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Abstract 
 

This thesis presents insights into how the active learning framework can be effectively 

implemented into the point cloud semantic segmentation in the railway environment. The active 

learning framework sets out to drastically reduce the amount of labeled data needed to train an efficient 

segmentation model. It achieves this by intelligently selecting new batches of data for future training 

through metrics that tell the algorithm how useful this data would be for the model. 

The overarching goal of this research is to determine how active learning compares to fully 

supervised learning. This will be determined by comparing their precision when running inference. In 

addition to this another goal is to explore the computation time required for active learning compared 

to fully supervised learning. 

The main findings in this paper conclude that active learning can provide an alternative to fully 

supervised learning. We were able to train models with up to 76% (86% for fully supervised) accuracy 

with using only 16% labeled data. Furthermore by reducing the amount of labeled data that is fed into 

the training process it is also possible to reduce computation times for the training process by up to 

43%. 

  



3 
 

Table of Contents 
  

Acknowledgment...................................................................................................................................... 1 

Abstract .................................................................................................................................................... 2 

Table of Figures........................................................................................................................................ 5 

1 Introduction ........................................................................................................................................... 6 

1.1 Preliminaries ............................................................................................................................. 6 

1.2 Research Objectives ................................................................................................................. 6 

2 State of the Art ...................................................................................................................................... 8 

2.1 Introduction .................................................................................................................................... 8 

2.2 Computer Vision and Object Detection ......................................................................................... 8 

2.3 Data labelling and unsupervised learning ....................................................................................... 9 

2.4 The Active Learning paradigm ..................................................................................................... 10 

2.5 Conclusion and Discussion of Literature ..................................................................................... 11 

3. Methodology ...................................................................................................................................... 12 

3.1 Deep learning training process ..................................................................................................... 12 

3.2 Point cloud semantic segmentation .............................................................................................. 13 

3.3 Active learning ............................................................................................................................. 14 

3.3.1 SoftMax Entropy ................................................................................................................... 15 

3.3.2 Color Discontinuity ............................................................................................................... 15 

3.3.3 Structural complexity ............................................................................................................ 16 

4 Specification ........................................................................................................................................ 18 

4.1 Business Requirements ................................................................................................................. 18 

4.1.1 Resources ............................................................................................................................... 19 

4.2 Data understanding ....................................................................................................................... 19 

4.2.1 Data conversion ..................................................................................................................... 21 

4.2.2 RGB values ............................................................................................................................ 22 

4.3 Active learning pipeline ............................................................................................................... 23 

 ........................................................................................................................................................ 23 

5 Realization and Evaluation .................................................................................................................. 25 



4 
 

5.1 Active learning pipeline implementation ..................................................................................... 25 

5.2 Evaluation ..................................................................................................................................... 26 

5.2.1 Initial training iteration .......................................................................................................... 26 

5.2.2 Active learning and fully supervised learning ....................................................................... 27 

5.2.3 Influence of initial data on training process .......................................................................... 29 

5.2.4 Computation time .................................................................................................................. 30 

5.2.5 Effect of color on active learning .......................................................................................... 31 

6 Conclusion and Future Work............................................................................................................... 32 

6.1 Conclusions .................................................................................................................................. 32 

6.2 Future work .................................................................................................................................. 33 

7 References ........................................................................................................................................... 34 

8 Appendicies ......................................................................................................................................... 36 

DATA ................................................................................................................................................. 36 

RUN 1 (16% DATA) ..................................................................................................................... 36 

RUN 2 (12% DATA) ..................................................................................................................... 37 

RUN 3 (9% DATA) ....................................................................................................................... 38 

RUN 4  (5% DATA) ...................................................................................................................... 39 

Code Snippets ..................................................................................................................................... 40 

Conversion Script: .......................................................................................................................... 40 

 

 

 

 
 
 
 

 

 

 

 



5 
 

Table of Figures 
 

Figure 1 Screenshot of LabelIMG ............................................................................................................ 9 

Figure 2 Structure of CNN ..................................................................................................................... 12 

Figure 3 Example of segmented point cloud scan .................................................................................. 13 

Figure 4 Active learning pipeline ........................................................................................................... 14 

Figure 5 Example of SoftMax Entropy .................................................................................................. 15 

Figure 6 Point cloud scan with RGB values [20] ................................................................................... 15 

Figure 7 Catenary arch pole and Tension rod and foundation ............................................................... 16 

Figure 8 AMI Project Pipeline ............................................................................................................... 18 

Figure 9 Example of labeled point cloud scan ....................................................................................... 20 

Figure 10 Table of labels ........................................................................................................................ 20 

Figure 11 Point cloud sizes .................................................................................................................... 21 

Figure 12 File structure .......................................................................................................................... 21 

Figure 13 Example of rgb values in point cloud data ............................................................................. 22 

Figure 14 Basic active learning pipeline ................................................................................................ 23 

Figure 15 Active learning parameters .................................................................................................... 26 

Figure 16 Initial training iteration performance ..................................................................................... 26 

Figure 17 MIoU by class ........................................................................................................................ 27 

Figure 17 Active learning training process ............................................................................................ 29 

Figure 18 Computation time ................................................................................................................... 30 

Figure 19 Effect of color on active learning ........................................................................................... 31 

Figure 20 Active learning iterations 16% Data ...................................................................................... 36 

Figure 21 Active learning 16% Data ...................................................................................................... 36 

Figure 22 Active learning iterations 12% Data ...................................................................................... 37 

Figure 23 Active learning 12% Data ...................................................................................................... 37 

Figure 24 Active learning iterations 9% Data ........................................................................................ 38 

Figure 25 Active learning 9% Data ........................................................................................................ 38 

Figure 26 Active learning iterations 5% Data ........................................................................................ 39 

Figure 27 Active learning 5% Data ........................................................................................................ 39 

 

  

https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291175
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291177
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291178
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291180
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291182
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291183
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291186
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291188
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291190
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291191
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291192
https://universiteittwente-my.sharepoint.com/personal/j_hentschel_student_utwente_nl/Documents/Thesis%20(1).docx#_Toc127291194


6 
 

1 Introduction 
 

Trains are some of the most important transportation devices for millions of people, as well as 

some of the major drivers of global trade. Keeping the railways on which, those trains run, in working 

condition can be a very challenging and time-consuming task. In Europe alone there are over     

200,000 km of railway that needs to be checked for maintenance. 

Railway company Strukton has begun making advances in using Point Clouds to generate a 3D 

representation of many different parts of the railway like Catenary arches or Signal lights. This is done 

to check these components more easily and effectively for maintenance. They have tasked the Saxion 

University’s Ambient Intelligence Group (AMI) to develop a deep learning model that is able to detect 

key railway infrastructure from large sets of point cloud scans. These scans are produced by LiDAR 

scanners mounted on trains and therefore are vast and require filtration to find the required 

components. The deep learning model for this job requires a lot of data to be trained accurately. The 

project described in this paper explores options to reduce the amount of data needed for accurate 

training through an active learning framework. 

 

1.1 Preliminaries 
 

The main data type that will be used in this project is point cloud data. This data is in its most 

basic form a set of x, y, and z coordinates. It is used to represent real-world objects in 3D space. Most 

often point cloud data is recorded by LiDAR scanners. LiDAR stands for laser imaging, detection, and 

ranging and is produced by a sensor sending out light beams in all sorts of directions and measuring the 

time to receive the reflected light beam in order to give an estimate of the reflective surface. This is 

also how the majority of the data used in this project was captured.  

The concept that is used to run object detection is called deep learning. This is a category of machine 

learning that is based on artificial neural networks that imitate the human neurological system. Most 

commonly, a deep learning model is comprised of a number of different layers that are connected 

through weights. In each layer the raw input data passes through edits and transforms the data closer to 

a desired output 

 

1.2 Research Objectives 
 

The main focus of this research is the investigation of the active learning paradigm and how it can 

be implemented into point clouds. As traditional active learning models are mostly focused on a 2D 

image environment, it is a new challenge to fit this form of semi supervised learning into the point 

cloud environment. In this research an existing active learning framework for point cloud [18] will be 
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used as a basis and adjusted throughout the entire process to fit a different dataset. We will investigate 

the adaptability and performance of this adjusted framework and discuss how it fits into the data 

Strukton needs.  

As fully supervised training methods are currently used by the AMI research group, We will also 

investigate how this active learning framework performs compared to a fully supervised trained model. 

These goals result in the following main research question: 

 

How can the active learning paradigm be effectively implemented into point cloud 

and how does it perform compared to fully supervised training? 

 

In addition, and as a refinement to the main research question, two sub questions emerged during my 

research. One of those is related to color influence on the active learning cycle, which will be 

explained in more detail in later chapters. In addition to the color, the main argument for active 

learning is needing less data. This added additional sub questions to my research: 

 

How do RGB values influence the active learning process? 

 

How does the initial dataset influence the precision of the model? 
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2 State of the Art 
 
2.1 Introduction  
 

To train an AI (Artificial Intelligence) that can run segmentation, a dataset providing 

information on what the railroad components look like is needed so the AI can learn how to detect 

those effectively and reliably. This dataset is usually labeled by a human. This process is very labor 

intensive as the amount of inspection that needs to be done can be quite massive. Therefore, it is 

necessary to research and develop solutions that can optimize this data labelling process.  

Thus, the goal of this chapter is to provide an overview of the state of the art in active learning 

for segmentation and object detection and explore possibilities supported by research. The first part of 

this chapter will focus on an introduction to methods and models used for basic object detection and 

segmentation. The second part of the chapter will surround the data labelling process and briefly 

explore the topic of unsupervised learning. This will include current solutions and models for self-

learning AIs that can label and learn from data on their own. In the third part of the chapter, a short 

overview of the state of active learning will be given. And in the final part of the chapter, a conclusion 

will be given about active learning and how it positions itself in the world of AI-driven computer 

vision.  

  

  

2.2 Computer Vision and Object Detection  
 

Computer vision is about teaching a computer to recognize patterns. For this, Convolutional 

Neural Networks or short CNNs are most commonly used [15]. CNNs are a mimic of neural networks 

just like in our brains that are rearranged by a training process to be able to recognize the patterns we 

want them to recognize. O’Shea et al. [9] describe the structure of a CNN as being comprised of three 

types of layers, which include convolutional layers, pooling layers and fully connected layers. 

Yamashita et al. [12] have also described those three layers in more detail. First of all, the 

convolutional layer is described as the most fundamental of layers in a CNN as it processes the input 

fed into the network, most commonly images, and computes this input and sends it to the next layer. 

The computation done in more detail is a repeating process of representing each pixel of the input in an 

array of numbers, called feature maps. They are then tweaked through a filter each convolution to 

improve the structure of the network to recognize what pattern it should recognize. A CNN usually has 

multiple convolutional layers, and each is handling a different filter, these tell each layer what pattern 

to look for. Some of these filters might be used to recognize edges in an image while others might be 

used to identify texture and brightness levels. Brownlee [2] describes these layers in their research in a 
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similar way they adds to the research of Yamashita et. al. [12], by introducing flattening and densing 

processes which are added to improve the structure of the output that the previous layers produce.    

Albawi et. al. [1] describe the pooling layer in more detail. Pooling layers are used to reduce the size of 

feature maps to make the network more efficient. Pooling layers take the output of multiple nodes in 

the convolutional layer and average these out to combine them. These layers are usually placed in 

between convolutional layers. Liu et. al. [8] also describe the pooling layer as an essential step within 

CNN networks that combine several pixels within a feature map to a combined pixel with added 

weight and bias.  

The learning process is usually done in a fully supervised way. This means that a premade set 

of data is manually labeled, which means that a human shows the computer exactly what needs to be 

detected. The size of this dataset can substantially based on the application. This data is then fed into 

the CNN and through all the convolutional layers, where it is then output into a weighted model.  

Alzubaidi et. al. [15] describe recurrent neural networks (RNNs), a different approach to neural 

networks as previously mentioned research. RNNs are often used in speech-processing applications. 

This is due to their semantic nature which lets them understand context better, which is necessary for 

speech and text usage. For image processing however, this context awareness is not crucial. Lao et. al 

[18] identify that these RNNs have a major problem of poor scalability due to their semantic and 

parallel nature. Scaling these networks results in an exponential increase in computing power and 

training time. This adds to RNNs not being feasible for object detection with a multitude of labels. As a 

large amount of data is needed for this task.  

  

2.3 Data labelling and unsupervised learning   
 

For every Neural network training, data is necessary. Therefore, the way we label data is an 

integral part of getting accurate results out of the models.  

The data labelling process for a network designed to be used for simple image object detection is very 

straightforward. Usually, software like LabelImg (seen in Figure 1) is used to draw bounding boxes 

around the objects that need to be detected [13].  

 

 Figure 1 Screenshot of LabelIMG [Source: https://github.com/heartexlabs/labelImg] 
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On a more technical level, Guo et. al. [5] describe this as a set of coordinates that are noted and related 

to a label, like “human” or “cat”, which is then connected with the corresponding image. Both of these 

are then fed into and read by the neural network.   

This data labelling process is quite labor intensive, as for a normal dataset hundreds if not 

thousands of images have to be labeled, which is a very numbing and error-prone task for a human. 

This is proven by Anish et. al. [16] who have identified errors of at least 3.3% within the 10 most 

commonly used computer vision datasets. They also showed that these mislabeled datasets have a 

measurable effect on model performance. This is backed by Yang et. al. [17] who also concluded that 

mislabeled data has a negative impact on model performance. To solve this issue, unsupervised 

learning comes into play. When using clustering, which is one form of unsupervised learning for a 

Neural Network, no specific labelled data is provided, which means that the Neural Network is just fed 

the raw data input. No desired output is specified, and the Neural Network is just trying to recognize 

patterns and structures on its own [7][4]. The network sorts the data into patterns and structures it 

recognizes to be similar in order to provide a set of detected classes.  

  

2.4 The Active Learning paradigm   
 

Active learning slots right in the middle between supervised and unsupervised learning. Active 

learning uses only a small set of hand-labelled data. An initial model is then trained on this small batch 

of data. Roy et. al. [11] use this initial model to label the next set of data for training. Haussmann et. al. 

[6] showed that active learning can not only drastically reduce the time and effort spent manually 

labeling a dataset but also improve accuracy. Their active learning model was able to achieve a 3x 

improvement in accuracy over their manually labeled dataset. This is backed by Choi et al. [3] as their 

active learning models also showed improved accuracy with less label budget.  

Active learning works by probabilistic modelling of the output of the network. In conventional 

neural networks that do object detection, the bounding box that marks the detection object is 

represented by the x and y coordinates of the center of the bounding box as well as the width and 

height of the box. In active learning, these values are replaced by the mean, the variance and the weight 

[3]. These are then used to find the best data for the next revolutions of active learning processes.  

Yu et al. [14] use a consistency-based approach to active learning, meaning that for each data point a 

reference prediction is compared with their corresponding predictions and analyzed if they are 

consistent with each other to evaluate the informativeness of these data points for further training.  
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2.5 Conclusion and Discussion of Literature  
 

The goal of this chapter is to provide insight into the active learning paradigm within machine 

learning. To fully understand this matter first, a look at the general idea of object detection and 

machine learning is necessary. The research here showed that CNNs are trained to recognize patterns 

and structures within sets of data and to output them in a weighted model at the end, which can be used 

to perform object detection. The majority of research for object detection describes a similar structure 

of their used CNNs consisting of three layers: convolutional, pooling and fully connected 

[9][12][1][5][8].  

Data labeling is a consistent factor through all research regarding machine learning. The 

research discussed in the second part of this chapter [13][7][4] showed that the data labelling process, 

or more specifically the acquisition of a sufficient amount of labelled data, often acted as a bottleneck 

for many machine learning paradigms. This is why unsupervised learning methods are proposed and 

researched in the papers found. The active learning paradigm is a compromise between manual data 

labeling processes and completely unsupervised learning. The research for active learning [11][6][3] 

showed that the amount of labeled data needed can be drastically reduced by using active learning 

methods.   

Research on the topic of active learning was limited by its novelty as this paradigm has not 

been explored until the last few years. Additionally, machine learning methods are quite diverse. 

CNN’s, which this literature review focused on are not the only form of machine learning algorithms 

[1]. This variety of base algorithms means that subsequent forms of unsupervised and active learning 

do not work on the same ground basis, making it hard to compare different approaches. The type of 

data that needs to be recognized by the algorithms might also change from images to 3D models to text 

and much more. Even though the approaches might be similar the output and precisions provided by 

the research might differ drastically between those different data inputs.  

An interesting future research direction could be to analyze what facets of data make it 

valuable for active learning processes. This might help with selecting which dataset might be best 

suited for the initial base model. Another valuable research direction could be to analyze the optimal 

size of the base dataset for different approaches of active learning as this provides insight into model 

performances and efficiency.  
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3. Methodology 
 

In this chapter, the tools and processes related to active learning in the point cloud space are 

explained in detail. To fully understand how active learning can be applied to reduce the data needed 

for deep learning models, we have to first look at the general approach to deep learning and how it 

works. The process of active learning for point cloud data can be divided into two separate stages. The 

first stage consists of data preparation and processing [18]. In this stage the raw data recorded by the 

LiDAR sensors is analyzed in a variety of preprocessing steps. This is done in order to fit the raw data 

into a format that is suitable for active learning processes. The second stage of the active learning 

process is the actual training process. This usually consists of training an initial deep learning model 

and using this as a baseline to run multiple iterations of active learning processes. 

 

3.1 Deep learning training process 
 

Deep learning was introduced in Chapters 1 and 2 already. But it is necessary to look more into 

the training and learning process of deep learning models. Deep learning models are based on artificial 

neural networks or specifically convolutional neural networks (CNNs). These neural networks imitate 

the human neuron system in the form that they are made up of layers of nodes that are connected via 

weights [5], a visualization of this can be seen in Figure 2. 

 
Figure 2 Structure of CNN 

 

The input data fed into a CNN is passed through each layer of neurons and modified with each pass 

through a node. Modern CNNs can consist of millions of these nodes. The value that is passed to a 

node is multiplied by the weight connecting these nodes. The training process, therefore, changes the 

way the nodes are connected as well as the weight values that connect those nodes. Typically training 

processes consist of multiple iterations. In each iteration, the network and its weight are adjusted 

accordingly to generate the desired output. The performance of such models can be measured by using 
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the model to make predictions on data that was not used in the training process of the model and is 

therefore unknown to it. These predictions are then compared with a ground truth of the dataset 

(typically referred to as a validation set). From this comparison, you can then calculate a mean 

intersection over union (MIoU) which indicates how much of the unknown data was correctly 

predicted by the model. This MIoU will also be the main metric used to judge the performance of a 

given model in this research. 

 

3.2 Point cloud semantic segmentation 
 

Point cloud segmentation is one case in which deep learning can be applied. Point clouds are 

comprised of a set of points that make up a 3D model. The goal of semantic segmentation is to have 

the AI label each point to a class. Initially, training, data that was manually labeled by humans, is used 

to train the AI, so it understands how to separate objects. Then data unknown to the AI is passed 

through and it attempts to label each object, an example of a segmented point cloud can be seen in 

Figure 3. In my project, this means labeling the different track components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

This segmentation is done by giving each pixel a score for each label [20]. These scores represent the 

confidence of the AI, how sure it is that a pixel belongs to the given class. This score is based on a 

multitude of different components, which are described in later chapters. These segmentations work by 

using the context in which each pixel is in to evaluate its score. 

 

 

 

Figure 3 Example of segmented point cloud scan 
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3.3 Active learning 
 

The active learning framework, visualized in Figure 4, uses a scene-based approach [18]. In 

traditional fully supervised training, a whole dataset is taken for training. The amount of labeled data 

needed for an accurate training result is enormous. That is why active learning aims to reduce the 

amount of data needed. Active learning utilizes an initial model that was trained on a small amount of 

labeled data. This initial model is then utilized to evaluate the non-labeled data and learn from it. In 

more detail, this means that in each iteration the model selects a new batch of data that it will train on 

until it provides the required accuracy [3]. 

When considering a whole dataset scan, it is clear that not all labeled regions contribute 

effectively to the training process. That is why the active learning framework subdivides the data into 

regions that can then be evaluated individually based on how much new information they provide to 

improve the performance of the model. To evaluate the information that each region provides to the AI, 

three steps are done in each active learning iteration: SoftMax entropy, color discontinuity, and 

structural complexity. 

 

 

The description in the following subsections is based on [18]. 

Figure 4 Active learning pipeline 
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3.3.1 SoftMax Entropy 
 

The SoftMax Entropy [18] uses the model trained in the last active learning to obtain the class 

probability of all regions. The probabilities are then normalized and analyzed based on their 

uncertainty. 

 

Class Probability 

Catenary 

arch 

0.92 

Signal 0.05 

Relay 

Cabinet 

0.02 

 

   Lower uncertainty       Higher uncertainty 
Figure 5 Example of SoftMax Entropy 

 

In the tables above (Figure 5) a clear example of how this uncertainty is analyzed can be seen. 

Essentially, it shows the distance between the probabilities of different predictions. The bigger the gap 

is, the lower the uncertainty. If the probabilities are closely grouped together, the AI is more uncertain 

of the data. This in turn makes it more useful for the improvement of the segmentation model. 

 

3.3.2 Color Discontinuity 
 

Color Discontinuity is a useful tool to analyze differences and information scores in active 

learning. It utilizes RGB values, which are color values, assigned to each point cloud coordinate, thus 

giving us a colored 3D representation (Figure 6) of the environment. 

 

 

 

 

 

 

 

 

Class Probability 

Catenary 

arch 

0.45 

Signal 0.31 

Relay 

Cabinet 

0.24 

Figure 6 Point cloud scan with RGB values [20] 
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Each point’s color intensity value (see section 4.3) is compared to its nearest neighbors’ values, this 

way a color difference score is calculated. The color difference score for all points in a region are then 

averaged and a color discontinuity score for all regions is calculated. 

 

3.3.3 Structural complexity 
  

Structural complexity is another indicator that is taken into account for point cloud active 

learning. For each point cloud the surface variation computed in the data preparation steps (see section 

4.3) is utilized. These values give us valuable information about structural and geometric complexity, 

as sharp edges or corners are good indicators for different objects. Especially for railway infrastructure, 

the surface structure of the different classes varies drastically. An example of this is shown in Figure 7. 

 

 

Figure 7 Catenary arch pole and Tension rod and foundation 

 

These three indicators: Softmax entropy, color discontinuity and structural complexity, are then used to 

create a list of the most useful regions, which are then used for active learning selections. These scores 

are calculated iteratively using the newest model trained in each active learning cycle, and the region 

list is updated accordingly. After each iteration, a checkpoint for the model is saved, from which the 
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best checkpoint can be loaded to evaluate the model. In order to evaluate the model, a small validation 

set of the unlabelled data is reserved and inference is run on it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

4 Specification 
 

4.1 Business Requirements 
 

The overarching goal of this project is to explore a method of reducing the amount of labelled 

data needed in order to train a precise semantic segmentation model for the detection of railroad 

infrastructure. This ties into a larger project of Strukton that aims to create digital twins of real-world 

railway infrastructure environments. This task was handed to AMI research group at Saxion 

University.  

 

In Figure 8 below you can see the overall architecture proposed by the AMI research group 

that aims to solve the problem of digital twinning. The active learning research described in this thesis 

is highlighted in red. 

 

 

 

Figure 8 AMI Project Pipeline 
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To judge the results of this project, we had to set goals or requirements that this project aims to meet. 

Firstly, the project should develop and implement a pipeline that introduces active learning into the 

architecture created by previous research. This pipeline needs to be adaptable to changing datasets. 

Secondly this pipeline should produce enough results/measurements in order to judge the performance 

of active learning compared to fully supervised learning. Thirdly the project should highlight necessary 

steps that need to be taken to implement and improve the pipeline to be used by Strukton rail in the 

future. 

 

4.1.1 Resources 
 

As deep learning applications are notoriously computing power and memory demanding, we 

were provided with a Linux environment on university servers for training and testing purposes. 

Through this we were able to utilize powerful NVIDIA GPUs that are required for these types of 

applications. 

Strukton provided datasets of the railway environment which were previously analysed and 

manually labelled by the researchers. These datasets are the key datapoints which were utilized 

throughout the course of this paper. Additionally, to the Strukton railway data, we utilized a publicly 

available dataset named S3DIS [19], which is a dataset made available by Armeni et al. from Stanford 

University. This dataset contains various indoor point cloud scans with rgb data included. 

 

4.2 Data understanding 
 

The dataset provided by Strukton is a LiDAR scan of roughly 1km of railway environment. 

These are stored in las files which is an efficient format for saving LiDAR scanned point clouds. In 

Figure 9, one of these files can be seen visualized.  This visualization also shows the labelled 

components. This labelling process was done by the AMI researchers manually. Here, each color 

represents a different label. 
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The dataset includes 7 different labels and components (Figure 10) that need to be labelled and 

detected by the active learning algorithm, one of which being the background/unlabelled points. It is 

important to note that all these components are not represented equally within the dataset, due to some 

of the classes being found more frequently alongside a train track. The reduced sample size for some 

classes could potentially result in varying accuracy. 

 

 

 

 

 

 

 

 

 

 

 

The entire dataset consists of 21 las files (Figure 11), each of different sizes. In total the number of 

points accumulates to about 206 million. Even though this data requires a large amount of physical 

disk space (10.07GB), it only covers about 1km of railway. Regardless of the large data size, some 

objects are only represented 3-5 times within the entire dataset. 

 

 

 

ID Label 

00 Background 

01 Catenary arch poles 

02 Street light 

03 Tension rod 

04 Signal 

05 Relay cabinet 

06 Signs 

Figure 10 Table of labels 

Figure 9 Example of labeled point cloud scan 
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File Num. of Points File Num. of Points 

poly_00.las 23,024,515 poly_14.las 6,943,666 

poly_01.las 16,513,911 poly_15.las 7,308,539 

poly_02.las 16,892,955 poly_16.las 6,733,068 

poly_03.las 15,756,931 poly_17.las 6,766,072 

poly_04.las 12,545,790 poly_18.las 6,704,505 

poly_06.las 15,978,495 poly_19.las 6,457,386 

poly_07.las 8,385,019 poly_20.las 6,564,614 

poly_10.las 8,167,105 poly_21.las 6,419,163 

poly_11.las 7,059,190 poly_22.las 6,696,304 

poly_12.las 6,672,750 poly_25.las 7,648,357 

poly_13.las 6,793,630 TOTAL 206,031,965 

 
Figure 11 Point cloud sizes 

4.2.1 Data conversion 
 

The data format required by the active learning pipeline differs from the data format that the 

original dataset is in. As mentioned above, the dataset provided by Strukton is stored in a .las format, 

this is not the format the active learning pipeline requires. Therefore, a conversion algorithm was 

made. The desired data format can be seen in Figure 12 where poly_00.txt contains all the x, y and z 

coordinates in the datafile and the folder annotations contains a txt file with all the coordinates 

belonging to a specific class. 

 

 

 

 

 

 

 

 

 

 

 

This was done utilizing the python library laspy which lets you load in and manipulate .las files within 

a python environment. We extracted the coordinates of each class by using the label ids. After 

Figure 12 File structure 
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extracting the data, numpy, which is a python library to manipulate and calculate arrays and other 

forms of numerical data, was used to write each set of coordinates to a .txt file. 

A major disadvantage of utilizing this file structure is the physical storage requirements of each 

format. The filetype of .las is a very efficient format in terms of physical storage. The whole dataset of 

about 206 million points requires 10.07GBs of storage. The .txt format is inefficient and requires a 

substantial amount of more physical storage than the .las format. Additionally, the conversion script 

duplicates many of the x,y and z data points, as some are found in the poly_00.txt file as well as the 

annotations text files. Given these two disadvantages, the entire dataset requires 29.2GBs after the 

conversion step. This might pose a problem for Strukton rails operation, especially when considering 

scalability. 

 

 

4.2.2 RGB values 
 

A major problem of the dataset provided by Strukton is that it is missing RGB values. This 

means that no color information is available for the active learning algorithm. As mentioned in section 

3. color variation is one of the factors that the active learning algorithm utilizes to make a judgment on 

the information value of each region. Nonetheless, it is only one of a multitude of factors that the active 

learning algorithm takes into account. Without the RGB values, however, the active learning model is 

not able to run without running into errors. This is due to the model structure and the format of its 

layers. To run the active learning model without RGB values, a total overhaul of the entire model and 

data readout process would be required, which is out of the scope of this project. To solve this issue, 

we attached uniform RGB values to each coordinate, effectively creating artificial RGB data.  In 

Figure 13, an example of the Strukton data structure and the data structure of the S3DIS [19] dataset, 

which includes RGB values can be seen: 

 

 
Figure 13 Example of rgb values in point cloud data 
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In the evaluation section of this paper, we will analyse and compare the effects color values have on 

the performance of the active learning algorithm. This is done by utilizing the S3DIS [19] dataset and 

running it through the active learning pipeline, once with proper RGB values and once with all RGB 

values set to a uniform value; practically eliminating the influence of the rgb values on the training 

process. 

 

 

4.3 Active learning pipeline 

 

 

 

 

 

 

 

The planned pipeline for active learning (Figure 14) was implemented into the Linux 

environment.  This pipeline includes the data labelling step which is done by the researchers manually 

using the open-source tool cloud compare. These labelled data files are then stored in .las files for 

further usage. In the data preparation step, we first complete a region division step. The division 

subdivides each point cloud scan into smaller subregions which can then later be evaluated in the 

training process step. This subdivision is done using the VCCS algorithm developed by Papon et al. 

[21]. After subdividing the point cloud scenes, two different analyses are run to get more information 

that is later required by the active learning algorithm. 

First surface variation analysis, which uses a combination of edge extraction [22] and feature 

extraction [23]. This step looks at a small amount of neighbours for each point and calculates how 

significant their shift in position and angle is in relation to the origin point. By doing this we can assign 

points close to edges a higher value, thus indicating a different object / classification. 

 The second data preparation step is the analysis of color discontinuity, this step could not be 

completed for the strukton dataset due to its missing RGB values. The effects of this will be analyzed 

in a later chapter. This analysis works similar to the structural complexity step. This means that we 

look at the neighbours of points and calculate a score based on the difference in color that each of these 

points have towards the origin point. 

Figure 14 Basic active learning pipeline 
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 After completing these two data preparation steps we load the data into the active learning 

algorithm. First the algorithm loads a pre-set amount of labelled data and trains its initial model. After 

this step is complete, the first active learning iteration takes place and the algorithm calculates the 

information score for each region, based on the values described earlier. It then selects the best region 

to learn from and runs its training process again. This is done throughout multiple iterations. 

 After finishing this training process we ran simple inference with the best checkpoint model. 

During this step we also calculate the MIoU for each class. 
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5 Realization and Evaluation 
 

In this chapter, the active learning pipeline will be implemented, and its results analyzed. First, 

we will describe the process of implementing the data preparation algorithms as well as the training 

and testing algorithms into the environment. Technical limitations concerning hardware and software 

will also be discussed during this chapter. Additionally, the results and their collection process will be 

described. 

 

5.1 Active learning pipeline implementation 
 

The implementation of the active learning framework required a Linux environment as many 

of the dependencies were only available on Linux. Utilizing the jupyter environment, all necessary 

python libraries were installed using anaconda. This part ran into very little issues as the installation 

process for python packages using conda runs mostly automatic. A first limitation arose when trying to 

install the Linux packages that were needed. These packages were Sparsehash, which is an efficient 

HashMap package and PCL (Point Cloud Library). As we was using a jupyter environment running on 

university servers, we had no root access, which means we had no administrative rights in the system. 

Python packages are usually installed using the” apt-install” command. This, however, requires sudo 

privileges. This issue was solved by building and installing the required packages from source. This 

added onto the time needed to set up the environment but proved to be an effective solution in the end. 

After finishing the environment setup, the data preparation steps were taken. This included the 

region division, surface variation and color gradient.  The region division step is done using a C++ 

program included in the active learning framework. This step required the C++ program to be compiled 

and built from its source code. This ran without issues.  

Next the surface variation and color gradient analyses were run. These are simple python 

scripts that needed to be pointed to the dataset and executed. This step concluded the data preparation 

step. The next step was the training process which consisted of the initial training iteration on a limited 

amount of labeled data and the active learning iterations. These required an extensive amount of 

parameters to be tuned. The values of these parameters were chosen to provide the required results but 

also to be feasible in terms of computing power and training time. The parameters required a lot of 

tuning as a big limitation here was memory usage. First tests often ended in out of memory errors. To 

resolve this issue, a lot of tuning of the parameters was required for the active learning cycle to run 

properly. This tuning resulted into the following parameters being used. 
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Figure 15 Active learning parameters 

 

After a successful training process, the training log and checkpoints were saved to be used later on for 

validation. The inference validation step also calculates and logs MIoU on a per class basis. 

 

5.2 Evaluation 
 

5.2.1 Initial training iteration 

 

To analyze the behavior of the model in the initial training iteration, we can look at the MIoU 

logged for each epoch (Figure 16). These initial training steps were done in a fully supervised manner, 

so all the data was labelled and no active learning had begun yet.  
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Figure 16 Initial training iteration performance 
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Looking at the data we can see that all runs, regardless of how much data was used, end up at around 

the same accuracy of 37%-38%. Additionally, it is clear that the amount of data used does not directly 

correspond to the final accuracy. A difference between the different runs can be seen when looking at 

how the training process behaved throughout the epochs. 

The run with 5% initial data shows a steep learning curve within the first 8 epochs and then 

flattens out. This is contrasted by the other runs of 9%,12%and 16% which show a more steady 

learning curve. This might be caused by the type of data that is loaded in the beginning. As we needed 

to make sure that each run, regardless of amount of data, had some labeled data for all classes, the 5% 

run only had a very limited amount of data for each class especially the less represented ones, like 

relay cabinets and tension rods. In the first few epochs it has seen all of the classes once and does not 

find any new valuable data to improve on in later epochs. For the other runs with more labeled data 

available, the data is more spread out and therefore takes more epochs to learn. 

 

 

5.2.2 Active learning and fully supervised learning 
 

Analyzing the performance of active learning against fully supervised learning, it is best to do 

this on a per class basis. In figure 17 a comparison between each training run per initially used data can 

be seen: 
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First of all, it is clear some classes seem to be consistently less well detected than others. This is 

mainly due to classes being less represented in the data. Relay cabinets and tension rods are not as 

often found in the data as the other objects.  

Looking at the difference between fully supervised (100% data) and active learning (5%, 9%, 

12%, 16%), we can see that fully supervised training tends to outperform all active learning runs, 

regardless of class. The mean accuracy for fully supervised training was 89%, when the 16% active 

learning run had a mean accuracy of 76%, which was the highest of all active learning runs. 

All classes that are found often within the data like catenary arch poles, signs, street lights and signals, 

mostly have a pretty clear slope towards more data resulting in more accuracy. Looking at the catenary 

arch poles, we can obsereve a linear increase in precision with rising intial data percentages throughout 

all active learning runs. Fully supervised learning only proves to increase the precision by a small 

amount, even though it is using vastly more labelled data. This result is a clear argument to choose 

active learning over fully supervised learning. 

Looking at the classes that have an overall lower accuracy, we can see that the results are more 

inconclusive and tend to fluctuate as there is less data available for these classes. Training a deep 

learning model is a variable process and results can change each training cycle slightly. Therefore, 

these results might be explained by the active learning algorithm not selecting the right data. Even 

though this selection process is not random as explained in chapter 3, there is still a chance it might 

miss more interesting and useful data points. This means it is possible that in some runs it just did not 

select the right data that included these classes. To improve upon this, it is necessary to include data of 

all classes more evenly throughout the dataset. 
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5.2.3 Influence of initial data on training process 
 

To find out how the amount of initial data influences the training process, the training process 

over the entire duration is shown in Figure 17. 

 

Looking at the graph we can see that all runs share a similar initial training iteration. After the initial 

training they all show a somewhat linear increase in precision. The differences between each run can 

mainly be seen in their variance. The runs with less initial data tend to have a more unstable training 

process and their precision tends to fluctuate more. To better understand this, we have calculated the 

variance of each set of MIoU data using the following formula where x is the mean average of the set 

and n is the sample size:  

 

 

 

The results of this calculation support the observations made on the graph. Each run had a 

respective variance of 0.0174 (5% data), 0.0122 (9% data), 0.0169(12% data) and 0.0114 (16% data).  

The model trained on 5% initial data has a smaller variety of classes and data available. It therefore 

might missselect the most useful data points in comparison to the 16% initial model which has more 

available information to base its selection upon. 

 

 

 

Figure 17 Active learning training process 
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5.2.4 Computation time 
 

Another interesting metric we set out to investigate was how active learning and its initial 

dataset influenced the computing time of the whole training process. In earlier sections we mentioned 

that a benefit of active learning is that is has a more efficient computing time. 

 
Figure 18 Computation time 

 

Looking at the data in Figure 18, we can confirm that active learning does in fact improve upon 

computation time. These runs were all done on the same dataset and same hardware and software 

environment, ensuring comparability. The time save when using only 5% initial data in comparison 

with fully supervised learning is 43.7%. 
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5.2.5 Effect of color on active learning 
 

As mentioned in section 4.2.2 the dataset provided by Strukton did not have any RGB values. 

This means in order to analyze the effect that color has on the precision of the active learning model, 

the open-source dataset S3DIS [19] needed to be used. To compare the effect of color on the precision, 

we ran one run with proper color values and one with uniform color values, effectively negating the 

influence of color. 

 

In Figure 19, the precision throughout the entire training process can be seen. We can observe that 

color values do increase the precision of the active learning model, as it has more information to take 

into account. Color is a great tool to tell objects of different classes apart. The highest precision 

achieved by the color run was 39.042% and the highest achieved by the no color run was 31.850%, 

which results in an improvement of 22.58% when using color for active learning. It is important to note 

that the S3DIS [19] is a vastly more complex dataset then the Strukton dataset, thus explaining the 

precision difference depicted in Figure 17 and Figure 19. It is important to note that color values 

drastically increase the physical storage space required for the dataset.  
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6 Conclusion and Future Work 
 

In this section we will discuss the outcomes of the experiments conducted in relation to the 

research questions formulated earlier. In addition to this, we will discuss future research opportunities 

in the field of active learning in the point cloud environment and give suggestions to the AMI research 

group on how to best proceed with this research. 

 

6.1 Conclusions 
 

To answer the main research question, we can look at the pipeline described in section 3.3. We 

have created a pipeline that can take a dataset with any combination of classes and train a segmentation 

model on it. This process however does not come without hindrances. A big limitation of this method 

is still the extensive amount of environment setup required. The active learning framework [18] needs 

a very specific environment to run properly and can not be deployed on any system easily. 

Additionally, even though we was able to achieve good precisions with only 5% labeled data, the entire 

dataset still has to go through a large amount of preparation to be suitable for training.  

Another goal of the main research question was to investigate the performance of the model 

compared to fully supervised training. The results presented in section 5.2.2 showed that fully 

supervised learning is the best way to train a segmentation model, when the main priority is precision. 

However, even with only 5% data we achieved great precision across most classes. This 95% decrease 

in labeled data needed is a huge time save for companies and researchers in this field. 

We also set out to investigate how the initial dataset influenced the precision of the model. Our 

research shows that more data tends to lead to a higher overall precision and a more stable training 

process. In addition to this, it also influences computation time. Using less data results in a shorter 

computation time to train the entire model. 

Lastly the effect of color on the active learning process was analyzed. Here my research shows 

that including color values in the point cloud data adds about 22% precision to the model. This is a 

significant increase in precision. However, including color values also increases the physical storage 

required. 
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6.2 Future work 
 

To improve our understanding of active learning in the point cloud environment it is necessary 

to run more tests on different datasets. It is especially interesting to investigate the quality of the data 

that goes into the initial model. In addition to this, more tests need to be run to improve the reliability 

of my results. To properly assess if active learning is the best way to improve upon the need for less 

labeled data, other methods of semi-supervised and unsupervised learning need to be investigated and 

compared to active learning.  

To properly adapt this in a commercial environment, the compatibility and adaptability of this 

framework needs to be improved upon as well. The main problems are the data preparation steps and 

the very specific structure the dataset needs to be in. To resolve this issue, the data readout process 

needs to be overhauled and investigated on how it can be more effective with more standard file types. 

Another interesting research opportunity would be the investigation on how RGB values can be 

substituted. Point clouds typically possess other values like intensity values that might also be of use 

when running active learning algorithms. 
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8 Appendicies 
 

DATA 
 

RUN 1 (16% DATA) 

 
Figure 20 Active learning iterations 16% Data 

 
Figure 21 Active learning 16% Data 
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RUN 2 (12% DATA) 

 
Figure 22 Active learning iterations 12% Data 

 
Figure 23 Active learning 12% Data 
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RUN 3 (9% DATA) 

 
Figure 24 Active learning iterations 9% Data 

 
Figure 25 Active learning 9% Data 
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RUN 4  (5% DATA) 
 

 
Figure 26 Active learning iterations 5% Data 

 
Figure 27 Active learning 5% Data 
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Code Snippets 

Conversion Script: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

# Import the necessary modules 

import numpy as np 

import laspy 

import os 

 

folder_path = "data" 

 

 

for file_name in os.listdir(folder_path): 

    if file_name.endswith(".las"): 

        # Open the .las file and read its contents 

        las_file = laspy.read(os.path.join(folder_path, file_name)) 

        point_cloud = las_file.points 

 

        x = point_cloud.x 

        y = point_cloud.y 

        z = point_cloud.z 

 

        all_coords = np.column_stack([x, y, z]).astype(float) 

 

        rgb_all = np.ones([len(x), 3], dtype=float) 

 

        all_coords = np.concatenate([all_coords, rgb_all], axis=1) 

 

        root, ext = os.path.splitext(file_name) 

 

        os.mkdir(root) 

 

        np.savetxt(os.path.join(root, "{}.txt".format(root)), all_coords) 

 

        # Extract the labeled coordinates from the point cloud data 

        labeled_coordinates = point_cloud[point_cloud["label"] > 0] 

 

        # Extract the unique labels from the labeled coordinates 

        labels = np.unique(labeled_coordinates["label"]) 
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