. [72] argue that under-predicting Z for a few of the EVs can

34 Chapter 3 Demand Side Management

be beneficial for the aggregated power profile. Gerards et al. [32] explain how the
approach above can be applied to multiple EVs (fleet planning). They ask the EVs to
decrease or increase their total load for the upcoming time interval when the power
of a group of houses is above or below a given threshold [32].

3.8 Profile Steering

Pricing techniques provide a common incentive for residential electricity users to
avoid peak electricity consumption. However, many pricing techniques introduce new
problems. Uniform dynamic pricing encourages household occupants to collectively
move their energy consumption from different time intervals all to the same time
interval, effectively shifting the peak (not shaving it). Furthermore, differentiated
dynamic pricing may motivate extreme behaviour as individual households get a
price incentive to increase or decrease their load at specific time intervals. Although
this method properly shaves peaks at transformer level, it introduces local peaks at
household level. Nonlinear pricing could be a solution but quickly becomes very
complex. Instead of auction or bidding methods based on pricing, Gerards et al.
[33] propose to avoid using pricing techniques altogether and introduce a profile
steering algorithm as an alternative.

3.8.1 The Profile Steering Algorithm

The goal of the profile steering algorithm of Gerards et al. [33] is to minimize
the distance between the planning or obtained profile x⃗ = [x1, ..., xN]T (N is the
number of intervals, e.g. 96 when using 15 minute data covering a period of a day)
and a desired profile p⃗ = [p1, ..., pN]T , e.g. a flat or zero p⃗ = [01, ..., 0N]T profile.
The obtained profile x⃗ that is stored at a global controller is considered to be the
aggregated profile of all individual device profiles x⃗ =

∑M
m=1 x⃗m, where x⃗m is the

planning of device m ∈ {1, ..., M}. In an iterative manner, the global controller
sends out the difference profile d⃗ = x⃗− p⃗ and each device responds with how much
it can reduce the (euclidean) distance ||d⃗||2 between the obtained profile and the
desired profile by replacing its current planning x⃗m by a new candidate planning ⃗̂xm.
The global controller then selects the device with the largest improvement. Finally,
the device m updates its planing locally x⃗m := ⃗̂xm and the global controller updates
the obtained profile x⃗. This process is repeated as long as there is sufficient progress.
The result of the profile steering algorithm is a planning x⃗m for each device [33].

3.8 Profile Steering 35

3.8.2 Asynchronous Event-Driven Profile Steering

Hoogsteen et al. [25] built upon the profile steering algorithm of Gerards et al.
[33] by considering asynchronous events. They consider a two-phase approach.
The first phase constitutes a synchronous planning phase, resulting in a planned
profile. The second phase uses an event-driven approach that schedules devices
asynchronously to realize the planned profile that was created in the first phase.
After the first phase, the resulting planned profile q⃗ is a schedule stored at the global
controller equal to the aggregated profile x⃗ that resulted from the profile steering
algorithm [33], thus q⃗ := x⃗. Then all plannings (x⃗m for a subset of {1, ..., M}) from
uncertain devices (e.g. EVs) are discarded. Predictions of uncontrollable loads (e.g.
household baseloads) are kept and stored as a committed profile r⃗m := x⃗m, of which
the global controller stores an aggregated committed profile r⃗ =

∑
m∈M r⃗m. In the

second phase, the global controller updates the committed profile r⃗ when an event is
triggered. An event is triggered when there is enough confidence that the planning
of an uncertain device will not change (significantly). For example, the moment
that an EV arrives at a home charging point, the requested charge, start time, and
end time are known and unlikely to change. Thus, an event is triggered at this
moment. In this event, the profile steering algorithm [33] is executed once. Recall
that the objective of the global controller is to realize the planned profile q⃗. Similar to
the profile steering algorithm, the global controller sends out the difference profile
d⃗ = q⃗ − r⃗ to this device m, called the desired profile as it represents the gap between
the planned profile and committed profile that needs to be filled. In case there are no
other (remaining parts of) flexible profiles of earlier arrived EVs left to schedule, the
global controller immediately adopts the profile ⃗̂rm that is reported by the EV (there
is no choice between largest improvements as the event describes a single device).
Hence, when the global controller obtains a new committed profile: ⃗̂r = r⃗ + ⃗̂rm, it
can immediately update it r⃗ := ⃗̂r. In case there are other flexible profiles left to
schedule, the profile steering algorithm is runs until an optimal profile is found for
all flexible devices [25].

36 Chapter 3 Demand Side Management

4Model Input

Chapter Objective: This chapter provides an analysis of the input data for the pro-
posed forecasting model.

Chapter Contents

• Introduction (4.1)

• GridFlex Data (4.2)

• Data Cleaning (4.3)

• Feature Engineering (4.4)

4.1 Introduction

The objective of this research is to develop an online “rolling horizon” forecasting
model that is continuously being trained on the smart meter data of a single house-
hold. It can therefore adapt to the load profile behaviour of that household and
to structural changes in electricity consumption over time. With this forecasting
model, we hope to overcome challenges regarding variation between house load
profiles and the volatility within house load profiles (see Section 1.2). The proposed
forecasting model requires input data. This chapter presents the data that was
used, how this data is cleaned, and how relevant features are selected from this
data. Section 4.2 presents the GridFlex data set [10], which contains household
electricity consumption data. Section 4.3 explains how this data was cleaned and
transformed. Section 4.4 discusses all the features that are used as input to the
proposed forecasting model. This includes features that were extracted from the
GridFlex data set, but also features extracted from weather data.

4.2 GridFlex Data

The forecasting model uses electricity data as input, which was collected dur-
ing the GridFlex Heeten project and was made available publicly (although non-

37

commercially) for research purposes. The data set is in CSV format and contains
61.49 GB of data. The data in this data set is subdivided as a value per house,
per appliance-group, per measurement type, and per time interval. The data was
collected between August 2018 and August 2020 in 77 households all situated in
Heeten (the Netherlands) and consist of electricity consumption data and gas usage
per minute, per household. All participating households allowed that their anony-
mous data could be used in further research. The data of this project was collected
in accordance with a privacy-by-design approach [10]. It was collected by installing
an energy management system (EMS) in each household that was connected to the
P4 port on the smart meter and read out the consumption power (in kW and kWh)
once per minute. Furthermore, if a battery was present, the battery management
system was separately connected to the EMS. Also, if a PV system was present, a
pulse meter was installed and connected to the EMS to separately measure its output.
All this data was then transmitted via Wi-Fi to a cloud.

4.3 Data Cleaning

Forecasting models, and specifically neural networks, are sensitive to missing values,
NaN values, and outliers [19]. Therefore, some preprocessing is needed to clean
the data of the GridFlex [10] project. After that, the data can be used to predict the
electricity consumption.

4.3.1 Missing Values

Some data points (minutes) were missing from the total time span of the GridFlex
data set [10]. When the GridFlex data set was created, smart meter data was
collected every minute and sent to a central server. Either, during this process or
when data was retrieved from this central server, transmission errors may have
occurred causing missing (minute) values in the timeline [10]. The percentage (%)
of missing data points (minutes) is displayed in the bar plot in Figure 4.1, and is
quite high for some households.

These data points (minutes) have been added to the data set to get a complete
timeline that includes all minutes of the total time period that the GridFlex data set
[10] covers. For each added data point, a NaN (Not a Number) value is stored for
each of the measured variables as their values are unknown.

38 Chapter 4 Model Input

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 77

0

50

100

House (number)Pe
rc

en
ta

ge
of

m
is

si
ng

m
ea

su
re

m
en

ts
(%

)

Figure 4.1: The percentage (%) of missing data points (minute-values) for each of the
households in the GridFlex data set [10]

4.3.2 NaN Values

Next to missing values, some values in the GridFlex data set [10] are NaN. During
some minutes and for some variables, either nothing was measured, data was lost
because of transmission errors, or a measurement error occurred causing extreme
values. These errors were filtered from the data, leaving some values empty. In these
cases, a NaN value has been recorded. The number of NaN values of the data set
is relatively large, which may be problematic. The bar plot in Figure 4.2 shows the
percentage of NaN values for each variable that was measured, for each household.
The variables depicted in the legend of Figure 4.2 are explained in Table 4.1. Note
that not all houses have solar panels or a battery.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 77

0

50

100

House (number)

Pe
rc

en
ta

ge
of

N
aN

m
ea

su
re

m
en

ts
(%

)

IMPORT_KW EXPORT_KW TOTAL_KW UNC_KW PV_KW BATTERY_KW

Figure 4.2: The percentage (%) of NaN values for each variable and for each of the house-
holds in the GridFlex data set [10]

Unfortunately, a variable where more than 50% of the values is NaN is not uncom-
mon. Figure 4.3 shows how the NaN values are distributed over time, grouped by
day. The total number of values that are measured each day is 1440, as there are
1440 minutes in 24 hours.

In this figure, only the NaN values that overlap for every household are shown. This
shows that from approximately June 2019 significantly less NaN values are stored.
There are also some days where all values of the day (1440 minutes) are NaN,

4.3 Data Cleaning 39

Variable Description
IMPORT_KW Average power input of the household (in kW) in the last

minute. It is the difference of consecutive measurements of
the total energy the household has imported (in kWh) since
the household was connected to the smart meter.

EXPORT_KW Average power output of the household (in kW) in the last
minute. It is the difference of consecutive measurements of
the total energy the household has exported (in kWh) since
the household was connected to the smart meter.

TOTAL_KW Average power usage of the household (in kW) in the last
minute, where a negative value means exporting power. It
is the difference of consecutive measurements of the total
energy the household has used (in kWh) since the household
was connected to the smart meter (a negative value means
exported energy). In other words, it is the difference of
export and import.

UNC_KW Average power usage of the household excluding PV and
battery (in kW) in the last minute.

PV_KW Average power production of the PV system (in kW) in the
last minute. It is the difference of consecutive measurements
of the total energy produced by the PV system (in kWh) since
the PV system was connected to the pulse meter.

BATTERY_KW Average power output of the battery (in kW) in the last
minute (negative means charging).

Table 4.1: Variable descriptions of a selection of variables from the GridFlex data set [10]

2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01 2020-04

0

500

1,000

1,500

Date (year-month)

N
um

be
r

of
N

aN
va

lu
es

Figure 4.3: The number of NaN values distributed over time and grouped by day, that occur
in all the households (intersection) in the GridFlex data set [10]

possibly due to transmission errors that occurred the whole day. A possible solution
to this method is to fill small gaps of NaN values with imputed values using a simple
imputation strategy. Note, however, that some households have significantly more
NaN values than displayed in Figure 4.3. To illustrate this, the distribution of the
percentage of NaN values over time, grouped by month, is displayed in Figure 4.4
for some extreme cases. These houses show gaps of NaN values of approximately 6
to 12 months. Such enormously large gaps should not simply be filled with imputed
values, because this would result in too much fake data that is not representative of

40 Chapter 4 Model Input

2018 2019 2020

0

50

100

Date (year)

Pe
rc

en
ta

ge
of

N
aN

va
lu

es
(%

) House 42

2018 2019 2020

0

50

100

Date (year)

Pe
rc

en
ta

ge
of

N
aN

va
lu

es
(%

) House 65

2018 2019 2020

0

50

100

Date (year)

Pe
rc

en
ta

ge
of

N
aN

va
lu

es
(%

) House 74

Figure 4.4: The percentage of NaN values (%) distributed over time and grouped by month,
that occur in some households in the GridFlex data set [10]

reality. Hence, the proposed forecasting model that is explained in Chapter 5 must
somehow deal with these gaps.

4.3.3 Imputation Strategy

To fill gaps of NaN data, an imputation strategy was used that uses a simple linear
interpolation method, because the curve of a load profile is generally not a smooth
function and a cubic, spline or polynomial interpolation method would interpolate
values in a way that creates a smooth curve.

To make sure the gaps that are imputed by the linear interpolation are not too large,
a limit was set to one hour (60 minute values) away from an existing (not-NaN)
data point. Note that, NaN values are also extrapolated, meaning that values that do
not lie between two existing data points (so values that lie to the left or right of the
leftmost or rightmost value respectively) will be imputed too. Since a distance of 60
values away from an existing data point was chosen as a limit, at most two hours
(120 data points) is the largest gap that can be filled. If more data points would be
filled, the new data set might be unrealistic. Therefore, in those cases NaN values
are left as they are for the forecasting model to deal with, which is described in more
detail in Chapter 5.

4.3.4 Time Frequency Conversion

The GridFlex data set [10] contains smart meter measurements of every minute for a
set of houses. When the actual load of a household is considered to be a continuous
signal, the measurements of the GridFlex data set [10] can be considered a discrete
representation of this continuous signal, with a sampling rate of one minute. Many
DSM algorithms, such as the profile steering algorithm [34], use a coarser granularity
than one minute intervals. Therefore, the data of the GridFlex data set [10] was
resampled. The data was downsampled from one minute intervals to 15 minute

4.3 Data Cleaning 41

intervals, because a 15 minute granularity is very common in practice. The value of
each new data point is the average over the 15 minutes that was sampled from. In
the remainder of this thesis, the use of the word “interval” will generally concern a
15-minute interval unless specified otherwise.

4.3.5 Detecting And Handling Outliers

Outliers in the data result from faulty measurements, which could distort the learning
process of the proposed forecasting model that is discussed in Chapter 5. A possible
way to handle outliers is to remove them from the data set by replacing them by NaN
values. However, this is not desired as creates extra gaps in the data. This might
even remove correct data, as some electricity consumption measurements might be
approximately correct but exceptionally high. In these cases, these measurements
might be wrongfully recognized as an outlier, and as a result precious data is lost. To
solve both of these issues, the household electricity consumption data of the GridFlex
data set [10] could be winsorized beforehand. Winsorization is a method that tries
to limit the effect of outliers by clipping them to a maximum or minimum value.
A common strategy is to choose these values based on percentiles of the data. For
example, a 90%-winsorization method would set all data below the 5th percentile
to the 5th percentile and all data above the 95th percentile to the 95th percentile,
essentially clipping the data within a certain range. This makes sure that the effect
of outliers on the data is reduced without introducing gaps in the data or completely
removing incorrectly classified outliers.

Instead of fixed percentiles (e.g. 5th and 95th) that can be used for all households,
we decided to choose the percentiles based on the Inter Quartile Range (IQR) rule.
The motivation for this choice is that the number of outliers differs per household, as
can be seen in Figure 4.5. For this IQR rule, IQR = Q3−Q1, where Q1 and Q3 are
the 25th and 75th percentile respectively. All values falling outside the range (LB,
UB) = (Q1− p× IQR, Q3 + p× IQR) are considered outliers. Here p is typically
chosen to be 1.5, but can be changed in order to change the tolerance bounds of the
outlier detection.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 77

0

1

2

3

·105

House (number)

N
um

be
r

of
ou

tl
ie

rs

Figure 4.5: Number of outliers per household of the GridFlex data set [10]

42 Chapter 4 Model Input

The percentiles for the winsorization are then chosen to be LB and UB determined by
the p× IQR rule. In this way, the percentiles are chosen dynamically based on the
data of the household. In Figure 4.6, the original data of house 29 is plotted using a
red line, and the winsorized data is plotted on top, using a blue line. However, even
though outliers are winsorized using p = 6 (considered extremely tolerant towards
outliers) and all 0’s are removed from the data (an electricity consumption of 0 is
very common, hence removing 0’s would make the winsorization even more tolerant
towards outliers), the winsorization bounds seem too strict. This again confirms
the huge volatility in electricity consumption within a household. In this case, only

Figure 4.6: Winsorization method according to 6 ∗ IQR rule, for household 29.

1.928% of the data was considered an outlier, but from visual observation of the
resulting data it can be concluded that the winsorization does not have the desired
effect. It seems the winsorization method wrongfully categorized (and clipped)
outliers, making the resulting data set unrealistic. Figure 4.6 also triggers the idea
that outliers should not be determined on the complete data set but rather on a
small time window. For example, the electricity consumption in the summer (more
production by solar panels, thus more negative values) is different from that in the
winter. This makes an the characterization of an outlier dependent on a time window
too. This is also shown when the distribution of outliers is plotted over time, as
done for household 25 in Figure 4.7. In general, this seems to be the case for all
households in the GridFlex data set [10].

Figure 4.8 shows the results of applying the winsorization method when outliers are
determined based on a small time window of a month. Here, a different subset of
the data is categorized as outlier because the winsorization method now takes into
account the different characteristics of the data for different time periods. However,
after visual inspection some data points are still wrongfully categorized as outlier and
some outliers are not categorized as such. Therefore, we chose to let the forecasting

4.3 Data Cleaning 43

2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01 2020-04

0

200

400

600

Date (year-month)

N
um

be
r

of
ou

tl
ie

rs

Figure 4.7: Number of outliers over time for household 25, grouped by day.

Figure 4.8: Winsorization method according to 6 ∗ IQR rule based on the previous month,
for household 29.

model handle outliers automatically by adjusting the learning rate, as described in
Section 5.4.2.

4.4 Feature Engineering

To increase the performance of the predictions, the proposed forecasting model
can use different types of information. Section 2.2.3 provides an overview of
different exogenous variables that could be used as input variables. Although human
information and building information have a significant influence on the electricity
consumption of a household [28], the proposed forecasting model will only use
weather data, (historic) electricity data and time data as input. Since the forecasting
model should work autonomously (as discussed in Section 1.2), no extra (human or
building) information is requested from the resident. Manually collecting data by
means of a questionnaire or manually communicating changes about appliances and
household occupants for every house, would also be very impractical. Additionally,
storing such privacy-sensitive data introduces new risks. Even if this information
could be collected automatically and stored locally in a HEMS, most human and

44 Chapter 4 Model Input

building information is redundant to the proposed forecasting model because it
is (relatively) static data and a forecasting model can learn (or adapt to) static
information using electricity consumption data [40], [41]. Thus, the proposed
forecasting model only uses the (historic) electricity consumption of the household
(as that is what the model is also trying to predict) and publicly available information
such as weather and time as input.

4.4.1 Weather Data Correlation Analysis

The KNMI (‘Koninklijk Nederlands Meteorologisch Instituut’) is a scientific institute
of the Dutch government specialized in meteorology, climate science, and seismology.
The KNMI provides access to weather information on their open data API end point
[73] and via downloadable data sets [74]. The KNMI has an extensive observation
network of automatic weather stations in the Netherlands, including 48 automatic
weather stations that are at most 30 kilometers apart. The automatic weather
stations perform synoptic observations, meaning that observations are made at the
same time and in the same way all over the world [75]. For this thesis, seven weather
data sets were acquired from the KNMI: weather and air pressure, soil temperatures,
precipitation data, sunshine duration and radiation, humidity and temperature, wind
data, and cloud data. These data sets contain the measured weather data for the
time period 2018-08-01 00:10:00+00:00 to 2020-09-01 00:00:00+00:00, which is
the same time period in which the electricity consumption data of the GridFlex data
set [10] was measured. All houses from the GridFlex data set are located in Heeten
[10] and the weather station closest to Heeten is located in Heino. However, since
this weather station is not able to measure all variables (from all seven selected data
sets), a different (closest possible) weather station was selected in those cases. Each
data set, including the weather station where its data was measured, its variables,
and their descriptions and units are listed in Table 4.2.

The weather data from these data sets has a ten minute granularity. The weather
data of the KNMI [74] needs to be matched with the electricity consumption data of
the households in the GridFlex data set [10], which has a 15 minute granularity after
the resampling choice made in Section 4.3.4. Table 4.3 shows that the energy data is
comprised of a mean over 15 minutes, each 15 minute interval and that the weather
data is a single measurement each tenth minute. A drawback of this format is that
the weather data at a ten minute frequency does not correspond one-to-one with
the energy data at a 15 minute frequency. For example, in some 15 minute intervals
(e.g. interval 30-44) two weather data points exist, while in other intervals only one
weather data point exists. A possible approach would be to upsample the weather
data to a one minute frequency using linear interpolation, and then a downsample
using a mean to the 15 minute frequency. However, this is not allowed because the

4.4 Feature Engineering 45

Data Set Location Variable Description Unit
Weather and air
pressure

Deelen
waarneemterrein

P_NAP_MSL_10 air pressure converted to msl or nap 10’ hP a
P_STN_LEVEL_10 air pressure converted to altitude hP a
P_SENSOR_10 air pressure sensor height hP a
VV_10 visibility average m
WW_IND_CURR_10 weather indicator past weather code
WW_IND_PAST_10_10 weather indicator past weather previous 10’ code
WW_CURR_10 weather code present weather sensor code
WW_PAST_10 weather code previous 10’ code
AH_10 visibility brightness background Candela
MOR_10 visbility meteorological daysight m

Soil
temperatures Marknesse T_DRYB_MIN5CM_10 soil temperature at -0.05 m ◦C

T_DRYB_MIN10CM_10 soil temperature at -0.10 m ◦C
T_DRYB_MIN20CM_10 soil temperature at -0.20 m ◦C
T_DRYB_MIN50CM_10 soil temperature at -0.50 m ◦C
T_DRYB_MIN100CM_10 soil temperature at -1.00 m ◦C

Cloud data Deelen locatie A H_LAYER_10 cloud height first layer of vertical visibility m
H1_LAYER_10 cloud height first layer (ceilometer) m
H2_LAYER_10 cloud height second layer (ceilometer) m
H3_LAYER_10 cloud height third layer (ceilometer) m
H_CEILOM_10 cloud height first layer m
H1_CEILOM_10 cloud height first layer (ceilometer) m
H2_CEILOM_10 cloud height second layer (ceilometer) m
H3_CEILOM_10 cloud height third layer (ceilometer) m
N_LAYER_10 clouds total degree of cover (ceilometer) octa
N1_LAYER_10 clouds degree of cover first layer (ceilometer) octa
N2_LAYER_10 clouds degree of cover second layer (ceilometer) octa
N3_LAYER_10 clouds degree of cover third layer (ceilometer) octa
N_CEILOM_10 clouds total degree of cover (ceilometer) octa
N1_CEILOM_10 clouds degree of cover first layer (ceilometer) octa
N2_CEILOM_10 clouds degree of cover second layer (ceilometer) octa
N3_CEILOM_10 clouds degree of cover third layer (ceilometer) octa
NH_CEILOM_10 clouds degree of cover low and middle layer octa

Precipitation
data Heino DR_PWS_10 precipitation duration present weather sensor s

DR_REGENM_10 precipitation duration electric rain gauge s
WW_COR_10 weather corr. code present weather sensor code
RI_PWS_10 precipiation intensity present weather sensor mm/h
RI_REGENM_10 precipiation intensity electric rain gauge mm/h

Sunshine
duration and
radiation

Heino Q_GLOB_10 radiation global average W/m2

QN_GLOB_10 radiation global minimum W/m2

QX_GLOB_10 radiation global maximum W/m2

SQ_10 sunshine duration derived from radiation min
Humidity and
temperature Heino U_BOOL_10 humidity air code boolean code

T_DRYB_10 temperature air ◦C
TN_10CM_PAST_6H_10 temperature air minimum 0.1 m ◦C
T_DEWP_10 temperature air converted to dew point ◦C
T_DEWP_SEA_10 temperature air converted to dew point sea ◦C
T_DRYB_SEA_10 temperature air height oil rig ◦C
TN_DRYB_10 temperature air minimum ◦C
T_WETB_10 temperature air converted to wet bulb ◦C
TX_DRYB_10 temperature air maximum ◦C
U_10 humidity air relative %
U_SEA_10 humidity air relative sea %

Wind data Heino FF_10M_10 wind speed average sea converted. 10m land height sensor m/s
DD_10 wind direction average height sensor degrees
DDN_10 wind direction minimum average height sensor degrees
DD_STD_10 wind direction standard deviation height sensor degrees
DDX_10 wind direction maximum average height sensor degrees
FF_SENSOR_10 wind speed average height sensor m/s
FF_10M_STD_10 wind speed standard deviation converted to 10m m/s
FX_10M_10 wind speed actual maximum sea converted. 10m land height sensor m/s
FX_10M_MD_10 wind speed sea : actual maximum land : marked discontinuity maximum m/s
FX_SENSOR_10 wind speed actual maximum height sensor m/s
FX_SENSOR_MD_10 wind speed aviation maximum height sensor m/s
SQUALL_10 squall indicator boolean

Table 4.2: Weather Variable descriptions from seven data sets of the KNMI [74]

Minutes 0 - 14 15 - 29 30 - 44 45 - 59 60 - 74 ...
Energy data avg(0-14) avg(15-29) avg(30-44) avg(45-59) avg(60-74) ...
Weather data 0, 10 20 30, 40 50 60, 70 ...

Table 4.3: Minutes at which the energy data of the GridFlex data set [10] and weather data
of KNMI [74] are sampled.

interpolated values would then carry information of a measurement that is done
in the future, and an information leakage from the future into the past must be
prevented. A fair approach would be to map the weather data to the energy data, by
taking the average over both points (e.g. average over weather data at minute 30
and minute 40) in case two weather data points exist in an interval (e.g. the interval

46 Chapter 4 Model Input

30-44), and simply take the corresponding single weather data point (e.g. weather
data at minute 50) in case one weather data point exists in an interval (e.g. interval
45-59).

Figure 4.9 shows the results of a correlation analysis including the correlation
of each weather variable with the total electricity consumption (TOTAL_KW) of
Household 8, 26, 28, 29, 51, and 52, to determine the relevance of the weather
variable for predicting household electricity consumption and to decide which input
variables the forecasting model uses. Each subfigure of Figure 4.9 corresponds
to a weather data set. Table 4.2 describes the variable names on the x-axes of
each subfigure in more detail. The correlation between the weather variables and
the electricity consumption differs per household. Specifically, weather variables
correlate more with the household electricity consumption, if the house has solar
panels (see Table 1.1). This suggests that the weather mostly has an effect on the
electricity yield of solar panels, but barely on electricity import alone. Since many
houses have solar panels, and this number is expected to rise in the Netherlands
[6], [7], we decided that the proposed forecasting model will use some weather
variables as inputs. However, some weather variables are not used as input to the
forecasting model, because they have a small (either positive or negative) correlation
with the total electricity consumption of a household. Furthermore, they might be
inter-correlated (dependent) and including such inter-correlated variables would
be redundant and only increases the complexity of the forecasting model. Table 4.2
displays weather variables that were selected as input to the proposed forecasting
model, coloured in light cyan. All other weather variables have been omitted.

4.4.2 Historic Data Correlation Analysis

Historical household electricity consumption is often considered to be indicative for
the household electricity consumption in the future (see Section 2.2.1), because
appliances in a house do not change often and occupants use many devices in a
repetitive manner. These cause repeating patterns at specific time intervals in the
data. Therefore, one of the characteristics of electricity consumption data is that
there exists seasonality (see Section 2.2.1). However, it is not always clear at which
time intervals there is seasonality. For example, one could take into account the
electricity consumption at exactly the same time on the previous day. However,
repetitive behaviour may also occur over longer time periods, such as the seasons of
the year. In the summer there is more solar production than in the winter, causing
the total electricity consumption of households with solar panels to decrease during
summer. Some types of seasonal behaviour affect large groups of households (e.g.
all households with solar panels) and some affect only single households (e.g. an
occupant with its individual week schedule). This section looks into three different

4.4 Feature Engineering 47

P_
N

A
P_

M
SL

_1
0

P_
ST

N
_L

EV
EL

_1
0

P_
SE

N
SO

R
_1

0

V
V

_1
0

W
W

_I
N

D
_C

U
R

R
_1

0

W
W

_I
N

D
_P

A
ST

_1
0_

10

W
W

_C
U

R
R

_1
0

W
W

_P
A

ST
_1

0

A
H

_1
0

M
O

R
_1

0

−1

−0.5

0

0.5

1

weather and air pressure variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

T_
D

R Y
B

_M
IN

5C
M

_1
0

T_
D

RY
B

_M
IN

10
C

M
_1

0

T_
D

RY
B

_M
IN

20
C

M
_1

0

T_
D

RY
B

_M
IN

50
C

M
_1

0

T_
D

RY
B

_M
IN

10
0C

M
_1

0

−1

−0.5

0

0.5

1

soil temperatures variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

D
R

_P
W

S_
10

D
R

_R
EG

EN
M

_1
0

W
W

_C
O

R
_1

0

R
I_

PW
S_

10

R
I_

R
EG

EN
M

_1
0

−1

−0.5

0

0.5

1

precipitation data variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

Q
_G

LO
B

_1
0

Q
N

_G
LO

B
_1

0

Q
X

_G
LO

B
_1

0

SQ
_1

0

−1

−0.5

0

0.5

1

sunshine duration and radiation variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

U
_B

O
O

L_
10

T_
D

RY
B

_1
0

TN
_1

0C
M

_P
A

ST
_6

H
_1

0

T_
D

EW
P_

10

T_
D

EW
P_

SE
A

_1
0

T_
D

RY
B

_S
EA

_1
0

TN
_D

RY
B

_1
0

T_
W

ET
B

_1
0

TX
_D

R Y
B

_1
0

U
_1

0

U
_S

EA
_1

0

−1

−0.5

0

0.5

1

humidity and temperature variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

FF
_1

0M
_1

0

D
D

_1
0

D
D

N
_1

0

D
D

_S
TD

_1
0

D
D

X
_1

0

FF
_S

EN
SO

R
_1

0

FF
_1

0M
_S

TD
_1

0

FX
_1

0M
_1

0

FX
_1

0M
_M

D
_1

0

FX
_S

EN
SO

R
_1

0

FX
_S

EN
SO

R
_M

D
_1

0

SQ
U

A
LL

_1
0

−1

−0.5

0

0.5

1

wind data variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

H
_L

AY
ER

_1
0

H
1_

LA
YE

R
_1

0

H
2_

LA
YE

R
_1

0

H
3_

LA
YE

R
_1

0

H
_C

EI
LO

M
_1

0

H
1_

C
EI

LO
M

_1
0

H
2_

C
EI

LO
M

_1
0

H
3_

C
EI

LO
M

_1
0

N
_L

AY
ER

_1
0

N
1_

LA
YE

R
_1

0

N
2_

LA
YE

R
_1

0

N
3_

LA
YE

R
_1

0

N
_C

EI
LO

M
_1

0

N
1_

C
EI

LO
M

_1
0

N
2_

C
EI

LO
M

_1
0

N
3_

C
EI

LO
M

_1
0

N
H

_C
EI

LO
M

_1
0

−1

−0.5

0

0.5

1

cloud data variables

co
rr

el
at

io
n

co
ef

fic
ie

nt

House 8 House 26
House 28 House 29
House 51 House 52

Figure 4.9: Weather Correlations

48 Chapter 4 Model Input

types of variables that capture historic electricity consumption that the proposed
forecasting model can use as input: lag variables, window variables, and trend
variables.

4.4.2.1 Lag Variables

When creating a forecasting model, not only the current electricity consumption can
be used as input, but also the electricity consumption from the past. However, not all
historic electricity consumption may be equally useful for predicting the electricity
consumption. In order to take historic electricity consumption into account, lag
variables can be used. A lag variable is an input variable that has the value of
a previous time interval. For example, a 45 minute lag variable is the electricity
consumption of 45 minutes ago. With multiple different lag variables as input to the
forecasting model, different parts of the historic electricity consumption can be taken
into account when making a prediction. However, the forecasting model would
become very large if all lags would be used as input to the forecasting model. Hence,
a choice has to be made what parts of the historic electricity consumption should be
used as input to the proposed forecasting model. Plotting the correlation between the
electricity consumption now and the electricity consumption at a specific lag helps
to make this choice. Therefore, Figure 4.10 shows the autocorrelation of the average
household (average over all houses of the GridFlex data set [10]) for different
periods of time. The first hour is shown in the top left graph of Figure 4.10. The
first (approximately) 20 lags have a correlation that decreases almost exponentially.
After that, the decrease takes on a more linear shape. This suggests that the lags of
less than 20 minutes are the most important for predicting the current electricity
consumption. A correlation peak occurs each past day at exactly the same time,
in the top right graph. This suggests that the electricity consumption at exactly
the same time a few days ago may be useful for predicting the current electricity
consumption. Additionally, the correlation with the electricity consumption exactly
one day ago is higher than the correlation with the electricity consumption half a
day ago, implying that the electricity consumption at a more recent moment is not
generally more indicative of the current electricity consumption. These findings are
in line with those reviewed by Hippert et al. [19]. Additionally, Figure 4.10 shows
periods of one month and three months in the graphs on the middle row. It shows
a clear declining trend. The bottom left graph of Figure 4.10 clearly shows yearly
seasonality, represented by correlations that are much higher at the same time of
year than those at other periods of the year. The bottom right graph of Figure 4.10
shows that also a declining trend can be observed over the years.

Figure 4.11 focuses on the period of a month. While one may expect to observe
seasonality for a day of the week, this is hard to see due to the daily seasonality. When
plotting an envelope over the peaks of the graph, daily seasonality can be disregarded.

4.4 Feature Engineering 49

0 20 40 60

0.8

0.9

1

lags (minutes ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

0 1 2 3 4 5 6 7

0

0.5

1

lags (days ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

0 5 10 15 20 25 30

0

0.5

1

lags (days ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

0 1 2 3

0

0.5

1

lags (months ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

0 1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

lags (months ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

0 1 2

−0.5

0

0.5

1

lags (years ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

Figure 4.10: Autocorrelation of the electricity consumption of the average house (average
over all houses from the Gridflex data set [10]) for different lags. Each graph
zooms in on a different period of time (one hour, one week, one month, three
months, one year, two years, respectively)

The right graph of Figure 4.11 makes it easier to observe weekly seasonality as the
envelope is plotted separately. Although really small local correlation peaks appear
for each seventh day, they are insignificant compared to peaks of daily seasonality.
This might be due to the use of the average household (average over all houses
from the Gridflex data set [10]) for this correlation analysis. As discussed above,
weekly repetitive behaviour might be very personal and thus different for each house.
Using the average household may mask weekly seasonality that exists for specific
households.

50 Chapter 4 Model Input

0 5 10 15 20 25 30

0

0.5

1

lags (days ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Autocorrelation

Peaks Envelope

Valleys Envelope

0 5 10 15 20 25 30

0.6

0.8

1

lags (days ago)

co
rr

el
at

io
n

co
ef

fic
ie

nt

Peaks Envelope

Figure 4.11: Autocorrelation of the electricity consumption of the average house (average
over all houses from the Gridflex data set [10]) for different lags in a period
of a month. The blue and green lines display the peak and valley (resp.)
envelopes. The blue envelope is shown separately in the graph on the right.

It is important to note that all graphs in Figure 4.10 and 4.11 display correlations
of the electricity consumption at a specific lag with the electricity consumption at
some time t. However, we are interested in the correlation between the lag and
the predicted electricity consumption at some time t + h. To find out what lags are
relevant for the prediction of the electricity consumption at time t + h, the plots of
Figure 4.10 could be “shifted” to find out what lags have the highest correlation
with the electricity consumption at time t + h. In practice, a prediction is a window
in the future that consists of multiple values (not a single value). For example, a
prediction for the upcoming day consists of 96 values/points when the data has 15
minute granularity: t + 1, t + 2, ..., t + 96. For each of those values, different lags will
be relevant. Figure 4.12 shows an example of how the plots of Figure 4.10 could
be “shifted” to find out what lags have the highest correlation with the electricity
consumption at time t + h. For h = 96, the current electricity consumption at time
t has the highest correlation, at time t + 48, the lag at t − 48 is the highest, and
t + 24, the lag at time t− 72 has the highest correlation. Thus, there are multiple
relevant lags (96 for each past day) for a prediction window. Nine lag variables

t − 96 t − 72 t − 48 t − 24 t t + 24 t + 48 t + 72 t + 96

lags

au
to

co
rr

el
at

io
n

Prediction of t + 96 Prediction of t + 48 Prediction of t + 24

Figure 4.12: Lag relevance for prediction. “Shifting” the autocorrelation plot for each
prediction.

4.4 Feature Engineering 51

are selected (covering the last two hours) as input for the proposed model and
presented in Table 4.4, because the autocorrelations of the lags of the last two hours
are significantly higher than the autocorrelations of later lags. Together, these lags
capture only the recent historic (not more than two hours ago) energy consumption.
The window variables are used to capture older energy consumption.

Lag Period
0 current energy consumption
1 energy consumption 15 minutes ago
2 energy consumption 30 minutes ago
3 energy consumption 45 minutes ago
4 energy consumption 60 minutes ago
5 energy consumption 75 minutes ago
6 energy consumption 90 minutes ago
7 energy consumption 105 minutes ago
8 energy consumption 120 minutes ago

Table 4.4: Lag variables

4.4.2.2 Window Variables

When purely using lag variables to capture seasonality and historic electricity con-
sumption, many input variables may be needed, especially when predicting a window
of values in the future. A new set of lag variables is needed then for each historic
electricity consumption value or seasonality that may be relevant for the prediction.
Furthermore, one lag may have an exceptional value (i.e. is an outlier) so multiple
lags are needed. Each of these window variables needs to be calculated and serves
as extra input to the forecasting model, making the model more complex. To address
this, window variables [76] can be used. Window variables are a statistic over
multiple lags. In other words, they calculate a value over a window of past electricity
consumption values. For example, a window variable may be the standard deviation
of electricity consumption over all electricity consumption values in the past three
hours. Another example of a window variable is the average electricity consumption
value of all Mondays at exactly the same time. The chosen window variables are
listed in Table 4.5. In total, there are 203 window variables.

Count Statistic over Covering a period of Window size weighted
1 mean all intervals last three hours 12 by correlations of Fig 4.10
1 st.dev. all intervals last three hours 12 by correlations of Fig 4.10
1 mean all intervals last three hours 12 no
1 st.dev. all intervals last three hours 12 no
1 mean all intervals last day 96 by correlations of Fig 4.10
1 st.dev. all intervals last day 96 by correlations of Fig 4.10
1 mean all intervals last day 96 no
1 st.dev. all intervals last day 96 no
1 mean all days (at the exact same 15-minute interval of the day) last week 7 by correlations of Fig 4.10
1 mean all days (at the exact same 15-minute interval of the day) last week 7 no
1 mean all seventh days (at the exact same 15-minute interval of the day) last month 4 no

96 mean ith unique 15-minute interval of the day last month 30 no
96 mean ith unique 15-minute interval of the day last week 7 no

Table 4.5: Window variables used to incorporate historic total electricity consumption

52 Chapter 4 Model Input

4.4.2.3 Trend Variables

The trend or evolution of the total electricity consumption may be captured using
the first and second derivatives over several intervals, as features. To numerically
approximate the derivatives, they were calculated using a finite backward difference
quotient. An approximation of the first derivative was calculated using

x′
i = xi − xi−p

p
(4.1)

and an approximation of the second derivative was calculated using

x′′
i = xi − 2xi−p + xi−2p

p2 . (4.2)

Here, p indicates the period over which the finite backward difference quotients were
calculated. The values p ∈ [1, 2, 3, 4, 96, 7× 96, 30× 96] were taken to represent the
derivatives over the last hour (1-4), exactly the last day (96), the last week (7×96),
and the last month (30×96). Table 4.6 also presents these variables.

Variable Period p Trend over Equation
first derivative 1 last 15-minute interval (4.1)

second derivative 1 last 15-minute interval (4.2)
first derivative 2 last half hour (4.1)

second derivative 2 last half hour (4.2)
first derivative 3 last three 15-minute intervals (4.1)

second derivative 3 last three 15-minute intervals (4.2)
first derivative 4 last hour (4.1)

second derivative 4 last hour (4.2)
first derivative 96 last day (4.1)

second derivative 96 last day (4.2)
first derivative 7 × 96 last week (4.1)

second derivative 7 × 96 last week (4.2)
first derivative 30 × 96 last month (4.1)

second derivative 30 × 96 last month (4.2)

Table 4.6: Trend variables

4.4.3 Time Data

To explicitly incorporate time information into the prediction model, a set of time
and holiday variables is used. These variables are very simple and are presented
in Table 4.7. Time variables include the hour of the day, day of the week, month,
quarter, and year, whether a day is a work- or weekend-day, public holiday, and
public break. Note that all of the public holidays of Table 4.7 are official Dutch
holidays, except Memorial Day, Sinterklaas, and New Year’s Eve. The dates of some
of the public holidays may depend on the year. For example, the dates of Good Friday,
Easter Sunday, Easter Monday, Ascension Day, Whit Sunday, and Whit Monday differ
per year. Public holidays may be useful, because people spend time (and thus
electricity) differently on a holiday than on any other day. Public vacation or breaks
are based on Dutch nation school break periods, which differ per year and per region
of the country (north, middle, south). The break periods in the table are the union

4.4 Feature Engineering 53

Description Value Meaning
Hour 0-23 corresponds to the hour of the day

Day of week 0-6 0=Monday, ..., 6=Sunday
Month 1-12 1=January, ..., 12=December
Quarter 1-4 corresponds to the quarter of the year

Year e.g. 2019 simply the year
Weekend day 0-1 Binary 1 if Saturday or Sunday, 0 otherwise

Work day 0-1 Binary 0 if Saturday or Sunday, 1 otherwise
Public Holiday 0-1. Binary 1 if date is New Year’s Day, Good Friday, Easter Sunday,

Easter Monday, King’s Day, Memorial Day, Liberation
Day, Ascension Day, Whit Sunday, Whit Monday, Sin-
terklaas, Christmas Day, Boxing Day, or New Year’s Eve.
0 otherwise.

Public Vacation 0-1. Binary 1 if date in either spring break, may break, summer
break, autumn break, Christmas break. 0 otherwise.

Table 4.7: Time variables

of all regions for a particular year, to make the forecasting model more independent
of the geographical location of a household. Many Dutch citizens plan vacations
(away from home) or are at home during these periods. Therefore, electricity may
be used differently during these periods compared to regular periods.

4.4.4 Overview Of Forecasting Model Input Variables

Section 4.4.1, Section 4.4.2, and Section 4.4.3 discuss weather, historic electricity
consumption, and time variables that may be used as input to the forecasting model.
This section provides a small overview of all the input variables for the proposed
forecasting model. Table 4.2 presents the 16 weather variables (coloured in light
cyan) that are chosen as input for the forecasting model, based on the analysis in
Section 4.4.1. In Section 4.4.2, Table 4.4 presents nine lag variables that try to
capture recent historic energy consumption, Table 4.5 presents 203 window variables
that try to capture the seasonality and Table 4.6 presents 14 trend variables that try
to capture the evolution of the energy consumption over time. Together, they form
the 226 electricity (lag & window & trend) variables that are chosen as input for
the forecasting model. Table 4.7 presents the nine time variables that are chosen as
input for the forecasting model. Thus, there are 16 + 226 + 9 = 251 (weather, energy,
time) input variables in total that the proposed forecasting model will use. Note
that the weather and energy variables are either measured or calculated values, but
the time variables are either binary of integer values. Since the forecasting model is
based on ANNs, a new input neuron is created for the input layer of the ANN (see
Chapter 5) for each variable. Figure 4.13 presents this idea.{

{
16 weather variables

Input
Layer

{226 energy variables {9 time variables

Figure 4.13: ANN input layer

54 Chapter 4 Model Input

5Prediction Model Structure

Chapter Objective: This chapter explains the proposed forecasting model.

Chapter Contents

• Introduction (5.1)

• Rolling Horizon (5.2)

• Forecasting Model Architecture (5.3)

• ANN Design Choices (5.4)

• Predictions For Profile Steering (5.5)

5.1 Introduction

Recall that the objective of this research is to develop an online “rolling horizon”
forecasting model that is continuously being trained on the smart meter data of
a single household and can therefore adapt to the load profile behaviour of that
household and to structural changes in electricity consumption over time. Hence,
a single untrained basic forecasting model is proposed that can adapt to a specific
household when it is trained on the data of that household. In order to predict the
energy consumption of multiple households, a copy of the untrained model is applied
to each single household. After a reasonable time frame, each copy of the forecasting
model is supposed to “learn” how to predict the load profile of the household it has
been training on, and reach a reasonable prediction accuracy. After training for some
time, each model has adapted to its corresponding household and in the end, each
model makes very different predictions (based on the household), meaning that the
models are very different for the different households even though they started as
copies from the same basic untrained model. Note that this is different from one
single pre-trained machine learning model that is the same for every household.

This chapter explains how exactly the forecasting model learns and makes predictions
over time. So far throughout this thesis, the forecasting model is considered a black
box with an input (Chapter 4) and an output. Section 5.2 explains how the rolling

55

horizon is implemented, while still considering the forecasting model as a black-
box. Using discrete time-steps, it is explained how the forecasting model makes
predictions in time and plans training updates to be able to adapt to the load
profile of a specific house over time. Section 5.3 breaks away from this black-box
paradigm and explains what is inside the black-box: an ANN architecture. In this
section, different ANN architectures used to make predictions in the forecasting
model are illustrated and compared. Also a connection is made with the black-box
paradigm used in Section 5.2 to give an understanding of how the forecasts made
with the ANN architecture fit together in the discrete time-step rolling horizon. Then,
Section 5.4 provides an overview and analysis of the design and implementation
choices regarding the ANN architectures discussed in Section 5.3. Finally, Section 5.5
explains how the predictions of the proposed forecasting model can be used as input
for a DSM algorithm in two different scenarios. Both scenarios provide the option
to use only initial predictions or to dynamically update the predictions that are
provided to the DSM algorithm, so that the algorithm can take this into account
possibly adapt its schedule.

5.2 Rolling Horizon

The proposed forecasting model can be considered a black box. Using the features
described in Section 4.4, the forecasting model has an input of in total 251 values.
The predictions that are most commonly used in practice as input for DSM techniques,
can be used to determine the output of the forecasting model. For many DSM
applications on the distribution grid, a forecast horizon of a day is used with a
granularity of 15 minutes (e.g. [25], [33]). Therefore, the forecasting model needs
to make 96 load predictions (there are 96 15-minute intervals in a day) in every
forecast. This forecast window consisting of 96 values corresponds to the next day
and is also called the predicted load profile of the next day.

To formalize the above, let MODEL denote the forecasting model. Let e⃗ be the list of
measured load values of the smart meter of a household from the GridFlex data set
[10] over the approximately two years of data. Let the function len denote the length
of a list. Then, len(e⃗)= 73144, corresponding to the 73144 15-minute intervals in
e⃗. Every (integer) time step t, the MODEL has to make a prediction and possibly
train based on a prediction that was done in the past. Each time step t corresponds
to a 15-minute interval of the data. The list of input values i⃗t is recalculated each
time step t as described in Section 4.4, using a function calculate_input. One of the
functions of the MODEL is predict, which takes input values i⃗t as input and produces
a prediction p⃗t. p⃗t is the predicted load profile of the upcoming day, consisting of
96 values. When a prediction p⃗t is made, it is appended to a list of predicted load

56 Chapter 5 Prediction Model Structure

profiles predictions using the function append. For example, if a prediction p⃗4 was
made at t = 4, then p⃗4 contains the predicted values corresponding to t = 5 until
t = 100 and predictions is appended with p⃗4.

96191t + h ...

...

98 97

Queue: planning

MODEL trainpredict

(a) Training at time t = 96 (#TRAINING in Algo-
rithm 1)

192 191 190 ...

...

97

MODEL trainpredict

Queue: planning

t + h

(b) Prediction at time t = 96 (#PREDICTION in
Algorithm 1)

Figure 5.1: At time t = 96, the MODEL is first trained (shown in 5.1a) using the scheduled
prediction in the queue planning and then makes a new prediction which is
added to the queue planning (shown in 5.1b)

The second function of MODEL is train and trains the model. It takes as input two
arguments: a prediction p⃗t and a desired output d⃗t. d⃗t is a subsection of the actual
load e⃗. Continuing the example, d⃗4 = [e5, ..., e100] corresponds to t = 5 until t = 100.
In an online setting, the model cannot be trained on information from the future. To
prevent information leakage from the future, the MODEL may not be trained before
it is allowed. When a prediction is made at t, a training update of the MODEL is
scheduled at t+h, where the constant h = 96 corresponds to the forecasting horizon.
For example, when a prediction is made at time t, the prediction can be validated
only at time t + h because only after h time steps the actual electricity consumption
d⃗t is known. Training earlier (e.g. already at time t) would take information (d⃗t)
from the future (at t + h) to update the MODEL, and this would not be possible in an
online scenario. The scheduling is done using a queue, called planning. The queue
planning contains tuples with the time of the scheduled training update t + h and
the prediction p⃗t. Every time a training is completed, the corresponding scheduled
tuple is removed from planning using pop(0). Scheduling a training update using
the queue planning is illustrated in Figure 5.1.

The algorithm is displayed in Algorithm 1. Note that Algorithm 1 also handles NaN
values. Even though most of these are already imputed, some NaN values may still
remain as described in Section 4.3.2. In an online scenario, the forecasting model

5.2 Rolling Horizon 57

should also be able to handle these issues. Note that predictions is a list containing

Algorithm 1 Rolling Horizon

Require: MODEL
Require: e⃗

predictions← []
planning← []
for t← 0 to len(e⃗) do

INPUT
i⃗t ← calculate_input()

TRAINING
if len(planning) > 0 and t is planning[0][0] then

planning.pop(0)
d⃗t ← e⃗[t− h + 1 : t + 1]
if e⃗ is not NaN then

MODEL.train(planning[0][1], d⃗t)
end if

end if

PREDICTION
if i⃗t is not NaN then

p⃗t ← MODEL.predict(⃗it)
predictions.append(p⃗t)
planning.append((t + h, p⃗t))

else
p⃗t.append(NaN)

end if
end for
return predictions

sub-lists. The tth element (or sub-list) of predictions is a predicted load profile
p⃗t for the upcoming day, made at time t. The predicted load profile p⃗t contains
the predicted values corresponding to t + 1 until t + 96. Even though the forecast
window slides by only one time step t, a completely new load profile is predicted.
For example, the forecast window at p⃗0 corresponds to t = 1 until t = 96, and the
forecast window p⃗1 corresponds to t = 2 until t = 97. Hence, while the time window
to which the forecast window p⃗1 corresponds differs only by removing t = 1 and
adding t = 97 to the forecast window of p⃗0, its predictions for these time step may be
completely different. This example is illustrated in Figure 5.2. Here p⃗t corresponds
to the forecast window predicted at time t.

58 Chapter 5 Prediction Model Structure

t=0 t=1 ... t=96 t=97 t=98 t=99 t=100{
t=0 t=1 t=2 ... t=97 t=98 t=99 t=100{
t=0 t=1 t=2 t=3 ... t=98 t=99 t=100{

Figure 5.2: Rolling horizon

5.3 Forecasting Model Architecture

So far, the forecasting model is regarded as a black box. This section breaks away
from the black-box paradigm and describes what is inside this black box: the
architecture of the MODEL (see Section 5.2). The forecasting model could be
any model, but in in this work we chose to focus on ANNs (see Section 2.3 for
a motivation). Therefore, the train(p⃗t, d⃗t) function of the MODEL mentioned in
Section 5.2 uses the prediction p⃗t and target d⃗t to calculate the cost function and
update all weights and biases in the ANN using gradient descent, as described
in Section 2.4.2. The input layer of the ANN consists of i⃗t, where each element
corresponds to a single input neuron. Thus, the input layer has 251 input neurons. In
Section 2.4.3.2, three types of ANN architectures were classified: iterative forecasting
(one-step), multivariate forecasting (multi-step), and multi-model forecasting [19].
These three ANN architectures plus a fourth hybrid architecture, are implemented
and compared. In this section, their differences are discussed.

Multivariate forecasting (multi-step)
In this type of architecture, the output layer of the ANN consists of h = 96 output
neurons. Each neuron in the output layer corresponds to exactly one value of the
forecasting window p⃗t. Hence, only a single feed-forward pass (see Section 2.4.2)
is needed to get a prediction of the load profile for the upcoming day p⃗t. Then, p⃗t

forms the output to the function predict(⃗it) discussed in Section 5.2. To train the
MODEL using this architecture, train(p⃗t, d⃗t) is called once at time t + h. Each of the
components of the desired or actual load d⃗t correspond to a target value (denoted

5.3 Forecasting Model Architecture 59

by yj in Section 2.4.2) in the cost function, and are used to update the parameters
of the ANN. This type of architecture is shown in Figure 5.3.{{ {

Hidden layers

Input layer
251 neurons

Output layer
96 neurons

{
Figure 5.3: Multivariate forecasting (multi-step) ANN architecture

Iterative forecasting (one-step)
In this type of architecture, the output layer of the ANN consists of one single output
neuron. This neuron obtains a value after one feed-forward pass of the neural
network. This value is the first value (corresponding to t + 1) of the forecasting
window p⃗t. This first value (pt,1) is used to update the input i⃗t. In this update, the
energy variables are recalculated, but the variables relating to weather and time are
not recalculated (see Section 4.4.4 for an overview of weather, time, and energy
variables). The updated vector i⃗t is then used as input to a subsequent feed-forward
pass of the ANN. The output of this new feed-forward pass is the second value
(corresponding to t + 2) of the forecasting window p⃗t. This second value (pt,2) is
used to update the input for the next feed-forward pass. When continuing this
process, each output value iteratively forms the input for a new feed-forward pass.
Each iteration, only the energy variables are recalculated based on the value of the
output neuron in the previous iteration (calculation is described in Section 4.4.2).
The weather and time variables remain the same across all iterations. This process
is repeated iteratively until all h = 96 values (corresponding to t + 1, ..., t + h)
of the forecasting window p⃗t are determined. Again, p⃗t forms the output to the
function predict(⃗i). To train the MODEL using this architecture, the train function is
called h = 96 time successively in a row at time t + h, to learn from each iterative
feed-forward pass made by the network. This architecture is shown in Figure 5.4.

60 Chapter 5 Prediction Model Structure

{

{{

{
{
{

{

Hidden layers

Repeat h=96 times

22
6

en
er

gy
 v

ar
ia

bl
es

9
tim

e
va

ri
ab

le
s

16
 w

ea
th

er
 v

ar
ia

bl
es

Iteration 95

Iteration 2

Iteration 1

Iteration 96
Each iteration

corresponds to one
component of

Input layer
251 neurons

Output layer
1 neuron

Update the 226 energy
variables based on the

value of the output
neuron of the previous

iteration

Figure 5.4: Iterative forecasting (one-step) ANN architecture

Multi-model forecasting
In this type of architecture, a single ANN is used for each of the h = 96 values of
the forecasting window p⃗t. This means that there are h = 96 ANNs in total, one
corresponding to each of the t + 1, ..., t + h values. Each ANN has an input layer
of 251 neurons and an output layer of one single neuron. Hence, to calculate the
output window p⃗t which forms the output to the function predict(⃗it), each of the
h = 96 ANN will need to do a single feed-forward pass. To train the MODEL using
this architecture, the train function is called once for each ANN. Each train function
uses only (the corresponding) one component of the target vector d⃗t, to update the
parameters of the corresponding ANN. This architecture is shown in Figure 5.5.

Hybrid multi-model multivariate forecasting
In this type of architecture, a single ANN is used for each of the 24 hours in a day,
since the forecasting window p⃗t covers a period of a day. Each of the 24 ANN has a
multivariate architecture with an output layer consisting of four neurons (since there
exist four 15-minute intervals in an hour). Thus, this type of architecture combines
of multi-model forecasting and multivariate forecasting. In this architecture, the
first ANN predicts the first four 15-minute intervals t + 1, t + 2, t + 3, t + 4 of the
forecasting window p⃗t. The second ANN predicts the second four 15-minute intervals
t + 5, t + 6, t + 7, t + 8. Following this approach, all 24 ANNs together predict the
t + 1, ..., t + h values of the forecasting window p⃗t and form the output to predict.
This architecture is trained by calling the train function once for each ANN, where
the first four components of d⃗t are used to train the first ANN, the second four

5.3 Forecasting Model Architecture 61

{

{
{

Hidden layers

Output layer
1 neuron

Input layer
251 neurons

1: 2: 96:

{
Figure 5.5: Multi-model forecasting ANN architecture

components of d⃗ are used to train the second ANN, and so on. This architecture is
shown in Figure 5.6.

{
{

{

Hidden layers

Output layer
4 neurons

Input layer
251 neurons

1: 2: 24:{{ { {
Figure 5.6: Hybrid multi-model multivariate forecasting ANN architecture

62 Chapter 5 Prediction Model Structure

5.4 ANN Design Choices

5.4.1 Cross Validation

To evaluate a machine learning method, the data is commonly split randomly
between a test set and a training set. An example of this is k-fold cross-validation,
shown in Figure 5.7a. Here, the complete data set is first shuffled and then divided
into k subsets (where k is smaller than or equal to the total number of data points).
In the first iteration, one of the subsets (shaded gray in Figure 5.7a) is chosen to
serve as test set and the other subset together serve as training set. The next iteration,
the next subset is chosen as the test set. In total there are k iterations, and for each
iteration the test set is used to evaluate the performance of the machine learning
model. In the end, the performance of the machine learning model is evaluated as
the average performance over all iterations. However, when using this approach
with time series data, data points from the future might end up in the training set
and data points from the past into the test set. Then for the evaluation, the machine
learning method would use data from the future to predict the past which is not
allowed. For time series problems, the data can therefore not be randomly split.
Data points in the time series are not independent as there is a time ordering to the
data [76].

1

2

3

k

...

...

...

...

Complete data set, randomly suffled

Test data Training data {{{

(a) Normal k-fold cross validation

1

2

k

...

...

...

Complete data set

Test data Unused data

Time {{{Training data{

(b) k-fold cross validation with time ordering

Figure 5.7: k-fold cross validation

Instead, the data needs to be split by time for a time series problem. In other words,
the data is not shuffled, and the time ordering of the training set always precedes
the test set. The data that corresponds to the time after the test set, is not used for
that iteration. This is shown in Figure 5.7b. Finally, it is important to realise that
the forecasting model proposed in Section 1.2 is supposed to train indefinitely. The
forecasting model continuously trains and updates its predictions based on new data.
Therefore, the forecasting model is never “finished” with training. One could argue

5.4 ANN Design Choices 63

that the training and test set in this case are the same. However, the ideas of k-fold
cross validation with time ordering, shown in Figure 5.7b, can still be applied. To
evaluate the performances of the different architectures described in Section 5.3, k

is set equal to the number of data points. The test set consists of the next 96 time
data points, and the training data set consists of the previous month. Different from
what is shown in Figure 5.7b (this is called the “rolling forecast origin” technique
[77]), not all data from the start (t = 0) is used as a training set. Only data about
the previous month is used as input (this is called the “sliding window” technique
[77]). To evaluate the performance of the forecasting model, k = t iterations are
used, similar to a simulation of discrete time steps. In this way, the forecasting model
that is trained continuously can still be tested and evaluated over time.

5.4.2 Hyperparameter Choices

During the first period that the forecasting model is being applied, it will give
arbitrary predictions. The performance of the model is not good at this stage,
because the ANN(s) used by the forecasting model are still untrained. After training
for a few iterations, the model starts to perform better. In other words, after each
gradient descent step, weights and biases of the network are updated and a step is
taken towards a local minimum of the cost function used by the ANN. The learning
rate has an influence on the size of this step (see Section 2.4.2). Generally, when
choosing the learning rate too large, a local minimum may be approached really
quickly but there is a risk of overshooting it. When choosing the learning rate too
small, the risk of overshooting is much smaller, but a local minimum is approached
in really small steps and hence takes a long time. Since the forecasting model trains
continuously and indefinitely, it keeps trying to approach a local minimum after
every training step and never finishes trying to approach this minimum. Therefore,
the learning rate has an effect on the behaviour of the forecasting model.

In general, forecasting forecasting model is very fast at converging to a reasonable
error. Figure 5.8 shows the behaviour of the forecasting model in this startup stage
stage. The x-axis represents the time, and the y-axis the actual (black) or predicted
(coloured) load at that time. Note that the forecasting model starts training after
exactly one day. It cannot start earlier, because only after one day the predictions
of the first forecast window (spanning one day) can be validated (actual load
compared with predicted load). The learning rate has an effect on how fast the
model converges to a reasonable accuracy. Figure 5.8 shows the predictions of
the multivariate forecasting model trained with traditional gradient descent using
different learning rates. Choosing a relatively large learning rate (η = 0.1) causes
the forecasting model to quickly adjust its predictions to the actual load. In other
words, the model converges quickly to a reasonable accuracy and startup effects

64 Chapter 5 Prediction Model Structure

2018-08-01 2018-08-03 2018-08-06 2018-08-09 2018-08-12

−4

−3

−2

−1

0

1

2

3

4

5

Date

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Actual load η = 0.1
η = 0.01 η = 0.001

η = 0.0001 η = 0.00001

Figure 5.8: Start up effects for predictions with different learning rates (House 29)

are barely notable. When choosing a relatively small learning rate (η = 0.00001),
the forecasting model requires a lot of time to adjust its predictions to the actual
load and converges very slowly towards a reasonable accuracy. The startup effects
span a period of approximately half a year in this case (this is not completely shown
in Figure 5.8). Purely based on this analysis, a large learning rate seems more
beneficial as it decreases the startup adjustment time.

However, the learning rate also has an influence on the sensitivity of the forecasting
model towards feedback. The sensitivity of the forecasting model towards feedback
differs per learning rate. As explained above and in Section 2.4.2, the learning rate
has an effect on the training behaviour of the ANN underlying the forecasting model
and on the convergence (startup effects) of the forecasting model. The learning
rate also has an impact on the sensitivity of feedback. Recall that a large learning
rate implies taking large steps towards a minimum of the cost function. Making an
erroneous forecast thus results in a large cost. In order to improve, the ANN needs to
change its parameters to make better predictions in the future. With a large learning
rate, the large cost in combination with the large step size, results in a big change
of the parameters of the ANN. In other words, the ANN changes adapts its future

5.4 ANN Design Choices 65

predictions more based on the most recent single error. Thus, the model is more
sensitive towards errors or feedback.

2019-02-11 2019-02-14 2019-02-16 2019-02-18 2019-02-21

−2

−1

0

1

2

3

4

5

6

7

Date

To
ta

lP
ow

er
C

on
su

m
pt

io
n

(k
W

)

Actual load η = 0.1
η = 0.01 η = 0.001

η = 0.0001 η = 0.00001

Figure 5.9: Feedback sensitivity for predictions with different learning rates (House 29)

This is shown in Figure 5.9, where an arbitrary period of ten days is shown (between
2019-02-11 and 2019-02-21). The large learning rate (η = 0.1) in Figure 5.9 shows
that the prediction pattern resembles the actual load pattern almost exactly, but
shifted a day. This can be explained by the error that the model made a day ago
for which it tries to (over-)compensate the next day. The other extreme is when
a really small learning rate is chosen (η = 0.00001). In this case, the forecasting
model is less sensitive towards errors and therefore does not adapt its predictions a
lot. The result is a smooth line that seems to represent the average over all the load
values in a very large period. Choosing a learning rate somewhat in between these
two values (e.g. η = 0.001) the predictions to be very similar across different days
even though the days are very different from each other. The challenge is to find
the correct balance between a forecasting model that does not overcompensate for
individual errors (an individual observation may be an outlier, see Section 4.3.5) but
also not completely disregards errors. In other words, the challenge is to find the
appropriate sensitivity to feedback, or, the appropriate learning rate.

66 Chapter 5 Prediction Model Structure

Different from the traditional gradient descent optimization algorithm, the ANN(s)
used by the proposed forecasting model are trained by the adaptive moment estima-
tion optimization algorithm (Adam) [78], [79]. This optimizer is a combination of
root mean squared propagation (RMSProp) [80] with momentum [52], [81], but is
ultimately still based on the idea of gradient descent. When training an ANN using
standard gradient descent at time t = T , each parameter θ is updated using the
function

θT ← θT −1 − η∇CT . (5.1)

When training an ANN using Adam at time t = T , the weights and biases of the ANN,
represented by θ, are updated using the functions in Equations (5.2), (5.3), and (5.4).
Both Equation (5.2) and Equation (5.3) are forms of an exponential moving average
of earlier gradients, resulting in a training that takes into account previous errors.

T∑
t=0
∇Ct = µ

T −1∑
t=0
∇Ct + (1− µ)∇CT (5.2)

T∑
t=0
∇C2

t = β
T −1∑
t=0
∇C2

t + (1− β)∇C2
T (5.3)

θT ← θT −1 − η

∑T
t=0∇Ct√∑T
t=0∇C2

t

(5.4)

Adam is generally preferred over other algorithms (e.g. gradient descent (GD), GD
with momentum, NAG, AdaGrad, RMSProp) [78]–[81]. This optimizer introduces
two new hyper parameters: one for momentum (µ) and one for RMSprop (β).

The sigmoid function is used as activation function in all layers except for the last
(output) layer. The output layer has a linear activation, because the output should
be real value (even though the household electricity load typically ranges between
+3kW and -3kW, it could be any real value) and not a value between 0 and 1 (which
is the output of a sigmoid function).

Next to the optimizer and activation function, the weights of the connections are
not initialized as random variables from a standard normal distribution, but in a
way to prevent neuron saturation [52]. This is done by drawing the weights from a
normal distribution with a standard deviation of 1√

n
, where n equals the number

of neurons in the layer prior to the connection. This especially helps at dealing
with startup-effects and increases the learning speed. Since the forecasting model is
trained continuously, weights may become very large after a certain amount of time.
Generally, large weights are assumed to cause the function learned by a model to
become too complex. Hence, a regularization technique, called L2 regularization,

5.4 ANN Design Choices 67

is used. When using L2 regularization, a regularization term that penalizes large
weights is added to the cost function, see Equation (5.5).

C = Coriginal + λ

2
∑
w

w2 (5.5)

w ← w − η
∂C

∂w
= (1− ηλ)w − η

∂Coriginal

∂w
(5.6)

The result of L2 regularization is shown in the update rule in Equation (5.6), which is
essentially rescaling a weight before updating it. Therefore L2 regularization is also
called weight decay. It introduces a compromise between minimizing the original cost
function and finding small weights [52] (note that only weights and no biases are
regularized, hence the notation of w is used instead of θ). The compromise depends
on the regularization parameter λ. Weight decay is a regularization technique that
could reduce overfitting and is especially useful in the proposed forecasting model
that trains continuously (indefinitely), because in this case weights could saturate or
attain very large values.

Hyperparameters such as the learning rate (η), regularization parameter (λ), opti-
mization parameters (µ and β), the number of hidden layers in the ANN, and the
number of neurons in each hidden layer can be determined by empirical experimen-
tation (see Section 2.4.2.2). After testing ANN architectures with different numbers
of hidden layers and hidden neurons, ANN architectures with one or two hidden
layers and a small but decreasing (per layer) number of hidden neurons show the
lowest error. To select the other hyperparameters, three grid searches were done
evaluating different combinations of discrete sets of values for each hyperparameter,
shown in Table 5.1. The hyperparameters can range between the following values:
η ∈ R (but typically η ≤ 1), λ ∈ R, and 0 ≤ µ, β ≤ 1. The discrete set of values
chosen for each parameter in the first grid search were chosen with these constraints
in mind. In the second and third grid search, the values were chosen based on the
values with best performance in the previous grid search. Based on the grid searches,

Hyperparameter grid search 1 grid search 2 grid search 3
η [0.000001, 0.0001, 0.01, 1] [0.0001, 0.001, 0.01] [0.005, 0.009, 0.01, 0.05]
λ [0.001, 0.1, 10, 1000] [0.001, 0.01, 0.1, 10, 100] [5, 10, 50, 100]
µ [0, 0.1, 0.5, 0.9, 1] [0, 0.1, 0.5, 0.9] [0.3, 0.5, 0.8, 0.9]
β [0, 0.1, 0.5, 0.9, 1] [0.1, 0.5, 0.9] [0.5, 0.7, 0.9, 0.95]

Table 5.1: Discrete set of hyperparameter values that were evaluated exhaustively in each
of the three grid searches

a combination of hyperparameters was selected for each architecture discussed in
Section 5.3. For the forecasting model using the iterative and multivariate architec-
ture, the best performing combination is η = 0.005, λ = 50, µ = 0.5, β = 0.7. For
the forecasting model with the hybrid architecture, the best performing combination

68 Chapter 5 Prediction Model Structure

is η = 0.005, λ = 100, µ = 0.5, β = 0.7 and for the forecasting model with the mul-
timodel architecture the best performing combination is η = 0.01, λ = 10, µ = 0.9,
β = 0.9.

5.5 Predictions For Profile Steering

This section explains how the predictions of the proposed forecasting model are
used to dynamically update the input of a specific DSM technique: profile steering
[33] (discussed in Section 3.8). Section 5.5.1 discusses a theoretical neighbourhood
scenario with a single large neighbourhood battery to evaluate the impact of the
predictions on the effectiveness of the profile steering algorithm [33]. Section 5.5.2
discusses a more realistic neighbourhood scenario that can be simulated to evaluate
how the predictions of the proposed forecasting model impact the performance of
the asynchronous event-driven profile steering algorithm [25] when multiple EVs
start charging (e.g. arrive at home) at random times during the day.

5.5.1 Battery Scenario

This section explains a theoretical scenario that can be used to evaluate the impact of
using predictions of the proposed forecasting model as input for the profile steering
algorithm [33]. As Gerards et al. [33] explain, the profile steering algorithm can
be used on multiple levels in the grid hierarchy. For example, x⃗m (using notation
of Section 3.8.1) can represent the load profile of a device m that is used within a
household. However, this scenario considers a “neighbourhood” that consists of all
76 houses from the Grid Flex data set [10]. Therefore, x⃗m represents the base load
of a house m that is located in this neighbourhood. A house base load profile x⃗m

is not known beforehand and must be predicted. The proposed forecasting model
could be used to predict this profile. For a single household m, the prediction of
the base load profile x⃗m at time t is p⃗t (from Section 5.2), assuming that both have
the same number of intervals, e.g. 96 15-minute intervals. To use predictions of
the load of all houses, all houses have a local controller with its own copy of the
proposed forecasting model. After some time, each copy of the forecasting model
has trained and adapted to the load of its corresponding household. At some time
step t, the forecasting model of every household makes a prediction p⃗t (unique to
every household). For each house m ∈ {1, ..., M}, the prediction of its forecasting
model is denoted by x⃗m and communicated to a central controller. Then, the central
controller knows the aggregated predicted base load profile of all houses, denoted
by x⃗ =

∑M
m=1 x⃗m.

5.5 Predictions For Profile Steering 69

To prevent ambiguity about the results of the profile steering algorithm, a simple
scenario is considered. Analyzing a simple scenario gives a better idea of the
interaction between the predictions of the forecasting models and the optimization by
the profile steering algorithm. This simple scenario includes a single neighbourhood
battery that can provide flexibility on the local grid of the neighbourhood. When
the aggregated predicted load of all houses in the neighbourhood forms a large
peak, the battery could charge to shave this peak at neighbourhood level. When the
aggregated predicted load of all houses in the neighbourhood forms a deep valley,
the battery could discharge to fill the valley at neighbourhood level. The load profile
of this battery is represented by x⃗B. The total aggregated neighbourhood profile
(all houses plus battery) is then

∑M
m=1 x⃗m + x⃗B or x⃗ + x⃗B. When the capacity of

the battery is chosen too small, there is not enough flexibility to shave all peaks
and fill all valleys. It is then harder to evaluate the impact of predictions on the
performance of the profile steering algorithm, because part of a possible undesired
outcome of the profile steering algorithm can be attributed to flexibility constraints
of the battery. To evaluate the impact of purely the predictions on the performance
of the profile steering algorithm, the battery capacity is made ideal by making it
extremely (unrealistically) large. To concretely implement this, we set the capacity
to 1000kWh and use a maximal (dis)charge power of 500kW. The initial state of
charge (SoC) of the battery equals 50%. The resulting battery optimization problem
is min

x⃗B

√∑96
i=1 xi + xB,i subject to −500 ≤ xB,i ≤ 500, i = 1, ..., 96.

At the first time step t = k, each copy of the forecasting model makes a prediction
(p⃗k = [pk,1, ..., pk,96]) of the load x⃗m = [xm,1, ..., xm,96] of its corresponding household
m for m ∈ {1, ..., M}. After solving the battery optimization problem at this time
step using the profile steering algorithm, an optimal battery profile x⃗B is found,
given the predictions of the house loads. Then, as time progresses to time step
t = k + 1, the SoC of the battery is updated because the first interval of x⃗B at time
step t = k is now in the past and cannot be changed anymore. In other words, the
first interval of the scheduled battery load profile at the previous time step has been
executed. At time step t = k + 1, we arrive at a new situation. There are now two
options:

• The first option is that the predictions made in the beginning (p⃗k) are kept fixed
for the rest of the simulation. In this case, [pk,2, ..., pk,96, pk+1,96] is assigned to
x⃗m for house m at t = k + 1. This means that the initial prediction is kept fixed
and will not be updated, but the last component (pk+1,96) of p⃗k+1 is appended
to get a total of 96 intervals again.

• The second option is that predictions of the house base loads are updated.
In this case, a new prediction p⃗k+1 = [pk+1,1, ..., pk+1,96] is assigned to x⃗m for
house m at t = k + 1.

70 Chapter 5 Prediction Model Structure

Regardless of the chosen option at time step t = k + 1, the profile steering algorithm
is executed again based on the house base loads x⃗m for m ∈ {1, ..., M} to find the
optimal battery profile x⃗B. Time progresses to time step t = k + 2 and the SoC of
the battery is updated again. This process is an iterative process that runs until some
final time step t = T .

5.5.2 Realistic Neighbourhood Scenario

In contrast to Section 5.5.1, this section discusses a more complicated scenario
of a neighbourhood that can be simulated to evaluate how the predictions of the
proposed forecasting model impact the performance of the profile steering algorithm
in a more realistic scenario. In this scenario, the neighbourhood again consists of all
the 76 houses from the Grid Flex data set [10], but this time the scenario assumes
that (instead of a single large neighbourhood battery) 50% of the households own
an EV. This means that together, 38 EVs can provide flexibility to fill valleys of the
aggregated house base load. The minimum charging power of each EV is 0kW (no
V2G, see Section 3.2.2) and the maximum charging power is 7kW (see Section 3.2.1).
In reality, residents have EVs with different capacities, so this scenario models 15
EVs with a battery capacity of 20kWh, 10 EVs with a capacity of 40kWh, 10 EVs
with a capacity of 50kWh, and 3 EVs with a capacity of 70kWh. The initial SoC upon
arrival is random but always less than 25%. The target capacity (e.g. set by the
resident for leaving) is 80% for every EV. In practice, the battery of an EV (opposed
to a static battery) is not always available (connected to the home charging point).
Therefore, the 38 EVs in this scenario start charging (e.g. arrive at home) at random
times during the day. To model this scenario, the asynchronous event-driven profile
steering algorithm by Hoogsteen et al. [25] is used to optimize the total (house base
loads plus EV loads) aggregated load profile, because it uses an event-based approach
to handle the arrival of EVs at the home charging points (see Section 3.8.2).

In the asynchronous event-driven profile steering algorithm by Hoogsteen et al. [25],
predictions are committed in the first phase. For example, r⃗m (using notation of
Section 3.8.2) is a prediction of a house baseload profile done by a local house
controller in the first phase. When the first phase finishes, r⃗m is stored at the global
controller. However, predictions can be inaccurate. As time progresses, the local
house controller may predict a new house baseload profile ⃗̂rm that deviates from the
original r⃗m (e.g. more than a certain threshold). Similar to uncertain devices, the
predicted house baseload profile r⃗m could be updated in an event-based manner.
The new house baseload profile ⃗̂rm is sent towards the global controller, which
subsequently updates its committed profile r⃗. In this way, more accurate predictions
can be incorporated when realizing the planned profile q⃗. Uncertain devices (such
as EVs) that arrive after this, will then receive a more accurate desired profile, and

5.5 Predictions For Profile Steering 71

subsequently optimize their committed profile accordingly. This system fits well
with the forecasting model that is developed in this thesis, as the forecasting model
updates its predictions continuously.

The main differences of the scenario described in this section compared to the
scenario described in Section 5.5.1, are that this scenario uses the asynchronous
event-driven profile steering algorithm by Hoogsteen et al. [25] with 38 EVs that
provide flexibility, instead of the original profile steering algorithm by Gerards et
al. [33] with a single large battery that provides flexibility. However, there are also
many similarities. Similar to the scenario described in Section 5.5.1, the scenario in
this section also uses the predictions of the forecasting models corresponding to each
household. Also, again two options are available: only using the initial prediction or
updating predictions each time step. Furthermore, the SoC of all EVs are updated
after each time step similar to how the SoC of the battery in Section 5.5.1 is updated
after each time step.

72 Chapter 5 Prediction Model Structure

6Results and Discussion

Chapter Objective: This chapter discusses the results of applying the proposed fore-
casting model.

Chapter Contents

• Introduction (6.1)

• Forecasting Performance (6.2)

• Profile Steering Simulation (6.3)

6.1 Introduction

This chapter discusses the results of applying the proposed forecasting model on
the electric load series of the houses from the GridFlex data set [10]. Section 6.2
discusses the performance of the of the proposed forecasting model (proposed
in Section 1.2) using the different architectures (explained in Section 5.3). The
performance of the different architectures used for the proposed forecasting model
is evaluated in several ways. First, Section 6.2.1 discusses the performance of the
proposed forecasting model for different houses in the GridFlex data set [10]. Then,
Section 6.2.2 discusses the performance of the proposed forecasting model over time.
Section 6.2.3 discusses whether the performance is different for different components
of p⃗t. In other words, this section discusses the influence of the forecasting horizon on
the performance of the proposed forecasting model. Finally, Section 6.2.4 evaluates
whether the aggregation of the forecasts for all the houses (of the GridFlex data set
[10]) matches the aggregation of all the actual loads of all the houses. Section 6.3
evaluates two scenarios where the performance of the profile steering algorithm
[33] is evaluated, when predictions of the proposed forecasting model are used.
Section 6.3.1 discusses the scenario described in Section 5.5.1 where a single large
battery is scheduled by the profile steering algorithm [33]. Section 6.3.2 discusses the
scenario described in Section 5.5.2 where 38 EVs are scheduled by the asynchronous
event-driven profile steering algorithm [25]. In both scenarios, an analysis is

73

provided that compares the performance when predictions are updated versus
when predictions are not updated.

6.2 Forecasting Performance

6.2.1 Comparison Of ANN Architectures For Different
Households

To see if the proposed forecasting model is equally effective for different households,
this section compares the performance of the proposed forecasting model for each
house of the GridFlex data set [10]. Table 6.1. shows the results of using different
architectures (explained in Section 5.3) of the proposed forecasting model for all
the houses in the GridFlex data set [10] for the second month (September 2018).
Because running simulations for the complete time frame of over two years for all
houses (see Section 4.2) and all forecasting models (from Section 5.3) would take
too much time, Table 6.1 only shows the results for the second month. Furthermore,
the predictions of the first month would not be accurate as the forecasting models
suffer from startup effects and need some time to adjust their predictions to the
load of a household, as explained in Section 5.4.2. Showing the results of the
second month only requires a simulation of two months for each household and
each forecasting model architecture, and can be completed relatively fast. First,
Table 6.1 lists all households of the GridFlex data set [10] in the first column and
the standard deviation of their respective load profiles (Load St. Dev.) in the second
column. Furthermore, Table 6.1 displays statistics about the absolute error between
the predicted load value and actual load value, for each household and for each
forecasting model architecture discussed in Section 5.3. Additionally, Table 6.1
shows the results of naive predictions. The naive predictions are equal to the load at
the last time (15 minute) interval. The load at the last interval is typically close to
the load at the current time interval and therefore provides a good benchmark. In the
remainder of this chapter, the naive predictions are sometimes used for comparison.
The statistics in Table 6.1 include the mean (µ), median (m), and standard deviation
(σ) of the absolute prediction error. The mean absolute prediction error (µ) gives an
indication of the performance of the forecasting model architecture on average. The
median absolute prediction error (m) gives the most occurring absolute prediction
error. Lastly, the standard deviation of the absolute prediction error (σ) represents
the stability of the forecasting model, similar to the stability described by Javed et al.
[28] (see Section 2.5).

In Table 6.1, all forecasting model architectures have the lowest prediction error (µ,
m, and σ) when applied to House 58, and the highest prediction error (µ, m, and σ)

74 Chapter 6 Results and Discussion

House Load St. Dev.
Multivariate Iterative Multi-model Hybrid Naive

µ m σ µ m σ µ m σ µ m σ µ m σ

1 0.841 0.511 0.715 0.456 0.422 0.913 0.452 0.39 0.366 0.217 0.534 0.175 0.164 0.552 0.15 0.165
2 0.341 0.221 0.257 0.265 0.217 0.283 0.269 0.226 0.22 0.11 0.146 0.097 0.086 0.088 0.078 0.093
3 0.465 0.232 0.321 0.252 0.22 0.407 0.237 0.199 0.187 0.142 0.206 0.128 0.123 0.25 0.12 0.114
4 1.032 0.672 0.913 0.541 0.496 1.093 0.491 0.464 0.44 0.202 0.744 0.144 0.137 0.64 0.112 0.143
5 0.677 0.319 0.437 0.35 0.306 0.609 0.356 0.304 0.282 0.158 0.276 0.139 0.127 0.368 0.118 0.13
6 2.454 1.755 2.044 1.185 1.18 2.747 1.262 1.17 1.14 0.535 1.356 0.491 0.445 1.918 0.426 0.687
7 0.815 0.164 0.187 0.198 0.168 0.201 0.182 0.161 0.15 0.095 0.112 0.082 0.072 0.07 0.062 0.063
8 0.619 0.343 0.369 0.418 0.363 0.458 0.437 0.357 0.337 0.205 0.256 0.224 0.209 0.246 0.21 0.223
9 0.749 0.39 0.531 0.407 0.374 0.711 0.418 0.357 0.329 0.188 0.35 0.159 0.157 0.472 0.136 0.181
10 0.505 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
11 0.614 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
12 0.472 0.194 0.219 0.229 0.201 0.248 0.218 0.17 0.159 0.123 0.153 0.113 0.102 0.12 0.092 0.085
13 0.366 0.222 0.238 0.25 0.211 0.314 0.235 0.197 0.175 0.128 0.153 0.12 0.107 0.188 0.102 0.098
14 0.758 0.468 0.659 0.391 0.371 0.828 0.379 0.329 0.313 0.207 0.513 0.156 0.144 0.516 0.126 0.122
15 0.389 0.181 0.28 0.196 0.164 0.31 0.177 0.156 0.146 0.102 0.172 0.088 0.075 0.172 0.064 0.072
16 1.526 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
17 2.191 0.43 0.525 0.505 0.433 0.612 0.632 0.483 0.471 0.192 0.335 0.213 0.184 0.22 0.206 0.239
18 0.408 0.208 0.229 0.236 0.199 0.297 0.221 0.179 0.164 0.119 0.134 0.089 0.075 0.172 0.06 0.07
19 0.477 0.258 0.295 0.294 0.252 0.392 0.283 0.234 0.216 0.13 0.173 0.11 0.099 0.21 0.088 0.083
20 0.741 0.429 0.596 0.387 0.371 0.755 0.385 0.329 0.313 0.183 0.456 0.148 0.141 0.444 0.128 0.111
21 3.839 2.694 3.093 1.61 2.035 3.945 1.636 1.544 1.533 0.896 2.329 0.926 0.855 2.642 0.852 0.86
22 2.428 0.684 0.817 0.782 0.698 0.972 0.928 0.759 0.719 0.312 0.533 0.392 0.33 0.426 0.39 0.458
23 1.221 0.806 1.045 0.704 0.661 1.347 0.726 0.61 0.59 0.335 0.74 0.336 0.309 0.876 0.308 0.264
24 1.103 0.713 0.929 0.568 0.535 1.17 0.56 0.482 0.458 0.259 0.708 0.208 0.198 0.76 0.182 0.184
25 0.973 0.565 0.753 0.479 0.427 0.936 0.502 0.403 0.376 0.264 0.56 0.212 0.193 0.694 0.198 0.215
26 0.344 0.158 0.178 0.183 0.149 0.178 0.168 0.146 0.141 0.097 0.112 0.08 0.07 0.068 0.062 0.069
27 0.445 0.267 0.284 0.294 0.266 0.347 0.286 0.22 0.206 0.175 0.22 0.164 0.158 0.242 0.148 0.141
28 1.369 0.854 1.151 0.652 0.607 1.398 0.66 0.575 0.554 0.293 0.892 0.252 0.253 0.902 0.218 0.274
29 1.57 0.735 0.852 0.778 0.694 1.184 0.926 0.734 0.677 0.252 0.489 0.255 0.217 0.718 0.236 0.317
30 0.403 0.242 0.276 0.285 0.252 0.312 0.28 0.228 0.216 0.146 0.178 0.137 0.131 0.146 0.122 0.123
31 0.374 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
32 0.873 0.472 0.637 0.433 0.426 0.823 0.441 0.348 0.324 0.198 0.448 0.164 0.151 0.536 0.136 0.134
33 0.483 0.298 0.439 0.305 0.283 0.52 0.293 0.255 0.24 0.148 0.286 0.137 0.13 0.308 0.12 0.12
34 0.337 0.198 0.199 0.221 0.19 0.213 0.205 0.171 0.159 0.13 0.134 0.106 0.096 0.094 0.088 0.087
35 0.986 0.582 0.802 0.471 0.447 0.996 0.454 0.41 0.394 0.196 0.642 0.153 0.149 0.623 0.128 0.149
36 0.426 0.253 0.286 0.315 0.28 0.365 0.304 0.234 0.228 0.167 0.223 0.177 0.169 0.212 0.164 0.149
37 0.377 0.199 0.202 0.23 0.192 0.24 0.228 0.179 0.162 0.114 0.132 0.102 0.093 0.102 0.086 0.087
38 0.569 0.366 0.418 0.377 0.347 0.567 0.362 0.292 0.276 0.175 0.268 0.172 0.16 0.342 0.152 0.127
39 0.602 0.23 0.281 0.265 0.237 0.335 0.252 0.215 0.213 0.138 0.199 0.127 0.12 0.204 0.108 0.126
40 0.742 0.476 0.636 0.386 0.371 0.773 0.367 0.326 0.316 0.183 0.47 0.138 0.135 0.426 0.116 0.118
41 0.383 0.187 0.218 0.231 0.191 0.232 0.217 0.174 0.166 0.118 0.132 0.104 0.093 0.098 0.084 0.087
42 0.22 0.157 0.117 0.128 0.105 0.12 0.107 0.091 0.084 0.082 0.079 0.066 0.053 0.05 0.046 0.041
43 1.331 0.965 1.198 0.77 0.749 1.575 0.766 0.722 0.712 0.519 0.802 0.391 0.418 1.238 0.344 0.462
44 0.399 0.217 0.228 0.25 0.218 0.265 0.231 0.202 0.187 0.128 0.149 0.099 0.092 0.124 0.072 0.106
45 0.654 0.339 0.469 0.33 0.306 0.612 0.319 0.279 0.263 0.174 0.335 0.142 0.138 0.382 0.13 0.129
46 0.605 0.342 0.455 0.391 0.347 0.621 0.387 0.327 0.304 0.157 0.277 0.161 0.154 0.404 0.138 0.179
47 0.529 0.216 0.245 0.238 0.205 0.236 0.224 0.193 0.202 0.146 0.139 0.126 0.118 0.124 0.112 0.117
48 0.702 0.323 0.4 0.367 0.323 0.539 0.386 0.315 0.283 0.166 0.235 0.151 0.139 0.332 0.132 0.168
49 1.21 0.577 0.789 0.444 0.415 0.983 0.432 0.37 0.367 0.204 0.573 0.17 0.163 0.524 0.154 0.149
50 0.448 0.245 0.308 0.264 0.231 0.412 0.252 0.208 0.188 0.128 0.189 0.098 0.088 0.206 0.076 0.077
51 0.52 0.291 0.42 0.299 0.274 0.532 0.284 0.249 0.237 0.158 0.289 0.12 0.111 0.288 0.098 0.099
52 0.273 0.132 0.136 0.149 0.121 0.136 0.128 0.105 0.096 0.081 0.091 0.063 0.051 0.048 0.04 0.04
53 1.12 0.352 0.415 0.449 0.399 0.539 0.48 0.39 0.349 0.199 0.293 0.244 0.229 0.304 0.234 0.249
54 0.323 0.178 0.21 0.204 0.174 0.242 0.188 0.145 0.141 0.115 0.152 0.103 0.092 0.128 0.084 0.074
55 0.649 0.197 0.215 0.232 0.202 0.26 0.218 0.167 0.163 0.13 0.157 0.134 0.125 0.146 0.12 0.099
56 0.911 0.515 0.68 0.447 0.421 0.876 0.427 0.379 0.361 0.184 0.459 0.153 0.144 0.492 0.126 0.138
57 0.982 0.698 0.912 0.54 0.503 1.137 0.548 0.466 0.446 0.228 0.715 0.197 0.186 0.674 0.168 0.181
58 0.13 0.077 0.077 0.074 0.06 0.054 0.05 0.043 0.046 0.069 0.068 0.056 0.048 0.044 0.042 0.036
59 0.464 0.16 0.177 0.177 0.15 0.2 0.165 0.14 0.128 0.101 0.122 0.083 0.075 0.088 0.068 0.063
60 1.022 0.685 0.861 0.561 0.539 1.109 0.562 0.502 0.458 0.278 0.635 0.254 0.261 0.792 0.24 0.262
61 0.502 0.216 0.233 0.263 0.23 0.279 0.25 0.202 0.186 0.121 0.157 0.11 0.099 0.104 0.086 0.095
62 0.356 0.188 0.231 0.233 0.187 0.253 0.227 0.183 0.163 0.104 0.153 0.088 0.074 0.096 0.058 0.076
63 0.375 0.208 0.21 0.225 0.184 0.241 0.222 0.182 0.168 0.107 0.127 0.091 0.08 0.088 0.072 0.07
64 0.844 0.516 0.671 0.448 0.423 0.9 0.436 0.373 0.353 0.276 0.489 0.229 0.221 0.63 0.212 0.204
65 0.5 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
66 0.304 0.172 0.161 0.194 0.163 0.189 0.179 0.135 0.126 0.121 0.111 0.102 0.093 0.1 0.086 0.078
68 0.417 0.134 0.14 0.14 0.113 0.124 0.116 0.097 0.094 0.09 0.098 0.07 0.055 0.048 0.044 0.049
69 0.62 0.364 0.439 0.378 0.346 0.616 0.375 0.303 0.301 0.21 0.27 0.197 0.182 0.442 0.178 0.157
70 0.788 0.445 0.538 0.499 0.459 0.73 0.516 0.418 0.387 0.209 0.333 0.208 0.196 0.536 0.186 0.229
71 0.405 0.195 0.228 0.22 0.192 0.236 0.21 0.17 0.162 0.122 0.139 0.105 0.094 0.098 0.084 0.081
72 0.621 0.344 0.445 0.428 0.372 0.53 0.467 0.39 0.37 0.137 0.302 0.14 0.129 0.196 0.114 0.214
73 0.212 0.115 0.115 0.119 0.099 0.108 0.097 0.079 0.076 0.082 0.081 0.066 0.056 0.052 0.05 0.04
74 0.335 0.206 0.246 0.241 0.215 0.273 0.233 0.202 0.196 0.118 0.165 0.109 0.1 0.128 0.09 0.116
75 0.871 0.484 0.634 0.48 0.439 0.85 0.488 0.401 0.376 0.243 0.414 0.253 0.239 0.556 0.24 0.239
76 0.493 0.293 0.282 0.298 0.258 0.342 0.291 0.237 0.236 0.159 0.205 0.144 0.133 0.178 0.128 0.136
77 0.372 0.157 0.175 0.204 0.169 0.211 0.194 0.154 0.145 0.088 0.114 0.084 0.072 0.078 0.068 0.06

AVG 0.747 0.404 0.498 0.378 0.35 0.625 0.379 0.322 0.306 0.184 0.348 0.167 0.154 0.377 0.145 0.159

Table 6.1: Absolute error statistics for different houses and forecasting model architectures

when applied to House 21. House 58, house 21, and their corresponding prediction
errors for all the forecasting model architectures are highlighted in Table 6.1. Note
that, unsurprisingly, house 58 has the lowest load standard deviation and house
21 has the highest load standard deviation. There exist normalized error metrics
that divide the prediction error by the load standard deviation (see Section 2.5),
but this thesis simply uses the absolute prediction error as its value is easier to
explain. In general, many houses that have a more volatile load profile (higher load
profile standard deviation) also have higher prediction error values. This is in line
with the discussions in Section 2.2.2. Figure 6.1 displays scatter plots that indicate
the relation between a statistic (µ, m, σ) of the absolute prediction error and the
standard deviation of the load of a household. Each dot in the scatter plot represents
one household trained with one forecasting model architecture of Table 6.1 (e.g. one
dot may represent the standard deviation of the load of house 8, and the error of the
multivariate forecasting model). Figure 6.1 also displays trend lines through each

6.2 Forecasting Performance 75

0 0.5 1 1.5 2
0

0.5

1

Load standard deviation

M
ea

n
(µ

)
ab

so
lu

te
er

ro
r

(k
W

)

0 0.5 1 1.5 2

0

0.5

1

1.5

Load standard deviation

M
ed

ia
n

(m
)

ab
so

lu
te

er
ro

r
(k

W
)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

Load standard deviation

St
an

da
rd

de
vi

at
io

n
(σ

)
ab

so
lu

te
er

ro
r

(k
W

)

Multivariate Iterative Multimodel Hybrid

0 0.5 1 1.5 2
0

0.5

1

1.5

Load standard deviation

St
at

is
ti

c
ov

er
ab

so
lu

te
er

ro
r

Mean (µ) Median (m) Standard Deviation (σ)

Figure 6.1: Error versus standard deviation of the load profile

of the scatter plots. Although the trend lines are based on all the houses from the
GridFlex data set [10], the graphs of Figure 6.1 zoom in on the interval [0, 2] of the
domain, as most houses have a load standard deviation within in this interval. The
graphs in the upper left corner, upper right corner, and lower left corner show the
relationship between µ and the load standard deviation, m and the load standard
deviation, and σ and the load standard deviation, respectively, for the different
forecasting model architectures. The graphs in Figure 6.1 suggest that there is a
linear relationship between the standard deviation of the load of a house and the
absolute prediction error of the forecasting model, regardless of the forecasting
model architecture that was used. A larger house load standard deviation correlates
with a larger prediction error. The graph in the upper left corner of Figure 6.1 shows
this as well, but there appears to be no large difference between the forecasting
model architectures.

76 Chapter 6 Results and Discussion

The graph in the upper right corner of Figure 6.1 shows that the strength of the
correlation of the median (m) of the absolute prediction error with the house load
standard deviation is different for different forecasting model architectures. The
median error of the iterative model has the strongest correlation, then the correlation
of the median error of the multivariate model, then the correlation of the median
error of the multimodel model, and finally the median error of the hybrid model has
the weakest correlation. The graph in the lower left corner shows that the standard
deviation σ of the prediction error is less affected by a larger load standard deviation,
when a mulitmodel or hybrid architecture is used compared to when a multivariate
or iterative architecture is used. This indicates that the forecasting model produces
more stable predictions with the multimodel and the hybrid architecture compared
to with the multivariate and the iterative model. The graph in the lower right corner
of Figure 6.1 shows the relationship between the value of a statistic and the standard
deviation of a house load. This graphs shows that the stability (standard deviation, σ

in Table 6.1) of the prediction error is the least affected by the standard deviation of
a house load. The median of the prediction error is the most affected by the standard
deviation of a house load.

0 2 4
0

10

20

30

Absolute Error (kW)

N
um

be
r

of
er

ro
rs

(%
)

Multivariate Iterative Multimodel Hybrid

0 1 2 3
0

20

40

Absolute Error (kW)

N
um

be
r

of
er

ro
rs

(%
)

0 2 4 6
0

10

20

30

40

Absolute Error (kW)

N
um

be
r

of
er

ro
rs

(%
)

0 2 4 6 8
0

20

40

Absolute Error (kW)

N
um

be
r

of
er

ro
rs

(%
)

0 2 4
0

20

40

Absolute Error (kW)

N
um

be
r

of
er

ro
rs

(%
)

0 1 2 3
0

20

40

60

Absolute Error (kW)

N
um

be
r

of
er

ro
rs

(%
)

Figure 6.2: Distribution of errors for house 8, 26, 28, 29, 51, 52.

Both the mean (µ) and the median (m) of the absolute error are evaluated in Ta-
ble 6.1 and Figure 6.1, because they are significantly different for many houses. The
reason for this is the large skewness of the distribution of errors. Figure 6.2 shows
histograms of the error distribution for different forecasting model architectures.
The histograms are based on the errors of house 8, 26, 28, 29, 51, and 52, respec-
tively. All histograms show that the error distribution is skewed to the right. When
comparing the different forecasting model architectures, the hybrid and multimodel
architectures have a relatively high peak on the left, indicating a larger skewness.
The iterative architecture has a relatively low peak on the left, indicating a lower

6.2 Forecasting Performance 77

skewness. Especially for the hybrid and multimodel architecutre, the skewness
illustrated by Figure 6.2 indicates that, although most predictions have a very small
error, the prediction error is very large for a very small number of predictions. In
practice, this means that the median (m) prediction error may represent the real
performance of the forecasting model better in most cases compared the mean (µ)
prediction error, especially for the hybrid and multimodel architecture.

6.2.2 Performance Convergence

This section discusses how the performance of the forecasting model changes over
time. As explained in Section 5.4.2, depending on the value of hyperparameters
such as the learning rate (η), the forecasting model needs some time to adjust its
predictions to the house load, before reaching a reasonable accuracy. Figure 6.3
shows the mean absolute prediction error of the load of house 28, for different
forecasting model architectures. This error is not only shown per 15-minute interval,
but is also averaged over larger time periods (per day and per week) to better show
the overall trend. For all forecasting model architectures, the error trend decreases
during the first 20 days, indicating that all forecasting model architectures suffer
from a “start-up” time of approximately 20 days.

Figure 6.4 and Figure 6.5 display the mean absolute error for house 8, 26, 28, 29,
51, and 52, over the complete time period (of two years). The error is shown for
different forecasting model architectures and is (again) averaged over two larger
time periods (per week and per month) to capture the trend. The plots in these
figures give an indication of the performance of the forecasting model over time. In
all plots in Figure 6.4 and Figure 6.5, the startup period is not very visible anymore,
because the plots display the average per week and per month. Still, these figures
show that the error is not stable over time, but differs over the course of the two
years. Especially for the houses with solar panels (see house 28, 29, 51 in Table 1.1),
the performance differs during different time periods. During late spring and early
summer (March, April, May, June), the average error per week and per month is
significantly higher than during other seasons. This difference is especially large
for the iterative architecture and the multivariate architecture. The error of the
multimodel architecture and the hybrid architecture are less affected by this season.
For the models without solar panels (see house 8, 26, 52 in Table 1.1), there is much
less difference in error between seasons. Also, the architectures differ only slightly
in performance over time. Although the difference is minimal, the multivariate
architecture performs best and the iterative architecture performs worst for these
houses.

78 Chapter 6 Results and Discussion

2018-08-01 2018-08-12 2018-08-22

0.5

1

1.5

2

Date

M
A

E
(k

W
)

Multivariate per interval
Multivariate per day

Multivariate per week

2018-08-01 2018-08-12 2018-08-22

1

2

3

4

Date

M
A

E
(k

W
)

Iterative per interval
Iterative per day

Iterative per week

2018-08-01 2018-08-12 2018-08-22

0.5

1

1.5

2

Date

M
A

E
(k

W
)

Multimodel per interval
Multimodel per day

Multimodel per week

2018-08-01 2018-08-12 2018-08-22

0.5

1

1.5

Date

M
A

E
(k

W
)

Hybrid per interval
Hybrid per day

Hybrid per week

Figure 6.3: Startup effects when applying different architectures of the forecasting model
to the load of House 28

6.2.3 Forecasting Horizon

The forecast window p⃗t made at time t contains 96 components pt,i for i ∈ {1, ..., 96}.
Each of the 96 predicted values corresponds to a 15 minute interval in a day. The
absolute error between one component pt,i and the corresponding actual value dt,i

can be calculated using Et,i = |pt,i − dt,i| for i ∈ {1, ..., 96} and t ∈ {1, ..., T}. Here,
T is the last time step of the full two years time frame of the GridFlex data set
[10]. This way, each component of the error E⃗t = [Et,1, ..., Et,96] corresponding
to the forecast window p⃗t = [pt,1, ..., pt,96] can be calculated for each time t. To
see how well the forecasting model can predict the electricity consumption of
a household for different forecasting horizons in general, the average of each
error component Et,i over all time steps t ∈ {1, ..., T} can be calculated: µt(Ei) =
1
T

∑T
t=1 |pt,i − dt,i|. The average forecast window error µt(E⃗) = [µt(E1), ..., µt(E96)]

6.2 Forecasting Performance 79

2018-08-01 2018-12-29 2019-05-28 2019-10-25 2020-03-23 2020-08-20

0

0.5

1

1.5

2

Date (House 8)

M
A

E
(k

W
)

Multivariate per week Multivariate per month Iterative per week Iterative per month
Multimodel per week Multimodel per month Hybrid per week Hybrid per month

2018-08-01 2018-12-29 2019-05-28 2019-10-25 2020-03-23

0

0.5

1

1.5

2

Date (House 26)

M
A

E
(k

W
)

2018-08-01 2018-12-29 2019-05-28 2019-10-25 2020-03-23 2020-08-20

0

0.5

1

1.5

2

Date (House 28)

M
A

E
(k

W
)

Figure 6.4: Error over time for different forecasting model architectures for house 8, 26, 28

80 Chapter 6 Results and Discussion

2018-08-01 2018-12-29 2019-05-28 2019-10-25 2020-03-23 2020-08-20

0

0.5

1

1.5

2

Date (House 29)

M
A

E
(k

W
)

Multivariate per week Multivariate per month Iterative per week Iterative per month
Multimodel per week Multimodel per month Hybrid per week Hybrid per month

2018-08-01 2018-12-29 2019-05-28 2019-10-25 2020-03-23 2020-08-20

0

0.5

1

1.5

2

Date (House 51)

M
A

E
(k

W
)

2018-08-01 2018-12-29 2019-05-28 2019-10-25 2020-03-23 2020-08-20

0

0.5

1

1.5

2

Date (House 52)

M
A

E
(k

W
)

Figure 6.5: Error over time for different forecasting model architectures for house 29, 51,
52

6.2 Forecasting Performance 81

then consists of each of these average error components. Figure 6.6a presents the

(a) Method 1 (b) Method 2

Figure 6.6: Aligning forecast windows p⃗t for all t ∈ {1, ..., T}

forecasting windows p⃗t for all t ∈ {1, ..., T} on top of each other. By aligning the ith
components pt,i of p⃗t for all t ∈ {1, ..., T} vertically, it illustrates that the average error
component µt(Ei) is calculated using information from each column. Figure 6.7a

pt,1 pt,25 pt,49 pt,73 pt,96

0.2

0.4

0.6

0.8

Interval in forecast window

m
ea

n
ab

so
lu

te
er

ro
r

(k
W

)

Multivariate Iterative Multimodel Hybrid Naive

(a) mean

pt,1 pt,25 pt,49 pt,73 pt,96

0.2

0.4

Interval in forecast window

m
ed

ia
n

ab
so

lu
te

er
ro

r
(k

W
)

Multivariate Iterative Multimodel Hybrid Naive

(b) median

Figure 6.7: Mean (left) and median (right) absolute error for each component of p⃗t (96 in
total), averaged over house 8, 26, 28, 29, 51, 52, based on the full two years,
for different forecasting model architectures

plots the average forecast window error µt(E⃗) = [µt(E1), ..., µt(E96)] averaged over
house 8, 26, 28, 29, 51, and 52, for different forecasting model architectures.
The x-axis shows the components pt,i within the forecast window corresponding
to the mean absolute error (MAE) components µt(Ei), for i ∈ {1, ..., 96}. The
median forecast window error mt(E⃗) = [mt(E1), ..., mt(E96)] is calculated in a
similar fashion and plotted in Figure 6.7b. For both Figure 6.7a and Figure 6.7b,
the error does not differ significantly for different forecasting horizons (number
of intervals in the future) within the forecast window. This applies to all four
architectures (multivariate, iterative, multimodel, hybrid). When comparing the
four forecasting architectures, the iterative architecture performs worst with an
average MAE of approximately 0.5kW (corresponding median of 0.36kW), and
shows a slight error increase during the first few intervals of the forecasting window.
The average MAE of the multivariate model is relatively stable over time, around

82 Chapter 6 Results and Discussion

approximately 0.45kW (corresponding median of 0.2kW), similar to the average
MAE of the multimodel architecture. The hybrid architecture performs best overall
with an average MAE of approximately 0.4kW (corresponding median of 0.18kW).
Both the hybrid and multimodel architecture show a slight increase in error during
the last few intervals. Next to the four forecasting model architectures, also the
results for the naive predictions are shown (introduced in Section 6.2.1). A naive
prediction is a constant vector p⃗t Of this constant vector, all components are equal
to the last value of the load that was measured by the smart meter of the house.
For example, if the household load is 3.2kW at time t, then p⃗t = [3.2, 3.2, ..., 3.2]
for the naive predictions. The error curve of the naive model in Figure 6.7 can
be explained by the auto-correlation curve (Figure 4.10) of Section 4.4.2) of the
household load. The current load has a relatively high correlation with the load on
another day at exactly the same time. For example, if t = 12:00 in the afternoon on
the 1st of January, then the future load of the forecasting window that is likely to
correlate most, is the load at approximately t = 12:00 on the 2nd of January. This
load corresponds to the last few intervals of the forecasting window. Thus, Figure 6.7
shows that the error in the first and last few intervals is relatively low. Similarly,
in the center of the forecast window the error is highest, as the load during that
time is most likely to correlate least with the current load. The lowest average MAE
for the naive predictions is approximately 0.2kW at pt,1. This is lower than any of
the forecasting model architectures at pt,1. However, at most other intervals in the
forecast window, the average MAE is much higher than the average MAE for the
other forecasting model architectures. Also, the median error at pt,1 for the naive
predictions does not differ much from the median error at pt,1 for the multivariate
and multimodel architecture, and the hybrid architecture has even a lower median
error.

pt−96,96
pt−72,72

pt−48,48
pt−24,24 pt−1,1

0.35

0.4

0.45

0.5

Interval in forecast window

av
er

ag
e

m
ea

n
ab

so
lu

te
er

ro
r

(k
W

)

Multivariate Iterative Multimodel Hybrid

pt−96,96
pt−72,72

pt−48,48
pt−24,24

pt−1,1

0.15

0.2

0.25

0.3

0.35

Interval in forecast window

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

er
ro

r
(k

W
)

Multivariate Iterative Multimodel Hybrid

Figure 6.8: The average mean (left) and median (right) error for a prediction of the load at
time t across different forecast windows pt−i,i (i ∈ {1, ..., 96})

The performance of different forecasting horizons within the forecast window can
also be plotted in an alternative way. Since the forecasting model has a sliding

6.2 Forecasting Performance 83

window and a forecasting horizon of 96 time steps, different predictions are made
of the load at time t. Figure 6.6b presents the forecasting windows p⃗k for k ∈
{t− 96, ..., t− 1} on top of each other and aligns them by time, similar to the rolling
horizon depicted in Figure 5.2. The components of different forecast windows p⃗k

for k ∈ {t− 96, ..., t− 1} are aligned vertically if they predict the same (actual/real)
load. For example, the highlighted components in Figure 6.6b are all predictions of
the actual load at time t. Again, the mean and median error corresponding to the
ith component of forecast window p⃗t−i can be plotted. This is done in Figure 6.8.
Here, the results are averaged over all 76 houses of the GridFlex data set [10] for a
time period of the first two months. The results in Figure 6.8 are (approximately) a
mirrored version of the results in Figure 6.7. The slight differences can be explained
by the fact that the results of Figure 6.8 are based on the first two months of data of
all 76 houses whereas the result of Figure 6.7 are based on the full two years of data
of house 8, 26, 28, 29, 51, and 52.

6.2.4 Aggregation

Figure 6.9 plots the aggregated load (black) of all households of Table 6.1 for the
first two months (August and September) of 2018 and the aggregated predicted load
(coloured) for this time period. First of all, Figure 6.9 shows that the aggregated
predicted load is far from the aggregated actual load in the first few days. This
corresponds to the startup effects or adjustment period, which was discussed in
Section 5.4.2 and Section 6.2.2. On this aggregated level, the multivariate, iterative,
multimodel, and hybrid architecture need approximately 7, 17, 10, and 20 days,
respectively, to converge to a reasonable performance.

In Section 2.2.2, the bottom-up approach by Wijaya et al. [31] was discussed.
Gerards et al. [32] identified that a potential risk of the bottom-up approach is that
household prediction errors could accumulate when the forecasts are aggregated.
This happens if the household prediction errors correlate in some way. As each
proposed forecasting model is applied to a single household and all forecasts are
aggregated, a bottom-up approach is indeed used in this research. Figure 6.9 can be
used to see if the errors accumulate. It shows that the forecasting models applied to
the households structurally under-predict the absolute peak value (in both positive
and negative direction) when using the multivariate architecture. The aggregated
house load peaks are larger in both directions than their corresponding aggregated
predictions, especially the negative (solar production) peaks. The aggregated pre-
dictions of the forecast models are an even worse approximation of the aggregated
house loads when the iterative architecture is used. The aggregated predictions of
the forecasting models do not follow the seasonal pattern that the actual aggregated
load follows, when using this architecture. In contrast, the aggregated predictions

84 Chapter 6 Results and Discussion

2018-08-01 2018-08-11 2018-08-21 2018-09-01 2018-09-11 2018-09-22 2018-10-02

−50

0

50

Date

A
gg

re
ga

te
d

lo
ad

(k
W

)
Actual

Multivariate

2018-08-01 2018-08-11 2018-08-21 2018-09-01 2018-09-11 2018-09-22 2018-10-02

−50

0

50

Date

A
gg

re
ga

te
d

lo
ad

(k
W

)

Actual

Iterative

2018-08-01 2018-08-11 2018-08-21 2018-09-01 2018-09-11 2018-09-22 2018-10-02

−50

0

50

Date

A
gg

re
ga

te
d

lo
ad

(k
W

)

Actual

Multimodel

2018-08-01 2018-08-11 2018-08-21 2018-09-01 2018-09-11 2018-09-22 2018-10-02

−50

0

50

Date

A
gg

re
ga

te
d

lo
ad

(k
W

)

Actual

Hybrid

Figure 6.9: Aggregation of all 76 households from the GridFlex data set [10], for the first
two months (August and September)

of the forecasting models appear to reasonably approximate the aggregated house
load when the multimodel or hybrid architecture is used. Only on some days, the
aggregated predictions of the forecast models over- or under-predict the aggregated
actual house load. On this aggregated level, the multimodel architecture and the
hybrid architecture best approximate the actual aggregated house load.

6.2 Forecasting Performance 85

6.3 Profile Steering Simulation

In this section, the results of the scenarios explained in Section 5.5 are discussed.
Section 6.3.1 discusses the results of running a simulation of the scenario explained
in Section 5.5.1. Section 6.3.2 discusses the results of running a simulation of the
scenario explained in Section 5.5.2. To evaluate the impact of predictions on the
performance of the profile steering algorithm, three different types of predictions
are used:

• Perfect predictions
In this case, a scenario is simulated where predictions are exactly correct.
This means that the sum of the predictions of the house loads (made by the
forecasting models of all households) is exactly equal to the sum of all actual
house loads. These perfect predictions are used to determine what the profile
steering algorithm can achieve in a best case scenario.

• Predictions from the proposed forecasting model
In this case, a scenario is simulated where predictions of all the house loads,
made by the proposed forecasting models applied to each house load, are
aggregated. This aggregated prediction is an estimate of the total aggregated
house load.

• Synthetic predictions
In this case, a scenario is simulated where the predictions are fabricated to
obtain a “prediction” with certain properties that is used in the analysis later.
Such a synthetic prediction is used to compare the two options discussed
in Section 5.5: only using the initial predictions or updating predictions
each time step. The synthetic predictions are created as follows. First, a
perfect prediction p⃗∗

t is created. Then for each component (interval) p∗
t,i in

this perfect prediction p⃗∗
t, some semi-random noise is added according to:

p′
t,i = p∗

t,i ± ϵ 4i
96 for i ∈ {1, ..., 96}. Here, ϵ is a random number sampled

uniformly from the range 0 ≤ ϵ < 1. Figure 6.10 shows the mean error of
each component p′

t,i of p⃗′
t over all t in the simulation, similar to Figure 6.7

from Section 6.2.3. Note that within the synthetic prediction p⃗′
t, the first

components p′
t,i are close to the perfect prediction p∗

t,i (small error), but the
last components are far away from the perfect prediction (large error). This is
different from the predictions of the proposed forecasting model (see Figure 6.7
from Section 6.2.3), where the components have approximately the same error
across all intervals i ∈ {1, ..., 96} within the forecast window (i.e. Figure 6.7
shows a near-horizontal line).

For each of these three types of predictions, two options are discussed (see Sec-
tion 5.5.1): (i) only the initial predictions are used and (ii) the predictions are

86 Chapter 6 Results and Discussion

pt,1 pt,25 pt,49 pt,73 pt,96

0

0.5

1

1.5

2

Interval in forecast window
m

ea
n

ab
so

lu
te

er
ro

r
(k

W
)

Synthetic Prediction Error

Figure 6.10: Mean absolute error for each component of the synthetic prediction p⃗′
t (96 in

total)

updated each time step. This means that in total, Section 6.3.1 discusses six different
versions of the battery scenario and Section 6.3.2 discusses six different versions of
the realistic neighbourhood scenario. For each version of both scenarios, five days are
simulated, from 2018-09-01 to 2018-09-06. However, the flexible devices (battery
and EVs) start showing extreme behaviour in the last intervals of the simulation,
because there exist no time after the “end time” of the simulation. In practice, there
exists no such “end time”. Therefore, the last day is cut off after each simulation is
executed. For each figure that is explained in this section, the same legend is used.
The gray continuous line represents the battery load x⃗B (“Battery”) in Section 6.3.1
and the aggregated load of all EVs x⃗EV (“EVs”) in Section 6.3.2. The cyan line
(“Houses”) represents the (actual) aggregated house load x⃗H . The gray dotted line
(“Prediction Houses”) represents the aggregated predictions of house loads x⃗P H

(made by the forecasting models corresponding to each household). The red line
(“Total Realized”) represents the total load (all houses plus battery) x⃗T R that was
realized. In Section 6.3.1, x⃗T R = x⃗H + x⃗B and in Section 6.3.2, x⃗T R = x⃗H + x⃗EV .
Finally, the black dashed line (“Prediction Realized”) represents the total load (all
houses plus battery) that would have been realized x⃗P R if the actual house load
exactly matched the predicted house load. In Section 6.3.1, x⃗P R = x⃗P H + x⃗B and in
Section 6.3.2, x⃗P R = x⃗P H + x⃗EV .

6.3 Profile Steering Simulation 87

Based on this, error metrics E1, E2, E3, E4, and E5 are defined:

E1 = 1
t

T∑
t=1

|xH,t − xP H,t|

E2 = 1
t

T∑
t=1

|xT R,t − xP R,t|

E3 = 1
t

T∑
t=1

|xT R,t − 0t|

E4 = 1
t

T∑
t=1

|xP R,t − 0t|

E5 = E3− E4

All errors metrics (E1, E2, E3, E4, and E5) give the mean absolute error (MAE) of
a 15-minute interval of the simulation, as the mean is taken over all time steps in the
simulation t ∈ {1, ..., T}. Note that E1 is simply the prediction error. The metric E2
represents how close the total (all houses, plus all EVs/battery) realized load (“Total
Realized”) is to the predicted realized load (“Prediction Realized”). Note that error
E2 is a direct consequence of the error E1. The error metric E3 represents how
close the total realized load (“Total Realized”) is to a flat zero-profile ([0, 0, ..., 0]).
The smaller the value of E3, the flatter the total realized load profile. The error
metric E4 represents how close the predicted realized load (“Prediction Realized”)
is to a flat zero-profile. The metric E4 represents the best case scenario, i.e. when
the actual aggregated house load perfectly matches the aggregated predicted house
loads. Finally, E5 is the most important error. The metric E5 represents difference
between how flat the total realized profile is (E3) and how flat the total realized
profile could have been in a best case scenario (E4).

6.3.1 Battery Scenario

This section discusses the results of simulating the scenario described in Section 5.5.1.
Recall that this scenario describes how a single (unrealistically) large battery may
flatten the profile of the aggregated load of all houses in a neighbourhood using
the profile steering algorithm [33]. Table 6.2 presents the results of using five error

Predictions No Update Update
E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Perfect 0.0 0.0 10.071 10.071 0.0 0.0 0.0 10.071 10.071 0.0
Synthetic 14.211 14.211 16.487 10.202 6.285 0.169 0.169 10.256 10.259 -0.004
Multivariate 15.415 15.415 22.181 15.775 6.405 15.82 15.82 23.018 15.338 7.679
Iterative 23.29 23.29 27.083 8.842 18.241 22.496 22.496 26.632 9.467 17.165
Multimodel 11.208 11.208 13.015 8.445 4.57 11.335 11.335 13.3 8.571 4.73
Hybrid 10.76 10.76 12.247 6.453 5.794 10.691 10.691 12.236 6.357 5.88
Naive 14.357 14.357 17.236 11.104 6.132 5.34 5.34 26.635 26.63 0.005

Table 6.2: Battery Scenario

metrics (E1, E2, E3, E4, and E5) described in Section 6.3. Because E2 is a direct

88 Chapter 6 Results and Discussion

consequence of E1, their values are the same. This section discusses the results in
Table 6.2 using a few examples.

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

(a) Not updating predictions

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

Battery Houses Prediction Houses Total Realized Prediction Realized

(b) Updating predictions

Figure 6.11: Perfect predictions

Figure 6.11 shows two different graphs displaying the results of the scenario de-
scribed in Section 5.5.1, when perfect predictions are used. Figure 6.11a shows
the results when the first option (see Section 5.5.1) is chosen: only using initial
predictions and not updating the predictions each time step. Figure 6.11b shows
the results when the second option is chosen: updating the predictions each time
step. Since Figure 6.11 shows the case where perfect predictions are used, the actual
aggregated house load (“Houses”) and the aggregated predictions of the house loads
(“Prediction Houses”) overlap. Table 6.2 also shows that E1 = 0.0. The profile
steering algorithm scheduled the battery load (“Battery”) in such a way that its
profile counters (approximately reflects over the x-axis) the aggregated predictions
of the house load. Especially, when there is a lot of PV production (valleys of the
aggregated house load in Figure 6.11), the profile steering algorithm tries to counter
this by scheduling the battery to charge during these times. Additionally, the total
(houses plus battery) realized load (“Total Realized”) overlaps with the total pre-
dicted realized load (“Prediction Realized”). This is a direct consequence of having
perfect predictions. Therefore, Table 6.2 shows that E2 = E1 = 0.0. Furthermore,
note that Figure 6.11a and Figure 6.11b are exactly the same. This means that

6.3 Profile Steering Simulation 89

it does not matter if predictions are updated each time step when predictions are
perfect.

More importantly, Figure 6.11 indicates that even with perfect predictions, the
(predicted) realized load profile is not entirely flat. In other words, the realized load
profile will not be flat in a best case scenario. Table 6.2 shows that E4 = 10.071 > 0.
Figure 6.11 shows that the (predicted) realized load profile has a repeating pattern
each day. At the beginning of the day, the load increases. And at the end of a day,
there is a small valley. At the beginning of the next day, the load increases again.
This profile shape can most likely be explained by forecast horizon of a day that
is used in this thesis (forecast window of 96 15-minute intervals). As a result, the
profile steering creates a planning of a day after each time step. When increasing
this horizon (to e.g. two days ahead), this shape may be flattened.

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

(a) Not updating predictions

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

Battery Houses Prediction Houses Total Realized Prediction Realized

(b) Updating predictions

Figure 6.12: Predictions from the proposed forecasting model using the hybrid architecture

Figure 6.12 shows the results of the scenario described in Section 5.5.1, when
predictions of the proposed forecasting model with a hybrid architecture are used.
Table 6.2 also shows the results for other architectures (multivariate, iterative, and
multimodel). Different from Figure 6.11, the lines in the graphs do not overlap
anymore, as the predictions are not perfect. Because the aggregated predictions
of the house loads (“Prediction Houses”) differs from the actual aggregated house

90 Chapter 6 Results and Discussion

load (“Houses”), the total (houses plus battery) realized load (“Total Realized”) is
different from the total predicted realized load (“Prediction Realized”) which would
have happened when the actual aggregated house load would perfectly match the
aggregated predictions of the house loads. Table 6.2 shows that E1 = E2 = 10.76.
Figure 6.12 shows that during the nights, the total realized load (“Total Realized”)
matches the predicted realized load (“Prediction Realized”) quite well. However,
when there is PV production (valleys of the aggregated house loads) during the day,
Figure 6.12 shows that the total realized load (“Total Realized”) often deviates from
the predicted realized load (“Prediction Realized”). For example, the PV production
on 2018-09-02 and 2018-09-02 of the aggregated house loads (“Houses”) is more
than was anticipated. In other words, the valley of the aggregated predictions of
the house loads (“Prediction Houses”) is not as deep as the actual aggregated house
loads (“Houses”). Because of this unexpected PV production, the battery does not
charge enough to compensate this. Thus, the PV valley is not entirely filled. Even
though Figure 6.12 shows the aggregated house load (“Houses”) of 76 houses of
the GridFlex data set [10], the aggregated house load profile is very volatile during
times of PV production. For example, within those valleys there exist load differences
between local 15-minute intervals of over 50kW. This makes it very hard to predict
the shape of the valley and thus hard to fill the valley correctly.

Again, Figure 6.12a shows the results when the first option (see Section 5.5.1) is
chosen: only using initial predictions and not updating the predictions each time
step. Figure 6.11b shows the results when the second option is chosen: updating
the predictions each time step. However, there is no clear difference in performance
between the two options (updating or not updating predictions each time step).
The results in Table 6.2 confirm this. This may be explained with forecast window
error shown in Figure 6.7. The error of each component pt,i of the prediction p⃗t

does not differ between intervals i ∈ {1, ..., 96} within the forecast window. For
each forecasting model architecture shown in Figure 6.7, the line is near horizontal.
This means that the error of a component pt,i is on average equal to the error of
any other component pt,j , where i, j ∈ {1, ..., 96}. For example, the error of the
first component pt,1 is on average equally large as the error of the last component
pt,96. Updating predictions will change the prediction information available to
the profile steering algorithm, but does not necessarily improve the quality of this
prediction information. Using this reasoning, it is not useful to update predictions.
This indicates that updating predictions for the profile steering algorithm does not
improve the resulting realized load profile (“Total Realized”), when the predictions
from the proposed forecasting model are used. However, if one would use predictions
where the error of a component pt,i increases for larger i ∈ {1, ..., 96}, updating
predictions may be useful. Therefore, Figure 6.13 shows the results of the scenario
described in Section 5.5.1, when synthetic predictions are used.

6.3 Profile Steering Simulation 91

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

(a) Not updating predictions

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

Battery Houses Prediction Houses Total Realized Prediction Realized

(b) Updating predictions

Figure 6.13: Synthetic predictions

Again, Figure 6.13a shows the results when the first option (see Section 5.5.1) is
chosen: only using initial predictions and not updating the predictions each time step.
It shows that the aggregated predictions of the house loads (“Prediction Houses”)
are very capricious. This is caused by the random noise that was added to fabricate
these synthetic predictions. The load of the battery (“Battery”) is scheduled by the
profile steering algorithm in a way to counter this predicted volatile profile and
achieve a smooth and, most importantly, flat total (houses plus battery) load profile
(“Prediction Realized”). However, the real aggregated house load (“Houses”) is not
so capricious as was predicted by the synthetic predictions. Hence, the battery is
scheduled in such a way to counter predicted volatility that does not exist in reality.
As a result, the realized load (“Total Realized”) becomes very capricious.

Figure 6.13b shows the results when the second option is chosen: updating the
predictions each time step. This time, there is a clear difference between Fig-
ure 6.13a and Figure 6.13b. Figure 6.13b shows that the aggregated predictions of
the house loads (“Prediction Houses”) is very close to the actual aggregated house
load (“Houses”). This is caused by the frequent updates of the house load predictions
used by the profile steering algorithm. Figure 6.10 shows that the components p′

t,i

that are located in the beginning (i.e. i is close to 1) of the forecasting window p⃗′
t

92 Chapter 6 Results and Discussion

have a smaller error on average than the components p′
t,i that are located near the

end (i.e. i is close to 96). This is why updating causes the error between the predic-
tion of the load and the actual load to decrease, when using synthetic predictions.
In general, updating is useful for any prediction with this property. The forecast
window of the naive prediction (see Figure 6.7 from Section 6.2.3) also has this
property, which is why the error metrics of the naive predictions are also so low in
Table 6.2 when predictions are updated at each time step. Because the aggregated
(naive and synthetic) predictions of the house loads (“Prediction Houses”) are so
close to the actual aggregated house load (“Houses”), the total (houses plus battery)
realized load (“Total Realized”) is also very close to the predicted realized load
(“Prediction Realized”). Table 6.2 shows that in this case, the error metrics are very
small: E1 = E2 = 0.169.

6.3.2 Realistic Neighbourhood Scenario

This section discusses the results of simulating the scenario described in Section 5.5.2.
Recall that this scenario describes how 38 EVs together may fill valleys of the profile
of the aggregated load of all houses in a neighbourhood using the asynchronous
event-driven profile steering algorithm [25]. Table 6.3 presents the results of using

Predictions No Update Update
E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Perfect 0.0 0.0 20.414 20.414 0.0 0.0 0.0 20.414 20.414 0.0
Synthetic 14.255 14.255 22.011 22.773 -0.761 0.168 0.168 20.702 20.708 -0.006
Multivariate 15.418 15.418 25.24 19.612 5.628 15.826 15.826 25.472 18.694 6.778
Iterative 23.265 23.265 29.102 12.548 16.554 22.495 22.495 28.607 13.236 15.37
Multimodel 11.218 11.218 22.639 19.558 3.081 11.33 11.33 22.917 19.113 3.805
Hybrid 10.773 10.773 22.985 16.186 6.799 10.701 10.701 22.909 16.22 6.689
Naive 14.354 14.354 24.553 18.452 6.101 5.336 5.336 28.61 28.601 0.009

Table 6.3: Realistic Neighbourhood scenario

five error metrics (E1, E2, E3, E4, and E5) described in Section 6.3. Similar to
Section 6.3.1, this section discusses the results in Table 6.3 using a few examples.

Figure 6.14 shows two different graphs displaying the results of the scenario de-
scribed in Section 5.5.2, when perfect predictions are used. Figure 6.14a shows
the results when the first option (see Section 5.5.2) is chosen: only using initial
predictions and not updating the predictions each time step. Figure 6.14b shows the
results when the second option is chosen: updating the predictions each time step.
Similar to Section 6.3.1, the lines corresponding to “Houses” and “Prediction Houses”
overlap, because predictions are perfect. Therefore, also the lines corresponding
to “Total Realized” and “Prediction Realized” overlap. Additionally (also similar to
Section 6.3.1) there is no difference between Figure 6.14a and Figure 6.14b.

Because EVs start charging (arrive at the home charging point) at different (randomly
chosen) times, there is not always enough flexibility available to completely fill the

6.3 Profile Steering Simulation 93

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

(a) Not updating predictions

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

EVs Houses Prediction Houses Total Realized Prediction Realized

(b) Updating predictions

Figure 6.14: Perfect predictions

valleys. Even with perfect predictions, the valleys of the aggregated house load
profile (“Houses”) are not completely filled. Therefore, the total (all houses plus all
EVs) realized profile (“Total Realized”) still shows valleys, albeit these valleys are
less deep.

Figure 6.15 shows the results of the scenario described in Section 5.5.2, when
predictions of the proposed forecasting model with a hybrid architecture are used.
Again, Figure 6.15a shows the results when the first option (see Section 5.5.2) is
chosen: only using initial predictions and not updating the predictions each time
step. Figure 6.15b shows the results when the second option is chosen: updating the
predictions each time step. Similar to the results described in Section 6.3.1, there
is no clear difference in performance between the two options (updating or not
updating predictions each time step). In both graphs, the asynchronous event-driven
profile steering algorithm is unable to match the total (all houses plus all EVs)
realized load (“Total Realized”) with the predicted realized load profile (“Prediction
Realized”). This is partly because it is uncertain when EVs become available (arrive
at home), partly because the EVs together only provide a limited amount of flexibility
(more capacity is required to completely fill the valleys of the aggregated house
load profile), and partly because of the prediction errors of the proposed forecasting

94 Chapter 6 Results and Discussion

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

(a) Not updating predictions

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

EVs Houses Prediction Houses Total Realized Prediction Realized

(b) Updating predictions

Figure 6.15: Predictions from the proposed forecasting model using the hybrid architecture

model. Similar to Section 6.3.1, the large differences (sometimes of 50kW) between
the load at intervals within a valley (during PV production) makes it difficult to
schedule EVs to accommodate these local peaks. However in most intervals, the total
(all houses plus all EVs) load profile (“Total Realized”) is slightly better than the
total aggregated house load profile (“Houses”) as valleys are filled to some extent.

Finally, Figure 6.16 shows the results of the scenario described in Section 5.5.2,
when synthetic predictions are used. Again, Figure 6.16a shows the results when
the first option (see Section 5.5.2) is chosen: only using initial predictions and
not updating the predictions each time step. And Figure 6.16b shows the results
when the second option is chosen: updating the predictions each time step. Similar
to the results in Section 6.3.1, there is a clear difference between Figure 6.16a
and Figure 6.16b. The total (all houses plus all EVs) realized load profile (“Total
Realized”) shown in Figure 6.16a is more capricious than the total realized load
profile (“Total Realized”) shown in Figure 6.16b. Also, Figure 6.16b shows that the
asynchronous event-driven profile steering algorithm is better able to match the
total realized load profile (“Total Realized”) with the predicted realized load profile
(“Prediction Realized”) when predictions are updated.

6.3 Profile Steering Simulation 95

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

(a) Not updating predictions

2018-09-01 2018-09-02 2018-09-03 2018-09-04 2018-09-05

−100

−50

0

50

100

Date

Lo
ad

(k
W

)

EVs Houses Prediction Houses Total Realized Prediction Realized

(b) Updating predictions

Figure 6.16: Synthetic predictions

However, note that Table 6.3 shows that E5 is a negative value and also the lowest
value out of all other prediction types, even when predictions are not updated.
It seems strange that the synthetic predictions have the lowest E5 value when
predictions are not updated, but this can be explained. In general, E4 is always
less than or equal to E3 for any type of prediction in the battery scenario if the
predictions are not updated. This is because the predicted realized load (“Prediction
Realized”) is typically flatter than the actually realized load (“Total Realized”).
However, in the realistic neighbourhood scenario, EVs can only fill valleys and
not shave peaks, so their batteries are not scheduled to counter the capricious
synthetic predictions of the house loads when there is no PV production (no valley
to fill). Therefore, the predicted realized load (“Prediction Realized”) matches the
aggregated predictions of the house loads (“Prediction Houses”) perfectly at these
times. However, the aggregated predictions of the house loads (“Prediction Houses”)
is very capricious due to the nature of the synthetic predictions. Furthermore, the
curve of the actually realized load (“Total Realized”) matches the curve of the actual
aggregated house load (“Houses”) perfectly at these times. Since the aggregated
house load (“Houses”) is much flatter than its synthetic prediction (“Prediction
Houses”), the total realized load (“Total Realized”) is also much flatter than the

96 Chapter 6 Results and Discussion

predicted realized load (“Prediction Realized”). Thus, the value of E5 is somewhat
misleading in this specific case.

6.3 Profile Steering Simulation 97

7Conclusions And Future Work

Chapter Objective: Based on the findings in this thesis, this chapter draws conclu-
sions to answer the research questions defined in Chapter 1 and suggests directions
for future work.

Chapter Contents

• Introduction (7.1)

• Conclusions (7.2)

• Recommendations For Future Work (7.3)

7.1 Introduction

As a result of the energy transition, many residents have installed rooftop solar
panels and started using more electrical appliances, such as electric vehicles (EVs)
and heat pumps. This decentralized production and consumption puts pressure
on the current electricity grid. To flatten load peaks and prevent overloading of
grid components, demand side management (DSM) techniques can be employed
to match electricity supply and demand. Some DSM techniques require house
load predictions. However, there are challenges regarding the application of load
predictions, the variation between household loads, and the volatility of a load
within a single household. To overcome these challenges, this thesis proposes an
online “rolling horizon” forecasting model that is continuously being trained on the
smart meter data of a single household. It can therefore adapt to the load profile
behaviour of that household and to structural changes in electricity consumption
over time.

Chapter 1 introduces the house load forecasting challenges in more detail and states
the research questions. Chapter 2 discusses some characteristics specific to electricity
consumption forecasting and reviews several time series forecasting models that are
used for predicting electricity consumption. In particular, a motivation is provided
for the use of artificial neural networks (ANNs). Chapter 3 introduces demand side

99

management (DSM) and reviews several DSM techniques. Chapter 4 provides an
analysis of the input data for the proposed forecasting model. Chapter 5 explains
the structure of the proposed forecasting model. The simulation results of applying
the proposed forecasting model on a set of households are discussed in Chapter 6.
This chapter also evaluates a specific DSM technique that uses the predictions of
the proposed forecasting model in several neighbourhood scenarios. The remainder
of this chapter answers the research questions in Section 7.2. Finally, Section 7.3
presents recommendations for future work.

7.2 Conclusions

This section answers the research questions defined in Section 1.3. This section
lists all research questions and presents their corresponding answers below the
question.

RQ 1 What input data correlates the most with the residential electricity con-
sumption that needs to be predicted?

Firstly, residential historic electricity consumption correlates with the electricity
consumption that needs to be predicted, and could therefore be used to make pre-
dictions. Section 2.2 reviews literature related to electricity consumption forecasting
and states that an electricity load series exhibits seasonality, because it is strongly
auto-correlated. Section 4.4.2 confirms this by presenting an auto-correlation anal-
ysis for the houses of the GridFlex data set [10]. This analysis helps to identify
what part of the historic consumption data is most useful when making house load
predictions. The results of this analysis show no strong weekly seasonality, but do
show a strong yearly and daily seasonality. On average, the house load at the exact
same time interval on a previous day correlates the most with the current house load.
In other words, there is a specific lag that is most relevant to predict a load value
at a specific interval in the future. Since the proposed forecasting model predicts
multiple (96) values within a forecast window, multiple lags are relevant. To employ
a larger subset of the historic house load data when making a prediction and to
constraint the number of input variables for the proposed forecasting model, window
variables are used. Since the correlation analysis identifies a declining correlation
trend after a few months, the lag and window input variables only cover a period
of the last a month at most. The trend is captured using trend variables. Yearly
seasonality has not been taken into account, because the GridFlex data set [10] only
covers two years of data.

100 Chapter 7 Conclusions And Future Work

Apart from historic electricity consumption data, there exist exogenous variables
that correlate with the residential electricity consumption that needs to be predicted.
Section 2.2.3 reviews different exogenous variables that affect the load profile
of a house. For example, building characteristics have an impact on the house
load profile. However, since these variables are static or fixed, we expect that the
proposed forecasting model will learn this information from the load profile of the
house. Additionally, demographic information about the household occupants has
influence on the house load profile. However, the proposed forecasting model learns
autonomously and can adapt to structural changes within the household (e.g. a new
family moves in). Furthermore, this requires issuing a survey that asks residents for
personal data and this should be avoided for an autonomous model. In contrast,
publicly available data such as time data and weather data is used by the proposed
forecasting model. Time data may indicate whether residents are at home or not
(e.g. public holidays) or whether they are using specific electric appliances. Weather
data may impact the use of heating devices and has a significant effect on the yield
of solar panels (PV). Since many houses of the GridFlex data set [10] have rooftop
solar panels, weather data from the KNMI [74] was used. To find out what weather
variables correlate with the residential electricity consumption, a weather correlation
analysis was carried out. Based on the correlation with the house load of a subset of
houses, a set of weather variables was selected (see highlighted entries of Table 4.2).
This set includes mostly information about sunshine duration and radiation, but also
soil temperature, air temperature, humidity, wind speed and direction, clouds, and
visibility. It is important to note that these variables only had a high correlation with
the load of houses with rooftop solar panels, but the correlation was minimal for
houses without rooftop solar panels. Since many houses of the GridFlex data set
[10] have solar panels, these variables are used as input to the proposed forecasting
model.

RQ 2 How can an online short-term forecasting model be determined to predict
household electricity consumption?

Chapter 5 explains the proposed forecasting model. Using a black-box paradigm,
Section 5.2 explains that an online forecasting model can be created using a rolling-
horizon with discrete time steps. Each time step, the proposed forecasting model
needs to do three things: update/calculate the input data, make a prediction of the
house load, and plan a training update.

• The input consists of a set of weather, time, and historic electricity consumption
variables that are summarized in Section 4.4.4. The values of the weather, time,
and historic electricity consumption variables need to be updated each time
step of the rolling horizon and are explained in Section 4.4.1, Section 4.4.3,

7.2 Conclusions 101

and Section 4.4.2, respectively. Section 4.4.2 also explains how some of these
variables (window and trend variables) need to be re-calculated each time
step.

• Each time step, a house load prediction is made with a forecasting horizon of
a day. This prediction is based on input data of a month ago and the output of
the prediction is a forecast window consisting of 96 15-minute intervals of the
next day.

• Each time step, a training update should be planned so that the forecasting
model can learn from its prediction mistakes and improve its performance for
a future prediction. This process allows the proposed forecasting model to
adapt to the specific characteristics of the house load profile and to structural
changes in the house load data. As training the forecasting model cannot be
done based on data from the future, a training update of the forecasting model
needs to be scheduled ahead, such that it can be carried out a day later. These
training updates use information of the actual house load of the last day and
its corresponding prediction (the forecast window) that was made exactly a
day ago.

Section 2.3 motivates that Artficial Neural Networks (ANNs) are most useful for
predicting household electricity consumption in an online setting, because of their
ability to approximate nonlinear functions well (better than e.g. ARIMA). Since a
house load profile is very volatile, this property very useful for short-term house load
forecasting. Also, ANNs are computationally faster than deep complex networks
(e.g. LSTMs), which makes them more suitable when predicting the house load
in an online setting at a (perhaps computationally slow) local house controller.
Section 2.4 explains a more detailed background on ANNs. Section 5.3 explains
four different forecasting model architectures: multivariate, iterative, multimodel,
and hybrid. Each architecture uses ANNs in a different way to make a prediction.
Chapter 6 shows that on average (of all houses of the GridFlex data set [10]) out of
the forecasting model architectures, the mean error (µ) is lowest for the multimodel
architecture, but the median error (m) is lowest for the hybrid architecture. However,
Section 6.2.1 shows that the results differ significantly per household and indicates a
relationship between the house load volatility and the performance of the forecasting
model. Chapter 6 also shows that all architectures suffer from start up effects
(large errors in the beginning of the simulation) and need some time to adapt
their predictions to a house load. Section 5.4 shows that start up effects and
feedback sensitivity are mainly caused by the choice of hyperparameters. When
the optimal hyperparameters are selected based on a grid search, the multivariate
model appears to have the lowest startup time (approximately one week) compared
to other architectures. Next to the start up phase, Section 6.2.2 discusses how each
forecasting model architecture performs over time. It shows that the error of the
architectures during late spring and early summer is significantly higher than other

102 Chapter 7 Conclusions And Future Work

periods, especially for houses with rooftop solar panels. This suggests that prediction
errors are higher when there is solar production. The iterative (and to a lesser
extent the multivariate) architecture is more erroneous than the multimodel and
hybrid architecture, especially during these periods. This is also reflected in the
stability (σ) of their predictions, which is significantly better for the multimodel
and hybrid architecture compared to the iterative and multivariate architecture.
Section 6.2.3 shows that (for all architectures), there is no difference between the
average error of the 96 components within the forecast window. When comparing
the architectures, the hybrid architecture has the lowest forecast window error on
average. Finally, Section 6.2.4 shows that the aggregated predictions of the house
load best approximate the actual aggregated house load, when the multimodel
or hybrid architecture is used by the forecasting models. Considering the above,
the hybrid architecture appears to be most suitable architecture for the proposed
forecasting model out of the four architectures, to make house load predictions.

RQ 3 How to make meaningful predictions of household electricity consumption
that can be used as input to a DSM scheduling algorithm?

Section 5.5 explains two neighbourhood scenarios that use the profile steering
algorithm [33]. Section 6.3 discusses the results of simulating these scenarios.
When only initial predictions are used (predictions are not updated), the hybrid
architecture has the lowest prediction error and thus the lowest error metrics E1 and
E2. However, the predictions made by the forecasting model with the multimodel
architecture has the lowest E5 value in the both scenarios (ignoring the misleading
E5 value of the synthetic predictions without updates in the EV scenario, explained
in Section 6.3.2). This indicates that a better forecast does not always result in the
best outcome, when used by the profile steering algorithm.

If predictions are updated, then the synthetic predictions have the best results
(lowest errors E1 and E5). This is explained by the shape (small component error
in the beginning and large component error in the end) of the forecast window
error of the synthetic predictions, as explained in Section 6.3. However, synthetic
predictions cannot be used in practice, because they serve simply as a theoretical
example to show that the shape of the forecast window determines how much the
performance of the profile steering algorithm improves when updating predictions.
The naive predictions also have relatively good results (low errors E1 and E5) when
predictions are updated, because the forecast window error of the naive predictions
has the same property. This indicates that, if predictions are updated each time step,
the error size of the first interval/component of the forecast window has the most
influence on the performance of the profile steering algorithm. Thus for the profile
steering algorithm, the accuracy of the predictions of the upcoming interval(s) is

7.2 Conclusions 103

more important than later intervals, if those predictions are updated each time step.
If predictions are not updated each time step, then the accuracy of the first interval
is not necessarily more important than the accuracy of later intervals in the forecast
window.

The results of Section 5.5 also show that achieving a flat profile is most difficult
during periods of PV production. Even with an aggregated house load (of all 76
houses of the GridFlex data set [10]), there exist load differences between 15-minute
intervals of more than 50kW. This makes those periods hard to predict (there is a
larger prediction error during these periods) and indicates that simply “scheduling”
the load for the upcoming interval(s) is not sufficient to realize a flat load profile.

7.3 Recommendations For Future Work

7.3.1 Historic Electric Consumption Data Selection

Section 4.4.2 explains how parts of the historic electricity consumption data can be
chosen based on a load correlation analysis. However, an alternative way to find the
most relevant lags is to use Dynamic Time Warping (DTW) instead of correlation
analysis. DTW is an algorithm that measures the similarities between two time series.
The electric house load of a house from the GridFlex data set [10] is also a time
series. When comparing the house load series with a lagged version of that same
house load series, DTW may measure high similarities at different lags. Therefore,
DTW may provide new insights into what historic electricity consumption may be
useful for predictions.

7.3.2 Different Forecasting Model Architectures

In this thesis four different forecasting model architectures are discussed: multivari-
ate, iterative, multimodel, and hybrid. However, these are not the only four options
that exist. The multivariate architecture has an output layer consisting of 96 output
neurons, corresponding to the 96 components of the forecast window. For future
work, it is interesting to look at the error of each component when a larger forecast
window is used, e.g. for two days (consisting of 192 components). In that case, the
output layer of the ANN would have 192 output neurons. The multimodel and hybrid
architecture are both split based on a classification: 15-minute intervals in a day and
hours in a day, respectively. For future work, it would be interesting to evaluate the
performance of architectures based on other classifications. For example, one ANN
for each day of the week (seven ANNs in total). Another architecture may be one

104 Chapter 7 Conclusions And Future Work

ANN for work days and one ANN for weekend days. In general, one can replace any
of the time variables in Table 4.7 (in Section 4.4.3), and create a new forecasting
model architecture instead.

7.3.3 Other Machine Learning Algorithms

In this research, ANNs are used in the proposed forecasting model. However, there
exist more machine learning algorithms that may fit in the black-box paradigm
explained in Section 5.2. For example, a random forest approach or deeper neural
networks may be used in a future work. For example, a deep learning technique
such as a transformer or LSTM can be used if it is computationally fast enough to be
applied (train and predict) in the online setting that is described in this thesis. Deep
learning techniques generally have a higher accuracy and may therefore provide
better predictions.

7.3.4 Dynamic Hyperparameters

As explained in Section 5.4.2, the value of the hyperparameters influences the length
of the startup phase and the sensitivity towards feedback. Instead of choosing
hyperparameter values as a fixed number based on a grid search, it would be
interesting to look at hyperparameters that can change dynamically over the course
of the simulation. For example, Chapter 6 shows that the startup effects are between
approximately one week and one month for different forecasting model architectures.
When increasing the learning rate in the beginning of the simulation, the length of
the startup effects may be reduced. Also when a structural change to the household
took place, the forecasting model should adapt quickly. In such a case, the learning
rate could also be increased for a small period of time to quickly adapt the predictions
to the changed load shape. Furthermore, Section 6.2.2 shows that the prediction
error differs over time. This suggests that different hyperparameter values (than the
ones chosen based on the grid search) may be optimal in these periods. Based on
the prediction error, all hyperparameters may be changed dynamically to have an
optimal performance at all times.

7.3.5 The Fill-Level

Another direction for future work concerns the fill-level Z that is discussed in
Section 3.7. Schoot Uiterkamp et al. [72] present a method to predict this optimal
value of Z using an empirically created distribution of the optimal fill-level Z.
However, a forecasting model like the one that is proposed in this thesis may also be

7.3 Recommendations For Future Work 105

used to predict this optimal fill-level Z instead of predicting the load of a household
on the grid, which is hard to predict.

7.3.6 Load Volume And Upcoming Interval

Section 3.7 also argues that a prediction of the base load profile p⃗ at multiple
intervals in the future is not required when provided with an estimate of the optimal
fill-level Ẑ. Only of the base load of the upcoming time interval pt and the sum of
complete total energy consumption (over all later intervals) is needed to make a
schedule for an EV that is close to optimal [34]. This is why it may be interesting for
future work to develop a forecasting model (ANN) that predicts the total volume
of the load (over all later intervals). In line with Gerards et al. [34] Section 7.2
concludes that an accurate prediction of the upcoming interval is most important
when the DSM algorithm (profile steering algorithm in this case) has access to
updated predictions (if the property holds that the predictions are more accurate in
the upcoming intervals compared to later intervals). Since weather predictions are
typically more accurate for the upcoming intervals compared to later intervals, a DSM
algorithm (like profile steering) may perform better when the weather predictions
are updated each time step. Therefore, it would be interesting for future work to
develop a forecasting model (ANN) that focuses on predicting purely the load at the
upcoming interval.

7.3.7 Separate PV Predictor And Operational Control

Section 7.2 concludes that achieving a flat profile is most difficult during periods
of PV production. Firstly, this suggests that a separate PV predictor may improve
the prediction performance. One predictor could focus on only predicting electric-
ity consumption and one predictor could focus on only predicting PV production.
Secondly, as the prediction error during periods of PV production is larger, simply
“scheduling” the load for the upcoming interval(s) may not be sufficient to realize a
flat load profile. We therefore suggest that future work investigates how operational
control may help to flatten the profile in these periods. For example, if there is an
error between the predicted load and actual load, a flexible device (e.g. a battery)
could accommodate this error by adapting its load real-time. In such an approach,
the flexible devices (e.g. batteries and EVs) should never be scheduled in a way that
they can reach their capacity limit (either completely empty or completely full), but
always leave some room to accommodate prediction errors.

106 Chapter 7 Conclusions And Future Work

Bibliography

[4] WindEurope, „Wind energy in Europe: 2021 Statistics and the outlook for 2022-
2026,“ EWEA, Tech. Rep., Feb. 2022 (cit. on p. 1).

[5] The International Renewable Energy Agency, „Renewable Capacity Statistics 2022,“
IRENA, Abu Dhabi, Tech. Rep., 2022 (cit. on p. 1).

[10] V. M. J. J. Reijnders, M. E. T. Gerards, and J. L. Hurink, Energy consumption data of
the GridFlex Heeten project, Accessed: 07-07-2022, Enschede, 2021 (cit. on pp. 2, 4,
5, 9, 13, 16, 37–43, 45, 46, 49–51, 56, 69, 71, 73, 74, 76, 79, 84, 85, 91, 100–102,
104).

[12] N. Wei, C. Li, X. Peng, F. Zeng, and X. Lu, „Conventional models and artificial
intelligence-based models for energy consumption forecasting: A review,“ Journal
of Petroleum Science and Engineering, vol. 181, p. 106 187, Oct. 2019 (cit. on pp. 4,
17–19, 24).

[13] K. Amasyali and N. M. El-Gohary, „A review of data-driven building energy con-
sumption prediction studies,“ Renewable and Sustainable Energy Reviews, vol. 81,
pp. 1192–1205, Jan. 2018 (cit. on pp. 4, 6, 7, 16, 17, 19, 24).

[14] D. Mariano-Hernández, L. Hernández-Callejo, F. S. García, O. Duque-Perez, and A. L.
Zorita-Lamadrid, „A Review of Energy Consumption Forecasting in Smart Buildings:
Methods, Input Variables, Forecasting Horizon and Metrics,“ Applied Sciences 2020,
Vol. 10, Page 8323, vol. 10, no. 23, p. 8323, Nov. 2020 (cit. on pp. 4, 7, 16, 17).

[15] L. Hernandez, C. Baladrón, J. M. Aguiar, et al., „A survey on electric power demand
forecasting: Future trends in smart grids, microgrids and smart buildings,“ IEEE
Communications Surveys and Tutorials, vol. 16, no. 3, pp. 1460–1495, 2014 (cit. on
pp. 4, 17).

[16] H. Ziekow, C. Goebel, J. Strüker, and H. A. Jacobsen, „The potential of smart home
sensors in forecasting household electricity demand,“ 2013 IEEE International Con-
ference on Smart Grid Communications, SmartGridComm 2013, pp. 229–234, 2013
(cit. on p. 5).

[17] A. Molderink, V. Bakker, M. G. C. Bosman, J. L. Hurink, and G. J. M. Smit, „Manage-
ment and Control of Domestic Smart Grid Technology,“ IEEE transactions on smart
grid, vol. 1, no. 2, pp. 109–119, Sep. 2010 (cit. on pp. 7, 15).

[18] S. Singh and A. Yassine, „Big Data Mining of Energy Time Series for Behavioral
Analytics and Energy Consumption Forecasting,“ Energies 2018, Vol. 11, Page 452,
vol. 11, no. 2, p. 452, Feb. 2018 (cit. on pp. 7, 17).

107

[19] H. S. Hippert, C. E. Pedreira, and R. C. Souza, „Neural networks for short-term load
forecasting: A review and evaluation,“ IEEE Transactions on Power Systems, vol. 16,
no. 1, pp. 44–55, Feb. 2001 (cit. on pp. 12, 16, 18, 19, 22–25, 38, 49, 59).

[20] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, „Forecasting with artificial neural networks::
The state of the art,“ International Journal of Forecasting, vol. 14, no. 1, pp. 35–62,
Mar. 1998 (cit. on pp. 12, 18, 19, 22–24).

[21] J. L. Yuan and T. L. Fine, „Neural-network design for small training sets of high
dimension,“ IEEE Transactions on Neural Networks, vol. 9, no. 2, pp. 266–280, 1998
(cit. on p. 12).

[22] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis:
Forecasting and Control, 5th ed. Hoboken, New Jersey: John Wiley & Sons, 2016,
p. 177 (cit. on p. 12).

[24] S. Humeau, T. K. Wijaya, M. Vasirani, and K. Aberer, „Electricity load forecasting for
residential customers: Exploiting aggregation and correlation between households,“
2013 Sustainable Internet and ICT for Sustainability, SustainIT 2013, 2013 (cit. on
pp. 12, 14, 16, 25).

[25] G. Hoogsteen, A. Molderink, J. L. Hurink, and G. J. M. Smit, „Asynchronous event
driven distributed energy management using profile steering,“ 2017 IEEE Manchester
PowerTech, Powertech 2017, p. 7 980 986, Jun. 2017 (cit. on pp. 13, 36, 56, 69, 71–73,
93).

[26] B. Yildiz, J. I. Bilbao, J. Dore, and A. B. Sproul, „Short-term forecasting of individual
household electricity loads with investigating impact of data resolution and forecast
horizon,“ Renewable Energy and Environmental Sustainability, vol. 3, p. 3, 2018 (cit.
on pp. 13, 14, 16, 25).

[27] M. Rossi and D. Brunelli, „Electricity demand forecasting of single residential units,“
2013 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems,
EESMS 2013 - Proceedings, 2013 (cit. on pp. 14, 25).

[28] F. Javed, N. Arshad, F. Wallin, I. Vassileva, and E. Dahlquist, „Forecasting for demand
response in smart grids: An analysis on use of anthropologic and structural data and
short term multiple loads forecasting,“ Applied Energy, vol. 96, pp. 150–160, Aug.
2012 (cit. on pp. 14–16, 22, 24, 25, 44, 74).

[29] R. Sevlian and R. Rajagopal, „A scaling law for short term load forecasting on varying
levels of aggregation,“ International Journal of Electrical Power and Energy Systems,
vol. 98, pp. 350–361, Jun. 2018 (cit. on p. 14).

[30] A. Tidemann, B. A. Høverstad, H. Langseth, and P. Öztürk, „Effects of scale on load
prediction algorithms,“ IET Conference Publications, vol. 2013, no. 615 CP, 2013
(cit. on pp. 14, 16).

[31] T. K. Wijaya, M. Vasirani, S. Humeau, and K. Aberer, „Cluster-based aggregate
forecasting for residential electricity demand using smart meter data,“ Proceedings -
2015 IEEE International Conference on Big Data, IEEE Big Data 2015, pp. 879–887,
Dec. 2015 (cit. on pp. 14, 16, 84).

[32] M. E. T. Gerards and J. L. Hurink, „Robust peak-shaving for a neighborhood with
electric vehicles,“ Energies, vol. 9, no. 8, 2016 (cit. on pp. 15, 29, 31, 33–35, 84).

108 Bibliography

[33] M. E. T. Gerards, H. A. Toersche, G. Hoogsteen, et al., „Demand side management
using profile steering,“ 2015 IEEE Eindhoven PowerTech, PowerTech 2015, pp. 1–
457 759, Jun. 2015 (cit. on pp. 15, 31, 35, 36, 56, 69, 72, 73, 88, 103).

[34] M. E. T. Gerards, J. L. Hurink, and R. Hübner, „Demand side management in a field
test: lessons learned,“ CIRED, Open Access Proc. J., IET Journals, vol. 2017, no. 1,
pp. 1678–1681, Jun. 2017 (cit. on pp. 15, 34, 41, 106).

[35] „NEN-EN 50160:2010/A3:2019 Spanningskarakteristieken in openbare elektriciteit-
snetten,“ NEN, Tech. Rep., Oct. 2019 (cit. on p. 15).

[37] K. Gajowniczek and T. Zabkowski, „Short term electricity forecasting using individual
smart meter data,“ Procedia Computer Science, vol. 35, no. C, pp. 589–597, 2014
(cit. on pp. 16, 18).

[38] B. Yildiz, J. I. Bilbao, J. Dore, and A. B. Sproul, „Recent advances in the analysis of
residential electricity consumption and applications of smart meter data,“ Applied
Energy, vol. 208, pp. 402–427, Dec. 2017 (cit. on pp. 16, 19, 24, 25, 31).

[39] A. Marinescu, C. Harris, I. Dusparic, S. Clarke, and V. Cahill, „Residential electrical
demand forecasting in very small scale: An evaluation of forecasting methods,“ 2013
2nd International Workshop on Software Engineering Challenges for the Smart Grid,
SE4SG 2013 - Proceedings, pp. 25–32, 2013 (cit. on pp. 16, 18).

[40] V. Bakker, A. Molderink, J. L. Hurink, and G. J. M. Smit, „Domestic heat demand
prediction using neural networks,“ Proceedings of 19th International Conference on
Systems Engineering, ICSEng 2008, pp. 189–194, 2008 (cit. on pp. 16, 23, 45).

[41] V. Bakker, M. G. C. Bosman, A. Molderink, J. L. Hurink, and G. J. M. Smit, „Improved
Heat Demand Prediction of Individual Households,“ IFAC Proceedings Volumes, vol. 43,
no. 1, pp. 110–115, Jan. 2010 (cit. on pp. 16, 23, 45).

[42] A. M. Barua and P. K. Goswami, „A survey on electric power consumption prediction
techniques,“ International Journal of Engineering Research and Technology, vol. 13,
no. 10, pp. 2568–2575, 2020 (cit. on pp. 17–19, 24).

[43] N. Fumo and M. A. Rafe Biswas, „Regression analysis for prediction of residential
energy consumption,“ Renewable and Sustainable Energy Reviews, vol. 47, pp. 332–
343, 2015 (cit. on p. 17).

[44] H. X. Zhao and F. Magoulès, „A review on the prediction of building energy consump-
tion,“ Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586–3592, Aug.
2012 (cit. on p. 18).

[45] A. Kapoor and A. Sharma, „A Comparison of Short-Term Load Forecasting Tech-
niques,“ International Conference on Innovative Smart Grid Technologies, ISGT Asia
2018, pp. 1189–1194, Sep. 2018 (cit. on p. 18).

[46] K. Yan, W. Li, Z. Ji, M. Qi, and Y. Du, „A Hybrid LSTM Neural Network for Energy
Consumption Forecasting of Individual Households,“ IEEE Access, vol. 7, pp. 157 633–
157 642, 2019 (cit. on p. 18).

[47] W. He, „Load Forecasting via Deep Neural Networks,“ Procedia Computer Science,
vol. 122, pp. 308–314, 2017 (cit. on pp. 18, 19).

Bibliography 109

[48] K. Yan, X. Wang, Y. Du, et al., „Multi-step short-term power consumption forecasting
with a hybrid deep learning strategy,“ Energies, vol. 11, no. 11, Nov. 2018 (cit. on
p. 18).

[49] H. K. Alfares and M. Nazeeruddin, „Electric load forecasting: Literature survey and
classification of methods,“ Internationa l Journal of Systems Science, vol. 33, no. 1,
pp. 23–34, 2002 (cit. on p. 19).

[50] K. Liu, S. Subbarayan, R. R. Shoults, et al., „Comparison of very short-term load
forecasting techniques,“ IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 877–
882, 1996 (cit. on p. 19).

[51] M. R. Kok, „Biologically Realistic Artificial Neural Networks,“ Bachelor’s Thesis,
University of Twente, Enschede, Jun. 2020 (cit. on pp. 20, 21).

[52] M. A. Nielsen, Neural Networks and Deep Learning, Dec. 2015 (cit. on pp. 21, 22, 67,
68).

[53] G. Sanderson, Backpropagation calculus | Deep learning, chapter 4, Nov. 2017 (cit. on
p. 21).

[54] R. J. Hyndman and A. B. Koehler, „Another look at measures of forecast accuracy,“
International Journal of Forecasting, vol. 22, no. 4, pp. 679–688, Oct. 2006 (cit. on
pp. 24, 25).

[55] K. Abdulla, K. Steer, A. Wirth, and S. Halgamuge, „Improving the on-line control of
energy storage via forecast error metric customization,“ Journal of Energy Storage,
vol. 8, pp. 51–59, Nov. 2016 (cit. on p. 25).

[56] S. Haben, J. Ward, D. Vukadinovic Greetham, C. Singleton, and P. Grindrod, „A
new error measure for forecasts of household-level, high resolution electrical energy
consumption,“ International Journal of Forecasting, vol. 30, no. 2, pp. 246–256, Apr.
2014 (cit. on p. 25).

[64] A. Molderink, V. Bakker, J. L. Hurink, and G. J. M. Smit, „Comparing Demand Side
Management approaches,“ IEEE PES Innovative Smart Grid Technologies Conference
Europe, pp. 1–8, Oct. 2012 (cit. on pp. 30–33).

[65] I. A. M. Varenhorst, „GridShield: Robust Control Algorithms to Prevent Power Out-
ages,“ M.S. thesis, University of Twente, Enschede, Jun. 2022 (cit. on p. 30).

[66] T. Van Der Klauw, M. E. T. Gerards, G. J. M. Smit, and J. L. Hurink, „Optimal
scheduling of electrical vehicle charging under two types of steering signals,“ IEEE PES
Innovative Smart Grid Technologies Conference Europe, vol. 2015-January, no. January,
Jan. 2015 (cit. on pp. 31, 33, 34).

[67] M. Beaudin and H. Zareipour, „Home energy management systems: A review of mod-
elling and complexity,“ Renewable and Sustainable Energy Reviews, vol. 45, pp. 318–
335, 2015 (cit. on p. 31).

[68] H. T. Yang, J. T. Liao, and C. I. Lin, „A load forecasting method for HEMS applications,“
2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, 2013 (cit. on p. 31).

[69] A. H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia,
„Autonomous demand-side management based on game-theoretic energy consump-
tion scheduling for the future smart grid,“ IEEE Transactions on Smart Grid, vol. 1,
no. 3, pp. 320–331, Dec. 2010 (cit. on p. 32).

110 Bibliography

[70] R. Tang, S. Wang, and H. Li, „Game theory based interactive demand side manage-
ment responding to dynamic pricing in price-based demand response of smart grids,“
Applied Energy, vol. 250, pp. 118–130, Sep. 2019 (cit. on p. 32).

[71] T. van der Klauw, M. E. T. Gerards, and J. L. Hurink, „Resource allocation problems
in decentralized energy management,“ OR Spectrum, vol. 39, no. 3, pp. 749–773, Jul.
2017 (cit. on p. 32).

[72] M. H. H. Schoot Uiterkamp, M. E. T. Gerards, and J. L. Hurink, „Fill-level prediction
in online valley-filling algorithms for electric vehicle charging,“ Proceedings - 2018
IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2018,
Dec. 2018 (cit. on pp. 33, 34, 105).

[76] K. Manani, Feature Engineering for Time Series Forecasting, Jul. 2022 (cit. on pp. 52,
63).

Webpages

[1] Directorate-General for Energy. „Renewable energy targets.“ (), [Online]. Available:
https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-
directive - targets - and - rules / renewable - energy - targets _ en (visited on
Dec. 9, 2022) (cit. on p. 1).

[2] Directorate-General for Climate Action. „2030 climate & energy framework.“ (),
[Online]. Available: https : / / climate . ec . europa . eu / eu - action / climate -
strategies-targets/2030-climate-energy-framework_en (visited on Dec. 9,
2022) (cit. on p. 1).

[3] Climate Action Network Europe. „Building a Paris Agreement Compatible (PAC) en-
ergy scenario - CAN Europe.“ (Jun. 2020), [Online]. Available: https://caneurope.
org/building-a-paris-agreement-compatible-pac-energy-scenario/ (visited
on Dec. 9, 2022) (cit. on p. 1).

[6] CBS. „Zonnestroom; vermogen zonnepanelen woningen, wijken en buurten, 2019.“
(Jun. 2021), [Online]. Available: https://opendata.cbs.nl/#/CBS/nl/dataset/
85010NED/table?ts=1673357781523 (visited on Jan. 10, 2023) (cit. on pp. 1, 47).

[7] CBS. „Zonnestroom; vermogen zonnepanelen woningen, wijken en buurten, 2020.“
(Dec. 2022), [Online]. Available: https://opendata.cbs.nl/#/CBS/nl/dataset/
85447NED/table?ts=1673357634160 (visited on Jan. 10, 2023) (cit. on pp. 1, 47).

[8] European Environment Agency. „New registrations of electric vehicles in Europe.“
(Oct. 2022), [Online]. Available: https : / / www . eea . europa . eu / ims / new -
registrations-of-electric-vehicles (visited on Jan. 7, 2023) (cit. on p. 2).

[9] European Heat Pump Association. „Market data.“ (2022), [Online]. Available: https:
//www.ehpa.org/market-data/ (visited on Jan. 7, 2023) (cit. on p. 2).

[11] TenneT. „Congestie management.“ (Sep. 2021), [Online]. Available: https://www.
tennet.eu/nl/de- elektriciteitsmarkt/congestie- management (visited on
Jan. 7, 2023) (cit. on p. 3).

Webpages 111

https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework_en
https://caneurope.org/building-a-paris-agreement-compatible-pac-energy-scenario/
https://caneurope.org/building-a-paris-agreement-compatible-pac-energy-scenario/
https://opendata.cbs.nl/#/CBS/nl/dataset/85010NED/table?ts=1673357781523
https://opendata.cbs.nl/#/CBS/nl/dataset/85010NED/table?ts=1673357781523
https://opendata.cbs.nl/#/CBS/nl/dataset/85447NED/table?ts=1673357634160
https://opendata.cbs.nl/#/CBS/nl/dataset/85447NED/table?ts=1673357634160
https://www.eea.europa.eu/ims/new-registrations-of-electric-vehicles
https://www.eea.europa.eu/ims/new-registrations-of-electric-vehicles
https://www.ehpa.org/market-data/
https://www.ehpa.org/market-data/
https://www.tennet.eu/nl/de-elektriciteitsmarkt/congestie-management
https://www.tennet.eu/nl/de-elektriciteitsmarkt/congestie-management

[23] J. Brownlee. „A Gentle Introduction to the Box-Jenkins Method for Time Series
Forecasting.“ (Jan. 2017), [Online]. Available: https://machinelearningmastery.
com/gentle-introduction-box-jenkins-method-time-series-forecasting/
(visited on Jan. 8, 2023) (cit. on p. 12).

[36] Office for National Statistics. „Energy prices and their effect on households.“ (Feb.
2022), [Online]. Available: https://www.ons.gov.uk/economy/inflationandpriceindices/
articles/energypricesandtheireffectonhouseholds/2022-02-01 (visited on
Jan. 8, 2023) (cit. on p. 16).

[57] J. Marsh. „How many watts does an electric car charger use? | EnergySage Blog.“
(Mar. 2022), [Online]. Available: https://news.energysage.com/how- many-
watts-does-an-electric-car-charger-use/ (visited on Dec. 9, 2022) (cit. on
p. 28).

[58] CBS. „De energierekening in januari 2022: hogere leveringstarieven en lagere be-
lastingen.“ (Feb. 2022), [Online]. Available: https : / / www . cbs . nl / nl - nl /
longread/rapportages/2022/de-energierekening-in-januari-2022-hogere-
leveringstarieven-en-lagere-belastingen/4-verschillen-tussen-huishoudens
(visited on Jan. 11, 2023) (cit. on pp. 28, 29).

[59] Milieu Centraal. „Gemiddeld energieverbruik in Nederland.“ (), [Online]. Avail-
able: https://www.milieucentraal.nl/energie- besparen/inzicht- in- je-
energierekening/gemiddeld-energieverbruik/#gemiddeld-energieverbruik-
verschilt-per-huis-en-aantal-bewoners (visited on Jan. 11, 2023) (cit. on
p. 28).

[60] StroomVanDeZon. „1 of 3 fasen groepenkast.“ (), [Online]. Available: https://
stroomvandezon.nl/1-fase-of-3-fasen-groepenkast/ (visited on Dec. 9, 2022)
(cit. on p. 28).

[61] „Mogelijkheden voor koken op inductie | Koken op inductie.“ (), [Online]. Available:
https://www.kookinductie.nl/mogelijkheden/ (visited on Dec. 9, 2022) (cit. on
p. 28).

[62] Engie. „1-fase of 3-fase laadpaal | ENGIE.“ (), [Online]. Available: https://www.
engie.nl/product-advies/laadpalen/orientatie/1-fase-3-fase-laadpaal#/
(visited on Dec. 9, 2022) (cit. on p. 28).

[63] ElaadNL. „V2G: the Power Recycling Car.“ (2023), [Online]. Available: https://
elaad.nl/projecten/v2g-the-power-recycling-car/ (visited on Jan. 7, 2023)
(cit. on p. 29).

[73] KNMI. „Open Data API.“ (), [Online]. Available: https://api.dataplatform.knmi.
nl/open-data (visited on Oct. 18, 2022) (cit. on p. 45).

[74] „Welcome - KNMI Data Platform - KNMI Data Platform.“ (), [Online]. Available:
https://dataplatform.knmi.nl/nl/ (visited on Aug. 23, 2022) (cit. on pp. 45, 46,
101).

[75] „KNMI - Automatische weerstations.“ (), [Online]. Available: https://www.knmi.
nl/kennis- en- datacentrum/uitleg/automatische- weerstations (visited on
Aug. 23, 2022) (cit. on p. 45).

112 Bibliography

https://machinelearningmastery.com/gentle-introduction-box-jenkins-method-time-series-forecasting/
https://machinelearningmastery.com/gentle-introduction-box-jenkins-method-time-series-forecasting/
https://www.ons.gov.uk/economy/inflationandpriceindices/articles/energypricesandtheireffectonhouseholds/2022-02-01
https://www.ons.gov.uk/economy/inflationandpriceindices/articles/energypricesandtheireffectonhouseholds/2022-02-01
https://news.energysage.com/how-many-watts-does-an-electric-car-charger-use/
https://news.energysage.com/how-many-watts-does-an-electric-car-charger-use/
https://www.cbs.nl/nl-nl/longread/rapportages/2022/de-energierekening-in-januari-2022-hogere-leveringstarieven-en-lagere-belastingen/4-verschillen-tussen-huishoudens
https://www.cbs.nl/nl-nl/longread/rapportages/2022/de-energierekening-in-januari-2022-hogere-leveringstarieven-en-lagere-belastingen/4-verschillen-tussen-huishoudens
https://www.cbs.nl/nl-nl/longread/rapportages/2022/de-energierekening-in-januari-2022-hogere-leveringstarieven-en-lagere-belastingen/4-verschillen-tussen-huishoudens
https://www.milieucentraal.nl/energie-besparen/inzicht-in-je-energierekening/gemiddeld-energieverbruik/#gemiddeld-energieverbruik-verschilt-per-huis-en-aantal-bewoners
https://www.milieucentraal.nl/energie-besparen/inzicht-in-je-energierekening/gemiddeld-energieverbruik/#gemiddeld-energieverbruik-verschilt-per-huis-en-aantal-bewoners
https://www.milieucentraal.nl/energie-besparen/inzicht-in-je-energierekening/gemiddeld-energieverbruik/#gemiddeld-energieverbruik-verschilt-per-huis-en-aantal-bewoners
https://stroomvandezon.nl/1-fase-of-3-fasen-groepenkast/
https://stroomvandezon.nl/1-fase-of-3-fasen-groepenkast/
https://www.kookinductie.nl/mogelijkheden/
https://www.engie.nl/product-advies/laadpalen/orientatie/1-fase-3-fase-laadpaal#/
https://www.engie.nl/product-advies/laadpalen/orientatie/1-fase-3-fase-laadpaal#/
https://elaad.nl/projecten/v2g-the-power-recycling-car/
https://elaad.nl/projecten/v2g-the-power-recycling-car/
https://api.dataplatform.knmi.nl/open-data
https://api.dataplatform.knmi.nl/open-data
https://dataplatform.knmi.nl/nl/
https://www.knmi.nl/kennis-en-datacentrum/uitleg/automatische-weerstations
https://www.knmi.nl/kennis-en-datacentrum/uitleg/automatische-weerstations

[77] HSMA. „Bonus Lecture. Time Series Cross Validation.“ (Mar. 2020), [Online]. Avail-
able: https://www.youtube.com/watch?v=g9iO2AwTXyI (visited on Jan. 16, 2023)
(cit. on p. 64).

[78] L. Jiang. „A Visual Explanation of Gradient Descent Methods (Momentum, AdaGrad,
RMSProp, Adam).“ (Jun. 2020), [Online]. Available: https://towardsdatascience.
com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-
rmsprop-adam-f898b102325c (visited on Jan. 16, 2023) (cit. on p. 67).

[79] A. L. Chandra. „Learning Parameters, Part 5: AdaGrad, RMSProp, and Adam.“
(Sep. 2019), [Online]. Available: https://towardsdatascience.com/learning-
parameters-part-5-65a2f3583f7d (visited on Jan. 16, 2023) (cit. on p. 67).

[80] V. Bushaev. „Understanding RMSprop — faster neural network learning.“ (Sep. 2018),
[Online]. Available: https://towardsdatascience.com/understanding-rmsprop-
faster-neural-network-learning-62e116fcf29a (visited on Jan. 16, 2023) (cit.
on p. 67).

[81] R. Bhat. „Gradient Descent With Momentum.“ (Oct. 2020), [Online]. Available:
https://towardsdatascience.com/gradient-descent-with-momentum-59420f626c8f
(visited on Jan. 16, 2023) (cit. on p. 67).

Webpages 113

https://www.youtube.com/watch?v=g9iO2AwTXyI
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/learning-parameters-part-5-65a2f3583f7d
https://towardsdatascience.com/learning-parameters-part-5-65a2f3583f7d
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/gradient-descent-with-momentum-59420f626c8f

List of Figures

1.1 Average day load profile for the “average” household (average over all
houses in the GridFlex data set [10]) 2

1.2 Household total power consumption over a two years period: from
2018-08-01 to 2020-08-31, for six households from the GridFlex data
set [10] . 4

1.3 Household average daily consumption 6

2.1 Load profile of a randomly selected day (2020-04-10) of the aggregation
of all households versus four randomly selected single households (23,
41, 43, 62), of the GridFlex data set [10] 13

2.2 Prediction Error (RMSE) for different levels of aggregation, from [30] 14

2.3 Example feed-forward ANN with two neurons in the input layer, three
neurons in the hidden layer, and two neurons in the output layer, from
[51] . 20

3.1 Determining the market clearing price, from [64] 32

4.1 The percentage (%) of missing data points (minute-values) for each of
the households in the GridFlex data set [10] 39

4.2 The percentage (%) of NaN values for each variable and for each of the
households in the GridFlex data set [10] 39

4.3 The number of NaN values distributed over time and grouped by day,
that occur in all the households (intersection) in the GridFlex data set
[10] . 40

4.4 The percentage of NaN values (%) distributed over time and grouped
by month, that occur in some households in the GridFlex data set [10] 41

4.5 Number of outliers per household of the GridFlex data set [10] 42

4.6 Winsorization method according to 6 ∗ IQR rule, for household 29. . . 43

4.7 Number of outliers over time for household 25, grouped by day. 44

4.8 Winsorization method according to 6 ∗ IQR rule based on the previous
month, for household 29. 44

4.9 Weather Correlations . 48

115

4.10 Autocorrelation of the electricity consumption of the average house
(average over all houses from the Gridflex data set [10]) for different
lags. Each graph zooms in on a different period of time (one hour, one
week, one month, three months, one year, two years, respectively) . . . 50

4.11 Autocorrelation of the electricity consumption of the average house
(average over all houses from the Gridflex data set [10]) for different
lags in a period of a month. The blue and green lines display the peak
and valley (resp.) envelopes. The blue envelope is shown separately in
the graph on the right. 51

4.12 Lag relevance for prediction. “Shifting” the autocorrelation plot for
each prediction. 51

4.13 ANN input layer . 54

5.1 At time t = 96, the MODEL is first trained (shown in 5.1a) using the
scheduled prediction in the queue planning and then makes a new
prediction which is added to the queue planning (shown in 5.1b) . . . 57

5.2 Rolling horizon . 59

5.3 Multivariate forecasting (multi-step) ANN architecture 60

5.4 Iterative forecasting (one-step) ANN architecture 61

5.5 Multi-model forecasting ANN architecture 62

5.6 Hybrid multi-model multivariate forecasting ANN architecture 62

5.7 k-fold cross validation . 63

5.8 Start up effects for predictions with different learning rates (House 29) 65

5.9 Feedback sensitivity for predictions with different learning rates (House
29) . 66

6.1 Error versus standard deviation of the load profile 76

6.2 Distribution of errors for house 8, 26, 28, 29, 51, 52. 77

6.3 Startup effects when applying different architectures of the forecasting
model to the load of House 28 . 79

6.4 Error over time for different forecasting model architectures for house
8, 26, 28 . 80

6.5 Error over time for different forecasting model architectures for house
29, 51, 52 . 81

6.6 Aligning forecast windows p⃗t for all t ∈ {1, ..., T} 82

6.7 Mean (left) and median (right) absolute error for each component of p⃗t

(96 in total), averaged over house 8, 26, 28, 29, 51, 52, based on the
full two years, for different forecasting model architectures 82

6.8 The average mean (left) and median (right) error for a prediction of
the load at time t across different forecast windows pt−i,i (i ∈ {1, ..., 96}) 83

6.9 Aggregation of all 76 households from the GridFlex data set [10], for
the first two months (August and September) 85

116 List of Figures

6.10 Mean absolute error for each component of the synthetic prediction p⃗′
t

(96 in total) . 87

6.11 Perfect predictions . 89

6.12 Predictions from the proposed forecasting model using the hybrid archi-
tecture . 90

6.13 Synthetic predictions . 92

6.14 Perfect predictions . 94

6.15 Predictions from the proposed forecasting model using the hybrid archi-
tecture . 95

6.16 Synthetic predictions . 96

List of Tables

1.1 Six houses, randomly picked from the GridFlex data set [10]. For each
house, the table indicates whether it has solar panels or a battery . . . 5

2.1 Forecasting Horizons and their applications 17

3.1 Data from CBS [58]. Average power consumption per year (kWh). *A

terraced house also includes corner houses or semi-detached houses. Also, only houses with a gas connection are considered . 29

4.1 Variable descriptions of a selection of variables from the GridFlex data
set [10] . 40

4.2 Weather Variable descriptions from seven data sets of the KNMI [74] . 46

4.3 Minutes at which the energy data of the GridFlex data set [10] and
weather data of KNMI [74] are sampled. 46

4.4 Lag variables . 52

4.5 Window variables used to incorporate historic total electricity consumption 52

4.6 Trend variables . 53

4.7 Time variables . 54

5.1 Discrete set of hyperparameter values that were evaluated exhaustively
in each of the three grid searches . 68

6.1 Absolute error statistics for different houses and forecasting model
architectures . 75

6.2 Battery Scenario . 88

6.3 Realistic Neighbourhood scenario . 93

117

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Energy Transition
	1.2 Problem Statement And Contribution
	1.2.1 Forecasting For A DSM Algorithm
	1.2.2 Variation Between Houses
	1.2.3 Volatility Within Household Load Profile
	1.2.4 Objective

	1.3 Research Questions
	1.4 Thesis Structure

	2 Forecasting
	2.1 Introduction
	2.2 Electricity Consumption Forecasting
	2.2.1 Seasonality And Trends
	2.2.2 Scale And Aggregation
	2.2.3 Exogenous Variables
	2.2.4 Forecasting Horizon

	2.3 Time Series Forecasting Models
	2.4 Artificial Neural Networks (ANN)
	2.4.1 Introduction
	2.4.2 Background
	2.4.2.1 Definition
	2.4.2.2 Hyperparameters

	2.4.3 ANN Architectures In Energy Context
	2.4.3.1 Input Configuration
	2.4.3.2 Output Configuration

	2.5 Evaluation Metrics

	3 Demand Side Management
	3.1 Introduction
	3.2 Introduction To DSM
	3.2.1 EV Example
	3.2.2 Vehicle To Grid (V2G)
	3.2.3 Different Flexible Devices
	3.2.4 Forecasting

	3.3 Smart Grids
	3.4 Energy Management Systems (EMS)
	3.5 Optimization Strategies
	3.6 Control Versus Planning
	3.7 The EV Charging Problem
	3.7.1 Valley-Filling Using A Fill-Level
	3.7.2 Fleet Planning

	3.8 Profile Steering
	3.8.1 The Profile Steering Algorithm
	3.8.2 Asynchronous Event-Driven Profile Steering

	4 Model Input
	4.1 Introduction
	4.2 GridFlex Data
	4.3 Data Cleaning
	4.3.1 Missing Values
	4.3.2 NaN Values
	4.3.3 Imputation Strategy
	4.3.4 Time Frequency Conversion
	4.3.5 Detecting And Handling Outliers

	4.4 Feature Engineering
	4.4.1 Weather Data Correlation Analysis
	4.4.2 Historic Data Correlation Analysis
	4.4.2.1 Lag Variables
	4.4.2.2 Window Variables
	4.4.2.3 Trend Variables

	4.4.3 Time Data
	4.4.4 Overview Of Forecasting Model Input Variables

	5 Prediction Model Structure
	5.1 Introduction
	5.2 Rolling Horizon
	5.3 Forecasting Model Architecture
	5.4 ANN Design Choices
	5.4.1 Cross Validation
	5.4.2 Hyperparameter Choices

	5.5 Predictions For Profile Steering
	5.5.1 Battery Scenario
	5.5.2 Realistic Neighbourhood Scenario

	6 Results and Discussion
	6.1 Introduction
	6.2 Forecasting Performance
	6.2.1 Comparison Of ANN Architectures For Different Households
	6.2.2 Performance Convergence
	6.2.3 Forecasting Horizon
	6.2.4 Aggregation

	6.3 Profile Steering Simulation
	6.3.1 Battery Scenario
	6.3.2 Realistic Neighbourhood Scenario

	7 Conclusions And Future Work
	7.1 Introduction
	7.2 Conclusions
	7.3 Recommendations For Future Work
	7.3.1 Historic Electric Consumption Data Selection
	7.3.2 Different Forecasting Model Architectures
	7.3.3 Other Machine Learning Algorithms
	7.3.4 Dynamic Hyperparameters
	7.3.5 The Fill-Level
	7.3.6 Load Volume And Upcoming Interval
	7.3.7 Separate PV Predictor And Operational Control

	Bibliography
	Colophon

