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Abstract

This paper considers the problem of energy efficiency in data centers. This subject
was chosen because a lot big part of the global energy consumption comes from data
centers [23]. It would be beneficial for the data centers to implement algorithms that
reduce the energy consumption. This would also be beneficial for every one because
less energy would be used which is better for the environment. In this research some of
the literature regarding this subject is categorized per server type, arrival assumption
and type algorithm. Also, an online deterministic algorithm considering heterogeneous
servers is chosen to investigate further. This is done by implementing the algorithm in
Python and multiple simulations are run.

Keywords: Scheduling, Energy efficiency, Data center, Speed scaling, Power down,
Poisson, Homogeneous, Heterogeneous

1 Introduction

Almost every one nowadays uses the internet. Some use it for work others for recreational
purposes. One thing is certain we cannot function without internet. Most of these compu-
tational tasks given by people are processed in data centers and these data centers use a lot
of energy when doing this.
In 2018 around 1% of global energy consumption was attributed to data centers [23] While
there has been a strong increase in demand for data center services, the energy consumption
has not grown much [16]. This is partly due to existing energy efficient algorithms. Proba-
bly, the use of data-center services will only increase the coming years and the improvement
of these energy efficient algorithms will help to keep this energy consumption from increas-
ing to absurd amounts.
Also, for data centers it would be beneficial to make use of more energy efficient algorithms
simply because electricity is the relatively highest expense of the data center [2][1]. So the
less energy they use the more profit they can make. The prices of electricity have also been
rising significantly from mid-2020 until now and this trend could continue [3]. This is even
more of an incentive for the data centers to use or make these energy efficient algorithms.
The last reason why my research is of importance to everyone is that it will be better for
the environment if data centers use less energy. Because data centers are such large energy
consumers, decreasing their energy consumption would also significantly help decrease the
global energy consumption. Which would overall be better for the environment and thus be
in everyone’s interest.
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1.1 My contribution

The first part of my research is a literature review of papers that I believe can be useful in
the research of energy efficient scheduling in data centers. These papers are categorized in
section 2 by their server type and because each model considers some kind of server(s) all
papers will be discussed here. The papers are also categorized in section 3 per their arrival
assumption if they have one and in section 4 the papers are categorized per type algorithm.
Then in section 5 the second part of my research will be explained, this is the practical
part. For my experiment I the algorithm from [7] to look into further and I did this by
implementing it in Python and running multiple simulations with different arrival patterns.
Finally, the paper is concluded in section 6 where my conclusions are summarized.

2 Server type

In this section all papers will be mentioned that I looked into because each of them considers
either homogeneous, heterogeneous servers or a single server. The difference between ho-
mogeneous and heterogeneous servers is that homogeneous servers are all considered equal,
which means they have the same characteristics regarding job processing and heterogeneous
servers are considered different per server or server type. From this categorization I noticed
that most of the literature I found was considering the single server case. This is quite
logical because it all started with one device, one server, that could process assignments, so
the single server case has been around longer than the multiple server case. For the multiple
server case the amount of papers considering the homogeneous and heterogeneous servers is
fairly divided.

2.1 Homogeneous

In this section all papers are discussed that consider homogeneous servers or something that
can be resembled as homogeneous servers, like homogeneous nodes.

Dynamic power allocation in server farms a real time optimization approach
This paper first formally defined the average power minimization problem as an optimiza-
tion problem. Then, because this problem is hardly tractable a reformulation is given as a
tractable optimal control problem that can be solved using the two-stage real-time optimiza-
tion approach. For this optimal control problem a sub-optimal dynamic power allocation
policy is proposed.
The server farm that is considered consists of M homogeneous servers all sharing workload
and power supply. Incoming jobs are queued at an available server according to the task
assignment policy. This task assignment policy is that an incoming job will go to the least
busy server. This is allowed because of the assumption that the jobs are first split into
equally sized task units and therefore all jobs have the same size. Simulations are done to
compare the proposed algorithm with optimal static power allocation. The optimal static
is better as workload rate changes become faster and more abrupt. However, under a con-
dition called slowly varying job arrival rate the proposed algorithm performs better than
the optimal static solution. This slowly varying arrival rate is typically satisfied in server
farms. [5] Why the choice was made for homogeneous servers is not completely clear to me
but I think it is because of simplicity.

Dynamic Right-Sizing for Power-Proportional Data Centers
This paper investigates a new online power down algorithm based on the optimal offline
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solution, which exhibits a "lazy" structure when viewed in reverse time. The new al-
gorithm called Lazy Capacity Provisioning(LCP) has similarly to the optimal solution a
"lazy" structure, this means that it stays within upper and lower bounds. However, LCP
does this moving forward in time instead of backwards like the optimal solution does. This
new algorithm is proven to be 3-competitive under arbitrary workloads, general delay cost
and general energy cost models provided that they result in a convex operating cost. How-
ever, in practice the algorithm seems to be nearly optimal which is also backed up by the
experiments that were performed with two real load traces. [20] The model that is discussed
is also very general and very similar to the one discussed in [7] except that here the assump-
tion of homogeneous servers is made. This new algorithm is based on Receding Horizon
Control which is a ’well-known’ online policy and this could be beneficial because there is
more research done on this policy. Why the choice is made for homogeneous servers is not
clear.

Minc Heterogeneous concentration policy for energy aware scheduling of jobs with re-
source contention
In this paper it is assumed that there are j different type of jobs and m homogeneous servers
are available. Now the problem that is addressed is to which server each incoming job has to
go to. So, the problem is job allocation. Minc is an utilization aware algorithm which allo-
cates job j to the machine with minimum concentration of jobs of the same type at time rj ,
where rj is the release time of job j. According to the simulation results in this paper this is
the best algorithm to minimize the power consumption. Utilization aware means that there
is some CPU utilization information available. Also, two different types of algorithms are
investigated in this paper namely, energy aware and knowledge free, which works with power
consumption information and no information about applications and resources respectively.
[8] It is interesting that a utilization aware algorithm is optimal for energy minimization as
you would probably think that it would be an energy aware algorithm. Also, many different
algorithms are investigated here which is not something most papers do. Why the choice is
made for homogeneous servers is not clear.

Minimizing energy on homogeneous processors with shared memory
In this paper the energy efficient task scheduling problem is considered with multiple ho-
mogeneous cores and the main memory power shared. It is assumed that the number of
tasks is larger than the number of cores and each task has to be assigned to a single core.
Because this problem is NP-hard, an approximation algorithm is designed in this paper to
obtain a near-optimal performance. Before the approximation algorithm is given, an opti-
mal polynomial time algorithm is presented where the assignment of tasks to cores is given.
It is also assumed that each core has an individual voltage supply and the speed changes in
a continuous fashion. The choice of speed is part of the algorithm and is determined for a
block of tasks. All tasks are available from the beginning thus the algorithm is offline and
a schedule is considered feasible if all tasks are finished before their deadlines. In addition,
the optimal algorithm is given for the single core case to base the approximation algorithm
on. [10] Why the choice is made for homogeneous servers is not clear.

Optimality analysis of energy-performance trade-off for server farm management
The objective of the paper is to analytically address optimizing the Energy Response time
Product (ERP) metric in server farms. The ERP is given by ERP π = E[P π] ·E[T π] where
E[P π] is the long-run average power consumed under a control policy π and E[T π] is the
mean customer response time under a control policy π. This metric implies that a reduction
in mean response time from 2 s to 1 s is a lot better than a reduction from 1001 s to 1000
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s, which is not something that another popular metric called ERWS can do even though
it is more realistic. The results in this paper are some optimal power down policies for a
single server with Poisson arrivals and some near optimal power down policies with Poisson
arrivals with unknown arrival rate. Also, for the multiple homogeneous server case with
known Poisson arrivals some near optimal power down policies are given and finally this
was also done for the case considering a time-varying arrival pattern. In addition, some
guidelines are given such that an efficient server farm management policy can be chosen
more easily. [13] These guidelines could be very convenient in practice. The policies that
are researched here are not too complicated but effective, backed up by analysis and exper-
iments. The single server case is here used as a set up to the multi server case that is why
I put this paper under the homogeneous server category and not the single server category.
Why they chose here for homogeneous servers is not completely clear to me but I think it
is because of simplicity.

Structural properties and exact analysis of energy-aware multiserver queueing systems
with setup times
The first thing that is done in the paper is several key structural properties are derived
belonging to optimal policies under linear cost functions. Then two specific policies having
these properties were analysed. These policies are bulk setup and staggered threshold. More
detail about these policies will be given in section 4.1. An exact analysis was performed for
these policies using the Recursive Renewal Reward technique. Also some experiments were
done with the two different policies to find out the best number of servers to always keep on.
[22] This paper gives a good insight in the staggered threshold and bulk setup policies, with
both analysis and experiments to back up results. Why the choice is made for homogeneous
servers is not clear.

2.2 Heterogeneous

In this section all papers considering heterogeneous server will be discussed. What is inter-
esting to see here is that if a cloud environment is considered it will be highly likely that
heterogeneous servers are assumed because that is that structure of a cloud environment.
So, it is almost certain that when a cloud environment is discussed, heterogeneous servers
are assumed.

A green policy to schedule tasks in a distributed cloud
In this paper a new green policy is given for scheduling tasks in a volunteer cloud envi-
ronment. To solve this optimization problem one algorithm that is considered is called the
Alternating Direction Method of Multipliers. A distributed method of scheduling of tasks is
almost necessary because of the complexity of the volunteer cloud. It is large scale, servers
can leave and join the volunteer cloud at any time without warning and each device has dif-
ferent properties which determines what tasks it can and cannot process. The green policy
is tested against a task greedy policy and from the numerical results can be concluded that
the green policy does save energy without having significant losses in other performance
parameters which are not related to energy consumption. [27] Cloud computing could be
really useful as it uses devices that already exist and have some memory left for other ser-
vices. So no need for new servers. The choice for heterogeneous servers was made because
they wanted to research a volunteer cloud system which consists of different devices which
can be represented as heterogeneous ’servers’.

4



A Dynamic and Energy Efficient Greedy Scheduling Algorithm for Cloud Data Centers
In this paper an algorithm is proposed to schedule tasks dynamically with higher energy
efficiency. This algorithm is based on an integer programming optimization problem. [26] It
is not really possible to conclude anything from this paper because it is so poorly written.
This also makes me hesitant about trusting that they did the simulations correctly and thus
whether to rely on these results. Why they make use of heterogeneous servers is not clear
from the paper but it is probably because it is an characteristic of a cloud data center.

A Lightweight Optimal Scheduling Algorithm for Energy-Efficient and Real-Time Cloud
Services
In this paper the algorithm that is presented is an expansion of an algorithm that was cre-
ated in their previous work based on multiprocessors. The new algorithm presented here
has an improved time complexity from Ω(N3logN) to O(N2) in comparison to their old al-
gorithm. This improvement could be made by providing a different method for constructing
a new structure of the flow network and designing a solver. From the experimental results
can be seen that this new algorithm performs better regarding time complexity and energy
efficiency, compared to their old algorithm. [28] This flow network representation is different
from most papers and could be interesting to look into more. I am actually not completely
sure they assume heterogeneous servers but I think they do because in their related work
they talk about a similar model with heterogeneous servers and a cloud environment typi-
cally deals with heterogeneous servers. However, some simulations were done to find out the
number of active servers that are necessary to process all tasks in time, which is typically
something for homogeneous servers.

Algorithms for energy conservation in heterogeneous data centers
In this paper, it is studied how a data center with heterogeneous servers can dynamically
be right-sized to minimize the energy consumption. A deterministic online algorithm is
presented that has a competitive ratio of 2d and a randomized version of the algorithm is
presented which has a competitive ratio of 1.58d, where d denotes the number of server
types. This paper discusses the following problem, a data center is considered with d dif-
ferent server types and there are mj servers of each type j. Each server type has its own
switching cost and operating denoted by βj and lj respectively. These costs are ordered
like l1 > . . . > ld and β1 < . . . < βd which means each server type has unique operating
and switching costs. A finite time horizon is considered with time slots t ∈ {1, . . . , T} and
during each time slot a job volume of λt ∈ N0 arrives and has to be processed completely.
Each server can process one job per time slot independent of server type. [7] The exact
details of this algorithm are discussed in section 5 as it is the subject of my experiment.
It is a very clear paper which explains the algorithms very elaborate. They have found
the optimal online deterministic algorithm for their assumptions so this could be a great
basis to compare the same algorithm with slightly different assumptions. In this paper the
choice for heterogeneous servers was very conscious. They chose for heterogeneous servers
because in reality most data centers consist of heterogeneous servers. Data centers can have
old servers, new servers and different types of servers that all have different operating and
switching costs. Another reason that is given for researching heterogeneous servers is that
there has not been a lot of research regarding this case.

An approach to reduce energy consumption and performance losses on heterogeneous
servers using power capping
In this paper a heterogeneous microserver appliance is considered which is not exactly a data
center but the methods used in the paper could be scaled to be applied to a data center.
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Power capping is not explicitly a method of saving energy because it means that a fixed total
amount of power is used and this is distributed over the available servers. However, if it is
combined with some energy saving algorithm the same amount of power is used while more
jobs can be processed so it is then beneficial to use such an algorithm. In this case the basic
power management algorithm consists of a power capping procedure and an energy saving
procedure, these run simultaneously. Then two power distribution algorithms are proposed
to improve the energy efficiency of the basic power management algorithm. One greedy
algorithm and an exact optimization algorithm using a Mixed Integer Linear Programming
(MILP) solver are proposed. However, the MILP solver is not suitable for the power capping
procedure as this method has to act as fast as possible when the power budget is exceeded
and this MILP solver is not fast enough for this. So, the exact optimization algorithm with
the MILP solver will only be applied to the energy saving procedure of the algorithm and
the greedy algorithm will be applied to the power capping procedure. To evaluate these
algorithms also two simple power capping algorithms are defined called random and sim-
ple. Several simulations are done and from the results can be concluded that the proposed
algorithms improve energy efficiency compared to no power capping and the simple and
random power capping algorithms. Also the performance losses were decreased significantly
in comparison to the random and simple power capping. [11] The choice of heterogeneous
nodes was made because of the specific system that was chosen to investigate .

Energy efficient scheduling via partial shutdown
In this paper a collection of new problems regarding energy saving in data centers is defined
and are called machine activation problems. It is assumed that there is a collection of m
machines with each having activation cost ai for machine i and there is a collection of n
jobs that have to be processed. The processing time of job j on machine i takes pi,j time.
Different from the standard scheduling models is that here it is assumed that there is an
activation cost budget A and we would like to select a subset S of the machines to activate
such that a(S) ≤ A and find a schedule minimizing the makespan, which is the total time
required to execute the jobs via the schedule. Also, the setting with uniformly related ma-
chines is considered which means that the processing time of job j depends on the machine
i and is pi,j = pj/si. The results that are given are several approximation algorithms with
different competitive ratios for both the related and unrelated machines case. Also a version
of the problem is considered where not all jobs have to be processed but each job j that is
processed has benefit πj and at least total benefit Π has to be obtained. [17] The choice for
heterogeneous servers was made because the problem that is discussed here is based upon
more studied basic problems like the uniform machine scheduling problem in which they
assume heterogeneous servers.

Energy efficient scheduling in data centers
The goal of the paper is to reduce capital as well as operational costs of a tiered data center
by implementing energy efficient scheduling algorithms. A tiered data center will typically
consist of a load dispatcher which will direct an incoming job to the appropriate tier and
on each tier there will be servers that function similarly. In this paper several strategies are
given to tackle the dynamic server provisioning problem for deferrable jobs, these are jobs
that do not have to be processed by one specific server. Two optimization problems are
defined namely the joint minimization of the capital, operational and switching costs and
the minimization of only the operational and switching cost, the respective algorithms are
called CapexOpexMin and OpexMin. These problems are solved with a technique called
Model Predictive Control also know as Receding Horizon Control, this method is also used
to create an algorithm in [20]. A discrete time model is considered. The capital costs are
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mainly influenced by the peak server provisioning cost, so reducing these costs will directly
decrease the capital costs. Several simulations were done with these algorithms and they
were compared to each other and their optimal offline adversary. The algorithms were eval-
uated based on Cumulative Electricity Cost (CEC), Cumulative Renewable Consumption
(CRC) and Cumulative Number of Switchings(CNS). The results summarized are that the
CapexOpexMin algorithm gives a reasonable balance between the three parameters men-
tioned before. [24] This paper’s main focus seemed to be on a realistic scenario so that
explains that the choice was made for a tiered data center which has heterogeneous servers.

Energy-aware dispatching in parallel queues with on-off energy consumption
A queue assignment problem is considered in this paper where each queue can resemble a
different server type. The servers can also be turned off to save energy. The results that
are given in this paper is a dispatching policy based on the first policy iteration principle.
The first policy iteration principle is that a first or basic policy is chosen at the start and
this policy is improved at every iteration and it will converge to the optimal policy. For
this problem the basic policy that was chosen allocates the jobs to the servers such that the
arrivals in each queue are independent Poisson processes and each queue is an independent
M/G/1 queue. There are two two-queue examples given to demonstrate how the policy
works and that their policy has improved the results in comparison with a basic policy and
a myopic policy, a policy is myopic if it does not consider the effects of future jobs. This
policy can work not only for Poisson arrivals but also for other arrival processes. [25]I think
that it would be useful if some more experiments were done to see how much better this
policy performs over another policy. In this paper the choice for heterogeneous servers was
made because the energy aware dispatching problem especially arises with these kind of
servers. That is because you need a reason to choose a certain server for a job.

2.3 Single server

In this section all papers regarding single servers will be discussed. What was most in-
teresting I observed in this category is that most single server models use a speed scaling
algorithm as a solution for energy minimization. This is not unexpected because if you have
a single server then turning it on and off, like in a power down algorithm, might not be as
beneficial as changing the speed of the server. Sometimes however the server has not the
option to run with different speeds so then a power down algorithm is the only option to
reduce energy consumption.

A scheduling model for reduced CPU energy
In this paper a simple model is considered namely a single variable speed processor and
each incoming job has to be processed between its arrival time and deadline. An offline
algorithm is given that computes the optimal schedule for any set of jobs and the only
restriction for the power consumption function is that it has to be convex. Then the online
case is considered and the average rate heuristic is designed for this. How this heuristic
works is discussed in section 4.2. Some more analysis is done for the average rate heuristic
which includes but is not limited to an analysis of the competitive ratio of the algorithm for
different power consumption functions. [32] It is also mentioned that some simulations have
been done but there are no details about these simulations other than some conclusions that
could be drawn from them. I am not sure if this is flaw of the paper or if the details are not
mentioned because they are not useful for the reader. I belief that there could be several
reasons the details of the simulations are not mentioned namely, it is a conference paper
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and such details are then not too interesting. This paper is one of the older ones regarding
this subject, it is from 1995 and maybe at that time running this kind of simulation could
only be done on a certain kind of device so why mention this if it is set for every one or
they simply did not think that it was interesting to mention the simulation details. Another
possibility for not mentioning these details is that they do not know what they are, as said in
the acknowledgements someone else performed the simulations for them. However, despite
not knowing the details of the simulation I do not think that the quality of the paper is
harmed by this. In this paper they chose for a single server model because the paper does
not consider data centers, it is about a single device like a computer that has to process jobs.

Algorithms for power savings
In this paper two algorithms are designed one dynamic speed scaling algorithm without a
sleep state(DSS-NS) and one dynamic speed scaling algorithm with a sleep state(DSS-S).
When the system is in this sleep state it will consume less power but a fixed amount of
energy is required to transition back to the on state. The power is here a convex function
of the speed denoted by P(s), such that P(s)/s is also a convex function. Both an off-
and online algorithm are given for the DSS-S problem where the offline algorithm has a
competitive ratio of 3. The online algorithm for the DSS-S problem makes use of an online
algorithm for DSS-NS. The assumption is made that the online algorithm for DSS-NS is
monotonic, which means that it only increases the speed at the arrival of a job. The AVR
algorithm discussed in [32] is actually the only competitive algorithm for DSS-NS right now
and it is also a monotonic algorithm. Both algorithms are analysed and the results are some
upper bounds for the competitive ratios. [15] In this paper servers or processors are not
really discussed but they discuss a system and it is left in the middle whether this system
consists of one or multiple servers. Because one system is discussed in this paper it fits
best in the category of a single server because they consider the one or multiple servers as
a single system.

Energy efficient online deadline scheduling
In this paper the classic online deadline scheduling problem is considered but with a slight
adaptation that the speed of the server is limited. The speed of the server can be adjusted
to any value in [0,T ] with T being the fixed maximum speed capacity of the server. It is
assumed that preemption is allowed. But with the assumption of a limited server speed it
is possible that the system becomes overloaded, which means that it might not finish all
jobs before their deadline. To solve this problem a job selection algorithm called FSA (Full
Speed Admission) is proposed and is combined with the speed scaling algorithm called OAT
(Optimal Available, at most T). These algorithms will be further discussed in section 4.2.
Furthermore, some analysis is done on the FSA algorithm and the FSA(OAT) algorithm
and some examples are given how the FSA and FSA(OAT) algorithm can be applied to
other cases and what the competitive ratios would be for those cases. [19] FSA(OAT) is
another speed scaling algorithm but it takes into account a more realistic assumption of
the server having a maximum speed. The competitive ratios are not too great but the case
that is considered is closer to reality in my opinion. We should also keep in mind that a
competitive ratio is a worst case scenario but there are no numerical results regarding this
algorithm so no conclusion can be drawn about the average performance. In this paper the
choice to consider a single server was made because their algorithm is based on a previous
research where a single server is considered with varying unbounded speed.

Energy efficient algorithms
This paper is kind of a summary of many different energy efficient algorithms. Most of the
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algorithms work for single server systems and some of the methods that are used are power
down and speed scaling. First two-state systems are considered, these are systems that are
either in an active state where they can process jobs or in a sleep state where no jobs can be
processed and no energy is consumed. The objective of the considered algorithms is to min-
imize energy consumption so the time delay that arises when going from a lower power state
to a higher power state is not taken into account. Apart from the power down and speed
scaling algorithms, that will be discussed in 4.1 and 4.2 respectively, multiple algorithms
are mentioned regarding the balancing of minimum response time and energy saving. One
algorithm is a solution to an offline power allocation problem and it is explained that the
online problem is a lot more complicated. Also a simple online strategy is mentioned where
jobs are processed in batches, it is explained that the computationally expensive scheduling
decisions only have to be made every now and then, which is better. Then the Shortest
Remaining Processing Time job allocation policy is discussed and that it is used in com-
bination with a speed scaling algorithm based on job count. There is also a small section
dedicated to papers that discuss algorithms that consider multiple server systems. Further-
more, there is touched upon the subject of wireless networks where the network topologies
are considered as well as the subject of data aggregation. For these subjects some more al-
gorithms are mentioned including the minimum spanning tree. [6] This paper is very clear,
elaborate and discusses many different algorithms and their complexities. This paper could
be a great starting point when researching energy efficient scheduling algorithms. In this
paper they chose mainly to investigate algorithms which consider single servers, this is just
because most available literature is still about the single server problem.

On optimal policies for energy-aware servers
This paper provides an elaborate analysis of a single server system where the server’s energy
state can be dynamically changed. This analysis is done with the use of queueing theoretic
tools and results. The system that is considered has four energy states namely, off, setup,
busy and idle. The system will only move from off to setup if a number of k jobs have
accumulated in the queue, where k can be chosen by the operator. The system will move
from idle to off after spending spending a certain amount of time being idle, this amount of
time is exponentially distributed with rate α, where α can be chosen by the operator. The
server spends an exponentially distributed time γ in setup before it can begin processing
jobs in the busy state, where the job processing times are exponentially distributed with
rate µ. This system is modelled as a continuous time Markov chain. [21] I think it is a
very elaborate analysis which could be helpful in finding an optimal policy. In this paper
the choice was made for the single server assumption because they want a broader analysis
including more metrics of the single server system and more cost functions examined. This
is also a solid basis for creating an optimal policy for a multiple server system which they
talk about briefly.

On the Gittins index for multistage jobs
This paper gives a more direct method on how to compute the Gittins index for sequential
multistage jobs. However, the paper itself also already says that usually the Gittins indices
are hard to compute so this is probably not the most useful paper. Also, in this paper the
objective is to minimize the mean delay so it has not really anything to do with energy effi-
ciency. However, this paper could maybe function as a basis for finding an energy efficient
policy as many papers consider the M/G/1 queue when finding energy efficient policies. [4]
They talk about a single server queueing system in this paper because they research the
Gittins index policy which is known to be optimal for the M/G/1 queue minimizing the
mean delay.
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Online speed scaling based on active job count to minimize flow plus energy
This model considers online scheduling algorithms that have the objective to minimize the
flow time as well as the energy consumption. Flow time is the time it takes to process a
job, so the time from arrival until it being finished. First the simple speed scaling algorithm
called AJC is analysed when coupled with an arbitrary sleep management algorithm, for the
case of multiple sleep states. The AJC algorithm works based on the Active Job Count and
changes speed discretely. Then the sleep management algorithm IdleLonger is introduced
and it is analysed when combined with an arbitrary speed scaling algorithm for both the
single and multiple sleep state case. Lastly, AJC and IdleLonger are combined to tackle
the problem of a server with a maximum speed and multiple sleep states. It is shown this
combined algorithm is O(1) competitive for flow plus energy. [18] This paper is very elabo-
rate and clear in my opinion. Why the choice for the single server assumption was made is
not clear. They do not discuss data centers so the single server assumption is not unjustified.

Optimal power allocation in server farms
Power allocation is similar to speed scaling because the more power is given to a server the
higher the speed of that server will be. In this paper the power to frequency relationship in
a single server is thoroughly researched. They found that this relationship is either linear
or cubic. These power to frequency relationships can also be useful for other speed scaling
algorithms. In this paper the focus lays mainly on the power-to-frequency relationship, with
this relationship and other important factors influencing the effect of power allocation, a
queuing theoretic model is made. The model predicts the mean response time considering
all these different factors and allows us to determine the optimal power allocation policy.
Also three different power allocation schemes are tested namely, PowMax, PowMed and
PowMin which means running the servers at their highest, intermediate or lowest power
level respectively. The conclusion is that for different scenarios a different power level is
optimal. [14]

Polynomial-time algorithms for minimum energy scheduling
The problem that is considered in this paper is an offline deadline scheduling problem with
a single server and preemptions are allowed. They investigate whether there is a solution
to this problem that can be solved in polynomial time. It is found that this is indeed the
case and they show step by step how this polynomial time algorithm is created. The basis
of their algorithm is minimum gap scheduling which means that the number of idle periods
is minimized, this is part of a power down algorithm. This minimum gap scheduling is done
with dynamic programming but with a special inversion method. [9] It is a very elaborate
paper but also very complicated to me, but I did not come across a lot of papers that con-
sider gap scheduling so it interesting to read about this different approach. They chose for
the single server assumption because that is what was done in the open problem they solved.

Power-aware Speed Scaling in Processor Sharing Systems
This paper extends the stochastic analysis of dynamic speed scaling. The focus lays on the
M/GI/1 queue under Processor Sharing (PS) scheduling. PS scheduling means that all jobs
in the system are processed simultaneously and all jobs receive the same fraction of the
capacity available, so all jobs are processed at the same rate. The reason why the focus
lays on PS is because it is a tractable model of current scheduling policies in CPUs, web
servers, routers, etc. according to the paper. Furthermore, there are three different speed
scaling algorithms researched in this paper each one being a little more dynamic than the
last one. They try to find out how much the energy efficiency improves with each dynamic
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improvement. This can help with finding the best dynamic speed scaling algorithm. The
performance metric considered in this paper is E[T ] + E[E]/β′, where E[T ] is the expected
response time of a job, E[E] is the expected energy spent on that job and β′ represents the
relative cost of delay. The results that are given are bounds on the performance of dynamic
speed scaling and for the speeds used by the optimal dynamic speed scaling scheme, for
the last case also asymptotics are given. From these results can be concluded that a simple
power down(gated static provisioning) scheme is almost as good as the optimal dynamic
speed scaling scheme. This is also backed up by numerical experiments, but from these
experiments it can be seen that an optimal dynamic speed scaling scheme has the benefit of
improved robustness to mis-estimation of workload parameters and bursty traffic. Also, a
connection was made between the optimal stochastic policy and results form the worst-case
community. [31] They use the single server assumption because they consider the M/GI/1
PS queue and this is a simple model. This paper is based on research they have done pre-
viously and for that research they used the same model.

Scheduling for reduced CPU energy
In this paper different speed scaling algorithms are tested by running simulations. The
speed scaling algorithms are further discussed in section 4.2. The algorithms that are sim-
ulated are not too interesting and their conclusion is also very general that speed scaling
is beneficial and that energy efficiency would greatly increase if there are better workload
prediction models available. [29] This paper really focuses on the CPU and its properties
and thus this paper might not be too interesting if data centers are considered. The choice
for a single server was made because they wanted to investigate the CPU.

Stochastic analysis of power-aware scheduling [30]
This paper is a successor of the paper [31]. It discusses almost completely the same things
including the same results except the focus is more on the gated static provisioning scheme
and the dynamic speed scaling. Also, some proofs are omitted. So, for further details about
the paper see the paragraph regarding "Power-aware speed scaling in processor sharing
systems".

3 Assumption arrival process

Most papers have the assumption of a Poisson process for the arrivals. Another possibility
is assuming a Markov modulated Poisson process or some other distribution for the arrival
process. And the easiest option is that just some random number of jobs arrive. What
I observed from this categorization is that all the papers that I came across and have an
arrival distribution are papers that do not consider heterogeneous servers. Which I found
surprising. I think a reason behind this is that most papers considering heterogeneous
servers try to model a situation as close to reality as possible. And most of them use then
data from the real world for simulations and therefore do not need an arrival assumption.

3.1 Poisson

In this section all papers assuming a Poisson arrival process for the jobs are mentioned.

Energy-aware dispatching in parallel queues with on-off energy consumption
The results that are given in this paper is a dispatching policy based on the first policy
iteration principle. For this problem the basic policy that was chosen allocates the jobs to
the servers such that the arrivals in each queue are independent Poisson processes. This is
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where the assumption of Poisson arrivals comes from. This policy can work not only for
Poisson arrivals but also for other arrival processes. [25]

On optimal policies for energy-aware servers [21]
This paper chose for Poisson arrivals because it is also very often used in other papers re-
garding this subject.

On the Gittins index for multistage jobs
It is quite logical this paper chose for Poisson arrivals because they make use of the fol-
lowing fact. The Gittins index policy is optimal in a tandem queue with Poisson arrivals
and fullly flexible and collaborative servers minimizing(among all nonanticipating control
policies) (i) the mean total delay and the mean total number of jobs in any case; (ii) the
mean holding costs for the special case; when the holding costs remain the same in each
station and there are no switching costs nor any switching delays and if the service times
in all stations belong to NBUE. Let NBUE refer to the family of service time distributions
with the New-Better-than-Used-in-Expectation property, i.e., M(a) M(0) for all a 0. [4]

Optimal power allocation in server farms
The assumption of Poisson arrivals is only used for for the open loop configuration which
means that jobs arrive from outside system and leave after its finished. The closed loop
configuration is also considered, in this case there is always the same number of jobs in the
system and thus no arrival assumption is necessary for this case. [14]

Optimality analysis of energy-performance trade-off for server farm management
Here the assumption of a Poisson arrival process is made for analytical tractability. In the
first part of this paper they assume a known fixed arrival rate and in the second part of the
paper they assume an unknown time varying arrival rate. [13]

Power-aware Speed Scaling in Processor Sharing Systems
This paper is in this category because it discusses an M/GI/1 queue under Processor Shar-
ing. [31]

Stochastic analysis of power-aware scheduling[30]
This paper is a successor of the paper [31]. So, for further details about the paper see the
paragraph regarding "Power-aware speed scaling in processor sharing systems".

Structural properties and exact analysis of energy-aware multiserver queueing systems
with setup times
The model that is studied is an M/M/C queue where each server can be powered down
without taking any time and can be powered up taking an exponentially distributed time.
[22]

3.2 Not Poisson

Not often a different arrival assumption is made than Poisson arrivals. I think this is the
case because Poisson arrivals are very well studied and a lot about them is known. However,
the paper that have an arrival assumption different from Poisson are mentioned here and
as you can see I did not find a lot of them.
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Dynamic power allocation in server farms a real time optimization approach
In this paper a Markov Modulated Poisson Process (MMPP) is used to describe the time-
varying job arrival process. This choice was made because it qualitatively models the time-
varying arrival rate and is still analytically tractable. The server farm that is considered
consists of M homogeneous servers all sharing workload and power supply. Incoming jobs
are queued at an available server according to the task assignment policy. [5]

4 Type algorithm

In this section the I distinguished the three most common types of algorithms that I encoun-
tered. These were the power down, speed scaling and power allocation algorithms. Now, for
some categories you might miss one of the papers that I discussed before, then the algorithm
was not really worth mentioning again in one of these categories.

4.1 Power down

A power down algorithm or right-sizing a data center is a very simple tactic to decrease the
energy consumption. This tactic is especially used in data centers with simple servers, that
is servers that can only be turned on or off. The downside of powering down idle servers is
that there is a big chance that it has to be powered up again at some point and this usually
comes with some cost or delay. In these algorithms there is often a threshold of time before
a server is powered down to make sure that it is worth it.

Algorithms for energy conservation in heterogeneous data centers
In this paper, it is studied how a data center with heterogeneous servers can dynamically
be right-sized to minimize the energy consumption. [7] The exact details of this algorithm
are discussed in section 5 as it is the subject of my experiment.

Algorithms for power savings
In this paper two algorithms are designed one dynamic speed scaling algorithm without a
sleep state(DSS-NS) and one dynamic speed scaling algorithm with a sleep state(DSS-S).
For the situation with a sleep state a power down algorithm is considered. This power down
algorithm works as follows, if the server is in the active state it stays in the active state
while there are jobs to process. When there are no more jobs the system becomes idle and
remains idle as long as possible until it has to become active again to be able to process
all jobs by their deadline at with speed scrit. scrit denotes the critical speed which is the
optimal speed if the switching costs were zero. [15]

Dynamic Right-Sizing for Power-Proportional Data Centers
The proposed online algorithm LCP(w) works as follows. LetXLCP (w) = (x

LCP (w)
0 , . . . , x

LCP (w)
T )

denote the vector of active server under LCP(w), where w is the prediction window. This
vector can be calculated using the following forward recurrence relation:

xLCP (w)
τ = 0 τ ≤ 0 xLCP (w)

τ = (x
LCP (w)
τ−1 )x

U,w
τ

xL,w
τ

τ ≥ 1

Where xL,wτ and xU,wτ are the lower and upper bound respectively.

Energy-aware dispatching in parallel queues with on-off energy consumption
The choice for a power down algorithm is made because not all server and network compo-

13



nents have the ability to change there processing speed and sometimes a simple power down
algorithm can already provide most of the energy savings possible. [25]

Energy efficient scheduling via partial shutdown [17]
This paper discusses an algorithm which is not exactly a power down algorithm but I would
categorize it as one. Instead of powering down idle servers they choose a subset of the avail-
able servers to power up and each server has its own activation cost. They cannot activate
all machines because of an activation cost budget.

Energy efficient algorithms
This paper is kind of a summary or many different energy efficient algorithms. Most of
them work for single server systems and some of the methods that are used are power down
and speed scaling. This paper discusses a few simple power down algorithms considering
two state systems and a couple algorithms which consider a system with multiple lower
power states. The simple power down algorithms discussed are a deterministic, after a set
amount of time in the idle period the server is powered down if the idle period continues. A
randomized algorithm, the time spend in an idle state before powering down is determined
according to a probability distribution. Also, one that considers a stochastic setting where
the duration of the idle periods is determined by a known probability distribution, in that
case the optimal algorithm is the deterministic algorithm. Another power down algorithm is
given which is called Lower-Envelope and it is basically a generalization of the deterministic
algorithm mentioned before. The last power down algorithm that is mentioned is also a
generalization but of the stochastic case given earlier. [6]

Online speed scaling based on active job count to minimize flow plus energy
In this paper the speed scaling algorithm AJC is combined with the power down algorithm
IdleLonger. The IdleLonger algorithm works as follows, when the server is in its working
state then if n(t) > 0 the server will stay in its working state continuing to process jobs,
else the server is switched to its idle state. When the server is in its idle state then t′ ≤ t
is the last time the server was in its working state. If the inactive flow over [t′, t] equals
(t−t′)σ then the server is switched to its working state, else if (t−t′)σ = ω then the server is
switched to its sleep state. Otherwise remain in idle state. And finally if the server is in its
sleep state then if the inactive flow over [t′, t] equals ω the server is switched to its working
state. Otherwise stay in the sleep state. The switching cost is denoted by ω. The inactive
flow refers to the flow accumulated due to new jobs arriving and not being processed. [18]

Structural properties and exact analysis of energy-aware multiserver queueing systems
with setup times
In this paper two policies are considered called bulk setup and staggered threshold. The
bulk setup policy and staggered threshold policy both have two decision variables namely Cs

and k which denote the number of servers which always stay on and the threshold variable
such that the dynamic servers behave in a specific manner respectively. This means for the
bulk setup policy that when there are Cs + 2k jobs in the system and the second server is
off then all dynamic servers will be put into setup and when the first server is turned on the
rest will be turned off again. For the staggered threshold policy this means that when there
are Cs + 2k jobs in the system and no dynamic servers are turned on then only two servers
will go into setup. The choice for a power down algorithm is based on the already existing
literature. [22]
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4.2 Speed scaling

Speed scaling algorithm uses the property of the adjustable speed setting. Not for all servers
is this possible, in that case usually a power down algorithm is considered.

A scheduling model for reduced CPU energy
This paper presented the Average Rate Heuristic. This heuristic works as follows, each job
j has density dj =

Rj

bj−aj
where Rj is the required number of CPU cycles and bj and aj are

the deadline and arrival time of job j respectively. What the average rate heuristic does,
is that it sets the processor speed at s(t) =

∑
j dj(t) and it can be checked easily that this

creates a feasible schedule. [32] This speed scaling algorithm is not too complicated and
can be a good basis for developing other possibly more complex speed scaling algorithms.
In this paper they wanted to research the realistic case of a computer with a variable speed
processor and then it makes a lot of sense to use its speed adjusting abilities in the algorithm.

Algorithms for power savings
In this paper two algorithms are researched namely a dynamic speed scaling algorithm
without sleep state and a dynamic speed scaling algorithm with sleep state. The second
algorithm with the sleep state is a power down algorithm, but this one is different from
most because it is combined with speed scaling. They assume a convex power function and
all jobs have to be finished between their release time and deadline for it to be a feasible
schedule. For the offline DSS-NS case the algorithm from [32] is used. [15]

Energy efficient online deadline scheduling
In this paper a new job allocation algorithm is proposed called FSA and it is combined with
the speed scaling algorithm OAT. OAT chooses the minimum between T and the speed used
by the OA algorithm. The OA algorithm is also discussed in [32]. How FSA works is that
it will admit a job J for processing if when using the maximum speed it can complete job
J and all of the remaining work of the already admitted jobs. FSA(OAT) is another speed
scaling algorithm but it takes into account a more realistic assumption of the server having
a maximum speed. It is also different from a simple speed scaling algorithm because it is
combined with a job allocation algorithm. [19]

Energy efficient algorithms
This paper is kind of a summary or many different energy efficient algorithms. Most of
them work for single server systems and some of the methods that are used are power down
and speed scaling. This paper discusses multiple speed scaling algorithms including the of-
fline algorithm YDS and the online algorithms Average Rate and Optimal Available. These
algorithms are analysed in [32], with the YDS algorithm being the offline algorithm given
in [32]. Another online algorithm called BKP is discussed which approximates the optimal
speeds of YDS using the knowledge from the jobs that already arrived. These algorithms
are all solutions to the deadline scheduling problem. Then some adjusted versions of the
deadline scheduling problem are considered. The first extension being the situation where
server speeds are bounded and for this the paper explains how the YDS algorithm can be
adapted, here [19] is also shortly mentioned for the online case. The second extension con-
siders temperature minimization where it is mentioned that the YDS and BKP algorithms
actually have favorable properties for this. The last extension regarding this subject consid-
ers systems with a sleep state, which means no energy will be consumed only in that state.
For this case [15] is mentioned as an offline and online solution. For this same case [9] and
[12] are also mentioned even though they do not consider speed scaling. [6] The algorithm
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researched in [19] is also shortly discussed.

Minimizing energy on homogeneous processors with shared memory
The algorithm discussed in this paper is actually for the largest part a job allocation algo-
rithm but a part of it is a speed scaling algorithm. The speed can be calculated by dividing
the sum of the workload of the tasks over the length of the interval. In this paper it is
assumed that the power function is convex and each core has an individual voltage supply
for which the speed changes are in a continuous fashion. [10]

Online speed scaling based on active job count to minimize flow plus energy
In this paper first the AJC algorithm is discussed. AJC works as follows, at any time t the
job with the shortest remaining work is chosen to be processed at the speed (n(t) + σ)1/α.
Here n(t) is the number of active jobs at time t, the static power is denoted by σ and sα

denotes the dynamic speed with α being a constant α > 1. The algorithm sets the speed
based on the active job count and speed changes are only implemented at job arrival or
completion, this is different from previous work which changes the speed continuously over
time. Then they discuss a power down algorithm called IdleLonger and combine the two
algorithms to get a better competitive ratio. The IdleLonger algorithm is further discussed
in section 4.1 [18]

Power-aware Speed Scaling in Processor Sharing Systems
In this paper they researched three different speed scaling algorithms each one being a little
more dynamic than the last one. They try to find out how much the energy efficiency im-
proves with each dynamic improvement. This can help with finding the best dynamic speed
scaling algorithm. The following algorithms are researched in this paper. Static provision-
ing: one constant speed is used by the server throughout, Gated static provisioning: the
server is powered down when there are no jobs to process and Dynamic speed scaling: the
server speed is adapted to the number of job arrivals in the system. It is assumed that the
server can have any speed and there are no switching costs. It is found that even with these
ideal assumptions the dynamic speed scaling algorithm is not that much better than an
optimal gated static provisioning algorithm. However, the dynamic speed scaling algorithm
does have increased robustness to bursty traffic and mis-estimation of workload parameters.
[31]

Scheduling for reduced CPU energy
Three different speed scaling algorithms are simulated. These are the unbounded-delay
perfect-future (OPT), bounded-delay limited-future (FUTURE), and bounded-delay limited-
past (PAST). These algorithms adjust the CPU clock speed at the same time that scheduling
decisions are made With the goal of decreasing time spend in the idle state while retaining
interactive response. The first algorithm discussed called OPT is an offline algorithm so it
needs perfect future knowledge. The OPT algorithm stretches out all the run times to fill
the idle times, not considering the off-time. This is not too interesting because you have
to know the future and it creates many delays, but it is optimal in energy efficiency and
therefore will be a good baseline. FUTURE is the second algorithm discussed and is similar
to OPT except that it uses only a small part of the future. With this algorithm there are
no delays allowed and the energy efficiency is close to optimal but it still uses knowledge
of the future so it is still unpractical. The last algorithm discussed is called PAST and it
looks at a small part of the past to predict the next window. This works quite well and it
even approaches OPT as the interval between speed adjustments is lengthened, but a long
adjustment interval also compromises the performance. Therefore a balance between the
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energy efficiency and performance has to be determined. [29]

Stochastic analysis of power-aware scheduling [30]
This paper is a successor of the paper [31]. So, for further details about the speed scal-
ing algorithms in this paper, see the paragraph regarding "Power-aware speed scaling in
processor sharing systems".

4.3 Power allocation

Whether power allocation should be a separate category can be debated. Power determines
at what speed a server will run in most cases so it can also be said that power allocation is
basically speed scaling. However, I made it a separate category because there are multiple
papers which explicitly talk about power allocation and it is a little bit different from speed
scaling. When people talk about power allocation it is usually assumed that there some
power available and it has to be distributed over the servers which is not completely the
same problem as considered with speed scaling.

Optimal power allocation in server farms
Three different power allocation schemes are tested namely, PowMax, PowMed and PowMin
which means running the servers at their highest, intermediate or lowest power level respec-
tively. The conclusion is that for different scenarios a different power level is optimal.

Dynamic power allocation in server farms a real time optimization approach
In this paper a dynamic power allocation scheme is developed and compared to a static power
allocation scheme. Then an RTO approach is used to solve the average power minimization
problem over a dynamic power allocation scheme. Then by simulations it is shown that
under the condition called slowly varying job arrival rate, typically satisfied in server farms,
the dynamic power allocation scheme significantly improves energy efficiency compared to
the static scheme with the allowable mean delay. The optimal static is better as workload
rate changes become faster and more abrupt. [5]

5 The experiment

I chose to further research the algorithm from the paper "Algorithms for energy conserva-
tion in heterogeneous data centers" [7]. The decision was made to examine a model with
heterogeneous servers. The following problem formulation was given by the paper.

We consider a data center with d different server types. There are mj servers of type j.
Each server has an active state where it is able to process jobs, and an inactive state where
no energy is consumed. Powering up a server of type j (i.e., switching from the inactive
into the active state) incurs a cost of βj (called switching cost); powering down does not
cost anything. We consider a finite time horizon consisting of the time slots {1, . . . , T}. For
each time slot t ∈ {1, . . . , T}, jobs of total volume λt ∈ N0 arrive and have to be processed
during the time slot. In practice, the job volume might be predicted from history or it is
assumed that the jobs arriving during a time slot have to be finished in the next time slot.
In our model, all servers have the same computational power and can process a job volume
of 1 per time slot. Hence, there must be at least λt active servers at time t to process the
arriving jobs. We consider a basic setting where the operating cost of a server of type j
is load- and time-independent and denoted by lj ∈ R≥0. Hence, an active server incurs a
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constant but type-dependent operating cost per time slot.

A schedule X is a sequence x1, . . . , xT with xt = (xt,1, . . . , xt,d) where each xt,j indicates
the number of active servers of type j during time slot t. At the beginning and the end
of the considered time horizon all servers are shut down, i.e., x0 = xT+1 = (0, . . . , 0). A
schedule is called feasible if there are enough active servers to process the arriving jobs and
if there are not more active servers than available, i.e.,

∑d
j=1 xt,jλt and xt,j ∈ {0, 1, . . . ,mj}

for all t ∈ {1, . . . , T} and j ∈ {1, . . . , d}. The cost of a feasible schedule is defined by
C(X) :=

∑T
t=1(

∑d
j=1 ljxt,j +

∑d
j=1 βj(xt,j − xt−1,j)

+) where (x)+ := max(x, 0).
The switching cost is only paid for powering up. However, this is not a restriction, since all
servers are inactive at the beginning and end of the workload. Thus the cost of powering
down can be folded into the cost of powering up. A problem instance is specified by the
tuple I = (T, d,m,βββ, l,ΛΛΛ) where m = (m1, . . . ,md),βββ = (β1, . . . , βd), l = (l1, . . . , ld) and
ΛΛΛ = (λ1, . . . , λT ). The task is to find a schedule with minimum cost. We focus on the
central case without inefficient server types. A server type j is called inefficient if there
is another server type j′ ̸= j with both smaller (or equal) operating and switching costs,
i.e., lj ≥ l′j and βj ≥ β′

j . This assumption is natural because a better server type with a
lower operating cost usually has a higher switching cost. An inefficient server of type j is
only powered up, if all servers of all types j′ with β′

j ≤ βj and l′j ≤ lj are already running.
Therefore, excluding inefficient servers is not a relevant restriction in practice. [7]

Figure 1: Pseudocode of
the algorithm

For this problem a deterministic online power
down algorithm was constructed. This algorithm
is 2d-competitive. The algorithm works as follows,
first an optimal schedule is computed for the prob-
lem instance ending at the current time slot. Then
the operating costs of the active servers are com-
pared to the operating costs of the servers in the
optimal schedule and if the operating costs of the
active servers are higher then the operating costs of
the servers in the optimal schedule then servers with
higher operating costs are replaced with servers with
lower operating costs. Also, a server is powered down
after a certain amount of time not being used de-
pendent on its operating and switching costs. The
pseudocode given by [7] can also be seen in figure
1.

The optimal schedule can be found by using a dynamic program. This dynamic program
was not given in the paper so I had to make it myself and it works as follows. The stages
are each time slot t, the possible states are the decisions that could have been made in
the previous time slot and these are all combinations of servers s.t.

∑d
j=1 xt−1,j ≥ λt−1,

expect for the case when t = 1 then the only possibility is no servers are active because
x0 = xT+1 = (0, . . . , 0) is given. The possible decisions during time slot t are denoted
by all combinations of server s.t.

∑d
j=1 xt,j ≥ λt, except for the case when t = T then∑d

j=1 xt,j = λt must hold. Also, 0 ≤ xt,j ≤ mj must be true at all times. Now the opti-
mal schedule can be found by calculating the optimal decision during each stage for each
state with ft(xt−1) = min{cost at stage t + ft+1(xt)}. The cost at stage t is denoted by∑d

j=1 ljxt,j +
∑d

j=1 βj(xt,j − xt−1,j)
+where(x)+ := max(x, 0).
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Now when having the algorithm from the paper and the dynamic program for the op-
timal schedule I implemented this in Python and ran several simulations, the code can be
found in Appendix Python code. The results will be discussed in the next section.

5.1 Results

I ran several simulations, most of them with the same m, l, β, d, t and a variable input of
Λ. For the instance that took the shortest amount of time I also tried a few larger instances
to see what influence the time span has.

Before I could run the simulations with the variable Λ I first had to find out what the
largest number of servers was that I could run my program with within a reasonable time
frame(2 hours). By trial and error I found out that m = (5, 5, 4, 4, 4) is the maximum
amount of servers I could use in my program and it would be finished within two hours.
The choice for l and β was not something I thought about thoroughly because the effect
of different l and β is not what I wanted to investigate, but this could be part of further
research. I did a number of 35 simulations all with a different Λ.

In Appendix simulation results you can see the complete results I gathered from the
simulations. More info can be found there regarding the simulations like the schedules that
were made by the algorithm.

There are a few interesting observations that can be made from the results. The most
interesting case I experimented with was a fixed amount of total jobs that arrived during
the complete time span, these instances are colored green in figure 2 and have a total job
arrival of 330 which is half of the total amount possible with these servers and this time span.

Actually the instance with the highest increase in cost in percentage is from the green
set. It has a significantly higher cost increase than the second highest cost increase which
are respectively 16,2% and 13,9%. The arrival pattern with the largest cost increase is the
one with the maximum amount of jobs per time slot arriving for the first half of the time
and the second half only no job arrivals. It is interesting that if the order of job arrivals for
this instance is exactly the other way around then the schedule from the paper algorithm
has the same cost as the optimal schedule.

The cost of the optimal schedule being the same as the cost of the paper schedule only
occurred for this one instance, this instance can be seen at the bottom of figure 2. It makes
sense that there is no cost increase for this instance because if at the first time slot no jobs
arrive there is no benefit in turning on servers. Even if jobs arrive in the next time slot
it is not beneficial to turn them on before this time slot because there will be unnecessary
operational costs during that time slot. Also for this case when there are jobs arriving there
is only one possible way to do this because all servers have to be turned on and this is
automatically the same schedule as the optimal schedule. I also tried another instance that
has a similar structure, this instance and the resulting schedule can be seen in figure 3. This
instance does have a significant cost increase of 10,78% and that is because it actually acts
the same as an uniform instance when jobs start arriving. When we look at the uniform
instance with 11 jobs arriving you can see that the schedule is the same as the one in figure
3, it only shifted.
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Figure 2: Results total job arrival 330

Figure 3: Instance structure similar to the one with no cost increase

What is also interesting is that four uniform instances that I tested are in the top ten of
highest cost increase. It is clear that a uniform instance with low job arrivals has a larger
cost increase than a uniform instance with higher job arrivals, this can be seen from 4. This
is very logical because for the first time slot higher server types will be used because the
optimal schedule for one time slot uses higher server types. For example, if there are 21
job arrivals then all except one server will be used and this one will be the lowest server
type for one time slot and for further time slots the one unused server will be the highest
server type and the switching cost of this server during the previous time slot will be lost.
Now another situation is that only one job arrives during the first time slot then again
the highest type server will be turned on and for later time slots it will be turned off, the
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Figure 4: Only uniform arrival instances

lowest server type will
be turned on and the
switching cost of the
higher server type will
be lost. So, the same
thing happens but
with 21 jobs arriving
the overall cost will be
a lot higher then when
only 1 job arrives so
the relative difference in cost increase is higher for a smaller amount of jobs arriving than
when more jobs arrive.

The effect of the l and β choices probably determines how many time slots differ from the
optimal schedule or at least this is the case for a uniform instance. What I mean by this
is that now for the uniform instances only the first time slot is different and the rest of
schedule is the same for the remaining time. This means that only for one time slot certain
servers are beneficial to use but if the operating or switching costs are adjusted it could be
that using these servers for two or more time slots can still be beneficial before switching
to more long term server. This will of course influence the cost increase and I think that
higher cost increases will be seen with, for example a higher difference in switching costs.

If the instance is uniform than a longer time span means less cost increase in percentage
because the schedule converges until the schedule of each time slot is the same so the
difference between the optimal schedule and the paper schedule will be in the first few slot
and the total cost difference will be the same.

I also experimented with several instances where the pattern is alternating, so Λ = (a, b, )∗15
with a < 11 and b > 11, and the other way around so Λ = (b, a, ) ∗ 15. The results from
these simulations can be seen in figure 5.

I discovered that the Λ = (b, a, ) ∗ 15 so the one starting with the higher number, has
less of a cost increase than the other way around. This makes sense because if at t = 1
20 jobs arrive then there are not a lot of different possibilities of which and how many
servers to turn on because most of them have to be on, when the maximum number of
servers is 22. So, because most servers have to be turned on the difference in costs be-
tween the different possibilities will not be too great. Then, for the next time slot less
jobs arrive so the necessary servers are already on and only some will be turned off and
for the time slot after that, the same servers will be used as in the first time slot so
the schedule for the odd and the even time slots will be the same respectively. How-
ever, this does not work if first a small amount of jobs arrive because for one time slot
it will be cheaper to use different servers for a small amount of jobs and after the first
time slot the schedule will go back to same pattern as for the Λ = (b, a, ) ∗ 15 schedule.
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Figure 5: Alternating instances shaped like (a,b, ..., a,b)

Figure 6: Boxplot with data points
being relative cost increase

Unfortunately I do not think a lot of solid
conclusions can be drawn from my results
because the difference in cost increase is
overall not too big. In figure 6 it can be seen
that three quarters of the data points are in
the zero to 8% cost increase range. I believe
that a lot more simulations are necessary to
be able to really say something about the
quality of the algorithm. However, another
explanation for these relative cost increases
being so low is that the algorithm functions
really well, but like I said a lot more sim-
ulations are necessary to be able to claim
this.

6 Conclusions

What can be concluded from the literature review is the following. By categorizing the
papers that I came across and found relevant to the study of energy efficient scheduling
in data centers I concluded the following. When categorizing per server type I saw that
most papers still consider the single server situation. This is probably the case because
because this situation has been around the longest and it is a solid base for the multiple
server case. When categorizing the papers by their arrival assumption I found that if they
have an arrival assumption it is probably a Poisson process. Also, all the papers that I
found having an arrival assumption do not consider heterogeneous servers. One of the
reasons that I came up with is that most papers considering heterogeneous servers want
to consider a model that is as close to reality as possible and therefore use real data in
their simulations which does not require an arrival assumption. Lastly from categorizing
per type algorithm I only discovered that for most cases when a speed scaling algorithm
is considered, the model uses a single server. Combining this with the conclusion drawn
from the server type category, it is fairly safe to say that a speed scaling algorithm usually
considers the single server case and the other way around. But we do have to keep in mind
that I did not exhaust the literature regarding the subject, so my conclusions should be
taken with a grain of salt.
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Now, for the conclusion from my experiment. From [7] it is known that the algorithm is 2d
competitive which means that the cost of the schedule made by the algorithm is at most 2d
higher than the cost of the optimal schedule. For my case that would mean a cost increase
of at most 1000% and I have not even gotten a little bit close to that with a maximum
of 16,22% cost increase. So, I am wondering what kind of arrival pattern is necessary for
that. It is also possible that the key is not the arrival pattern but the number of servers
or the operating and/or switching cost of the servers. But this is not something I looked
into due to time constraints. However, my results could also indicate that the algorithm is
in practice a lot better than the upper bound of 2d. Which is definitely possible because
the [7] does not mention the average case and they do not have experimental results. But
to find out which of these explanations is correct I think a lot more simulations have to be
done, also with possibly more situations that are closer to reality.
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Appendix simulation results

Figure 7: Result of simulations only the schedules second half of simulations

26



Figure 8: Result of simulations only the schedules first half of simulations
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Figure 9: Results of simulations without schedules
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Appendix Python code

import random
import i t e r t o o l s
import time
import numpy as np
import math
from f un c t o o l s import cache

@cache
def i p o s s i b i l i t i e s (m, Lambda ) :

Mach ine s l i s t = [ l i s t ( range ( i + 1) ) for i in m]
Product = i t e r t o o l s . product (∗ Mach ine s l i s t )
f i l t e r e d = f i l t e r (lambda L : sum(L) >= Lambda , Product )
l i s t i =[ i for i in f i l t e r e d ]
return l i s t i

@cache
def x p o s s i b i l i t i e s (m, Lambda ) :

Mach ine s l i s t = [ l i s t ( range ( i + 1) ) for i in m]
Product = i t e r t o o l s . product (∗ Mach ine s l i s t )
f i l t e r e d = f i l t e r (lambda L : sum(L) == Lambda , Product )
l i s t x =[x for x in f i l t e r e d ]
return l i s t x

@cache
def cost_at_time_t (d , x , i , l , beta ) :

x i = np . array (x ) − np . array ( i ) # d i f f e r e n c e x i
maxxi=[max(0 , x i [ f ] ) for f in range (d ) ]
co s t = np . array ( l ) . t ranspose ( )@x + np . array ( beta ) . t ranspose ( )@maxxi
return co s t

@cache
def sumparttuple ( tuple , startsum , d ) :

# i n i t i a l i z i n g count
count = 0
for r in range (d−1, startsum −1 ,−1):

# for loop
i =tuple [ r ]
count += i

return count

def ytype s e rve r l anek ( t , k , oschedule , d ) : #l i s t o f t u p l e s
i f k in range (sum( oschedu le [ t −1])+1):

j=d−1
while j in range (d−1 ,−1 ,−1):

i f sumparttuple ( oschedu le [ t −1] , j , d)>=k :
return j+1

else :
j=j−1
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else :
return 0

def co s tpaper s chedu l e (T, d , l , beta , s chedu le ) :
c o s t = 0
i =[0]∗d
x=schedu le
for t in range (T) :

x i = np . array (x [ t ] ) − i # d i f f e r e n c e x i
maxxi=[max(0 , x i [ f ] ) for f in range (d ) ]
co s t = cos t + np . array ( l )@np . array (x [ t ] ) + np . array ( beta )@maxxi
i=np . array (x [ t ] )

return co s t

@cache
def paperschedule (T, d , m, beta , l , Lambda ) :

s t=time . time ( )
tbar = np . d i v id e ( beta , l )
t b a r f i n a l = [ 0 ]
for i in tbar :

f i n a l = math . f l o o r ( i )
t b a r f i n a l . append ( f i n a l )

ypaper = {} #make d i c t i ona r y o f sums because always same
xpaper = {}
xpape r f i n a l = [ ]
mtot=sum(m)
e = np . z e r o s ( ( mtot , ) , dtype=int )
for t in range (1 ,T+1):

#ca l c u l a t e opt imal s chedu l e f o r problem ins tance ending at time t
oschedu le =optschedule2 ( t , d , m, l , beta , Lambda) #=[] l i s t o f t u p l e s
yp = {}
xp = [ ]
xp f i n a l = [ ]
for k in range (1 , mtot+1):

ytkopt=ytype s e rve r l anek ( t , k , oschedule , d )
i f t==1:

i f t>=e [ k−1] or 0 < ytkopt :
yp [ k ] = ytkopt
e [ k−1] = t + t b a r f i n a l [ yp [ k ] ]
xp . append (yp [ k ] )

else :
yp [ k ] = 0
e [ k−1] = max( e [ k ] , t + t b a r f i n a l [ yp [ k ] ] )
xp . append (yp [ k ] )

ypaper [ t ]=yp
else :

i f t>=e [ k−1] or ypaper [ t −1] [ k ] <ytkopt :
yp [ k ] = ytkopt
e [ k−1] = t + t b a r f i n a l [ yp [ k ] ]
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xp . append (yp [ k ] )
else :

yp [ k ] = ypaper [ t −1] [ k ]
e [ k−1] = max( e [ k−1] , t + t b a r f i n a l [ yp [ k ] ] )
xp . append (yp [ k ] )

ypaper [ t ] = yp
xp f i n a l = [ xp . count ( j ) for j in range (1 , d + 1 ) ]
xpape r f i n a l . append ( xp f i n a l )

i = (0 , ) ∗ d
xpape r f i n a l . append ( i )
e t=time . time ( )
a l l t ime=et−s t
return xpaper f ina l , " co s t ␣paper ␣ schedu le ␣ i s " ,
co s tpaper s chedu l e ( t , d , l , beta , xpape r f i n a l ) ,
" co s t ␣ optimal ␣ schedu le ␣ i s " , co s tpaper s chedu l e ( t , d , l , beta , oschedu le ) ,
a l l t ime

@cache
def fmin2 ( t , d ,m, l , beta , Lambda ) : #only f o r t=T

f d i c t ={} # keys=i va l u e s=fmin ( t , i )
f d i c t [ 0 . . . 0 ] w i l l g ive the va lue o f the schedu le

xd i c t={} # keys=i va l u e s=x f o r which
xd i c t w i l l g ive the schedu le

# ca l c u l a t e fmin ( t , i ) then f d i c t [ i ]=fmin ( t , i )
f d i c t pu r e={}
n e s t e dd i c t f={} # to c o l l e c t a l l f t ( i ) per time s t ep key=n

i s time value=f d i c t
ne s t edd i c tx={}
xdictnu = {}
n = t
i f t == 1 :

l i s t x = x p o s s i b i l i t i e s (m, Lambda [ n − 1 ] )
#f i l t e r wi th paper r e s t r i c t i o n yhat_t>=yhat_t−1

i = (0 , ) ∗ d
xdictnu = {}
f d i c t = {}
xd i c t = {}
for x in l i s t x : # se t ( x ) i s here s e t ( i ) a t

fn i e tmin = cost_at_time_t (d , x , i , l , beta )
xdictnu [ x ] = fn i e tmin

xminvalue = min( xdictnu , key=lambda k : xdictnu [ k ] )
# the key whose va lue i s the sma l l e s t i s xminvalue

fminvalue = xdictnu [ xminvalue ] # g i v e s the sma l l e s t va lue
temp = min( xdictnu . va lue s ( ) )
r e s = [ key for key in xdictnu i f xdictnu [ key ] == temp ]
for key in r e s :

f d i c t [ key ] = xdictnu [ key ]
xd i c t [ i ] = f d i c t # d i c t i ona r y wi th key=i and va lue=minx ,

we can f i nd here the x that be longs to fmin
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f d i c t pu r e [ i ] = fminvalue
n e s t e dd i c t f [ n ] = fd i c t pu r e
ne s t edd i c tx [ n ] = xd i c t # only a f t e r a l l i have been done
return nestedd ic tx , n e s t e dd i c t f

else :
l i s t i = i p o s s i b i l i t i e s (m, Lambda [ n − 2 ] )
l i s t x = x p o s s i b i l i t i e s (m, Lambda [ n −1])
f d i c t pu r e={}
for i in l i s t i : # l i s t wi th a v a i l a b l e i

for x in l i s t x :
f d i c t = {}
fn i e tmin = cost_at_time_t (d , x , i , l , beta )

# for t=T
xdictnu [ x ] = fn i e tmin

xminvalue = min( xdictnu , key=lambda k : xdictnu [ k ] )
# the key whose va lue i s the sma l l e s t i s xminvalue

fminvalue = xdictnu [ xminvalue ] # g i v e s the sma l l e s t va lue
temp = min( xdictnu . va lue s ( ) )
r e s = [ key for key in xdictnu i f xdictnu [ key ] == temp ]
for key in r e s :

f d i c t [ key ] = xdictnu [ key ]
xd i c t [ i ] = f d i c t # d i c t i ona r y wi th key=i and va lue=minx ,

we can f i nd here the x that be longs to fmin
f d i c t pu r e [ i ] = fminvalue
n e s t e dd i c t f [ n]= fd i c t pu r e

ne s t edd i c tx [ n]= xd i c t # only a f t e r a l l i have been done

n=n−1
l i s t i n ew = i p o s s i b i l i t i e s (m, Lambda [ n − 2 ] )
while n > 1 :

f d i c t = {}
xd i c t = {}
f d i c t pu r e = {}
l i s t i n ew = i p o s s i b i l i t i e s (m, Lambda [ n − 2 ] )
for i in l i s t i n ew :

xdictnu = {}
for x in l i s t i : #se t ( x ) i s here s e t ( i ) a t n==t

f d i c t = {}
fn i e tmin = cost_at_time_t (d , x , i , l , beta ) +

n e s t e dd i c t f [ n+1] [ x ]
xdictnu [ x ] = fn i e tmin

xminvalue = min( xdictnu , key=lambda k : xdictnu [ k ] )
# the key whose va lue i s the sma l l e s t i s xminvalue

fminvalue = xdictnu [ xminvalue ] #g i v e s the sma l l e s t va lue
temp = min( xdictnu . va lue s ( ) )
r e s = [ key for key in xdictnu i f xdictnu [ key ] == temp ]
for key in r e s :

f d i c t [ key ] = xdictnu [ key ]
xd i c t [ i ] = f d i c t # d i c t i ona r y wi th key=i and va lue=minx ,

we can f i nd here the x that be longs to fmin
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f d i c t pu r e [ i ] = fminvalue
n e s t e dd i c t f [ n ] = fd i c t pu r e

ne s t edd i c tx [ n ] = xd i c t # only a f t e r a l l i have been done
l i s t i = l i s t i n ew
n = n − 1

n=1

i =(0 ,)∗d
xdictnu = {}
f d i c t ={}
xd i c t={}
f d i c t pu r e={}
k = 1
for x in l i s t i : # se t ( x ) i s here s e t ( i ) a t

fn i e tmin = cost_at_time_t (d , x , i , l , beta ) + ne s t e dd i c t f [ n+1] [ x ]
# for t

xdictnu [ x ] = fn i e tmin
xminvalue = min( xdictnu , key=lambda k : xdictnu [ k ] )

# the key whose va lue i s the sma l l e s t i s xminvalue
fminvalue = xdictnu [ xminvalue ] # g i v e s the sma l l e s t va lue
temp = min( xdictnu . va lue s ( ) )
r e s = [ key for key in xdictnu i f xdictnu [ key ] == temp ]
for key in r e s :

f d i c t [ key ] = xdictnu [ key ]
xd i c t [ i ] = f d i c t # d i c t i ona r y wi th key=i and va lue=minx ,

we can f i nd here the x that be longs to fmin
f d i c t pu r e [ i ] = fminvalue
n e s t e dd i c t f [ n ] = fd i c t pu r e
ne s t edd i c tx [ n ] = xd i c t # only a f t e r a l l i have been done

return ( nes tedd ic tx , n e s t e dd i c t f )

@cache
def ytypese rve r l anek2 ( t , k , oschedule , d ) : #l i s t o f t u p l e s

i f k in range (sum( oschedu le )+1):
j=d−1
while j in range (d−1 ,−1 ,−1):

i f sumparttuple ( oschedule , j , d)>=k :
return j+1

else :
j=j−1

else :
return 0

@cache
def optschedu le2 ( t , d ,m, l , beta , Lambda ) : #l i s t wi th t u p l e s

summ=sum(m)
x t j =(0 ,)∗d #tup l e o f d ze ros
xzero =(0 ,)∗d
nestedd ic tx , n e s t e dd i c t f=fmin2 ( t , d ,m, l , beta , Lambda)
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schedu le =[ ]
for n in range (1 , t +1):

i f t==1:
x t j d i c t=ne s t edd i c tx [ n ] [ x t j ] # i s {(0 , 0 , 1 ) : 34} or

{(0 , 1 , 1 ) : 27 , (1 , 0 , 1 ) : 27}
r e s = [ key for key in x t j d i c t i f x t j d i c t [ key ] ==

ne s t e dd i c t f [ n ] [ x t j ] ] #oschedu l e i s a t u p l e
x t j = r e s [ 0 ] # we j u s t choose the f i r s t x
schedu le . append ( r e s [ 0 ] ) # for t=1 i t does not matter x w i l l be

g r e a t e r or equal to 0 always
else :

x t j d i c t = nes t edd i c tx [ n ] [ x t j ] # i s {(0 , 0 , 1 ) : 34} or
{(0 , 1 , 1 ) : 27 , (1 , 0 , 1 ) : 27}

r e s = [ key for key in x t j d i c t i f x t j d i c t [ key ] ==
ne s t e dd i c t f [ n ] [ x t j ] ] #oschedu l e i s a t u p l e

i f len ( x t j d i c t ) == 1 :
schedu le . append ( r e s [ 0 ] )
x t j=r e s [ 0 ]

else :
v=1
while v<=t :

x=r e s [ v−1]
k=1
while k<=summ:

i f k==summ and ytypese rve r l anek2 ( t , k , x , d ) >=
ytypese rve r l anek2 ( t , k ,
optschedu le2 ( t−1,d ,m, l , beta , Lambda ) [ n−1] ,d ) :
s chedu le . append (x )
x t j=x
k=summ+1
v=t+1

e l i f ytypese rve r l anek2 ( t , k , x , d ) >=
ytypese rve r l anek2 ( t , k ,
optschedu le2 ( t−1,d ,m, l , beta , Lambda ) [ n−1] ,d ) :
k=k+1

else :
k=summ+1
v=v+1

i = (0 , ) ∗ d
schedu le . append ( i )
co s topt=ne s t e dd i c t f [ 1 ] [ xzero ]
return schedu le

i f __name__ == "__main__" :
m = ( 5 , 5 , 4 , 4 ,4)
l =(5 ,4 ,3 ,2 ,1)
beta =(1 ,2 ,4 ,5 ,6)
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Lambda=(7 ,9 ,5 ,3 ,4)

##random numbers##
# num = 50
# s t a r t = 0
# end = 22
# res = [ ]
# fo r j in range (num) :
# res . append ( random . rand in t ( s t a r t , end ))
# pr i n t ( re s )
# Lambda = tup l e ( re s )

###### random numbers sum i###
# i=330
# nums=[]
# t o t a l = i
# temp = [ ]
# fo r i in range ( 29 ) :
# va l = np . random . rand in t (6 , 16)
# temp . append ( va l )
# t o t a l −= va l
# temp . append ( t o t a l )
# pr i n t ( temp )
# Lambda=tup l e ( temp )
######

d = len (m)
t = len (Lambda)

print ( paperschedule ( t , d ,m, beta , l , Lambda ) )
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