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Abstract

We study a scan budget system as a solution to the problem of overload for a radiology department.
To be able to deal with fluctuations of the demand, we introduce the possibility of trading : mutual
exchange of budget among departments. The decentralized multi-agent problem is modeled using
single-agent Markov Decision Processes that are connected via trading probabilities. We analyze
different individual policies under a penalty and reward mechanism for trading and analyze the
resulting collective behaviour using acceptance ratios. We find that the possibility of trading
increases the acceptance ratios for all scan priorities and reduces the waste of capacity and the
average annual departmental difference. When the number of trading possibilities is large, the
acceptance ratios approach the acceptance ratios under centralized admission control.
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Chapter 1

Introduction

Radiology departments specialize in imaging techniques. These techniques are used for many types
of conditions and therefore requested by many different departments in the hospital. Hospitals
often make a priori agreements on the number of scans that will be performed by each depart-
ment on an annual basis. However, in practice many departments exceed this number of scans
that was agreed upon. Moreover, cross-sectional imaging (CT and MRI) requests keep on rising
over the years, while the radiology formation does not increase correspondingly. Therefore, there
is increasing pressure on radiologists to process these scans. We investigate the consequences of
rationing of cross-sectional imaging as an alternative to the current approach in which there is no
limit on ordering CT and MRI scans. As a solution, we propose the introduction of scan budgets.
Here, each department is assigned a budget, that can be used to request scans. Each type of scan
has a certain price, which is deducted from the requesting department’s budget when they request
such a scan. If a department runs out of budget, it can no longer request scans. In this way, it is
guaranteed that the number of requests does not exceed the budgeted capacity in the radiology
department.

We make a distinction between type 1 and type 2 scans. Type 1 scans are scans that are medically
necessary according to protocol. These scans are usually included in the capacity budget that is
drawn up by the radiology department. Type 2 scans are additional scans that are not according to
a protocol. The scan type is clear to both the radiology department and the applicant, and it can
be determined objectively and quickly without the need for the scan result. A very straightforward
solution to the problem described above would be to only allow requests for type 1 scans. However,
because the total annual number of type 1 scan requests is a random variable, the capacity budget
of the radiology department must be drawn up with sufficient margin. If only type 1 scans would
be performed, there will usually be capacity left over. Not using this capacity leads to a waste
of resources. Wasting capacity is not desirable and therefore requesting type 2 scans is also allowed.

A scan budget system would solve the problem of overload for the radiology department. A
potential danger of a budget system, however, is that medically necessary scans cannot be per-
formed because the responsible department ran out of budget, and thus there is a loss of health due
to the system. A department may run out of budget because of poor departmental management
by requesting too many type 2 scans, or because of stochasticity in demand, i.e., the number of
type 1 scans is higher than expected during the year. To deal with these deviations, we introduce
trading opportunities: departments can receive scan budget from and give away scan budget to
other departments. In this way, individual capacity is more flexible, while overall capacity remains
unchanged. Thus, departments that need extra capacity can get it from departments that do not
need it during the year. We assume that departments are self-interested and want to minimize the
number of scans they cannot perform. This implies that a department will not simply give away
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capacity if there is no reward in return. For this reason, we explore the possibility of rewarding
departments through the scan budget of the following year. We can formulate the general research
question as follows:

What are the effects of a scan budget system with a trading reward mechanism on the type 1
and type 2 acceptance ratios of departments?

Before we can answer this question, we need to answer the following sub-questions:

1. How can we model the acceptance and trading policy of a single department under a budget
system with trading, and what does this policy look like?

2. What is the effect of a reward and penalty mechanism carried out by radiology for trading
on a single department’s willingness to trade?

3. How does a department’s belief on other departments’ willingness to trade influence the
individual acceptance and trading policy?

4. What are the effects of the individual policies on the collective behaviour?

5. What are the acceptance ratios of type 1 and type 2 under the collective behaviour?

We provide answers to these questions for a two-department, homogeneous pricing case and an-
alyze the situation over several years. With homogeneous pricing, we assume that the price for
a scan is always 1. Therefore, the scan budget can also be seen as the department’s remaining
budget. Since we intend to focus more on the policy of departments under various budget systems
than on adjusting the budget system to growing demand, we assume that demand is constant
over the years. The focus of this research is on examining the individual and collective effects of a
budget system with a reward and penalty mechanism. The relevance of this study mainly lies in
the conceptual development of an evaluation model: we develop a framework for evaluating scan
budget systems.

This thesis is organized as follows. In Chapter 2 we describe the situation at the radiology depart-
ment, discuss the rising number of requests and motivate the choice of investigating a scan budget
system, rather than investigating, for example, a model with centralized admission control. In
Chapter 3, we provide an overview of relevant literature for the topics that we study. In Chapter
4, we present the mathematical problem formulation and the models and algorithms that we use
to evaluate the individual policies and collective behaviour. In Chapter 5, we show results from
numerical experiments and we perform sensitivity analyses for the parameters in the model. We
conclude with drawing a conclusion and discussion of results and future research in Chapter 6.
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Chapter 2

Motivation

In this section, we discuss the capacity budgeting problem that motivates this research. This
problem has been present in the radiology department of University Medical Center Groningen
(UMCG) for several years and particularly affects the workload for radiologists. This project is
done in collaboration with the Department of Radiology at UMCG, but the problem has been
observed in several hospitals throughout the Netherlands. We first give the reader a short in-
troduction to the radiology department and requesting departments. After that, we describe the
capacity problem and the current capacity budget in the UMCG and address important aspects of
admission control. These aspects are discussed from both a decentralized admission control and a
centralized admission control perspective. We introduce problems that arise in both setting and
we propose ways to solve these problems. We conclude by introducing the research topics that we
study in this research.

2.1 The radiology department of UMCG

The radiology department specializes in imaging techniques. These techniques allow images of
the interior of the human being to be made. These images are used to make a diagnosis, to
monitor disease progression and/or to determine treatment. In this way it is possible to see if
there are any disorders in the body without the need for surgery. Radiology uses X-rays (e.g., a
mammogram, CT scan), sound waves (ultrasound) and magnetic fields (MRI scan). In addition
to examinations, radiology also performs treatments that are done with the help of imaging studies.

In UMCG, the limiting factor in the capacity of the radiology department is mainly the radi-
ologists, the medical specialists in the radiology department. UMCG employs 120 radiology lab
technicians and 35 radiologists. The radiology lab technicians supervise patients and make the
scans. A radiologist’s duties include preparing protocols for requests, reviewing scans and also
sometimes performing treatments (interventional radiology). In addition, a radiologist is responsi-
ble for patients in the department, which includes intervening in contrast reactions and supervising
scans. Radiologists have specialties such as abdominal (abdomen), cardiothoracic (heart, vascular,
lung), interventional and neuro/head-neck radiology. The radiology department at UMCG has its
own scheduling department, where requested scans are scheduled. Scheduled scans are only per-
formed during the day (8:00-16:30) and only during weekdays. The hours outside of this are called
on-call hours. Acute cases, such as requests from the emergency room and requests for patients
admitted to the hospital, so-called inpatients, are scheduled as soon as possible. There is always
enough capacity for acute cases, even during on-call hours.

Imaging studies are used for many types of conditions. When a doctor determines that imag-
ing studies are necessary, he refers a patient to the radiology department for examination. The
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type of examination that should be performed is decided by the doctor. The request for the scan
that arrives at radiology includes a number of details, such as clinical data (disease patient, infec-
tion parameters), the question (e.g., disease progression, differential diagnosis) and what type of
examination is to be performed. A distinction is made between acute cases and non-acute cases.
Acute requests are reviewed by a radiologist as soon as possible. Non-acute requests for ultrasound
and X-ray examinations are immediately forwarded to the planning department. Non-acute CT,
MRI and interventional requests are listed. The radiologist writes a protocol for the requests in
this list, describing which areas of the body are to be scanned, and whether, for example, contrast
medium will be used. Sometimes a radiologist rejects a request, for example if the same type
of scan has been done before. This decisions is always made in consultation with the requesting
doctor. Once a protocol for a scan has been established, the request is scheduled and the scan is
performed by radiology lab technicians according to the prepared protocol. The completed scan
returns to the radiologist, after which the radiologist makes an assessment which is forwarded to
the requesting doctor. Acute requests, such as requests from the emergency room and inpatients
(patients admitted to the hospital), are handled as quickly as possible.

In this research, referring departments play a central role. Because the UMCG is a tertiary care
center, there are few requests from primary care (care that does not require a referral, including
general practitioners). Almost all requests come from specialties within the UMCG. Within this
study, we only consider CT and MRI requests, because these two types of requests cause most of
the pressure on radiologists. Figure 2.1 gives an overview of the number of CT’s and MRI’s that
were performed for the largest departments in UMCG in 2021.

Figure 2.1: Number of CT & MRI scans that were performed per department in 2021.

2.2 Capacity budget problem

The total number of requests for CT and MRI scans in the Netherlands has been increasing for a
number of years, while the number of radiologists is not increasing at the same rate. In August
2022, this was pointed out by the Nederlandse Vereniging voor Radiologie (NVvR):

More than 50 general hospitals and MSBs use the Logex benchmark for the production compar-
ison of medical specialisms and distribution of budget and formation. For Radiology, the Logex
benchmark has shown increasing production over the years with a constant formation. Because
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there is a national increase, the benchmark has become increasingly higher and a ‘rat race’ has
developed to cope with increasing production with the same formation. This has become an unsus-
tainable system, which also does not take into account the increased care load and complexity of
radiological care (shift from X-ray to CT and MRI, increase in number of images per scan). Nor
does the current system take into account the increased severity of evening, night, weekend shifts
despite the fact that radiology has become indispensable in the acute and emergency setting. The
fact that radiological production increases without the formation growing sufficiently with it has
been depicted at the national level for the period 2012-2018, see Figure 2.2. During this period,
the number of so-called norm hours increased by about 240 hours per fte radiologist. This is an
increase of 11%. (source: Handreiking capaciteitsbegroting radiologie, NVvR, 24 August 2022)

Figure 2.2

As a result of this, the pressure on radiologists to process scans is increasing. In this chapter, we
describe how capacity is established and discuss the rising demand in more detail.

Every year, a sales budget is drawn up to determine the required capacity in the radiology de-
partment. This is done on the basis of care products and care activities. The Dutch healthcare
system uses dbc care products. The dbc (diagnosis-treatment combination) is a 9-digit code that
contains information about the diagnosis and treatments. A dbc care product, in turn, consists
of care activities. These are components of a patient’s treatment, such as a surgery, consultation,
or MRI scan. All claimable services are expressed in so-called dbc care products. The dbc is thus
a means of expressing costs of treatment, as not all treatments in a hospital are billed separately.
With the dbc care product, a fixed amount can be declared. This amount is calculated on the
basis of the costs of the care activities associated with a particular diagnosis.

The annual sales budget for radiology is not based on the number of care activities in previous
years, but rather on the numbers of dbc’s realized per specialty (department). The corresponding
theoretical number of care activities that follows from the care profiles of the dbc’s is then used
to draw up the budget. However, doctors are not bound to the care activities included in the care
product (dbc), so they can deviate from these numbers within their treatment plan. This means
that doctors can request more scans than are included in the dbc. However, the sales budget and

5



thus the capacity is based on the care activities in the dbc, so in practice, this capacity is often
exceeded.

The fact that doctors request more scans than are included in the dbc on average and the re-
sulting rising number of requests over the years can partly be explained by recent developments
within imaging techniques. Because imaging is becoming increasingly sophisticated and is often
an efficient alternative to other forms of examination, an increasing number of doctors are using
imaging and it is used more often and more widely. However, there are indications that many
imaging tests could be inappropriate. European studies that focused on a limited set of imaging
tests found rates of inappropriate examinations between 15% and 35% [2], [10], [15]. A study that
was carried at a tertiary referral academic institution in Ireland, including several radiograph sub-
types, found that a significant amount of inappropriate radiographs are requested and performed,
exposing patients to needless ionizing radiation and wasting staff members time at a financial
cost [13]. Hence, it might be justifiable to reject some scan request, not only for capacity reasons
but also from a medical perspective.

2.3 Centralized admission control vs. decentralized admis-
sion control

When capacity is limited such that not all scans requested can be performed, decisions must be
made about which requests are rejected. This is referred to as admission control. In this sub-
section, we discuss two forms of admission control decision making: centralized and decentralized
admission control.

In both cases the decision process consists of two consecutive steps. First, the priority of a request
is determined using clinical information about the patient and the condition. Then, the priority
is used to decide if the request is accepted. The agent that makes decisions about accepting and
rejecting scans is called the decision maker. For the capacity problem that we address in this study
there are two possibilities: the role of decision maker is fulfilled by the radiology department, or
by requesting doctors. The latter case is called decentralized admission control. Imposing a scan
budget system for departments is a form of decentralized admission control. Here, departments are
given a scan budget, whereby they can prioritize scans themselves and use this priority to decide
which scans will or will not be requested with their budget. The requesting department is thus
the decision maker here. When the radiology department acts as the decision maker, we speak
of centralized admission control. In this case, there is no limit for departments to request scans.
Instead, radiology serves as a gatekeeper and evaluates the referral appropriateness and priority
of a scan and performs or does not perform a scan, depending on the remaining capacity and the
priority of a scan. In this chapter, we address several aspects of the admission control decision
process and we discuss the implications of these aspects for both forms of admission control.

The first aspect is information access. To decide on the priority and appropriateness of a scan,
information about the patient, specific conditions and the possible consequences for the patient
is necessary. A referring doctor has more knowledge about these topics than a radiologist. With
centralized admission control, this information is passed on to the radiologist, who then makes a
decision based on the information obtained. In this process there is risk of information loss and
other forms of noise. With decentralized admission, the decision maker (the referring doctor) has
direct access to this information. Furthermore, because shared and limited capacity gives rise to
a competitive situation, a possible consequence of the ‘information gap’ is the risk of unfair infor-
mation provision. Much information is needed to prioritize a scan, and most of this information
comes from the referring doctor. Because in centralized admission control all requests arrive at one
central location, requests from different specialties are compared. In this context, it is conceivable
that doctors will try to do everything possible to have their application given the highest possible
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priority when passing on information. This makes for less reliable information. With decentralized
admission control, departments prioritize their own scans, so only applications within their own
specialty are compared. As a result, self-interest plays less of a role and applications are compared
more objectively.

We also consider the practical implementation and time. Under centralized admission control,
requests are written by a referring doctor, after which the request is reviewed by the radiology
department. In some cases, the request will be rejected. During the time it takes to submit a
request and having it reviewed by the radiology department, the patient does not know whether
the request will be accepted. With decentralized admission control, the referring doctor directly
decides if the scan can be requested. Thus with decentralized admission control, waiting times are
avoided. Moreover, decentralized admission control also avoids double and unnecessary work, as
with centralized admission control, referring doctors write scan requests that may not be accepted
by the radiology department. Moreover, centralized admission control places an additional burden
on radiologists, because incoming requests from all departments must be reviewed and prioritized.
With decentralized admission control, this work is divided over the departments. The decentral-
ized approach, where requesting specialties function as gatekeepers is therefore more time-efficient.

Finally, we consider fluctuations in the demand. With scan budgets, fluctuations of the demand
can be problematic, especially when the number of scans that arrives at a department during a
year is much higher than expected and far exceeds the department’s scan budget. In that case,
medically necessary scans could possibly not be performed, which results in health loss. This is
very undesirable. A system with centralized admission control will also experience fluctuations
of the demand, but these fluctuations are relatively small, because the total demand is much
larger. The scan capacity that is used for departments that have a larger demand than expected
is balanced by the scan capacity that was not used by departments that have a smaller demand
than expected. This is possible under centralized admission control, because the departments
have shared capacity and there is a central agent (the radiology department) that coordinates the
acceptance of scan requests. Under decentralized admission control, there is no shared capacity
and hence no ‘balancing’ effect. Next to departments that experience an unexpected high demand
and have the risk of rejecting scans that are medically necessary, there are also departments with
a smaller demand than expected, that do not need all capacity they have. This results in waste
of capacity. Hence, capacity allocation using a scan budget system can be unfair, because there
can be large departmental differences in acceptance ratios.

Considering the access to information and the information gap between referring doctors and
the radiology department, decentralized admission control is preferable over centralized admission
control. Also regarding the original problem that we study, the workload for radiologists, decen-
tralized admission control seems to be a natural solution, as it distributes the necessary work of
prioritizing scans over all departments, rather than placing an extra burden on radiologists by
shifting this responsibility to radiologists, which is the case with centralized admission control.
This makes a centralized admission control model undesirable and the decentralized admission
control model most suitable. A big disadvantage of decentralized admission control is the risk of
rejecting medically necessary scans and on the other hand capacity waste because of the unflexible
capacity. However, if there would be a mechanism that redistributes capacity during the year
to account for these departmental fluctuations, this issue could be largely solved. Therefore, we
consider a trading model where mutual exchange of scan budgets among departments is allowed.

2.4 Conclusions and research direction

So far, we discussed the rising demand, the appropriateness and priority of scans, the deficiencies
of the current system and the necessity of a new system. We concluded that decentralized admis-
sion control in the form of a scan buget system is a better alternative than centralized admission

7



control with regard to the workload problem of radiologists. A disadvantage of such a system is the
possible unfair division of budget: some departments may waste part of their budget, while others
might experience the problem of medically necessary scans that cannot be performed/requested
because the department’s budget is zero, due to stochasticity of the demand. This problem moti-
vates our research. We study if mutual exchange of capacity (‘trading’) among departments can
preserve equity between departments in terms of departmental acceptance ratios, i.e., the propor-
tion of scans that can be performed for a department. This research includes several relevant topics.

The first topic is the individual policy of a department. The concept of rejecting and accept-
ing scans is based on the fact that some requests have a higher priority than others. When the
capacity is limited and not all scans can be performed, the ones with a higher priority should
take precedence. To calculate the departmental acceptance ratios it is important to know how
departments make decisions regarding the acceptance of type 1 and type 2 scans under a scan
budget system. Moreover, there is also collaboration with other departments involved. To be able
to evaluate this collaboration, the first step is to investigate if and under which circumstances in-
dividual departments are willing to collaborate. Therefore, one of our research topics is modeling
the individual acceptance and trading policy of departments.

The second research topic is the analysis of collective behaviour. Analyzing the individual policies
of individual departments is not enough to evaluate the collective behaviour, because a successful
trade needs at least two departments that are willing to trade at the same time. Therefore, the
collective behaviour must be modeled using a multi-agent model. A multi-agent model consid-
ers multiple stakeholders and connects the individual decisions to a collective policy, such that
the collective state and reward can be observed. The stakeholders might have conflicting goals,
because they are self-interested. However, in our case they are not fully competitive, as multi-
ple players might benefit from collaboration. We investigate how we can model these dynamics
between departments and the resulting acceptance ratios of the departments using a multi-agent
model.
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Chapter 3

Literature review

In this section, we present relevant literature related to our research aims. The problem we study
includes many topics, including shared resources, capacity division and allocation, multi-priority
models, decentralized admission control, resource constraints, multiple stakeholders, multi-agent
systems with self-interested agents and sequential decision making. We start by providing an
overview of literature about multi-priority models that are used for diagnostic resources. We then
focus in a broader context on decision making with shared resources, capacity allocation and solu-
tion methods for these types of capacity problems. In the final subsection, we consider literature
on multi-agent reinforcement learning, a framework for sequential decision making problems with
multiple agents. We conclude by presenting our contribution, both in practice and our contribution
to literature.

3.1 Operations research on radiology department

Multi-priority models for diagnostic resources have been extensively studied in operations research
literature. Most studies in this area are performed from a scheduling perspective, aiming at min-
imization of waiting times for patients using a centralized approach. Operation research methods
as dynamic programming and MDPs are often used to solve problems on radiology departments.
In Green et al. [8], several diverse patient groups in a diagnostic facility are considered. The
problem is formulated as a finite-horizon dynamic program with costs including a revenue per pa-
tient, a waiting cost if a service request is delayed and a penalty function associated with patients
not served at the end of the day. In Patrick et al. [11], a similar problem is studied, considering
patients with different priorities. Available capacity is allocated dynamically to incoming demand
to achieve wait-time targets in a cost-effective manner. In Abtahi et al. [1], a scheduling problem
of outpatients in a radiology center with an emphasis on priority is discussed. Stochastic pro-
gramming and a mixed integer linear program (MILP) are used to minimize outpatients’ total
spent time in the radiology center. Benedito et al. [6] formulate an MDP to allocate capacity
in a radiology department that serves different types of patients. The objective is to minimize
the total cost of care, consisting of waiting, overtime, and penalty costs for not serving patients
over a business day of service. Gao et al. [7] approach the problem of improving the utilization of
diagnostic imaging resources from a game theoretic perspective. In their work, patient individual
preferences are coordinated through automated negotiation, where patients and radiologists are
represented by agents.
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3.2 Shared capacity & capacity allocation

As we intend to focus on high-level and long-term capacity allocation and consequences rather
than on detailed day-to-day scheduling, we focus in this section on the literature that is closely
related to our study, including capacity allocation under resource constraints, maintaining equity,
self-interested agents and policy evaluation. The study that is closest to our work is the work
by Zonderland et al. [21]. Here the allocation of MRI scanning capacity among competing de-
partments with incomplete information is studied from a game-theoretic perspective, aiming for
fairness of the capacity allocation. In allocation mechanisms, various methods are used. Zonder-
land et al. argue that a suitable allocation mechanism should satisfy the following properties: 1.
each agent should receive a nonnegative amount, 2. all capacity is allocated, and 3. each agent
receives at most the amount that it requests. Literature on bankruptcy problems and fair division
provides multiple allocation mechanisms that satisfy these conditions. In Thomson [14], various
division rules are discussed, of which the most commonly used one is the proportional rule. This
rules prescribes division of the total capacity proportional to the claims of the agents. Fairness
of capacity allocation is also studied by Zhou et al. [19], [20]. In these works, inpatient room
allocation with the objective of maximizing revenue under the constraints of maintaining equity
is considered. To maintain fairness, predetermined acceptance and reject ratios are used to ensure
equity among different patient groups.

In addition to capacity allocation, our research aims to study the long-term effects of a reward
mechanism that stimulates mutual exchange of capacity. To study these effects, policies of de-
partments must be evaluated. Besides well known sequential decision making frameworks that
can be used to find policies such as MDPs, also game theory is a suitable candidate to perform
policy analysis [9]. In Valkenburg [16], game theoretic methods are used to study budget alloca-
tion among competing defence departments. The model is set up as a dynamic non-cooperative
budget allocation game with static and dynamic structure as well as with complete and incomplete
information. Although the setting is different, the characteristics of this problem are similar to
the characteristics of our problem. However, the situation is described as a ‘zero-sum situation’,
in which the gain of one stakeholder is experienced as the loss of another, meaning that the game
is fully competitive. Because in our case departments could, but do not necessarily have to benefit
from trading, our situation is neither fully cooperative (where all departments share the same
reward function) nor fully competitive. This is called a general-sum game. General-sum games
that include sequential decision making are widely studied in the area of multi-agent reinforcement
learning, which is discussed in the next section.

3.3 Multi-agent reinforcement learning

We consider a number of review articles that provide a clear overview of the terminology and
methods used in reinforcement learning for multi-agent systems. The review by Busoniu et. al. [4]
gives an overview of algorithms for fully cooperative, fully competitive and more general (neither
competitive nor cooperative) tasks. It provides a useful introduction to terminology: the general-
ization of a single-agent Markov Decision Process (MDP) to multi-agent case is a stochastic game
(SG). In fully competitive games, agents have opposing goals, which implies that the reward of the
first player is the loss of the second player. In fully cooperative games, all agents share the same
reward function. Mixed games or general-sum games are games that are neither fully competitive
nor fully cooperative. In mixed games, each agent is self-interested, as in our case. Static games
are stochastic games with no states and no transition function, so the reward of the players is fully
determined by the joint action. A stage game is the static game that arises in a certain state of a
stochastic game.

A challenge of MARL that is often mentioned in literature is the curse of dimensionality. The
curse of dimensionality is more severe in MARL than in single-agent RL. Specifiying a good MARL
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goal in the general stochastic game is a difficult challenge, because the agents’ returns are corre-
lated and cannot be maximized independently. Furthermore, a significant number of algorithms
for mixed games are designed only for static tasks (i.e., repeated, general-sum games). Even in
repeated games, the learning problem is still nonstationary due to the dynamic behavior of the
agents playing the repeated game. This is why most of the methods in this category focus on
adaptation to the other agents. [4] This is also pointed out by a review paper by Zhang et. al. [18].
In this paper, it is discussed how a learning agent is required to account for how the other agents
behave and adapt to the joint behavior accordingly, and how this invalidates the stationarity
assumption for establishing the convergence of single-agent RL algorithms. Besides, the combina-
torial nature of MARL is addressed: having a large number of agents complicates the theoretical
analysis, especially the convergence analysis, of MARL. Zhang et. al. mention that this argument
is substantiated by the fact that theories on MARL for the two-player zero-sum setting are much
more extensive and advanced than those for general-sum settings with more than two agents. The
authors extensively discuss the mixed-game, noting that the mixed setting is notoriously challeng-
ing and thus rather less well understood. Thus, it is concluded that additional structures on either
the games or the algorithms need to be exploited, to ascertain provably convergent MARL in the
mixed setting.

Yang et. al. [17] provide insights on the solutions of general-sum games. Game theory plays
an essential role in multi-agent learning by offering so-called solution concepts that describe the
outcomes of a game by showing which strategies will finally be adopted by players. Many types of
solution concepts exist for MARL, among which the most famous is probably the Nash equilibrium
(NE) in non-cooperative game theory (Nash, 1951). The word “non-cooperative" does not mean
agents cannot collaborate or have to fight against each other all the time, it merely means that
each agent maximises its own reward independently and that agents cannot group into coalitions
to make collective decisions. Solutions to stochastic games are summarized by the master equation
normal-form game solver + MDP solver = stochastic game solver, which was first summarized
by Bowling et. al. [3]. The first term refers to solving an equilibrium (NE) for the stage game
encountered at every time step, and the second term refers to applying a RL technique (such as
Q-learning) to model the temporal structure in the sequential decision-making process.

Both [17] and [18] discuss several challenges of MARL, including the combinatorial complexity, the
multi-dimensional learning objectives and the issue of non-stationarity. The scalability issue when
there are more than two players is extensively discussed, as the majority of MARL algorithms is
only capable of solving games with only two players, in particular, two-player zero-sum games [17].
Solving general-sum games entails an entirely different level of difficulty than solving team games
(cooperative games) or zero-sum games. Even in the simplest case of a two-player general sum
normal-form game, finding a Nash equilibrium is PPAD-complete [5]. Thus, designing learning
algorithms in a multi agent system with more than two players is a challenging task. One major
reason is that the solution concept, such as Nash equilibrium, is difficult to compute in general
due to the curse of dimensionality of the multi-agent problem itself.

3.4 Our contribution

The problem that we study can be classified as a multi-agent general-sum stage game, which is
very difficult to solve due to the combinatorial complexity of multi-agent problems. To avoid
these curses of dimensionality, we restrict ourselves to two-player cases, for which we propose a
model in which the collective problem is split into individual problems. The individual policies
are calculated based on a belief on the policies of the other player. This belief is represented by a
success probability for trading. In this way, the problems are relatively small and the policies can
be calculated in parallel using a direct method (backward induction), so that we are assured of
finding optimal policies for both players. The resulting collective behaviour follows from simula-
tions, where individual departments act according to their optimal policy given a predetermined
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trading probability. We study the cost of differences between the predetermined probability and
the actual success probability. For this purpose, we introduce the concept of a trading equilibrium
and provide an algorithm that is able to find trading equilibria for the radiology capacity allocation
problem that we study.

Our contribution is twofold. To the best of our knowledge, we are the first to study the constrained
resource problem at a radiology department for multiple departments from a decentralized per-
spective. We contribute to a solution for the practical problem by proposing a new system of
dynamic capacity budgeting and presenting a mathematical framework in which we look for a
well-functioning scan budget budget system. Our model can be used to evaluate the costs and
benefits if a scan budget system is introduced in practice. Hence, we provide a theoretical foun-
dation for the practical effects on acceptance ratios of introducing a scan budget system at the
radiology department. Next to the practical use of the model, our work contributes to literature
on two-player multi-agent models by studying the problem from a decentralized perspective, us-
ing single-player Markov Decision Processes that can be easily solved with direct methods. In
this way problems that arise in classical MARL settings, such as computational intractability and
nonconvergence of solutions obtained with approximation methods, are avoided. Therefore, our
model allows practical multi-agent problems to be solved very fast. This also enables the use of
direct solutions methods that provide exact solutions. For the purpose of evaluating an external
mechanism (such as a scan budget system) using policies, exact solutions are more convenient
than solutions obtained with approximation methods. With solutions obtained by approximation
methods, distinguishing differences in results caused by the external mechanism and differences in
results caused by the approximation can be a challenging task. Using exact solutions, i.e., optimal
policies, ensures that experiments are repeatable and yield the same results for the same parameter
settings. Therefore, differences in results can be completely attributed to the external mechanism
when exact solutions are used. Thus, our work provides an efficient and noise-free framework to
evaluate external mechanisms.
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Chapter 4

Methods

In this chapter, we present the methods that we use to answer our research questions. In Section
4.1, we start by describing the problem that we study in more detail. In Section 4.2, we describe
the solution approach and give an overview of the different models that we use. In Section 4.3, we
provide the mathematical formulation of the problem. In Section 4.4, the first ingredient of the
model, the allocation rule, is discussed. The second ingredient, the individual Markov Decision
Process for a department, is described in Section 4.5. In Section 4.6, the trading probabilities
are studied. We define definitions and provide algorithms to find trading equilibria. Finally, the
analysis of the collective case is discussed in Section 4.7.

4.1 Problem description

We consider a scan budget system as a solution to the workload problem at the radiology depart-
ment. The largest disadvantage of such a system is the inefficient use of capacity, due to inflexible
individual scan budgets that cannot adapt to fluctuations of the demand. This can result in large
departmental differences in the acceptance ratios of scans. Our main research question therefore is

“What are the effects of a scan budget system with trading on the type 1 and type 2 acceptance
ratios?"

To answer this question for a our two-department setting, we need to be able to calculate ac-
ceptance ratios for a scan budget system with a given allocation mechanism. The proportion
of scans that is accepted by a department is given by the department’s acceptance ratio. The
definition of the department i’s annual acceptance ratio for type j is as follows:

Aj
i =

#accepted scan candidates type j department i

# arrived scan candidates type j department i

The relevance of these acceptance ratios is illustrated using Figure 4.1. In this figure, the scan
budgets Ci and the demands Di of two departments are depicted.
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Figure 4.1: Scan budgets and demands of two departments.

The demand of department 1, D1, exceeds the scan budget of department 1, C1. Therefore, part
of the scan candidates that arrive at department 1 must be rejected. On the other hand, depart-
ment 2 has not used its full scan budget at the end of the year and the remaining scan budget of
department 2 would be enough for player 1’s excess. In other words, the total scan budget is large
enough for both department 1 and department 2’s demand, but part of department 1’s demand
must be rejected because the individual scan budget is not sufficient. This phenomenon is referred
to as the the cost of inflexibility. Under centralized admission control, this would not happen, be-
cause with centralized admission control the capacity is shared over all departments and therefore
very flexible. As a solution to the cost of inflexibility, we explore the possibility of trading among
departments, as trading (mutual exchange of capacity) could increase the acceptance ratios. As
departments are self-interested, a central mechanism is necessary to stimulate trading.

We consider a decentralized admission control setting with scan budgets and a central alloca-
tion mechanism for two departments in which the departments are modeled as self-interested
agents, which means that they may behave strategically in order to maximize their benefits. Both
departments are allocated a scan budget that can be used to request scans. We consider two types
of scan requests: medically necessary scans according to protocol, and additional scans that are
not according to a protocol. We refer to the first type as type 1 scans and to the second as type 2
scans. We assume that a type 1 scan has a higher priority than a type 2 scan to both departments.
We make a distinction between the number of scan requests that arrive at a department, hereafter
referred to as candidates, and the number of scans that are actually requested from the radiology
department by departments. In this setting, we analyze an allocation mechanism by calculating
the acceptance ratios for both departments. To find these acceptance ratios, we need to model
both the individual behaviour of departments and the collective behaviour of departments under
the scan budget system with trading.

4.2 Solution approach

To find the acceptance ratios under a central allocation mechanism, we need to include several
factors in our model. We consider the two main research topics that we discussed in Section 2.4,
individual acceptance and trading policy and the collective behaviour. We also consider multiple
priorities and the capacity allocation mechanism. In this section we explain how these ingredients
are modeled and we discuss the relation between the topics.

To account for multiple priorities, we consider two types of scans: type 1 and type 2. Type 1
scans have priority over type 2 scans, as type 1 scans are medically necessary. In general, a de-
partment’s scan budget should be sufficient to accept all type 1 scan candidates, but it might
not be sufficient for all type 1 and type 2 scan candidates. Thus, when a scan budget system is
introduced, a department might not always want to accept type 2 scan candidates, because this
could lead to forced rejection of type 1 scan candidates. Therefore, departments will design a
policy that prescribes under which circumstances type 2 scans are accepted.

Next to the decision whether to accept a type 2 scan candidate, there is also the possibility
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to trade budget with the other department. Therefore, a department’s policy also includes under
which circumstances a department will buy or sell scan budget. We model and analyze these in-
dividual policies using a Markov Decision Process (MDP), where we assume that departments are
self-interested and want to maximize their own rewards. They obtain a reward for accepting type
2 scans and they receive a penalty for every type 1 scan they reject. The solution to this MDP is
a policy that prescribes under which circumstances a department should accept a type 2 scan and
under which circumstances a department should trade to maximize the department’s total reward.

The capacity allocation mechanism describes the process of allocating scan budgets to depart-
ments. The radiology department is responsible for this mechanism. The capacity allocation
mechanism can be used to stimulate trading. Although the words suggest otherwise, there is
neither money nor other means of payment involved in the trading process. ‘Trading’ is a possi-
ble solution to the problem of fluctuations in the demand and the inflexibility of the individual
scan budgets. The idea is that departments can resolve these fluctuations among themselves by
exchanging capacity: a department that has more capacity left during that year can give it away
to a department that needs it. We assume that each department’s individual goal is to maxi-
mize its own number of scans, first the type 1 scans and then the type 2 scans. For this reason,
helping other departments by giving away capacity does not seem obvious. Therefore, with the
annual capacity allocation process, radiology takes into account not only the number of type 1
and 2 scans requested, but also the capacity a department has given away and received from other
departments. We express this as a balance. This means that departments can be rewarded or
penalized by means of increasing or decreasing next year’s scan budget. The purpose of this is
to give departments an incentive to help other departments, if necessary, to increase the overall
acceptance ratios and thus decrease the cost of inflexibility. That brings us back to the individual
policy. A department’s policy should not only take the current year into account, but also next
year, because the actions of department during the current year influence the scan budget that is
allocated to the department next year. That means that the individual MDPs are influenced by
the allocation mechanism.

In this research, we study the cost of inflexibility for different allocation mechanisms. We as-
sume that departments behave rationally, so we model the behavior of departments using Markov
Decision Processes (MDPs) and evaluate the policies to see how the allocation rule affects the
number of scans that is performed. To analyze the behavior of departments under the allocation
rule, we model the situation for each individual department as an MDP, solve this MDP and as-
sume that departments act according to the optimal policy. However, as departments are allowed
to trade capacity, the individual MDPs are not independent, but have some interaction with each
other. This is modeled using trading probabilities that are part of the transition probabilities
in the MDP. How the trading probabilities affect the optimal policy and how the policy of one
department influences the trading probabilities of other departments, is studied extensively in this
chapter. An overview of the models is given in the following figure.

15



Figure 4.2: Model overview

The starting point is an allocation rule, described in Section 4.4. The allocation rule gives rise to
two MDPs, modeling the situations the two departments of the hospital. These individual MDPs
are described in detail in Section 4.5. In Section 4.6, we discuss the trading probabilities and
describe algorithms to find trading equilibria. After solving the MDPs, we obtain two policies.
Using these policies, we evaluate the allocation ratios. This process is described in Section 4.7.

4.3 Model formulation

In this section, we present the model that we use to answer our research question. Given an
allocation rule h over a period of H years, we evaluate the set of acceptance ratios

A(h) = {A1
i , A

2
i : i = 1, 2}

that follow from the solution to the set of MDPs

M(h) = {M(ci,y0 ) = {Si,Ai, qi,Ri} : i = 1, 2, y = 1, . . . ,H},

where M(ci,y0 ) is the Markov decision process that describes the decision making process of de-
partment i in year y with scan budget ci,y0 . This process includes deciding on the acceptance of
scans and trading. The scan budget ci,y0 is given by the allocation rule h. The allocation rule is
defined in Chapter 4.4 and the MDPs are defined in Section 4.5. Before we explicitly describe the
allocation rule and the MDPs, we start in this subsection with defining the setting that we model.

General setting
We investigate the consequences of a scan budget system on the acceptance ratios on a radiology
department in a tertiary care center with two departments over multiple years. Under a scan
budget system, every year each department (i = 1, 2) gets assigned a budget thay can be used
to request that year, called their scan budget. Here, no distinction is made between different
scans, for example MRI and CT, which means that we assume that there is one capacity for
all type of scans, regardless of their workload and level of complexity. The cost of a scan is 1.
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We model the situation over y = 1, . . . ,H years. The scan budget of department i in year y
is denoted by ci,y0 . A department’s remaining budget is their scan budget minus the number of
scans that have been requested by the department during the year. Hence, for every scan that
is requested by a department, the department’s remaining budget decreases by one. When a
department’s remaining budget is zero, the department cannot request any more scans from the
radiology department during the current year, unless they would buy additional budget.

Trading
In our model we allow mutual exchange of capacity. The term trading is used to describe a
department receiving (buy) capacity from and donating (sell) capacity to another department.
There is no money involved in this trading process. In this model, departments can only trade
during so-called trading epochs and the amount of capacity that can be traded is fixed and denoted
by ζ. Buying implies that a department places an order for ζ units of capacity and selling means
that a department offers ζ units of capacity. Departments are not obliged to sell or buy during a
trading epoch, they can also decide to do nothing.

Scan types and demand
The number of type 1 scan candidates that arrive at department i during the year is a random
variable Di. Besides that, departments also request type 2 scans. The number of this type of scan
candidates that arrive at department i is denoted by Ei. We assume that Di and Ei are Poisson
distributed.

Allocation rule

The scan budget that is allocated to department i at the beginning of year y is denoted by ci,y0 .
At the beginning of the time horizon, all departments receive an initial scan budget of

ci,10 = (1 + b)E[Di],

where b ≥ 0 is the buffer constant. A department can either use its scan budget to request its own
scan candidates, or they can trade it with other departments. After the first year, the allocation of
capacity is not only based on the expected demand, but also on the department’s behaviour. This
is done according to an allocation rule that is clear to all departments, such that departments can
take the consequences of their actions on their capacity for next year into account. The allocation
rule is a function h : Z → N that maps characteristics of the behavior of a department during the
year to a number. This number is the new scan budget that is allocated to the department at the
start of the next year.

4.4 Allocation rule

In this section, we discuss the capacity allocation mechanism. This mechanism is characterized
by the allocation rule, a function that determines the scan budget that a department receives at
the beginning of a new year. The allocated scan budgets depend on the total radiology budget.
The total radiology budget is denoted by B. It is given by

B = (1 + b)
∑
i

E[Di].

The parameter b ≥ 0 is a buffer. In the choice of b, the variance of
∑

i E[Di] is taken into account.
The underlying idea of this is that the total budget is always sufficient to serve all type 1 scans. In
the allocation process in the first year, we follow the proportional division rule by Thomson [14]:
ci = λE[Di], where λ is chosen so that

∑
i λci = B. Thus in the first year, department i receives
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an amount proportional to their expected type 1 demand. Therefore the initial scan budget of
department i in year 1 is given by ci0 = (1 + b) · E[Di]. For next years, the allocation rule h is
followed, which is an adaptation to the proportional rule. However, it always satisfies the property
that department i receives a minimum scan budget of E[Di].

Next to providing enough budget such that the expected type 1 scans demand can be met, an-
other goal of the allocation rule is to stimulate departments to sell capacity to departments that
need it for their type 1 scans. There is a natural incentive for departments to place orders and
buy capacity, as there is no money involved so buying capacity is actually free and having more
capacity leads to a higher number of scans that can be requested, and thus to a higher direct
reward. However, the process of ordering and offering only works if there is also an incentive for
departments to sell their capacity. For that reason, we design an allocation rule that is based on
a department’s trading balance: the total capacity that has been sold minus the capacity that has
been bought by the department. In this way, departments can be rewarded or penalized for their
trading behaviour.

The allocation rule that is used in year y = 2, . . . ,H is the following. If department i’s trad-
ing balance is positive, it receives an amount of

ci = (1 + rb)E[Di]

the next year, where we have r ≥ 1. Notice that a positive trading balance implies that a
department has sold more capacity than it has bought. With two players, this means that the
other department’s trading balance must be negative. To ensure that the total scan budget is
equal to

∑
i(1+ b)E[Di], department j (which has a negative trading balance) receives an amount

of
Cj = (1 + b)E[Dj ] + b(1− r)E[Di].

We require

1 ≤ r ≤ mini Di

maxi Di
+ 1 (4.1)

to ensure that each department receives at least E[Di] units of capacity. Summarizing, the allo-
cation rule is given by

hr(fi) =


(1 + rb)E[Di] if fi > 0,

(1 + b)E[Di] + b(1− r)E[Dj ] if fi < 0,

(1 + b)E[Di] else.

4.5 Individual department MDP

We model the situation of a single department during one year as a Markov Decision Process
(MDP), where the states capture the available capacity and, during regular epochs, the presence
of a type 2 scan candidate for the department. During regular epochs, the decision must be made
whether or not to accept a scan if there is a scan candidate of type 2. There is no decision for type
1 scans, because we assume that these are always accepted, unless the remaining budget of the
department is zero. The presence of type 1 scan candidates is incorporated in the model using the
transition probabilities. It is not captured by the state. However, there is a counter in the state
that keeps track of the number of type 1 scans that is declined during the year. During trading
epochs, the department can decide to buy or sell capacity or to do nothing. A department aims to
maximize its total reward, that is, maximize the total number of scans that is requested. However,
when a type 1 scan is declined, the department receives a negative reward (penalty) at the end of
the year. Thus, in some cases, it might be beneficial to decline type 2 scans to ensure that there
is enough capacity left for type 1 candidates in the future. For every type 2 scan that is accepted,
the department receives a reward. The final reward depends on the capacity that is allocated to
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the department for next year and the number of type 1 scans that was declined during the year.
The transition probabilities are determined by the demand, that is, by the distribution of Di and
Ei and the behavior of other departments (trading probabilities). In this section, we describe the
Markov Decision Process in detail.

4.5.1 Time horizon and decision epochs
The time horizon of an individual MDP is one year. In our model, we consider two types of
decision epochs. The first one is the regular epoch. In these epochs, departments decide if they
request scan candidates if they are available. The set of all regular decision epochs is denoted
by TR. The second type is the trading epoch, denoted by TT . During these epochs, departments
can decide to buy or sell capacity. We assume that scan candidates do not arrive during trading
epochs, so the only decision during trading epochs is buy/sell/do nothing.

The majority of decision epochs are regular epochs. We define the number of regular epochs
between trading epochs including one trading epoch as δ. The number of trading epochs each year
is denoted by σ and the time horizon is given by T = δ(σ + 1) − 1. We define the set of trading
epochs and allocation epochs as follows:

TT = {δk : k = 1, . . . , σ}.

The set that is formed by the remaining decision epochs, the regular decision epochs, is

TR = {t : t = 1, . . . , T, t /∈ TT }.

Figure 4.3: Representation of the time horizon T and decision epochs.

4.5.2 States

For t ∈ TR, t ̸= T , a typical state takes the form

st = (c, d, f, g),

where c is the remaining budget for the current year for the department and d ∈ {0, 1} is a variable
that indicates the presence of a type 2 scan candidate. If d = 0, there are no candidates and if
d = 1, there is a scan candidate of type 2. The trading balance is denoted by f , where we define
the trading balance as follows:

f = sold budget - bought budget.

Finally, g represents the number of type 1 scan candidates that have been rejected during the year.

In the trading decision epochs t ∈ TT and in the final state t = T , we have d = 0, as we as-
sume that no scan candidates arrive during trading epochs:

st = (c, 0, f, g) for t ∈ TT ∪ T.
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4.5.3 Actions

In the regular decision epochs t ∈ TR, an action takes the simple form

at = a, a ∈ {0, 1}

where a is the decision for a waiting scan. If a = 1, the scan is accepted. Otherwise, the scan is
declined. Evidently, at should satisfy at ≤ d (department can only accept when there is a scan
candidate and at ≤ c (departments can only accept a scan when their remaining budget is positive).

During trading epochs, t ∈ TT , the action space is given by

At = {−1, 0, 1},

where -1 stands for buying ζ units of capacity, 0 stands for doing nothing and 1 stands for selling
ζ units of capacity.

4.5.4 Rewards
The reward of state-action pair (s, a) is given by

r(st, a) =


at, if t ∈ TR, t < T

0 if t ∈ TT ,

V y+1
i (h(sT ))− αgT if t = T, y < H.

−αgT if t = T, y = H.

(4.2)

In regular decision epochs, the reward of accepting a scan (a = 1) is 1, and the reward of rejecting
a scan or doing nothing in case there is no scan candidate (a = 0) is 0. In trading epochs, the
reward is always 0, regardless of the action. The final reward in year y < H is V y+1

i (h(sT )), the
value of the starting state of the MDP M(ci,y+1

0 ), the MDP for department i for next year with
scan budget ci,y+1

0 = h(sT ). This value is calculated according to Equation 4.3. It is subtracted
by αgT , the penalty for declining gT type 1 scans. Finally, the final reward in the final year H is
determined by the penalty for the number of type 1 scans that were rejected during year H.

4.5.5 Transition probabilities
Let the probability that a type i scan candidate arrives be denoted by πi. We assume that at most
one scan candidate can arrive per decision epoch. Then the transition probabilities w(st+1|st, at)
for t, t+ 1 ∈ TR are given by

w(st+1|st, at) =



π1(1− π2) if dt = 0, ct+1 = ct − 1ct>0, dt+1 = 0, gt+1 = gt + 1ct=0,

π1π2 if dt = 0, ct+1 = ct − 1ct>0, dt+1 = 1, gt+1 = gt + 1ct=0,

(1− π1)(1− π2) if dt = 0, ct+1 = ct, dt+1 = 0,

(1− π1)π2 if dt = 0, ct+1 = ct, dt+1 = 0,

1− π2 if dt = 1, ct+1 = ct − at, dt+1 = 0,

π2 if dt = 1, ct+1 = ct − at, dt+1 = 1.

These probabilities can be explained as follows. In the first line dt = 0, which means that there
is no type 2 scan candidate at time t. There is a type 1 scan candidate, which is only possible if
dt = 0 because at most one candidate can arrive during a decision epoch. The type 1 scan is either
accepted (in case ct > 0) or rejected (in case ct = 0). In the first case, the remaining budget ct
decreases by 1. In the latter case, the reject counter gt increases by 1. There is no type 2 request
at t+ 1, which occurs with probability (1− π2). The probability of a type 1 arrival is π1, so the
total probability of this case is π1(1−π2). The second line is almost identical, except for the value
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of dt+1. In the second line dt+1 = 1 so this line represents the case where a type 1 scan request
arrives at time t and a type 2 scan requests arrives at time t+ 1. This happens with probability
π1π2. The third line represents the case when there is no arrival at time t and no type 2 arrival at
time t, whereas the fourth line represents the case when there is no arrival at time t and a type 2
arrival at time t. The fifth and sixth line represent the cases when there is a type 2 scan at time
t. If this scan is accepted, at = 1 and ct+1 = ct − 1. If this scan is rejected, at = 0 and ct+1 = ct.
With probability π2, a type 2 scan arrives at time t+ 1 (sixth case), and with probability 1− π2,
no type 2 scan arrives at time t+ 1 (fifth case).

For t ∈ TR, t+ 1 ∈ TT , we have

w(st+1|st, at) =


π1 if dt = 0, ct+1 = ct − 1ct>0, gt+1 = gt + 1ct=0,

(1− π1) if dt = 0, ct+1 = ct,

1 if dt = 1, ct+1 = ct − at.

In the first two lines, there is no type 2 scan candidate at time t. No scan candidates arrive during
a trading epoch. The first line represents the case when there is a type 1 scan at time t. This
happens with probability π1. With probability 1−π1, there is no type 1 scan. This is represented
by the second line. The third line represents the presence of a type 2 scan candidate at time t. In
this case, the scan is either accepted or rejected and the transition is deterministic, because the
probability of a scan arrival during a trading epoch is zero.

For t ∈ TT , t+ 1 ∈ TR, we have

w(st+1|st, at) =



(1− π2)pi(t) if at = −1, ct+1 = ct + ζ, dt+1 = 0, ft+1 = ft − 1,

π2pi(t) if at = −1, ct+1 = ct + ζ, dt+1 = 1, ft+1 = ft − 1,

(1− π2)(1− pi(t)) if at = −1, ct+1 = ct, dt+1 = 0, ft+1 = ft,

π2(1− pi(t)) if at = −1, ct+1 = ct, dt+1 = 1, ft+1 = ft,

(1− π2)qi(t) if at = 1, ct+1 = ct − ζ, dt+1 = 0, ft+1 = ft + 1,

π2qi(t) if at = 1, ct+1 = ct − ζ, dt+1 = 1, ft+1 = ft + 1,

(1− π2)(1− qi(t)) if at = 1, ct+1 = ct, dt+1 = 0, ft+1 = ft,

π2(1− qi(t)) if at = 1, ct+1 = ct, dt+1 = 1, ft+1 = ft,

(1− π2) if at = 0, ct+1 = ct, dt+1 = 0, ft+1 = ft,

π2 if at = 0, ct+1 = ct, dt+1 = 1, ft+1 = ft.

In the first four lines, the action at time t is buy. With probability pi(t), the trade succeeds. In
that case, the remaining budget is increased by the trading amount ζ and the trading balance
decreases by 1. With probability 1− pi(t), the trade does not succeed. In this case, the remaining
budget and the trading balance do not change. With probability π2, a type 2 scan request arrives
at time t+ 1. In lines 5-8, the action at time t is sell. With probability qi(t), the trade succeeds.
In that case, the remaining budget decreases by the trading amount ζ and the trading balance
increases by 1. With probability 1− qi(t), the trade does not succeed. In this case, the remaining
budget and the trading balance do not change. Again, a type 2 scan request arrives at time t+ 1
with probability π2. In the final two lines, the action during the trading epoch is do nothing. In
that case, the probability is determined by the arrival probability of a type 2 candidate π2.

4.5.6 Optimality equations
The optimality equations are given by

u∗
t (st) = max

a∈Ast

r(st, a) +
∑

st+1∈S

w(st+1, a)u
∗
t+1(st+1)

 (4.3)
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for t = 1, . . . , T − 1. For t = T , we add the boundary condition

u∗
T (sT ) = rT (sT ).

The maximum action in state st is given by

A∗
st,t = argmax

a∈Ast

r(st, a) +
∑
j∈S

w(j|st, a)u∗
t+1(j)

 .

Any policy that selects an action in A∗
st,t for each st ∈ S for all t = 1, . . . , T is optimal.

4.6 Trading probabilities

In this section, we consider the trading probabilities. The trading probabilities connect the indi-
vidual policy to the policy of the other department. The trading probabilities that are used in
an individual MDP are the estimated success probabilities of trading. The actual success prob-
abilities for a player depend on the policy of the other player and might not always match the
estimated probabilities that generated the policy for the player. In this section, we introduce
theoretical concepts that help us understand the effects of the estimated trading probabilities, the
true trading probabilities and the difference between these probabilities on the optimal policies
and the acceptance ratios. In Section 4.6.1, we define estimated and true trading probabilities.
Moreover, we relate the optimal policies obtained by (4.3) to the concept of a best response and
we introduce the definition of a trading equilibrium. In Section 4.6.2, we present the Subdomain
backward induction algorithm, that gives an overview of the influence of the esimated trading
probabilities on the optimal policy. Finally, in Section 4.6.3, we present an algorithm that finds
all trading equilibria.

4.6.1 Estimated and true trading probabilities
In the MDP that is used to describe the decision process of department i, the probability that
department i succeeds in buying or selling ζ units of capacity during a trading epoch t is denoted
by pi(t) and qi(t), respectively. These variables are the estimated trading probabilities and connect
the strategy of the individual player to the strategy of the other player. The solution of the MDP
with trading probabilities pi(t) and qi(t) can be interpreted as the optimal policy under the belief
of player i that the success probabilities of buying and selling are pi(t) and qi(t). This policy is
denoted by Π∗(pi(t), qi(t)).

The success probabilities for player i depend on the behaviour of player j and vice versa. Thus,
pi(t) and qi(t) are a reflection of the belief of player i on the strategy of player j. These do not
have to match the true trading probabilities. We denote the true trading probabilities for player i
by p̃i(t) and q̃i(t). These can be defined as follows. If player i wants to buy capacity at time t,
the probability that this trade succeeds, p̃i(t), is equal to the probability that player j is willing
to sell capacity at time t. So we define the true trading probabilities for player i in the following
way:

p̃i(t) = probability that player j is in a state at time t where he is willing to sell (4.4)

and similarly

q̃i(t) = probability that player j is in a state at time t where he is willing to buy. (4.5)

These probabilities follow from the policy Π∗(pj(t), qj(t)), the policy that is optimal when the
estimated trading probabilities for player j are pj(t) and qj(t). Let Ss

j ⊆ St be the set of states
where the optimal action for player j is ‘sell’, and let Sb

j ⊆ St be the set of states where the
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optimal action for player j is ‘buy’. Notice that these sets depend on the policy that player j
is using, which again depends on the estimated trading probabilities of player j, pj(t) and qj(t).
Therefore, we let Π∗(pj(t), qj(t)) denote the optimal policy for player j when the estimated trading
probabilities are pj(t) and qj(t). Then (4.4) and (4.5) can be written as follows:

p̃i(t) =
∑
s∈Ss

j

PΠ∗(pj(t),qj(t))(sj = s|s0) (4.6)

and
q̃i(t) =

∑
s∈Sb

j

PΠ∗(pj(t),qj(t))(sj = s|s0), (4.7)

where PΠ∗(pj(t),qj(t))(sj = s|s0) is the probability that the state of player j at time t under policy
Π∗(pj(t), qj(t)) is sj , given that the starting state is s0.

With these definitions, we can introduce the definition of a best response.

Definition 4.6.1 (Best response). Policy Πi is a best response to policy Πj with∑
s∈Ss

j

PΠj (sj = s|s0) = p̃i(t)

∑
s∈Sb

j

PΠj (sj = s|s0) = q̃i(t)

if Πi satisfies
Πi = Π∗(p̃i(t), q̃i(t)).

To be able to model the strategies of the departments correctly, we need to understand the
dynamics behind the estimated trading probabilities and the true trading probabilities. In this
chapter, we focus on the question whether it is possible for all players to estimate the trading
probabilities correctly. That is, we investigate if there exist estimated trading probabilities pi(t) =
p̃i(t), qi(t) = q̃i(t) for i = 1, 2. To answer this question, we introduce the concept of an equilibrium
of trading probabilities.

Definition 4.6.2 (Trading equilibrium). A 4-tuple of trading probabilities (pi(t), qi(t), pj(t), qj(t))
is a trading equilibrium if it satisfies the following equations:

pi(t) =
∑
s∈Ss

j

PΠ∗
j (pj(t),qj(t))(sj = s|s0) for t ∈ TT , (4.8)

qi(t) =
∑
s∈Sb

j

PΠ∗
j (pj(t),qj(t))(sj = s|s0) for t ∈ TT , (4.9)

pj(t) =
∑
s∈Ss

i

PΠ∗
i (pi(t),qi(t))(si = s|s0) for t ∈ TT , (4.10)

qj(t) =
∑
s∈Sb

i

PΠ∗
i (pi(t),qi(t))(si = s|s0) for t ∈ TT , (4.11)

0 ≤ pi(t), pj(t),≤ 1 for all t ∈ TT . (4.12)

That is, if the estimated trading probabilities of players i and j equal the true trading probabilities
of the players, respectively.

If the true trading probabilities for player i that follow from the optimal strategy Π∗
j of player j

induced by the equilibrium probabilities are used as estimated trading probabilities to calculate
the optimal policy Π∗

i for player i, the true trading probabilities for player j that follow from this
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policy yield the strategy Π∗
j . Moreover, if both players use the strategies induced by estimated

probabilities equal to the equilibrium probabilities pi(t), qi(t), pj(t) and qj(t), the true trading
probabilities are given by pi(t), qi(t), pj(t) and qj(t). These properties are summarized in the
following theorem.

Theorem 4.6.1. Let Π∗
i = Π∗(pi(t), qi(t)) and Π∗

j = Π∗(pj(t), qj(t)) denote the optimal policies of
player i and j induced by the estimated trading probabilities pi(t), qi(t) and pj(t), qj(t), respectively.
If (pi(t), qi(t), pj(t), qj(t)) is a trading equilibrium, these policies satisfy the following properties:

(i) The true trading probabilities when player i and player j act according to Π∗
i and Π∗

j , respec-
tively, are given by pi(t), qi(t), pj(t) and qj(t).

(ii) Policy Π∗
i is the best response to policy Π∗

j and vice versa.

Proof. (i) The true trading probabilities are given by equations (4.6.1) and (4.7). By the defi-
nition of a trading equilibrium, we have

p̃i(t) =
∑
s∈Ss

j

PΠ∗(pj(t),qj(t))(sj = s|s0) = pi(t),

q̃i(t) =
∑
s∈Sb

j

PΠ∗(pj(t),qj(t))(sj = s|s0) = qi(t),

p̃j(t) =
∑
s∈Ss

i

PΠ∗(pi(t),qi(t))(sj = s|s0) = pj(t),

q̃j(t) =
∑
s∈Sb

j

PΠ∗(pi(t),qi(t))(sj = s|s0) = qj(t).

(ii) If player j plays policy Π∗
j , by (i) the true trading probabilities for player i under this policy

are

p̃i(t) =
∑
s∈Ss

j

PΠ∗(pj(t),qj(t))(sj = s|s0) = pi(t),

q̃i(t) =
∑
s∈Sb

j

PΠ∗(pj(t),qj(t))(sj = s|s0) = qi(t).

The optimal policy for player i, given that the true probabilities are given by pi(t) and qi(t),
is

Π∗(pi(t), qi(t)) = Π∗
i ,

which is a best response by definition. The converse also holds by symmetry.

It is unclear whether a trading equilibrium always exists. In the next sections, we provide an
algorithm that identifies policies Π∗(p(t), q(t)) for all 0 ≤ p(t), q(t) ≤ 0 and an algorithm that
finds all trading equilibria, in case they exist.

4.6.2 Subdomain backward induction algorithm
From the system in equations (4.8)-(4.12) we can see that the trading probabilities and the optimal
policy influence each other, and hence solving the system is not trivial. In this section, we provide
an algorithm that calculates all best response policies Π∗(p(t̃), q(t̃)) for 0 ≤ p(t̃), q(t̃) ≤ 1 for MDPs
with one trading epoch, denoted by t̃. In this algorithm maxima are obtained in (4.3) so that we
are assured of obtaining an optimal Markovian deterministic policy for one player as a function of
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the trading probabilities. We follow the principle of the Backward Induction Algorithm from the
book by Puterman [12] for finite-horizon MDPs. We adapt this algorithm such that it calculates
a department’s optimal policy as a function of the department’s estimated trading probabilities,
0 ≤ p, q ≤ 1. It is based on the fact that the value functions u∗

t (st) are functions of p and q and
can be discontinuous:

u∗
t (st) =


f1(p, q) if p, q ∈ D1

st
...
fk(p, q) if p, q ∈ Dk

st

We have D1
st ∪ · · · ∪ Dk

st = D1, where D1 is the region defined by 0 ≤ p, q ≤ 1. For st ∈ S we
denote the collection of these sets by Dst :

Dst = {D1
st , . . . , D

k
st}. (4.13)

To introduce the algorithm we first consider the backward induction algorithm for finite-horizon
MDPs by Puterman [12]. Our algorithm is an adapted version of this algorithm. This algorithm
is presented below.

Algorithm 1: Backward induction algorithm [12]
Result: u∗

t (st), A
∗
st,t: value and optimal action for all st ∈ S.

Initialization: initialize u∗
T (sT ) = rT (sT ) for all sT ∈ S.

for t = T − 1, . . . , 1 do
for st ∈ S do

u∗
t (st) = maxa∈Ast

{
r(st, a) +

∑
j∈S w(j|st, a)u∗

t+1(j)
}
.

A∗
st,t = argmaxa∈Ast

{
r(st, a) +

∑
j∈S w(j|st, a)u∗

t+1(j)
}

.

end
end

We perform this algorithm for the MDP as defined in Section 4.5. The algorithm starts at t = T .
For t = T, . . . , t̃ + 1, the functions u∗

t (st) do not depend on the trading probabilities. Hence the
value function u∗

t (st) is not a function of p and q for all t > t̃. At the trading epoch t̃, we calculate
u∗
t (st) according to

u∗
t (st) = max

a∈Ast

r(st, a) +
∑
j∈S

w(j|st, a)u∗
t+1(j)

 (4.14)

In trading epochs, the direct reward r(st, a) is zero, so u∗
t (st) is calculated by calculating the

maximum of the functions
∑

j∈S w(j|st, a)u∗
t+1(j) for a ∈ {−1, 0, 1}.

For a = −1, i.e., ‘buy’, this function is given by

u∗
t+1(s, a) = p((1− π2)u

∗
t+1(ct + ζ, 0, ft − ζ, gt) + π2u

∗
t+1(ct + ζ, 1, ft − ζ, gt))

+(1− p)((1− π2)u
∗
t+1(ct, 0, ft, gt) + π2u

∗
t+1(ct, 1, ft, gt))

= pB(st) + (1− p)N(st).

For a = 0, i.e., ‘do nothing’, this function is given by

u∗
t+1(s, a) = (1− π2)u

∗
t+1(ct, 0, ft, gt) + π2u

∗
t+1(ct, 1, ft, gt) = N(st).

For a = 1, i.e., ‘sell’, this function is given by

u∗
t+1(s, a) = q((1− π2)u

∗
t+1(ct − ζ, 0, ft + ζ, gt) + π2u

∗
t+1(ct − ζ, 1, ft + ζ, gt))

+(1− q)((1− π2)u
∗
t+1(ct, 0, ft, gt) + π2u

∗
t+1(ct, 1, ft, gt))

= qS(st) + (1− q)N(st).
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where we have

B(st) = (1− π2)u
∗
t+1(ct + ζ, 0, ft − ζ, gt) + π2u

∗
t+1(ct + ζ, 1, ft − ζ, gt),

N(st) = (1− π2)u
∗
t+1(ct, 0, ft, gt) + π2u

∗
t+1(ct, 1, ft, gt),

S(st) = (1− π2)u
∗
t+1(ct − ζ, 0, ft + ζ, gt) + π2u

∗
t+1(ct − ζ, 1, ft + ζ, gt).

B(st), N(st) and S(st) can be interpreted as the expected value of the MDP after a successful
buy, after an unsuccessful trade or doing nothing, and after a successful sell, respectively. Using
these expressions, we can rewrite (4.14):

u∗
t (st) = max{pB(st) + (1− p)N(st), N(st), qS(st) + (1− q)N(st)} (4.15)

The solution of this equation is given by the following theorem.

Theorem 4.6.2. If st ∈ St̃, the value functions u∗
t (st) and optimal actions A∗

st,t(st) are given by

u∗
t (st) =


pB(st) + (1− p)N(st) if B(st) > N(st) and p > β(st)q,

N(st) if N(st) ≥ B(st) and N(st) ≥ S(st),

qS(st) + (1− q)N(st) if S(st) > N(st) and p ≤ β(st)q,

and

A∗
st,t(st) =


−1 if B(st) > N(st) and p > β(st)q,

0 if N(st) ≥ B(st) and N(st) ≥ S(st),

1 if S(st) > N(st) and p ≤ β(st)q,

where
β(st) =

S(st)−N(st)

B(st)−N(st)
.

Proof. The value function u∗
t (st) is calculated by solving

max{pB(st) + (1− p)N(st), N(st), qS(st) + (1− q)N(st)}.

The maximum value is pB(st) + (1− p)N(st) if

pB(st) + (1− p)N(st) > N(st) =⇒ pB(st)− pN(st) > 0 =⇒ B(st) > N(st)

and

pB(st) + (1− p)N(st) > qS(st) + (1− q)N(st)

=⇒ p(B(st)−N(st)) +N(st) > q(S(st)−N(st)) +N(st)

=⇒ p > q
S(st)−N(st)

B(st)−N(st)
= qβst.

The action corresponding to this maximum is ‘buy’ so the optimal action is given by A∗
st,t(st) = −1.

Similarly, the value qS(st) + (1− q)N(st) with corresponding action ‘sell’ is the maximum if

qS(st) + (1− q)N(st) > N(st) =⇒ qS(st)− qN(st) > 0 =⇒ S(st) > N(st)

and

qS(st) + (1− q)N(st) > pB(st) + (1− p)N(st)

=⇒ q(S(st)−N(st)) +N(st) > p(B(st)−N(st)) +N(st)

=⇒ p ≤ q
S(st)−N(st)

B(st)−N(st)
= qβst.
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Finally, N(st) is maximal when

N(st) > pB(st) + (1− p)N(st) =⇒ N(st) > B(st)

and

N(st) > qS(st) + (1− q)N(st) =⇒ N(st) > S(st).

It can be seen that the value and the optimal action may depend on the estimated trading prob-
abilities. If N(st) is strictly smaller than either B(st) or S(st), the optimal action depends on p
and q via the inequalities p > β(st)q and p < β(st)q. These inequalities do not have a solution
for B(st) > N(st) > S(st) and S(st) > N(st) > B(st), respectively, as β < 0 in these cases and
p, q are both non-negative. In the other cases, we can represent the inequality by a line in the
(p, q)-plane (with 0 ≤ p, q ≤ 1) that splits the plane in two parts: both parts represent the region
for which an action is optimal. This is illustrated in Figure 4.4.

Figure 4.4: Subdomains induced by the subdomain backward induction algorithm. In D2
st

, p > β(st)q. In D1
st

,
p < β(st)q.

Hence, in the case that B(st), S(st) > N(st) for st ∈ TT , the value u∗
t (st) and optimal action

Ast,t(st) are given by

u∗
t (st) =

{
pB(st) + (1− p)N(st) if p, q ∈ D2

st

qS(st) + (1− q)N(st) if p, q ∈ D1
st

A∗
st,t(st) =

{
−1 if p, q ∈ D2

st

1 if p, q ∈ D1
st ,

where

D1
st = {p, q : 0 ≤ p, q ≤ 1, p ≤ β(st)q}

D2
st = {p, q : 0 ≤ p, q ≤ 1, p > β(st)q}.
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In the other cases, that is the cases that do not have a solution for 0 ≤ p, q ≤ 1 and the case
N(st) > B(st), S(st), the optimal action does not depend on p and q.

Now for t < t̃, u∗
t (st) is calculated according to Equation 4.14, but as Theorem 4.2 shows, the

functions u∗
t+1(j) can be functions of p and q and need not be continuous. Therefore we need

to specify the domain (i.e., the values of p and q) for which u∗
t (st) is calculated. To do that, we

identify Mst , the set of states j ∈ St+1 that are reachable from st, i.e., for which w(j|st, a) > 0 for
some a ∈ Ast . Then we take the |Mst |-fold Cartesian product of the subdomains of the functions
u∗
t+1(j) for j ∈ Mst . This is defined as follows.

Definition 4.6.3 (n-fold Cartesian product). The n-fold Cartestian product over the sets D1, . . . , Dn

can be defined as the set

D1 × · · · ×Dn = {Dj
1 ∩ · · · ∩Dj

n|D
j
i ∈ Di for every i ∈ {1, . . . , n}},

where Di is defined as in Equation 4.13.

This is illustrated using Figures 7 and 8.

Figure 4.5: Mst = {j, j̃}. The domain is split in two subdomains for both u∗
t+1(j) and u∗

t+1(j̃).

We consider state st. Suppose that the set of states that are reachable from st is given by
Mst = {j, j̃} and that the value functions of these states are given by

u∗
t+1(j) =

{
f j
1 (p, q) if p, q ∈ D1

j

f j
2 (p, q) if p, q ∈ D2

j

and

u∗
t+1(j) =

f
j̃(p,q)
1 if p, q ∈ D1

j̃

f
j̃(p,q)
2 if p, q ∈ D2

j̃
.

Hence, Dj = {D1
j , D

2
j} and Dj̃ = {D1

j̃
, D2

j̃
} (Figure 4.5). The 2-fold Cartesian product of the sets

of regions Dj and Dj̃ is defined as

M ′ = {(D1
j ∩D1

j̃
), (D1

j ∩D2
j̃
), (D2

j ∩D1
j̃
), (D2

j ∩D2
j̃
)}.

We have
D1

j ∩D1
j̃
= ∅
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D1
j ∩D2

j̃
= {p, q : 0 ≤ p, q ≤ 1, p ≤ β(j)q} = D3

st

D2
j ∩D1

j̃
= {p, q : 0 ≤ p, q ≤ 1, p > β(j̃)q} = D1

st

D2
j ∩D2

j̃
= {p, q : 0 ≤ p, q ≤ 1, β(j)q < p ≤ β(j̃)q} = D2

st ,

so Dst = {D1
st , D

2
st , D

3
st}. These sets are depicted in Figure 4.6. Using these sets, the maximization

problem in Equation 4.14 can be solved for all subdomains D ∈ Dst . In this way, u∗
t (st) can be

calculated. This procedure is formalized in Algorithm 2, the Subdomain backward induction
algorithm.

Figure 4.6: Cartesian product of Dj and Dj̃ .

Algorithm 2: Subdomain backward induction algorithm
Result: u∗

t (st), A
∗
st,t: value and optimal action for all st ∈ S as function of p and q.

Initialization: initialize u∗
T (sT ) = rT (sT ) for all sT ∈ S.

for t = T − 1, . . . , 1 do
for st ∈ S do

M = ∅
for j s.t. w(j|st, a) > 0 for some a ∈ Ast do

M = M + j
end
M ′ = |M |−fold Cartesian product of the sets Dj , j ∈ M .
for D ∈ M ′ do

if D ̸= ∅ then
u∗
t (st) = maxa∈Ast

{
r(st, a) +

∑
j∈S w(j, st, a)u

∗
t+1(j)

}
for p, q ∈ D.

A∗
st,t = argmaxa∈Ast

{
r(st, a) +

∑
j∈S w(j, st, a)u

∗
t+1(j)

}
for p, q ∈ D.

end
end

end
end

By adjusting the backward induction algorithm in this way, we can calculate values and optimal
actions for all states for discontinuous value functions. Moreover, the algorithm creates a clear
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overview of the different policies that are induced by the trading probabilities. When the algorithm
terminates, the output is the value and optimal action for all st ∈ S as function of p and q, defined
on the set of subdomains Dst = {D1

st , . . . , D
k
st}. The set of subdomains of the starting state, Ms0 ,

consists of elements Di that all induce a policy that is optimal for the values of p and q in the
subdomain. Therefore, the number of different optimal policies is given by the cardinality of this
set, |Ms0 |.

4.6.3 Trading equilibrium algorithm
Let the starting states of the system for player i, j be s1,i, s1,j , respectively. The set of subdomains
for this state is denoted by

Ds1,i = {D1
s1,i, . . . , D

k
s1,i}.

The subdomain backward induction algorithm calculates the value and optimal action for all st ∈ S
as function of p and q. Each subdomain Di corresponds to a policy that is optimal for the player
when the estimated trading probabilities lie in Di. So for a given p and q, we are able to calculate
the optimal policy for a player using the subdomain backward induction algorithm, using

Π∗(p, q) = Π∗
Di

for all p, q ∈ Di. (4.16)

We now present an algorithm that uses these subdomain-policies to find the trading equilibria
from Definition 4.2.

Algorithm 3: Trading equilibrium algorithm
Input: optimal policies Π∗

Di
,Π∗

Dj
for all Di ∈ Ds1,i, Dj ∈ Ds1,j .

Result: l(Di), l(Dj) for all subdomains Di ∈ Ds1,i, Dj ∈ Ds1,j : true trading probabilities
under optimal policies Π∗

Di
,Π∗

Dj
, set of trading equilibria TE.

Initialization: initialize l(Di), l(Dj) = −∞ for all Di ∈ Ds1,i, , Dj ∈ Ds1,j and TE = ∅.
for Di ∈ Ds1,i do

pj(Di) =
∑

s∈Ss
it̃

PΠ∗
Di (sit̃ = s|si0)

qj(Di) =
∑

s∈Sb
it̃

PΠ∗
Di (sit̃ = s|si0)

Set l(Di) = (pj(Di), qj(Di))
Take Dj s.t. l(Di) ∈ Dj

if l(Dj) ̸= −∞ then
if l(Dj) ∈ Di then

TE = TE + (pi(Dj), qi(Dj), pj(Di), qj(Di))
end

end
else

pi(Dj) =
∑

s∈Ss
jt̃

P
Π∗

Dj (sjt̃ = s|sj1)

qi(Dj) =
∑

s∈Sb
jt̃

P
Π∗

Dj (sjt̃ = s|sj1)
Set l(Dj) = (pi(Dj), qi(Dj))
if l(Dj) ∈ Di then

TE = TE + ((pi(Dj), qi(Dj), pj(Di), qj(Di))
end

end
end

Theorem 4.6.3. Algorithm 3 finds all solutions for the trading equilibrium equations (2)-(6). If
there is no solution, the algorithm will terminate with TE = ∅.

Proof. To prove the statement, we first prove that all trading equilibria are found by the algorithm.
To that end, suppose that (p̄i, q̄i, p̄j , q̄j) is a trading equilibrium and let p̄i, q̄i ∈ D̄i w.l.o.g. For

30



D̄i, the algorithm calculates

pj(D̄i) =
∑
s∈Ss

it̃

PΠ∗
D̄i (sit̃ = s|si0) =

∑
s∈Ss

it̃

PΠ∗(p̄i,q̄i)(sit̃ = s|si0) = p̄j

and
qj(D̄i) =

∑
s∈Sb

it̃

PΠ∗
D̄i (sit̃ = s|si0) =

∑
s∈Sb

it̃

PΠ∗(p̄i,q̄i)(sit̃ = s|si0) = q̄j .

The first equality follows from Equation 4.16 and the second equality follows from the definition
of a trading equilibrium. Then

l(D̄i) = (p̄j , q̄j) ∈ Dj .

For the subdomain Dj , the algorithm calculates

pi(D̄j) =
∑
s∈Ss

jt̃

P
Π∗

D̄j (sjt̃ = s|sj1) =
∑
s∈Ss

jt̃

PΠ∗(p̄j ,q̄j)(sjt̃ = s|si1) = p̄i

and
qi(D̄j) =

∑
s∈Sb

jt̃

P
Π∗

D̄j (sjt̃ = s|sj1) =
∑
s∈Sb

jt̃

PΠ∗(p̄j ,q̄j)(sjt̃ = s|sj1) = q̄i.

Since l(D̄j) = (p̄j , q̄j) ∈ D̄i, we have

(p̄i, q̄i, p̄j , q̄j) ∈ TE.

Hence, the trading equilibrium is found by the algorithm. This holds for any trading equilibrium,
because the algorithm visits all Di ∈ Ds1,i and⋃

Di∈Ds1,i

Di = {p, q : 0 ≤ p, q ≤ 1}.

Moreover, the set Ds1,i is finite, so the algorithm will always terminate.

To prove that TE exclusively consists of trading equilibria and TE = ∅ when there are no trad-
ing equilibria, suppose to the contrary that there are no trading equilibria, but TE is nonempty.
That is, suppose that (p̃i, q̃i, p̃j , ˜q, j) ∈ TE, where (p̃i, q̃i, p̃j , ˜q, j) is not a trading equilibrium. By
construction of TE, we have

p̃j = pj(D̃i) =
∑
s∈Ss

it̃

P
Π∗

D̃i (sit̃ = s|si1) (4.17)

and
q̃j = qj(D̃i) =

∑
s∈Sb

it̃

P
Π∗

D̃i (sit̃ = s|si1) (4.18)

for some Di ∈ Ds1,i. Moreover, (p̃j , q̃j) ∈ Dj and

p̃i = pi(D̃j) =
∑
s∈Ss

jt̃

P
Π∗

D̃j (sjt̃ = s|sj1) =
∑
s∈Ss

jt̃

PΠ∗(p̃j ,q̃j)(sjt̃ = s|sj1) (4.19)

q̃i = qi(D̃j) =
∑
s∈Sb

jt̃

P
Π∗

D̃j (sjt̃ = s|sj1) =
∑
s∈Sb

jt̃

PΠ∗(p̃j ,q̃j)(sjt̃ = s|sj1). (4.20)

Since (p̃i, q̃i, p̃j , ˜q, j) ∈ TE, we have

l(D̃j) = (p̃i, q̃i) ∈ D̃i.
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Therefore, Equations 4.17 and 4.18 can be rewritten:

p̃j = pj(D̃i) =
∑
s∈Ss

it̃

P
Π∗

D̃i (sit̃ = s|si1) =
∑
s∈Ss

it̃

PΠ∗(p̃i,q̃i)(sit̃ = s|si1) (4.21)

and
q̃j = qj(D̃i) =

∑
s∈Sb

it̃

P
Π∗

D̃i (sit̃ = s|si1) =
∑
s∈Sb

it̃

PΠ∗(p̃i,q̃i)(sit̃ = s|si1). (4.22)

Now Equations 4.19-4.22 satisfy the trading probability equations. Thus, (p̃i, q̃i, p̃j , ˜q, j) is a trad-
ing equilibrium and we have a contradiction. We conclude that TE = ∅.

4.7 Analysis of collective behaviour

In this section, we describe how we calculate the acceptance ratios under a given allocation rule
as formulated in Section 4.3. We first obtain individual policies, and after that, we perform
simulations to obtain the collective behaviour. Under this collective behaviour, we calculate the
acceptance ratios for both departments.

4.7.1 Finding individual policies
We start with finding the individual policies for all departments. These policies are the solutions
to the set of MDPs M(h) as defined in Section 4.3. Under all allocation rules, the minimum
amount of capacity that a department receives is E[Di], and the maximum amount of capacity
that a department receives is (1 + rb)E[Di]. Therefore, we need to solve the MDPs M(ci,y0 ) with
ci,10 = (1 + b)E[Di] and ci,y0 = E[Di], . . . , (1 + rb)E[Di] for y = 2, . . . ,H. The state space, action
space, transition probabilities and reward function are defined according to the model that we
described in Section 4.5. The MDPs are solved using Algorithm 4.

Algorithm 4: Master algorithm individual policies

Result: Optimal policies Π(ci,y0 ) and values V (ci,y0 ) for M(ci,y0 ) for
i = 1, . . . , N, y = 1, . . . ,H and ci,y0 = E[Di], . . . , (1 + rb)E[Di].

Input: bi, αi, r, ζ, σ, pi, qi.
for i = 1, . . . , N : do

for y = H, . . . , 1: do
for c = E[Di], . . . , (1 + rb)E[Di] do

Calculate u∗
t (st) for all st ∈ S using backward induction algorithm for M(ci,y0 ).

Set V (ci,y0 ) =
∑

s∈S1
p(s)u∗

1(s), where p(s) is initial state distribution.
end

end
end

The algorithm can be explained using Figure 4.7. Notice that the MDPs are connected by the final
rewards (Equation 4.2). At the final year of the horizon, y = H, the final rewards only depend on
the state, or more specifically, on the number of rejected type 1 scans and the parameter α, so they
can be calculcated directly. Therefore, the algorithm starts with solving the MDPs in year y = H.
For y < H, the final rewards depend on the value of starting in the next year with some allocated
capacity c. Thus V (ci,y+1

0 ) serves as input to calculate V (ci,y0 ). The output of the algorithm is the
set of policies Π(ci,y0 )for M(ci,y0 ) for i = 1, . . . , N, y = 1, . . . ,H and ci,y0 = E[Di], . . . , (1+ rb)E[Di].
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Figure 4.7: Visualization of Algorithm 4.

4.7.2 Simulation & performance analysis
To measure the effect of the allocation rule, we perform Algorithm 4 to find optimal policies for
the players. After that, we perform simulations to find the proportion of type 1 and type 2 scans
that are accepted when the players act according to the optimal policy. This process is depicted
in Figure 4.8.

Figure 4.8: Visualization of the simulation to to obtain acceptance ratios under collective behaviour.

Each year, the demands Di and Ei are simulated. Both departments act according to the optimal
policy for scan budget ci,y0 . In the first year, this scan budget is given by (1 + b)E[Di] for both
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departments. In the years after the first year, the scan budget is given by ci,y0 = h(fy−1
i ), the

trading balance of the previous year. This trading balance is determined by the amount of budget
that was actually sold or bought by a department. Trading only succeeds when one department
performs action ‘sell’, and the other performs action ‘buy’ during a trading epoch. In each year,
we track the allocation ratios for both scan types for both departments.
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Chapter 5

Numerical results

In this section, we present results from numerical experiments. We perform these experiments to
answer our research questions. These were given by:

1. How can we model the acceptance and trading policy of a single department under a budget
system with trading, and what does this policy look like?

2. What is the effect of a reward and penalty mechanism carried out by radiology for trading
on a single department’s willingness to trade?

3. How does a department’s belief on other departments’ willingness to trade influence the
individual acceptance and trading policy?

4. What are the effects of the individual policies on the collective behaviour?

5. What are the acceptance ratios of type 1 and type 2 under the collective behaviour?

We answer these questions step-by-step: we first evaluate the individual policy for a given set of
parameters. The parameters that are used in the experiments are given in Table 5.1.

Parameter Description
E[Di] Expected number of type 1 scan candidates for department i.
E[Ei] Expected number of type 2 scan candidates for department i.
b Buffer.
α Penalty for rejecting type 1 scan.
r Allocation rule parameter.
ζ Trading amount.
σ Number of trading epochs.
pi Success probability buying for player i.
qi Success probability selling for player i.

Table 5.1: Parameters

These parameters include the estimated success probabilities for buying and selling as well as the
allocation rule parameter. Thus sub-question 2 and sub-question 3 can be answered by evaluating
the individual policies under different values of r and pi, qi. Then, we answer the fourth and
fifth question by performing simulations of the collective behaviour, where the departments act
according to their individual policies. With these simulations, we evaluate the trading that takes
place under the collective behaviour and the total acceptance ratios of departments as well as
the type-specific acceptance ratios. Finally, we perform an extensive sensitivity analysis for all
parameters in Table 5.1 to see how the parameters influence the acceptance ratios. We only
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show results for symmetric cases, as results for asymmetric cases do not fundamentally differ from
symmetric cases, i.e., have similar acceptance ratios.

5.1 Effect of trading

In this section, we discuss numerical results from simulations. To evaluate the effect of trading on
the acceptance ratios, we compare three cases:

1. No trading (NT): the case where players have an annual trading budget ci,y0 (where∑
i c

i,y
0 =

∑
i(1 + b)E[Di] for all y) without trading possibilies and act according to the

optimal policies calculated by Algorithm 4.

2. Trading (T): the case where players have an annual trading budget ci,y0 (where
∑

i c
i,y
0 =∑

i(1+ b)E[Di] for all y) and the possibility to buy or sell ζ units of capacity during trading
epochs. Players act based on the optimal policies calculated by Algorithm 4.

3. Centralized admission control (CA): in this case, all scan candidates are collected by
a central agent, who decides based on the remaining capacity if a scan can be accepted. We
calculate the policy of the central agent by Algorithm 4 with H = 1 and c0 = (1+b)(E[D1]+
E[D2]).

We start by evaluating the individual policy for a department with expected demand sizes E[D] =
10 and E[E] = 3. We set the buffer b = 0.1, the value of a type 1 scan α = 2, the trading amount
ζ = 1 and the number of trading epochs σ = 1. The estimated success probabilities of trading are
both set at 1, so we calculate the policy for a department that has full confidence in trading. The
allocation rule parameter is first set to 1, meaning that there is no reward or penalty for trading.
We perform Algorithm 4, that outputs policies for H years with different initial budgets. The
possible initial budgets are given by E[D] = 10, . . . , (1 + br)E[D] = 11 and the number of years is
set to H = 10. The policy for year 1 with initial budget 11 is depicted in Figure 5.1.

Figure 5.1: Individual policy with E[D] = 10, E[E] = 3, b = 0.1, α = 2, ζ = 1, r = 1, p = 1, q = 1.

On the y-axis, the remaining budget is given. The colors represent the optimal action for a given
remaining budget and time. Pink and green correspond to the decisions ‘accept’ and ‘reject’,
respectively. So for example, at time t = 8 a type 2 request is accepted if the remaining budget
is 9 or higher. At t = 32, there is a trading epoch. In this trading epoch, the optimal action is
always buy, regardless of the remaining budget. This can be explained by the estimated trading
probabilities and the allocation rule parameter: there is no penalty or reward for trading and the
estimated success probability for buying is 1. Thus, by performing the action ‘buy’ the department
is guaranteed to increase its remaining budget by 1 without being penalized for it. We find that
the optimal policy does not change over the years and does not depend on the initial budget.

Increasing the allocation parameter r to 1.5 yields the policy in Figure 5.2.
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Figure 5.2: Individual policy with E[D] = 10, E[E] = 3, b = 0.1, α = 2, ζ = 1, r = 1.5, p = 1, q = 1.

In this case, the optimal action in the trading epoch depends on the remaining budget. If the
remaining budget is less than 5, the department will (try to) buy budget. If the capacity is 5, the
department will neither buy nor sell. In case the remaining budget is greater than 5, the optimal
action is sell. These actions can be related to the expected size of the type 1 demand: the expected
number of type 1 scan candidates that arrive during the half year after the trading epoch is 5.

Next, we consider the collective behaviour of two departments. We start by performing 1000
simulations for H = 10 years with E[D] = 10, E[E] = 3, b = 0.1. α = 2, ζ = 1, r = 1.5,
p = 1, q = 1. We consider the Case N, where the players have an annual scan budget, without
trading possibilities. The resulting acceptance ratios (ARs) are given in Figure 5.3. The average
acceptance ratios (ARs) for both types over the years are very stable, there are no large annual
differences. For that reason, we do not show separate results for all years. Instead, we show the
average numbers over 1000 simulations with a time horizon of H = 10 years, where the standard
deviation of the ARs is also given.

Figure 5.3: (NT) simulation for two departments with E[Di] = 10, E[Ei] = 3, b = 0.1 and α = 2 Moreover, ζ = 0,
so there is no trading.

In the upper graph, the total acceptance ratios and the used total capacity is shown. It can be
seen that the average acceptance ratio for type 1 and type 2 scans together over all departments
is 81.6% and that the total ARs for type 1 and type 2 are 91.3% and 51.1%, respectively. There
is a clear difference in type 1 and type 2 scans: only half of the type 2 scans are accepted, while
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the acceptance ratio for type 1 scans is 91.3%. In the lower graph, these numbers are split out for
the departments. It can be seen that there are hardly any differences between the departments,
which is as expected for a symmetric situation without interaction between the departments. The
standard deviations are also given in both graphs. The standard deviations for the type 1 accep-
tance ratios are small, and there is only a small difference between the standard deviation in the
collective case and the standard devations of the type 1 ARs of the departments. The standard
deviation of the AR of type 2 scans is significantly larger than the other standard deviations. This
can be explained by two factors. First, the numbers of the type 2 demand are small, which results
in large differences in ARs, because the acceptance of a single scan has a relatively large influence
on the acceptance ratio. Second, the number of type 2 scans that are accepted depends on the
number of type 1 scans that arrive, and is therefore more variable than the number of type 1 scans
that is accepted. Finally, we also look at the average absolute annual difference (AAAD) between
the ARs for type 1 of both departments. This number gives an indication of the ‘fairness’ of the
allocation mechanism. For this case, the AAAD is 9.6 percentage point (pp).

Next we consider T, the case where we allow trading. We perform another 1000 simulations,
but now the departments can trade capacity. We set ζ = 1 and r = 1.5. The averages over the
1000 simulations can be seen in Figure 5.4.

Figure 5.4: Case T simulation for two departments with E[D] = 10, E[E] = 3, b = 0.1, α1 = 2, ζ = 1, r = 1.5,
p = 1, q = 1.

It can be seen that both acceptance ratios (slightly) increase now that there is an opportunity
to trade, so the total number of rejected scans decreases. The total acceptance ratios are both
82.9%, similar to the total acceptance ratios in Case 1, and higher than the total acceptance ratios
in Case 2. Thus, trading seems to reduce the waste of capacity. Trading actually happens: it can
be seen that trading took place in 23.5% of the trading epochs. Again, the performance measures
are symmetric: there are no clear structural differences between the departments. The AAAD is
8.2 pp, which means that a trading possibility also reduces the annual departmental difference.

To investigate the dynamics between departments, we zoom in on a single simulation. This
simulation is given in Figure 5.5.
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Figure 5.5: Case T simulation for two departments with E[Di] = 10, E[Ei] = 3, b = 0.1 and α1 = 2, ζ = 1, r = 1.5.

In this figure, we can see that trading takes place in the first year. In this year, department 1
sells and therefore receives more capacity in year 3. Department 2 buys capacity from depart-
ment 1 and therefore receives less capacity in year 3. In year 2, there is no trading, so after this
year the allocated capacity is set to the standard amount ((1+b)E[D]) again for both departments.

Finally, we perform 1000 simulations with centralized admission control. We set the expected
total type 1 demand E[D] = 20, the total type 2 demand E[E]=6 and α = 2.

Figure 5.6: Case CA simulation (centralized admission control) with E[D] = 20, E[E] = 6, b = 0.1 and α = 2.

In this case, the total acceptance ratio increases to 84.0%. The acceptance ratio for type 1 scans
is 94.5%, which is higher than the acceptance ratio for type 1 scans in Case T (91.8%). The
acceptance ratio for type 2 scans is 50.6%, which is smaller than the acceptance ratio in Case
T (54.8%). The standard deviation of the AR of type 2 is still large. We conclude that under
centralized admission control, the acceptance ratio for type 1 increases whereas the acceptance
ratio for type 2 decreases, leading to a positive net result as the total acceptance ratio increases
compared to Case T. The acceptance ratios under centralized admission control serve as an upper
bound for the acceptance ratios for the decentralized cases.

5.2 Sensitivity analysis of parameters

In this section, we study the influence of the parameters on the acceptance ratios. For all experi-
ments, we set E[D] = 10, E[E] = 3 for both departments.

Buffer
We start with a sensitivity analysis of the buffer parameter b. In the following table, we present
the total acceptance ratios for different values of b. The first value is the total acceptance ratio for
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both types, the second value represents the total acceptance ratio for type 1 scans and the third
number represents the total acceptance ratio for type 2 scans.

b ↓ Case NT Case T Case CA
0.1 81.6 / 91.3 / 51.1 / 9.6 82.9 / 91.8 / 54.8 / 8.2 84.0 / 94.5 / 50.6
0.2 87.3 / 93.5 / 66.7 / 7.3 88.5 / 93.9 / 70.3 / 6.7 90.1 / 95.9 / 70.8
0.3 91.6 / 95.4 / 78.5 / 5.4 92.6 / 95.6 / 82.6 / 4.9 94.4 / 97.7 / 83.3
0.4 94.7 / 96.9 / 87.2 / 3.7 95.0 / 97.3 / 87.5 / 3.5 97.1 / 98.4 / 92.6
0.5 96.7 / 98.0 / 92.3 / 2.2 97.5 / 98.4 / 94.5 / 2.2 98.7 / 99.2 / 97.1

Table 5.2: Acceptance ratios for E[D] = 10, E[E] = 3, α = 2, ζ = 1, r = 1.5, p = 1, q = 1, σ = 4 and different
values of b. The first number is the total acceptance ratio, the second number is the acceptance ratio for type 1
scans, the third number is the acceptance ratio for type 2 scans and the fourth number is the AAAD.

In Table 5.2 there are a few patterns visible. The first observation is that when the buffer increases,
the total number of rejected scans decreases for all cases. This is a logical result of the relationship
between the buffer and the total capacity: increasing the buffer means that the total capacity will
also increase, leading to more scans that can be accepted. Comparing case NT with case T, we
observe that the algorithm with one trading epoch performs better in every way: the requested
number of both type 1 and type 2 scans for case T is larger. From this, we can conclude that the
possibility of trading reduces the waste of capacity. This can be caused by the trading process
itself, but it could also be due to the belief of players that they will be able to buy capacity
when they need it. However, the latter would only increase the number of requested type 2 scan
candidates, and from the results in Table 5.2 it is clear that also the type 1 ratio improves in case
T. Therefore, we can conclude that not only the possibility of trading improves the performance,
but also that trading actually takes place and that it leads to less rejected scans, reducing the
waste of capacity. The effect of trading is also visible in the AAADs: trading possibilities reduce
the annual departmental difference. The effect of trading decreases when the buffer increases. This
makes sense: when the buffer is increases, the probability that a department runs out of budget
decreases. Thus, departments will buy less often. They might want to sell more, but trading only
happens when there is another player to sell to. This happens less when the buffer is larger.

Value of type 1 scan
The next parameter that we consider is α, the value of a type 1 scan relative to the value of a
type 2 scan. Until now α = 2, but for our next experiment we set α = 5. The individual policy
for this new setting of parameters is the following:

Figure 5.7: Individual policy with E[D] = 10, E[E] = 3, b = 0.1, α = 5, ζ = 1, r = 1.5, p = 1, q = 1.

Compared with the policy with α = 2 (Figure 5.2), the structure of the policies are similar, but
the threshold for accepting a type 2 scan is much higher for α = 5. Just before the trading epoch,
type 2 scan candidates are accepted only when the remaining budget is greater than 8. For the
policy with α = 2, this value is 5. Also the trading policy is different: when the remaining budget
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is greater than 6, the optimal action is sell, and when the remaining budget is smaller than 6, the
optimal action is buy. If the remaining budget is exactly 6, the optimal action is to do nothing.
Thus, if α increases, the willingness of departments to buy increases. This can be explained by the
risk of running out of budget. This risk increases if a department sells capacity. For increasing α,
the penalty for rejecting type 1 scans also increases. Therefore, departments want to decrease this
risk for larger values of α. We evaluate the collective behaviour for two symmetric departments
with α = 5. The resulting acceptance ratios are given in Table 5.3.

α ↓ Case NT Case T Case CA
2 81.6 / 91.3 / 51.1 / 9.6 82.9 / 91.8 / 54.8 / 8.2 84.0 / 94.5 / 50.6
5 77.9 / 94.0 / 26.9 / 6.6 78.6 / 94.6 / 27.5 / 5.7 80.9 / 96.7 / 30.7
20 75.3 / 94.3 / 15.1 / 6.2 76.2 / 95.2 / 15.3 / 5.1 78.2 / 97.0 / 18.5
200 73.0 / 94.5 / 8.0 / 6.3 74.7 / 95.4 / 8.9 / 5.0 76.6 / 97.2 / 11.0

Table 5.3: Acceptance ratios for E[D] = 10, E[E] = 3, b = 0.1, ζ = 1, r = 1.5, p = 1, q = 1 and different values of
α. The first number is the total acceptance ratio, the second number is the acceptance ratio for type 1 scans, the
third number is the acceptance ratio for type 2 scans and the fourth number is the AAAD.

This table shows results for the different cases that are similar to results in Table 5.2. Also for
larger values of α, trading improves both the type 1 AR and the type 2 AR and the annual
absolute difference between departments is smaller for case T. From this table, we can conclude
that increasing α leads to a slightly larger AR for type 1, a smaller AR for type 2 scans and also
a smaller general AR. Thus, increasing α mainly leads to a policy that rejects more type 2 scans,
and does not guarantee that all type 1 scans are accepted. This can be explained by the sizes of
E[D],E[E] and the buffer b: even if a department’s policy is to reject all type 2 scans regardless
of the budget, the department may still run out of capacity because of type 1 scans.

Allocation rule parameter
In this section we consider the allocation rule parameter r. The penalty and reward for buying
and selling are determined by the value of r. We consider a situation with buffer b = 0.3, because
this gives more possibilities to tune r, because of the integer restriction of the allocated budget.
We only consider Case T, as r is only relevant when departments have the opportunity to trade,
which is not the case for Case NT and Case CA. Besides the acceptance ratios and AAAD, we
also consider an additional performance measure: the number of trading epochs in which trading
takes place. The performance measures are given in Table 5.4.

r ↓ AR total / type 1 / type 2 / AAAD / used trading epochs (%)
1 92.2 / 95.2 / 82.7 / 5.2 / 0.0

1.3 92.5 / 95.9 / 81.5 / 4.7 / 20.8
1.6 91.6 / 95.9 / 77.5 / 5.0 / 0.5
1.9 91.6 / 96.1 / 77.2 / 5.0 / 0.0

Table 5.4: Acceptance ratios and the used trading epochs for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, p = 1,
q = 1, σ = 4 and different values of ζ.

This table shows interesting results. Trading practically only happens when r = 1.3. In this case,
the reward and penalty are 1 and -1, respectively. For r = 1.6 and r = 1.9, the rewards are 2 and
3 and the penalties are -2 and -3, respectively. For r = 1, there is no reward or penalty. From the
table it is clear that trading does not happen in these cases. We zoom in on the individual policy
for r = 1.6 in Figure 5.8.
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Figure 5.8: Individual policy with E[D] = 10, E[E] = 3, b = 0.3, α = 2, ζ = 1, r = 1.6, p = 1, q = 1.

This picture explains why trading almost never happens: a department only sells when it has ran
out of budget at the trading epoch. Apparently, the penalty for buying (-2) is too high and is
not worth the additional unit of budget that a department would receive with buying. This also
explains the ARs in Table 5.4. In this table it can be seen that the type 1 acceptance ratios are as
least as high and even higher for r = 1.9, although there is no trading for this value. This can be
explained by the policy. Because the department does not buy at the trading, it cannot anticipate
on receiving an extra unit of budget during the trading epoch as in the case with r = 1.3 (Figure
5.9). Therefore, the threshold for accepting type 2 scans is higher, which results in a lower AR for
type 2 and a higher AR for type 1 in the end.

Figure 5.9: Individual policy with E[D] = 10, E[E] = 3, b = 0.3, α = 2, ζ = 1, r = 1.3, p = 1, q = 1.

Trading amount
In this section we consider the trading amount ζ. We only consider Case T, as ζ is only relevant
when departments have the opportunity to trade. Besides the acceptance ratios, we also consider
an additional performance measure: the number of trading epochs in which trading takes place.
The performance measures are given in Table 5.5.

ζ ↓ AR total / type 1 / type 2 / AAAD / used trading epochs (%)
1 82.9 / 91.8 / 54.8 / 8.4 / 23.5
2 83.8 / 89.3 / 65.8 / 9.5 / 5.8
3 83.7 / 88.5 / 68.4 / 9.7 / 0.2

Table 5.5: Acceptance ratios and the used trading epochs for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, p = 1,
q = 1, σ = 4 and different values of ζ.

We see that for ζ > 1, the number of used trading epochs decreases, and thus that less trading
takes place. However, the AR for type 2 increases. To understand this, we look at the individual
policy in Figure 5.10.
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Figure 5.10: Individual policy with E[D] = 10, E[E] = 3, b = 0.1, α = 2, ζ = 2, r = 1.5, p = 1, q = 1.

With ζ = 2, the department buys whenever its remaining budget is less than 7. Thus, in compar-
ison to the policy for ζ = 1 (Figure 5.2) where the department buys when the remaining budget
is less than 5, the probability that a department buys budget is higher. In addition, the trading
amount is also higher, and therefore the department anticipates on having a much higher budget
after the trading epoch. Therefore the threshold for accepting type 2 scans is lower, which results
in a higher AR for type 2. However, as trading rarely happens contrary to the department’s belief,
the AR for type 1 scans is lower.

Number of trading epochs
We consider the number of trading epochs σ. We set ζ = 1 again and calculate the policies for
σ = 4. The individual policy for this case is depicted in Figure 5.11.

Figure 5.11: Individual policy with E[D] = 10, E[E] = 3, b = 0.1, α = 2, ζ = 1, r = 1.5, p = 1, q = 1, σ = 4.

This policy is different from the policies with one trading epoch in multiple aspects. The first
thing that we observe is the acceptance of type 2 scans: the threshold is much lower than the
threshold in the policy in Figure 5.2. This can be explained by the larger number of trading
epochs and by the estimated trading probabilities. The probabilities are 1, which implies that
departments receive an additional unit of scan budget when they buy during a trading epoch.
With σ = 4, this means that departments ‘believe’ they are assured of receiving 4 extra units of
budget per year. We also observe that there are a few states where the optimal action depends
on the trading balance, especially in the third and fourth trading epoch. This can be explained
by the simple nature of the allocation rule: departments receive a reward whenever the trading
balance is greater than zero, and receive a penalty whenever the trading balance is smaller than
zero. With four trading epochs, the trading balance can be any integer value between -4 and 4. So
selling (buying) might be optimal when the trading balance is 0, but whenever the trading balance
is smaller (greater) than zero, there is no additional reward (penalty) for selling (buying). Finally,
we observe that selling only takes place in the third and fourth trading epochs. This is a logical
result from the simple allocation rule: the exact amount that has been sold does not matter, as
long as it is greater than zero. Therefore, selling during one epoch is enough to receive the reward.
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Departments prefer the later trading epochs, because in those epochs the risk of having a larger
demand and therefore losing more budget than expected is lower, as the number of remaining
decision epochs is smaller for the later epochs.

We also investigate the influence of multiple trading epochs on the collective behaviour. The
performance measures are given in Table 5.6.

σ ↓ AR total / type 1 / type 2 / AAAD / used trading epochs (%)
1 82.9 / 91.8 / 54.8 / 8.2 / 23.5
2 85.1 / 91.0 / 65.9 / 9.1 / 14.6
3 86.0 / 90.2 / 72.7 / 9.6 / 9.3
4 87.2 / 90.1 / 77.8 / 10.3 / 4.8

Table 5.6: Acceptance ratios and the used trading epochs for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, ζ = 1,
p = 1, q = 1 and different values of σ. The first number is the total acceptance ratio, the second number is the
acceptance ratio for type 1 scans, the third number is the acceptance ratio for type 2 scans and the fourth number
is the percentage of trading epochs in which trading takes place.

For σ > 1, the total acceptance ratio is higher than for only one trading epoch. However, a
remarkable fact is that this increase is not caused by a higher acceptance ratio for type 1 scans,
because this acceptance ratio decreases in comparison to the case with one trading epoch. The
increase is caused by the larger acceptance ratio for type 2 scans. There is an outstanding difference
between the acceptance ratios for type 2 scans for the cases. This difference can be explained by
the thresholds for type 2 acceptance decisions in Figure 5.11, which are caused by the high values of
the estimated trading probabilities. With p = q = 1, departments have full confidence in trading,
which results in less risk-averse behaviour when it comes to accepting type 2 scans. However, the
true buying probability under the collective behaviour is actually be much smaller, especially in
the early trading epochs. In a symmetric situation, both players will decide to buy in the first
and second trading epoch, and therefore the true buying probabilities are zero at these epochs.
However, both players anticipate on a successful trade, because their policies are based on the
belief that both trading probabilities are one. Thus, their ‘optimal’ policies might not be optimal,
for example because they accept too many type 2 requests and are forced to reject type 1 requests
later in the year, because they did not get the additional capacity they anticipated on. This also
explains the lower acceptance ratio for type 1 scans.

Trading probabilities
If we calculate the policy for σ = 4 and the true trading trading policies under the policy in Figure
5.11 p = 0.15, q = 0.85, the performance and policy is follows (Table 5.7, Figure 5.12):

p, q ↓ AR total / type 1 / type 2 / AAAD / used trading epochs (%)
1, 1 87.2 / 90.1 / 77.8 / 10.3 / 4.8

0.15, 0.85 85.8 / 93.7 / 61.0 / 6.5 / 8.1

Table 5.7
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Figure 5.12: Individual policy with E[D] = 10, E[E] = 3, b = 0.1, α = 2, ζ = 1, r = 1.5, p = 0.15, q = 0.35, σ = 4.

For these estimated probabilities, the AR for type 1 is higher and trading takes place more often,
resulting in a much smaller AAAD. This shows that accurate information about the true trading
probabilities can significantly improve the general performance. In this subsection, we investigate
the influence of the estimated trading probabilities on the individual policies and on the resulting
collective behaviour and acceptance ratios. More specifically, we provide some insight in the ‘cost’
of estimation errors, that is, the difference between the acceptance ratios when the policies induced
by the estimated probabilities are followed, and the acceptance ratios when the policies induced
by the true trading probabilities are followed.

We start with studying the simple case we started with, with parameters E[D] = 10, E[E] = 3,
b = 0.1, α = 2, ζ = 1, r = 1.5 and only one trading epoch for different values of p and q. The
results are given in Table 5.8. In Table 5.9, the true trading probabilities for these cases are
given. These can be interpreted as follows: if a department acts according to the policy calculated
with estimated probabilities p = 0.25, q = 0.25, the probability that this department sells budget
(i.e., the true buying probability for the other player) during any trading epoch is 0.58, and the
probability that the department buys (i.e., the true selling probability for the other player) budget
during any trading epoch is 0.24.

p ↓ q → 0.25 0.50 0.75
0.25 82.6 / 92.0 / 53.1 / 22.3 82.8 / 92.3 / 52.7 / 21.8 82.6 / 92.3 / 51.1 / 22.1
0.50 82.9 / 91.8 / 54.8 / 23.3 82.8 / 92.0 / 53.8 / 21.5 82.7 / 92.2 / 52.4 / 22.4
0.75 83.2 / 91.7 / 56.2 / 22.8 82.9 / 91.8 / 54.9 / 22.6 82.8 / 91.9 / 53.8 / 22.5

Table 5.8: Acceptance ratios and the used trading epochs for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, ζ = 1,
σ = 1 and different values of p and q. The first number is the total acceptance ratio, the second number is the
acceptance ratio for type 1 scans, the third number is the acceptance ratio for type 2 scans and the fourth number
is the percentage of trading epochs in which trading takes place.

p ↓ q → 0.25 0.50 0.75
0.25 0.53, 0.24 0.54, 0.23 0.57, 0.21
0.50 0.51, 0.25 0.53, 0.24 0.55, 0.23
0.75 0.49, 0.26 0.51, 0.25 0.53, 0.24

Table 5.9: True trading probabilities for the other player (i.e., the first number refers to the probability that the
other player can buy) for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, ζ = 1, σ = 1 and different values of p and
q.

These tables show only small differences in the ARs and the number of used trading epochs.
However, also in these small differences there are patterns visible: as p increases, the ARs for type
2 increase and the ARs for type 1 decrease. For q, the opposite holds. From the true trading
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probabilities in Table 5.9, we can conclude that the true trading probabilities are most likely close
to p = 0.5 and q = 0.25. Thus, there is probably a trading equilibrium for (0.5, 0.25, 0.5, 0.25). If
we consider the performance measures for these equilibrium probabilities in Table 5.8, two things
can be noticed. First, the trading is the highest for the trading equilibrium. Second, the AR for
type 1 is not the highest for the trading equilibrium. This number is higher for larger estimated
selling probabilities q and for smaller estimated buying probabilities p. We also consider the case
with two trading epochs. The results for this case are given in Tables 5.10 and 5.11.

p ↓ q → 0.25 0.50 0.75
0.25 84.1 / 92.3 / 58.0 / 21.7 84.1 / 92.6 / 57.1 / 22.1 84.0 / 92.6 / 56.5 / 20.9
0.50 84.6 / 91.8 / 61.8 / 30.8 84.6 / 92.1 / 60.6 / 22.4 84.3 / 92.0 / 59.8 / 20.4
0.75 85.0 / 91.3 / 64.9 / 25.4 84.8 / 91.3 / 64.2 / 25.7 84.7 / 91.6 / 62.8 / 17.7

Table 5.10: Acceptance ratios and the used trading epochs for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, ζ = 1,
σ = 2 and different values of p and q. The first number is the total acceptance ratio, the second number is the
acceptance ratio for type 1 scans, the third number is the acceptance ratio for type 2 scans and the fourth number
is the percentage of trading epochs in which trading takes place.

p ↓ q → 0.25 0.50 0.75
0.25 0.38, 0.34 0.26, 0.47 0.26, 0.47
0.50 0.36, 0.54 0.26, 0.51 0.25, 0.51
0.75 0.24, 0.71 0.23, 0.71 0.18, 0.71

Table 5.11: True trading probabilities for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, ζ = 1, σ = 2 and different
values of p and q.

From these results, we can see that in a trading equilibrium, the values of p and q are prob-
ably close to (0.25, 0.50. In Table 5.11, we again observe a clear relation between p and q
and the ARs for type 1 and type 2. Moreover, we also see that for the cases where the true
trading probabilities are approximately (0.25, 0.50), that is, policies with estimated probabilities
(0.25, 0.50), (0.25, 0.75), (0.50, 0.50), (0.50, 0.75), the policy with estimated trading probabilities
(0.25, 0.50) is indeed optimal in terms of the AR for type 1.

Finally, we perform a small iterative experiment for the last case. We start by calculating a policy
with estimated trading probabilities p = q = 1. Then we evaluate the true trading probabilities
under this policy, and use these true trading probabilities as the new estimated probabilities. We
repeat this procedure until we arrive at an equilibrium.

p, q ↓ AR total / type 1 / type 2 / used trading epochs p̃, q̃
1.0, 1.0 82.9 / 91.0 / 65.9 / 9.1 / 14.6 0.16, 0.73

0.16, 0.73 83.8 / 92.9 / 55.4 / 7.7 / 20.9 0.26, 0.46
0.26, 0.46 84.1 / 92.5 / 58.2 / 7.5 / 22.1 0.26, 0.48
0.26, 0.48 84.1 / 92.5 / 58.2 / 7.5 / 22.1 0.26, 0.48

Table 5.12: Acceptance ratios and the used trading epochs for E[D] = 10, E[E] = 3, β = 0.1, α = 2, r = 1.5, ζ = 1,
σ = 2. The first number is the total acceptance ratio, the second number is the acceptance ratio for type 1 scans,
the third number is the acceptance ratio for type 2 scans and the fourth number is the percentage of trading epochs
in which trading takes place.

This iterative process shows several things. First, it shows that there is a trading equilibrium at
(0.26, 0.48, 0.26, 0.48) and that we are able to find this trading equilibrium in three iterations. We
can of course not draw conclusions from this single case, but this might show that the number
of subdomains for the cases with only two trading epochs is small, i.e., that there are only a few
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different policies that are optimal for different values of p and q. Tables 5.8 and 5.9 also show
this for σ = 1. This would mean that finding trading equilibria using the Subdomain Backward
Induction algorithm and Algorithm 3 can be done very efficiently for cases with small σ. As
these algorithms were not implemented. this cannot be tested in this study, but this would be
a promising result that deserves further research. It can also be observed that the policy with
estimated trading probabilities p = 0.16 and q = 0.73 (second row) performs better in terms of
the type 1 AR than the policy that should be optimal for these probabilities (last row). However,
it can be seen that with the last policy trading happens more often, which also leads to a smaller
AAAD. The AR for type 2 is also higher in the last row, which can be explained by the larger
estimated success probability for buying compared to the case in the second row. Thus, we can
conclude that having an ‘incorrect’ belief on the true trading probabilities does not necessarily lead
to a decrease in the type 1 AR, as long as the department underestimates the success probability
of buying. Underestimating the buying opportunities leads to more risk-averse behaviour, i.e.,
higher thresholds for the acceptance of type 2 scans. Overestimating the buying probability leads
to an increase in the the type 2 AR and a decreasing type 1 AR, as shown in Figure 5.11 and
Table 5.7.
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Chapter 6

Conclusions and discussion

6.1 Conclusions

In this research, we have presented a model that can be used to analyze individual policies and
collective behaviour under a scan budget system. We found that the acceptance and trading policy
of an individual department is a threshold policy where optimal actions depend on the remaining
budget and the time. Multiple parameters influence the threshold for accepting type 2 scans, but
the most important ones are the value of a type 1 scan α and the estimates success probability
of buying . Under the assumption that departments are self-interested and only motivated by
budget (i.e., scans), a small reward and penalty in terms of budget is necessary to ensure that
trading takes place. However, this reward and penalty should be close to the amount that is
traded, because in case the reward and penalty are much higher, departments do not buy because
the amount that is received by buying does not outweigh the penalty that is received for buying.
Similarly, in case the penalty and reward are much lower than the trading amount, departments
do not sell capacity, because the reward that is received for selling does not outweigh the amount
of budget that is lost by selling. In both cases, trading does not happen. We have seen that a
department’s belief on the other department’s willingness to trade affects the individual policy and
therefore also the collective behaviour. If the success probability of buying is underestimated, this
leads to more risk-averse behaviour, i.e., the type 1 AR increases, while the type 2 AR increases. If
the success probability of buying is overestimated, the opposite happens. The influence of under-
and overestimating of the selling probability on the acceptance is small. However, it can be seen
that under- and overestimation of both trading probabilities affect the trading process and the
average annual absolute departmental difference; these seem to be optimal for trading equilibria.
In general, our experiments for the cases N, T and CA show that introducing the possibility of
trading reduces the waste of capacity and improves the acceptance ratios for both type of scans.
Moreover, trading leads to smaller average annual departmental differences, meaning that trading
provides equity between departments. When multiple (> 3) trading epochs are used and estimated
probabilities are close to the true trading probabilities, the acceptance ratios increase even more
and approach the ratios under centralized admission (CA).

6.2 Discussion

6.2.1 Discussion of results
Because of the choice for a direct solution method, we can only calculate relatively small instances.
The use of small instances can affect the stability of the results, because single events and decisions
can have a large impact on the ARs. For example, if the total number of type 2 scans that arrive
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during a year is 3, the decision whether or not to accept a single scan makes a difference of 33
percentage point in the acceptance ratio. Therefore, including larger cases is desirable. Under the
allocation rule that is used, there exist monotone policies that are optimal. This can be proved
using Theorem 4.7.4. of [12]. This property can be exploited to solve larger instances.

Another disadvantage of small cases is that there are little possibilities for tuning the alloca-
tion rule. We require the allocated capacity to be at least E[Di], at most (1 + rb)E[Di] and
integer-valued. So if E[Di] is small, the difference between the minimum and maximum allocated
amount is small, and different values of r could yield the same allocated amount, due to the in-
teger restriction. Thus the allocation is very ‘rough’ for small cases; for larger cases, it is more
sophisticated. However, this means that the performance of an allocation rule for small instances
provides a lower bound for larger instances, because for larger cases the allocation rule can be
(but does not need to be) refined. This also holds for the number of trading epochs. It is likely
that larger numbers will improve the acceptance ratios.

In the current setup of the model and simulations, it is difficult to distinguish effects of the
individual policy and effects of the collective behaviour on the acceptance ratios. For example,
when the players are not in a trading equilibrium, it is unclear if smaller acceptance ratios are
caused by having the ‘wrong’ belief, or that these are caused by the individual policy. That is,
the current setting does not allow for evaluating the individual policies for different true trading
probabilities. This could be studied by fixing a true trading probability and evaluate individual
policies for this true trading probability, and vice versa.

6.2.2 Future research
To make the model useful in practice, a lot of things can be added and improved. First, a major
assumption in the model is that the demand does not change over the years. This is not a real-
istic assumption, because in the real world, the demand is increasing. Therefore, the allocation
mechanism in practice should not only be based on the trading balance, but also on the observed
trends and on the expected demand for next year. Incorporating a prediction model in the current
model would make the allocation rule more realistic. Moreover, different prices for different scans
can be used to account for different levels of complexity of scans. The models of the individual
policies can also be made more sophisticated by including for example seasonal influences on the
demand, and imposing constraints on the differences between monthly acceptance ratios to avoid
unfair treatment of different patients over time. If this is done, the individual policies could also
be used in practice to advise departments on their policies under a scan budget.

The trading and collaboration can also be modeled differently. Currently, the assumption is that
departments are only motivated by budget or capacity and therefore the budget allocation is the
only tool that can be used to stimulate trading. This can be approached differently, for example
if we assume that departments are also interested in maintaining good relationships with other
departments, because they might benefit from these relationships by collaboration. This could be
incorporated in the model by using a tie strength for the connection between two departments.
This tie strength then influences the trading probabilities for these departments. This could be
combined with the allocation rule that is used in our model.
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