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Abstract—Fast and low-cost development is becoming more
important for the space industry with a greater need for com-
munication infrastructure in space. Commercially off-the-shelf
(COTS) components already have been widely used in industry,
and with the raise of RISC-V core architectures as off-the-self
core that can be deployed. How can we evaluate if a core is
reliable in hazardous conditions? To characterize these cores,
this paper looks at the observability problem within irradiation
campaigns. With the use of fault injection in simulation and error
modeling, an approximation is made to characterize the Ibex
RISC-V core and its behavior before the real experiment. The
experience and data from the irradiation campaign are then used
to improve and verify the simulation strategy. The preparation
for the experiment is faced with many practical challenges that
are less dominant in simulation. The biggest bottleneck is the
interface and transmission of data between the Device under test
(DUT) and the host observer.

Index Terms—RISC-V, Irradiation, FPGA.

I. INTRODUCTION

THE space race is back on the agenda, especially now that
commercial companies are competing too. In time, this

will increase the demand for electronics suitable for space.
Space-grade components have long development cycles and
limited production numbers, which result in high costs per
unit. To mediate the high cost of these components, companies
will opt for the use of Commercially off-the-shelf (COTS)
components. Using a general purpose Field Programable Gate
Array (FPGA) and deploying an optimized microarchitecture,
it is possible to reduce the cost. Especially now with the rise
of RISC-V Instruction Set Architecture (ISA).

Space is a hazardous environment with high levels of radi-
ation, roughly 25 times the radiation level in low earth orbit
than on earth[17]. The impact of ionizing particles can corrupt
signals and data in the form of Single Event Effects (SEE).
A famous example of a particle interacting with our world
is the Super Mario 64 glitch [6]. The last thing companies
want is for their satellite to crash because of SEE corrupting
data, and this makes reliability very important. Once the
hardware is up at “space”, it is very difficult, near impossible,
to physically access satellites. To ensure correct operation
in a hazardous situation, proper testing must be performed
through irradiation campaigns and simulations. There are sev-
eral examples [9][3][15] of processors that implement multiple
reliability techniques (e.g., Triple Modular Redundancy, Error
Correcting Code or Physical Memory Protection) with the goal
of minimizing single points of failure in the system. However,
the effectiveness shows dubious results on the source of the
improvement. The easy way out is to use every redundancy
scheme to make the system as reliable as possible. Area and

energy optimizations are disregarded by applying redundancy
schemes without a clear motivation of the effectiveness. RISC-
V ISA allows for control and modularity in contrast to pro-
prietary ISAs. This results in companies and research groups
developing their own RISC-V microarchitectures, which can
become COTS soft-core architectures for other users. The
sheer benefit of RISC-V is twofold: RISC-V is open and
modular. It has a community backing it, so it is alive and
thriving contrary to something like SPARK. Depending on the
developer and licensing, the developed core can be modified
and extended where needed. These practices can significantly
reduce development times in the downstream.

The current methods for improving redundancy and relia-
bility can be improved upon. This requires a deeper under-
standing of the impact of particles on systems. Most existing
studies present only success stories, lacking a comprehensive
evaluation of their methodology. To address this issue, the
observability of Single Event Effects (SEE) is being increased
to reduce the survival bias. The question is whether highly
efficient fault-tolerant schemes can be introduced in a RISC-
V Core through improved observability of Single Event Effects
(SEE). To answer this question, the use of fault injection
in simulation is proposed using a research core built using
a RISC-V Instruction Set Architecture (ISA), which allows
for hardware access. The goal is to study the root causes
of issues introduced by SEEs, not to build a commercial
RISC-V core. To validate different redundancy and security
schemes, a development framework will be established that
can mimic the complexity of the irradiation experiment. The
simulation, through the use of pseudorandom fault injection,
will increase observability during the development phase and
aid in understanding the faults, making the development of
a fault-tolerant scheme for a RISC-V core more efficient
over time. The comparison between the simulated and real
experiments will facilitate the development of better fault-
tolerant schemes.

This report presents a comprehensive study on the appli-
cation of pseudorandom fault injection in the development
of a fault-tolerant RISC-V core. The report is structured
as follows: Chapter II provides the background information
related to the field, including the ionizing effects on silicon,
the problems that can be caused by irradiation, an overview
of the RISC-V architectures, and a discussion of common
redundancy schemes. Chapter III focuses on the related work
that touches on the above questions. Chapter IV introduces
fault injection and simulation as an important tool in the
development of reliable processors. This chapter includes a
discussion of the fault modelling used for the experiment and
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the observations from the simulation. Chapter V presents the
error modelling process and the methodology used to model
errors in the system. Chapter VI presents the setup for the
beam experiments and the results. Chapter VII provides the
conclusions, summarizing the key observations made during
the study and making recommendations for future research
endeavours in this area.

II. BACKGROUND

A. Where did it begin?

It is a big cliché by now, but it still holds. It all started with a
big bang many, many years ago. There are multiple sources of
radiation in the universe, the star called the sun is the nearest
emitter of radiation. Cosmic rays that are created during events
in space, like from a supernova, also eventually reach the earth
and scatter on impact with the electromagnetic field of the
earth as is shown in Figure 1. The resulting ionized particles
collide and impact with other particles; this phenomenon is
generally known as Background Radiation (BR). The BR
increases with altitude, as the shielding of the gets weaker
away from the core [17]. In small doses this BR is harmless,
but with greater exposure, the resulting effects can be deadly.

A famous example of a particle interacting with circuitry
is the Super Mario 64 glitch [6]. During a speed run of
Super Mario 64, an unexpected movement was made by the
character that resulted in skipping a section of the game. The
investigators suspect that it was Silent Data Coruption (SDC)
in the height positioning register due to BR, all attempts
to reproduce the bit overflow were in unsuccessful. This
example [6] shows what ionized particles could do to electrical
hardware and is therefore an iconic example of a Single Event
Upset (SEU).

Fig. 1: Source CERN [7], a cosmic ray entering earth’s
atmosphere and scattering in different particles.

If our electronics are susceptible to background radiation,
imagine what would happen to a device that is in direct
exposure to cosmic rays. Or what would happen to mission-
critical infrastructure if SEU disrupts calculation and commu-
nications? The current world highly depends on functioning
information infrastructure (server farms, satellites, antennas,
etc.). But concerns about SEUs are not limited to commu-
nication technology. A more direct example would be “self-
driving automobile”. The societal impact of a vehicle hitting
a pedestrian due to SDC would be immense. Therefore, it
is important to implement irradiation campaigns on hardware
to test for faults. Irradiation campaigns are not new; years
of research have been done in this field. Most of the ir-
radiation campaigns are aimed at material science and how
materials react. This research has led to specially treated rad-
hardened silicon that mediates the effects of these particles.
Manufacturers of microcontrollers and Field Programable Gate
Array (FPGA) often support their space-graded products with
features like Triple Modular Redundancy, Error Correcting
Code memory, routing optimization, etc. The White Paper [37]
gives an overview of a product intended for space applications.
The paper shows that the company is prepared to invest
resources to create a COTS device that can be used by space
agencies, such as European Space Agency (ESA), for their
satellites and rockets. The takeaway here is that with only rad
hardening of the silicon, reliability is not ensured and, in any
case, it would not be economically viable.

Now that it is established that radiation is bad for chips
as well as for humans, a closer look at the reasons why it
goes wrong. The interaction between the particle and devices
is studied with material science. The short explanation is that
the base material from which the transistor gates are created
is affected by the ionized particle. Logic gates are built out of
differently doped silicon to create junctions based on energy
potential. The ionized particle can cause a state change or,
occasionally, alter the properties of the material temporarily or
permanently. Generally, these are referred to as Single Event
Effects. If the state is changed temporarily, then it is called
a Single Event Transient (SET). The SET can have lasting
effects in the register of memory, which are called Single
Event Upset (SEU). NASA did a lot of research on this topic
[26].

It is important to note that over the years the gates and
junctions have gotten smaller, increasing their amount on a
chip. This has led to a higher susceptibility to particles. The
density and size of these gates in Integrated Circuit (IC) is a
disadvantage to the vulnerability of the chip. That is why one
of the common techniques to make chips more resilient is to
use a bigger production process of 26nm1 to 22nm instead of
the 7nm to 5nm process that is used to manufacture state-of-
the-art chips.

SEE are not always an issue. A SET goes unnoticed if
parts of the circuit are clock-gated or not used at the time
of impact. Most logic circuits are timed and therefore less
sensitive to disturbance in the circuit. Circuits that are used to
store states, like flip-flops and registers, are very vulnerable.

1Nanometer (nm) is 1 ∗ 10−9 meter
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Studies show that memory is the greatest source of SDC [28]
[20]. The severity of the effects of SEUs depends on the type
of memory. For example, DRAM memory uses a charge of a
capacitor to store data. The mechanism can trigger and lose
its original charge and bit-flip if the impact of the radiation is
at the mechanism that keeps the charge in the capacitor.

Through the use of ECC most of the SEU in the memory
can be corrected. But as [27] shows, ECC alone does not cover
Mutiple Bit Upsets (MBU). [27] points out that the number
of critical errors relatively increases when using memory
protection. These errors are assumed to be happening in the
core architecture itself. As the core stops functioning, the
program crashes without warning or detection. The common
way to protect the core of SDC is to build redundancy in the
shape of double or triple redundancies of the core. The most
used method for processor units is to apply Triple Modular
Redundancy (TMR) with a voter. Computing the result three
times and choosing the equal results, leads to the correct
result. However, this increases the cost of the hardware in
monetary value, space, and energy use. The papers [2], [31],
[36] and [35] all suggest a form of TMR to protect the
device from SDC or fatal errors. Most of the solutions in
these papers combine TMR with ECC, as this combination
already gives a significant performance boost in reliability.
What really happened inside the core remains unanswered.
Most of the papers only cover output comparisons and assume
an understanding of the probable fault triggered. The authors
of [29] give a good overview of different solutions for different
kinds of issues, based on where the SEU is anticipated to
happen.

In the above-mentioned papers, they use metrics such as
fluence and cross-section, to denote the power of the irradia-
tion beam and the characteristics respectively. It is important
to remember that there is a chance that a particle in a given
area interacts with the device. The energy of the irradiated
particles in an area is called flux. The exposure of flux (Φe,
eq.1) over a given time is called fluence or radiant exposure
(He, eq.3). The cross-section is the number of errors in the
device divided by the fluence (cs, eq.4).
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The cross-section of the device is meant to illustrate its
sensitivity to radiation dose, as determined by the total number
of errors detected within a specific measurement timeframe.
However, this raises the question of the undetected errors
and their impact on the efficiency of fault-tolerant measures.
To address this, it may be worth considering the approach
taken by Abraham Wald [14], who used the concept of
survivorship bias to understand why some warplanes did not
return from battle. He observed that the surviving aircraft
were not damaged in critical systems, allowing them to return

home safely. This led him to conclude that the parts that had
not sustained damage should be reinforced. This analogy is
particularly relevant to embedded systems operating in space,
where not all damage (SEE) may be critical or observable.
In the event of a non-responding chip, very little information
can be salvaged. While much of the fault and error detection
and correction occurs in software, critical failures cannot be
recovered if the system fails to respond.

B. RISC-V

The RISC-V Instruction Set Architecture is introduced in
2010, from that point many papers have been written on it.
There is no point in fully describing how this ISA came to
life or how it works, as a dedicated paper would do it more
justice. What will be touched on is what is RISC-V, why is
it interesting and how is it already deployed? For the person
who likes to read up on the history of RISC-V, please visit
the webpage of the foundation itself [30].

RISC-V is, as its name implies, a Reduced instruction set
computer (RISC) ISA, and therefore has fewer instructions
than a Complex instruction set computer (CISC). The most
well known CISC is the X86 ISA, as for the RISC is the
ARM platform. The pros and cons to choose a RISC processor
over a CISC depends on its applications. In [12] compelling
arguments are given for the application of RISC-V in space.
The key argument in the article for RISC-V is open-source.
The research institution released the RISC-V ISA under the
Berkeley Software Distribution (BSD) license. In contrast to
other architectures, like mentioned before, the RISC-V is
open and can be used - under conditions of the BSD license
- without “black-box” Interlactual Property (IP). The best
example of a closed off IP is ARM core, as for the integration
of the core into a product licensing fees will have to be paid. If
a customer desires a custom ARM core, additional costs will
be added to the licensing subscription. But an open-source
ISA does not mean that every RISC-V core design is public
for use. Companies are still allowed to protect and sell their
version of a RISC-V architecture.

For this research a RISC-V research core has been chosen.
The chosen core is the Ibex core from the PULP platform
[11]. The reasons for choosing this architecture are based on
complexity, support, openness/accessibility, and area of use. It
is a competent core that can be easily pictured in an embedded
system for space. There were other contenders, for example,
the bigger brother of the Ibex the CV32E40P [15], or a core of
the Klessydra Core Family. There are also cores of companies
available, but they were not considered as they are not fully
open and as being restricted to a partnership doesn’t fit the
goal of this research. The Ibex is a simple two-stage core that
reduces the number of intermediate registers between stages,
see Figure 2. The benefit of a smaller core is that alterations
in the core are easier made if needed. Because of the two-
stage design, faults in the core show up quicker at the output.
The other reason is the level of support, the PULP platform is
well-maintained and reasonably well-documented. The PULP
project, like the Ibex, already has turn-key versions in them
for use.
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Fig. 2: Block diagram view of the Lowrisc Ibex core, provided
by Lowrisc

C. Redundancy & Security

Throughout this paper, numerous terms and concepts have
been introduced. However, it has become evident from the
literature that three subjects require further elaboration as
they are critical to the paper’s understanding. These include
Memory, followed by TMR, and finally, addressing certain
security concerns.

1) Memory: Memory is a critical component in modern
computing that provides a way of storing and retrieving data
and instructions for processors to use. Different types of
memory have different fabrication processes and can affect
their susceptibility to SEE.

There are two broad categories of memory: volatile and non-
volatile. Volatile memory requires a constant power supply to
retain data and will lose all stored information if the power is
turned off. Dynamic Random Access Memory (DRAM) and
Static Random Access Memory (SRAM) are both examples of
volatile memory. Dynamic Random Access Memory (DRAM)
is widely used but is particularly susceptible to Single Event
Effects (SEE) because it needs constant refreshing to maintain
the charge in its capacitors. On the other hand, Static Random
Access Memory (SRAM) stores data as the state of a flip-
flop circuit and does not require constant refreshing, making
it faster than Dynamic Random Access Memory (DRAM) but
also more expensive.

Non-volatile memory, on the other hand, retains its data
even when the power is turned off. Flash memory, also known
as NAND flash, and Read-Only Memory (ROM) are both
examples of non-volatile memory. Flash memory is widely
used in portable devices as an economical alternative to Static
Random Access Memory (SRAM) and Dynamic Random
Access Memory (DRAM).

To improve the reliability of memory, techniques such as
ECC and Physical Memory Protection (PMP) are widely used.
Error Correcting Code (ECC) uses a form of Hamming code
to detect and correct up to one-bit errors and detect two-bit
errors, providing a layer of protection against Single Event
Effects and reducing the risk of data corruption. PMP, part
of the RISC-V Privileged Architecture Specification, offers
hardware protection of memory regions that processors cannot
access and throws an exception when unauthorized memory
space is requested by the core, further reducing the risk of
data corruption.

2) Triple Modular Redundancy: Triple Modular Redun-
dancy, or TMR, is a technique used in digital electronics to

increase the reliability and fault tolerance of a system. TMR
involves the use of multiple identical modules to perform the
same task, with the outputs of the modules being compared
and the majority output being selected as the correct answer.

Before diving into TMR, it’s worth mentioning Dual Mod-
ular Redundancy (DMR), which is a similar technique that
involves using two identical modules to perform the same task.
A good analogy of DMR is the use of a backup generator
in a hospital. While DMR can provide some level of fault
tolerance, it is not as reliable as TMR. In the case of a hospital,
the backup generator is only used as a pure backup in the event
that the main generator fails. This is an example of two times
redundancy.

TMR provides an extra module and a voter, which is crucial
in ensuring that any error or fault in one of the modules is
detected and corrected by the majority of the modules. The
voter operates based on the principle of majority voting, with
the outputs of the three modules being compared and the
majority output being selected as the correct answer.

However, TMR comes with some associated costs, mainly in
terms of chip area and power consumption. There are reports
that claim to have achieved minimal cost increases for TMR,
but the size usually increases by a factor of three. Despite
this, there are innovative solutions that attempt to optimize the
size increase by enabling TMR to serve as parallel computing
cores, maximizing both reliability and performance.

It should be noted that TMR is not a universal solution. If
the input data is already corrupted by SEUs, then it is certain
that the output will also be corrupted, as TMR only provides
fault tolerance and error detection and correction, not error
prevention.

3) Backdoors: For observation purposes, direct access to
the core can provide valuable insights, but it also poses a
significant security risk. The existence of a backdoor, which
allows unauthorized access, is a major concern in the cur-
rent cybersecurity landscape. This concern was heightened
following the discovery of the Meltdown and Spectre security
vulnerabilities in 2018 [19, 22]. These vulnerabilities, which
exploit weaknesses in the design of modern computer proces-
sors, underscored the importance of considering security in the
design of hardware solutions.This is because the memory ma-
nipulation techniques used by Spectre and Meltdown, which
were implemented by the designers of the chips to speed up
processing, are the same techniques that can be exploited for
malicious purposes.

Injecting instructions into the core, or the ability to read
them, could have serious consequences and must be avoided
to protect the integrity of the system. Any hardware solution
must be designed with security in mind, taking into account
the potential risks and the need to maintain the confidentiality
and privacy of sensitive information while balancing this with
the necessary level of observability.

III. RELATED WORKS

In previous chapters, many papers relevant to the research
topic have been discussed. Therefore, there is no need to repeat
them in this chapter. Instead, a few new papers that have not
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been previously mentioned will be addressed. These papers
are significant as they shed light on the research question in
new and unique ways.

A. DIVA & Argus

Already in 1999, researchers were working on checking
errors online in executing code, Dynamic Implementation
Verification Architecture (DIVA) [4]. DIVA was a proposal for
a bridge between hardware and software based on the TMR
idea. By adding additional hardware to the core and utilizing
special encoding, DIVA can detect errors in the control-flow
or execution of the core. In 2007 an improvement proposal
has been made with Argus [24]. Argus main improvement is
the addition of checks on Memory and Dataflow. The creators
of Argus showed that it also can be used to pinpoint where the
errors happen [25]. Recently, this technology popped up again
in papers like [10] and [1] where they look at the observation
question for their designs. With RISC-V dynamic verification
methods may be smart features to add. The actual benefits still
have to be tested, but it may be a promising endeavour.

B. FIRECAP

A great idea that encapsulates the spirit of adding hardware
to increase observability is FIRECAP, co-developed by STMi-
croelectronics [33]. FIRECAP is an add-on to the core that
hooks into vital registers and keeps track of the progression
of the core. When the core stops responding, the programmer
can access FIRECAP through the debug interface to retrieve
valuable information on what happened to the core. Addition-
ally, FIRECAP has the ability to inject instructions into the
core from its own memory, making it a more powerful tool for
observability. However, FIRECAP is subject to radiation and
may not always be reliable. The researchers have addressed
this issue by adding proven mediation technologies, such as
TMR and the use of different-sized production methods, to
improve its reliability. In essence, they have created a hardware
solution to the observability problem.

C. SEM IP

The Soft Error Mitigation (SEM) IP is a module developed
by Xilinx to combat the main weakness of their SRAM
FPGAs. The main problem in SRAM is that the design of
the hardware is in memory and memory is the most vulnerable
to irradiation. Having your hardware design in memory causes
that the data as well as the design of the architecture is subject
to change. Fortunately, the configuration is a data file and
therefore error checking methods can be used to determine
and even fix bits in the configuration. Xilinx does not claim
that the IP can resolve MBU or all the SBUs. The SEM IP
has three modes of operation: detect upset, fix upset and fix
or replace upset. The fix or replace upset mode is meant to
be the solution to non-recoverable errors as it re-configures
the FPGA from protected memory [5, 23]. In Chapter VI the
SEM IP will be used as it is critical for the experiment.

IV. FAULT INJECTION

To prepare for irradiation experiments, simulations have
been conducted to observe the behaviour of the system’s
micro-architectures. These simulations aim to identify weak-
nesses in the architecture and characterize resulting errors and
mistakes through fault injection. Most simulations use test
cases designed to check functionality, which limits their scope
to a subset of real-world equivalent. That is why a different
approach had to be taken to the simulation in order to test
different redundancy schemes and their effectiveness.

After the real experiment, the simulation will be done
again. The idea for redoing the simulation is to update the
understanding of the current simulation and consider its value.
Furthermore, it is plausible that parameters, designs, or code
have changed during the experiment that needs to be re-
evaluated. The goal of the post-simulation phase is to attempt
to reconstruct the found errors.

A. Simulation environment

1) Tools: The tools were mostly dictated by the chosen
soft-core architecture. The maintainers of the Ibex core used
FuseSoc [18] to manage their project and Verilator [32] as their
main way of simulation. One of the core reasons that Verilator
is used is that the Ibex is programmed in SystemVerilog. Ver-
ilator is the fastest Verilog/SystemVerlog simulator compared
to Modelsim™.

2) Fault-injection mechanism: Verilator allows the use of a
modified C++ script to perform fault injection. During the fault
injection, logic/wires are targeted. In order to target the logic,
knowledge is needed of the simulated design. The biggest
drawback of this method is that the entire design has to be
recompiled if a different point in the system wants to be
targeted than the compiled target points. It is possible to target
multiple points per simulation. As the goal is to simulate
SEEs, the script is instructed to change only one bit at a
pseudorandom point in time of the simulation.

3) Evaluated Benchmark: The goal of this simulation, and
later the experiment, is to identify the origin of each observed
SDC. Therefore, it has to be possible to retrieve the computed
result and backtrack it to the origin of the errors. In standard
benchmarks, this information is usually either disregarded or
is difficult to extract, as the focus is to retrieve the result of a
compute-heavy workload on the core. For a microcontroller,
a more realistic scenario is one where data is computed as it
arrives, and the processor operates around the necessary IO of
the system. So, instead of investigating multiple benchmarks,
the choice to evaluate a mixed application that computes and
transmits data was made. Thus, the benchmark is composed
of a workload that modifies data, followed by a period where
the processor is waiting for external events (e.g., waiting
for an interrupt), which in this case it is represented by the
communication via the UART.

Based on the investigations of previous works [34, 21], a
15x15 matrix multiplication (32-bit word) is selected as the
workload. This choice is advantageous for two main reasons.
Firstly, it is a common workload evaluated fairly often on
similar works [13, 21], with a decent memory and computing
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footprint. Secondly, it allows for backtracing changes in the
output, so where an error occurred in the kernel (input data,
computation, or output data) can pinpoint. This will be further
explained in SectionV.

Listing 1: Computing Kernel
u i n t 3 2 t m a t r i x m u l t i p l y ( void ){

u i n t 3 2 t i , j , k ;

f o r ( i =0 ; i<ROWS; i ++)
{

f o r ( j =0 ; j<COLS ; j ++)
{

c [ i ] [ j ] = 0 ;
f o r ( k =0; k<COLS ; k ++)
{

c [ i ] [ j ]+= a [ i ] [ k ]* b [ k ] [ j ] ;
c [ i ] [ j ]+= a [ i ] [ k ] / 5 ;
c [ i ] [ j ]+= b [ i ] [ k ] / 5 ;

}
}

}

re turn 0 ;

}

B. Results

The decision to use the Lowrisc Ibex core was explained in
Chapter II-B, and one of its advantages is the RISC-V Formal
Interface (RVFI) backdoor, which enables formal verification.
During simulation, the tracer module can utilize the RVFI
to display all executed instructions and states by the Ibex
core. However, the tracer module is non-synthesizable, which
makes it unsuitable for actual synthesis. Through internal
observation via the RVFI, it is possible to trace the corruption
of control logic or data. For instance, an error in the initial
pointer to a register can lead to an ongoing jump offset in
the program, which is a type of control logic corruption that
can be categorized as a register file error. Another example is
the branch prediction and branch taken registers, which can
produce delayed errors over 2 to 6 clock cycles if their states
change well before they are needed.

For the Ibex core, over 200 logic points were tested. The
majority, approximately 88%, of the tested points did not result
in any visible changes in the output or execution trace. This
could indicate that they were part of the executed operation,
and therefore deemed clean and/or non-critical. The remaining
12% can be divided into three groups: detected (3%), not de-
tected (3%), and aborted by simulation (6%). The predominant
source of critical errors are found in the ID- and IF-stage of the
device. These errors are mostly Register file errors, observed
like the example in the paraghaph above. Exceptions thrown
by the core are suspected to be caused by incorrect program
counter trying to access invalid memory spaces. Sometimes
the core itself report this violation, as long the exaction

handler is correctly programmed. This observation results in
a methodology presented in the next chapter.

Simulation is a valuable tool for creating, preparing, and
testing ideas. In today’s business world, companies often use
simulation tools to optimize costs and improve the efficiency
of their prototyping processes. The goal is to get it right the
first time, and simulation can help achieve that. However,
it’s important to note that simulations can never perfectly
replicate the real world. The accuracy of a simulation de-
pends on the quality of the tools used and the test cases
designed by the engineer. Most test cases are designed to
check functionality, which means that the simulation may
only represent a subset of the real-world equivalent. Despite
these limitations, simulations offer several benefits. For one,
they provide complete observability within the constraints of
the tools used. Additionally, they can help designers rapidly
prototype and reduce costs.

V. ERROR MODELLEING

To correctly identify the origin of the observed errors, it is
necessary to pinpoint the root cause of the abnormal behavior,
seen in the data. With this goal, a model to differentiate data
corruption errors based on their effect on the system, Hamming
Distance (HD), and longevity (if the error carries to the next
loop iteration) is used:

User input data: In accordance with Section IV-A3, the
chosen kernel in this process is specifically selected due to its
ability to precisely identify error locations during computation.
The change can graphically be visualized, as shown in Fig-
ure 3. An error in a word of the input data will propagate
to the rest of the matrix as either an error in a column
(Figure 3a) or a column and a row (Figure 3b). The different
colors in each cell represent the HD between the output and
the golden value (blacker is more distant, redder is closer).
A single bit-flip in the input data will cascade a significant
change for each cell. If the bit-flip happens in the output
data, the error will not cascade and remain unique. Thus, it
is possible to differentiate errors that only occur in the output
matrix (blue square in Figure 3b). Errors that happen in the
register file during computation will affect a single cell with
a HD > 1 and errors in one of the constants will affect the
entire matrix. Furthermore, input data that is modified (i.e., A
and B matrices) will not be overwritten until the processor is
reprogrammed. It is expected to see a build-up of errors that
remain stable through iterations.

Communication error: Because the benchmark also has a
communication mechanism, it is needed to account for SEUs
that might also occur there. Possible sources of issues are
control flow errors in the parsing of the output matrix and
in the encoding of the ASCII characters. The output rests in
memory until the next computation, so errors can still build
up in the output until they are transmitted. Additionally, an
encoded ASCII character will remain in memory until there
is space in the buffer to send it, thus it can also accumulate
errors. A simple way to separate these issues is to filter results
that don’t result in an ASCII hexadecimal numeric value (e.g.,
the character “?” has a HD of 1 compared to “7”). It is more
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(a) Error in input a (b) Error in b and in c

Fig. 3: Propagation of errors in the output matrix.

difficult to classify errors that provide sane values with a HD
of 1, they are classify as errors in the output matrix.

Register file errors: This is the most volatile data, with
only the Stack Pointer (sp), Global Pointer (gp), return address
(ra), and a saved register (s0) remaining alive during the entire
execution of the loop (albeit sometimes moving to the stack).
A SEU in any of these would result in invalid memory access,
causing a Detected Unrecoverable Error (DUE). The only
other registers used in the application are registers a0-a5 which
are rewritten constantly. These could cause SEUs to propagate
and create changes with a HD > 1 or control flow issues.

Programming logic: Programming logic bits are only ever
rewritten when the device is reprogrammed. Thus the effects
will accumulate. Although not all SEUs in this category will
be detectable, some of them will result in DUEs or SDCs.
Specifically for SDCs, it is expected that they will create new
stable output states.

Critically, the model is trying to filter multi-bit and multi-
position errors to a single bit-flip. These SEUs might even
remain persistent between iterations, even if they do not orig-
inate just from Configuration RAM (CRAM). As explained
above, SEUs in the data memory on the input data will be
seen as permanent errors, even though they were caused by
a single bit-flip. To counter that, the model counts only new
errors. When an input data fault occurs, it will create a new
stable output state, these variations are captured and the golden
matrix is update to match the new state. This strategy also
works for errors in the configuration memory that can produce
a stable output (further described in Section VI-C1). To trace
communication errors, the same strategy for errors in multiple,
but constant, cells (i.e., a permanent change to a character) can
be used, for transient errors different criteria will be needed.
As described above, SEUs in the communication step can have
a non-sane character value or a HD of 1 in an individual cell.
Together with the new error strategy, these 3 criteria compose
a parser that filters all of these errors in a post-processing step.
Exceptions to these criteria (described in Section VI-C1) are
marked for manual inspection.

VI. IRRADIATION CAMPAIGN

A real-life experiment was conducted at the ChipIr facility
at the STFC Rutherford Appleton Laboratory in Oxfordshire
to gain experience with the irradiation campaign. Despite

unforeseen events hindering the realization of the original
plan, the experience gained was crucial in understanding the
radiation campaign and unexpected results were obtained. The
plan was altered several times due to practical constraints.
Initially, a Flash-based FPGA was intended to be used, but due
to a global chip shortage caused by the COVID-19 pandemic
and limitations of the development tools provided by the flash-
based FPGA manufacturer, the decision was made to switch
to a SRAM-based FPGA from Xilinx, which offered a feature
that would aid in the experiment and had the most modern
and reliable development tool on the market.

A. Physical setup

The selected chip from Xilinx was the XC7A100TCSG324-
1. The chip is available on the development board ArtyA7.
The ArtyA7 has a reasonable community around it that gives
support in forms online. It is sometimes overlooked, but
documentation is the key and more information is available,
the easier it is to adopt a certain product. One oversight was
that the ArtyA7 board does not have proper mounting holes,
what made it less ideal for mounting with tie wraps.

Figure 4 depicts the experimental setup. The DUT was
placed in the beam line and connected through high-speed
USB replicators to the host PC in the control room. The
processor computed and transmitted the data as soon as it
was ready. The host PC was responsible for reprogramming
the device and storing the data safely. After the experiment,
the data was processed offline.

UART Buffer

a1 a2
a3 a4

b1 b2
b3 b4

c1 c2
c3 c4

Host PC

Offline 
Processing

USB

Error Locations

Beam Line

Experimental Setup

Fig. 4: Experimental setup

This specific implementation was adapted from the Ibex
Super System project[8], which couples the Ibex with a
debug module, an UART, a GPIO, and a timer in a System-
on-Chip (SoC). The design’s post-place-and-route resource
utilization used a total of 4564 logic LUTs, 96 distributed
RAM LUTs, 3138 FFs, and 32 blocks of RAMB18 block
ram. All the available BRAMs on the target device were
utilized. The register file and inter-stage buffers were mapped
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to distributed RAM (LUTs). The benchmark itself was on an
infinite loop, but regardless of the current status, the host PC
was tasked with relaunching the application every 10 minutes
to avoid accumulating too many errors on a broken output.
This procedure reprograms both the user and configuration
memories.

In Figure 5, the fluence of the beam during the long-running
experiment is shown. It can be seen that there are two time
periods that the fluence went to zero. The exact reason why the
fluence went to zero is unknown, but it is not an uncommon
phenomenon as it is difficult to produce a constant fluance.
The beam at the STFC Rutherford Appleton Laboratory is
well known for a mostly consistent beam. The measurements
during those period of low/zero fluency, could be discarded,
but are used as control group measurements of the DUT. The
chip itself becomes radioactive overtime as it gets irradiated.
Therefore, it is good to have in between measurements without
external radiation.
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Fig. 5: Measured flux of the beam line during the main
experiment, starting at 11:45:21 PM on 26th of Sep.

B. SEM IP

The original plan had to be carried out in two steps. The
first step was to check the working of the SEM IP on its own.
As the choice was made to switch to a SRAM based FPGA,
because of practical reasons, the configuration memory had
to be taken into account. As was mentioned before, SRAM
based FPGAs suffer more SDC compared to flash based. In
order to know which SDC comes from the program itself and
which follows from the configuration, the cross section of the
SRAM FPGA had to be characterized. The plan was first to
expose only the SEM IP to the beam to get this result. Under
close observation the test was run multiple times, whereby
the configuration was uploaded and observed till the SEM IP
reported a non-recoverable state. When the non-recoverable
state was observed, the configuration was scrubbed from the
device and compared to the original bitstream.
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Fig. 6: Cross-section on SEM IP reported errors

In the Figure 6, the cross-section deducted by the reported
error of the SEM IP is given. The cross-section increases the
longer the SEM core is operational.

The second step is to test the microarchitecture of the Ibex
with the SEM IP. The original idea was to test one device with
SEM IP and one without. Unfortunately, the SEM IP did not
integrate with the microarchitecture correctly, which may be
due to a fault that could be resolved. Regrettably, due to the
limited amount of time available, resolution of the issue could
not be accomplished prior to the conclusion of the experiment.

C. Experiment Results

According to the procedure stated in Section VI-A, the
reason why each run ended can be classified based on a DUE
or an iteration limit (IL). The results of that time window
can be classified if any SDC was detected. The total detected
faults ware 48 out of 55 from the data set. The resulting
analysis yields 4 categories: IL clean, IL+SDC, DUE clean,
and DUE+SDC. Figure 7 shows the distribution on a pie
chart. The DUE category also includes runs that ended with an
unparseable output but were still technically sending characters
through the UART (e.g., sending a single repeating character).
Among those DUEs, there was only one illegal instruction
captured by the exception handler. Around 55% of the runs
end in a DUE, while 45% of the runs end on the iteration
limit.

1) Analysis of Corner Cases: The system’s behaviour under
a neutron beam is hard to model but is even harder to automate.
Several instances where the SEU did not cause a state that fits
the model have been detected. Figure 8 illustrates some of the
observed corner cases.

In Figure 8a shows an interesting case, where the 4th bit
of each cell got stuck at 0 for all outputs. This is most
likely DUE to a PL error. As this turned out to be a stable
state, it is deducible that the error did not happen on the
instruction critical path. A couple of thousand iterations later,
another error happened at the input matrix. Figure 8b shows
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IL clean
10,6%

DUE clean
29,8%

DUE+SDC
25,5%

IL + SDC
34,0%

Fig. 7: Distribution of tests between the 4 categories: IL clean,
IL+SDC, DUE clean, and DUE+SDC.

a completely wrong matrix. By inspecting each cell reveals
that the entire output is composed of the same value, but
different from any of the golden results. This did not result in a
failure of the processor. On the contrary, it finished the correct
number of iterations. As this is a stable result, communication,
control flow and input data errors were discarded as all the
values are the same. The logical conclusion would be that it
is a configuration bit error. The most likely candidate is the
computation of the MUL/DIV block, as it would only affect
the result of the computation. No other section of the code
utilizes these instructions so they would not affect the control
flow.

Figure 8c initially looks like a similar case to Figure 8b.
However, inspecting the cell values shows that it is a clear
control flow issue. The entire output matrix is composed of the
values from the first row. Interestingly, this also led to a correct
number of iterations and output size. Therefore, it can be
concluded that the inner loop of the output dump was skipped
entirely. Finally, Figure 8d contains an input error followed
by a surge of errors in different locations. Excluding the input
error from the analysis, what remains is close to 90% of static
errors containing mostly character errors and what appear to be
computation errors. Upon further inspection, those remaining
errors are in reality skipped or repeated characters. The other
10% are single-bit errors that change positions in a mostly
cyclic manner. As the error position cycles persist between
function calls, the best candidate for this type of error is the
UART buffer of the processor itself. This type of error is
common in different variations (e.g. every 8 cells a character
is substituted by the character A).

2) Cross Section: Using the approach of the literature and
considering the number of SEUs, an overestimation of the
cross-section, according to the modeling in Section V, as
shown in the Raw column of Figure 9, would occur. Instead,
if the errors that become a new stable state are filtered first,
it results in column Repeat. Then, by filtering overcounted
errors that can be correctly identified by manual inspection
as described in Section VI-C1, a more accurate estimate of
the correct number of SEUs that impacted the system shows.
At the end of this analysis, from the consecutive iterations

(a) The 4th bit became stuck
at 0, and later an input error
occurred.

(b) Candidate for detectable
non-fatal SEU on configuration
bit.

(c) Candidate for control flow
error.

(d) Candidate for error in
UART configuration bits.

Fig. 8: Different candidates for corner cases of the presented
model.
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Fig. 9: Error count with different types of filtering.

between each time the device was reprogrammed, half of the
permanent errors were caused by input errors, while the rest
were caused by CRAM errors or control flow issues. This
means that by analyzing the common origin of the errors, the
total error count could be reduced by 70%.

With the number of detected errors during the experiment,
the cross-section can be calculated by using the received
particle fluence, as shown in Equation 4. Table I contains the
calculated result of the cross-section by taking into account
different error counts. Even though the manual approach of
laboriously looking at all of the corner cases was necessary due
to the diverse ways that the system could fail, the automatic
strategy of evaluating changes in permanent states can be used
to reduce the number of times reprogramming the device is
necessary when testing an SRAM-based FPGAs.
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TABLE I: Cross section of the device and chosen benchmark
for different levels of filtering.

Filter type Raw Repeat Manual
Total Errors 28.82E+03 16.30E+03 8.72E+03

Cross-Section [cm2] 3.36E-04 1.90E-04 1.02E-04

D. Observation
Most of the proof is limited to only the results in the

output files. The biggest bottleneck is to retrieve the data
from the device. The execution of the program was limited
by the UART function, as it took significant more time than
the calculation itself. This meant that the output results were
more exposed to the beam, waiting in the buffer, than the
calculation.

VII. CONCLUSIONS

In this paper, the performance of the Ibex RISC-V soft
core processor has been evaluated through implementation
on an SRAM-FPGA, which was exposed to a neutron beam
without any protection schemes. The experiment showed that
a significant number of errors occurred in the user’s memory
and during communication steps. An error classification model
was used to filter some incorrect outputs, leading to a more
accurate estimation of SEUs without requiring continuous
reprogramming of the device.

The results of the experiment suggest that most faults are
due to SDC in the CRAM, with 55% resulting in DUEs, of
which more than half were considered clean. The experiment
did not provide refined information on where and how the
faults occurred.

In non-critical systems, full error coverage may not be
worth the trade-off in terms of performance, area, power, or
development costs. Hence, reliability techniques should be
applied only to the components that are most likely to generate
a detectable error.

The simulation results provide insight into the symptoms
caused by fault injection, making it possible to understand
why certain fault protection schemes might be used. However,
the results of the experiment are different from the simulation,
highlighting the limitations of observing the hardware in a
simulated environment. In simulation, the hardware can be
monitored with complete visibility, but this can create a blind
spot for the practical problems that arise during data sharing
between the DUT and the observer.

To address the limitations of the experiment, a complemen-
tary strategy and necessary toolset should be developed to
improve the physical setup and focus on the bottleneck. The
next step should be to test a flash-based FPGA instead of a
SRAM-based one. This might be a significant improvement
compared to the SRAM FPGA only based on memory tech-
nology. The question of observability remains unanswered for
now, and modules such as FIRECAP, which act as a watchdog
and recovery tool, may offer a solution in the future

APPENDIX A
ACRONYMS

BR Background Radiation. 2

BSD Berkeley Software Distribution. 3

CISC Complex instruction set computer. 3
COTS Commercially off-the-shelf. 1, 2
CRAMConfiguration RAM. 7, 9

DIVA Dynamic Implementation Verification Architecture. 5
DMR Dual Modular Redundancy. 4
DRAMDynamic Random Access Memory. 4
DUE Detected Unrecoverable Error. 7–10
DUT Device under test. 1, 7, 8, 10

ECC Error Correcting Code. 1–4
ESA European Space Agency. 2

FPGA Field Programable Gate Array. 1, 2, 5, 7, 8, 10

HD Hamming Distance. 6, 7

IC Integrated Circuit. 2
IP Interlactual Property. 3, 5, 8
ISA Instruction Set Architecture. 1, 3

MBU Mutiple Bit Upsets. 3, 5

PMP Physical Memory Protection. 1, 4

RISC Reduced instruction set computer. 3
ROM Read-Only Memory. 4
RVFI RISC-V Formal Interface. 6

SBU Single Bit Upsets. 5
SDC Silent Data Coruption. 2, 3, 5, 7–10
SEE Single Event Effects. 1–5
SEM Soft Error Mitigation. 5, 8
SET Single Event Transient. 2
SEU Single Event Upset. 2–4, 6–10
SRAMStatic Random Access Memory. 4

TMR Triple Modular Redundancy. 1–5
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“Is er leven op Pluto
Kun je dansen op de maan
Is er een plaats tussen de sterren
Waar ik heen kan gaan” [16]

Space, the last frontier. How many of us look up to the
sky and ask our self what is up there? Like the famous Dutch
song [16] is there a place between the stars where I could
go? Maybe getting buried on the Moon is most feasible for
me. But in order to get there we need to be able to depend on
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our technic, because space is a hazardous environment to us
humans and machine. That is what compelled me to this topic,
the combination of a dream and a question of dependability.
For those whom are wondering, my background is in robotics
and especially now in the brain box of the robot. I see a future
of autonomous robots that explore the universe. Luckily,
my job will be one of the last to be automated. For now,
let us get back to earth. Progress goes quick, but not that quick.

Wouter van Huffelen
Enschede, 28-02-2023
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